-
Notifications
You must be signed in to change notification settings - Fork 86
/
calc.py
364 lines (299 loc) · 13.3 KB
/
calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env python
import numpy as np
import pandas as pd
import gc
from scipy import stats
from pandas.stats.api import ols
from pandas.stats import moments
from lmfit import minimize, Parameters, Parameter, report_errors
from collections import defaultdict
from util import *
INDUSTRIES = ['CONTAINR', 'HLTHSVCS', 'SPLTYRET', 'SPTYSTOR', 'DIVFIN', 'GASUTIL', 'BIOLIFE', 'SPTYCHEM', 'ALUMSTEL', 'AERODEF', 'COMMEQP', 'HOUSEDUR', 'CHEM', 'LEISPROD', 'AUTO', 'CONGLOM', 'HOMEBLDG', 'CNSTENG', 'LEISSVCS', 'OILGSCON', 'MEDIA', 'FOODPROD', 'PSNLPROD', 'OILGSDRL', 'SOFTWARE', 'BANKS', 'RESTAUR', 'FOODRET', 'ROADRAIL', 'APPAREL', 'INTERNET', 'NETRET', 'PAPER', 'WIRELESS', 'PHARMA', 'MGDHLTH', 'CNSTMACH', 'OILGSEQP', 'REALEST', 'COMPELEC', 'BLDGPROD', 'TRADECO', 'MULTUTIL', 'CNSTMATL', 'HLTHEQP', 'PRECMTLS', 'INDMACH', 'TRANSPRT', 'SEMIEQP', 'TELECOM', 'OILGSEXP', 'INSURNCE', 'AIRLINES', 'SEMICOND', 'ELECEQP', 'ELECUTIL', 'LIFEINS', 'COMSVCS', 'DISTRIB']
BARRA_FACTORS = ['country', 'growth', 'size', 'sizenl', 'divyild', 'btop', 'earnyild', 'beta', 'resvol', 'betanl', 'momentum', 'leverage', 'liquidty']
PROP_FACTORS = ['srisk_pct_z', 'rating_mean_z']
ALL_FACTORS = BARRA_FACTORS + INDUSTRIES + PROP_FACTORS
def calc_vol_profiles(full_df):
full_df['dpvolume_med_21'] = np.nan
full_df['dpvolume_std_21'] = np.nan
full_df['dpvolume'] = full_df['dvolume'] * full_df['dvwap']
print "Calculating trailing volume profile..."
for timeslice in ['09:45', '10:00', '10:15', '10:30', '10:45', '11:00', '11:15', '11:30', '11:45', '12:00', '12:15', '12:30', '12:45', '13:00', '13:15', '13:30', '13:45', '14:00', '14:15', '14:30', '14:45', '15:00', '15:15', '15:30', '15:45', '16:00' ]:
timeslice_df = full_df[ ['dpvolume', 'tradable_med_volume_21', 'close'] ]
timeslice_df = timeslice_df.unstack().between_time(timeslice, timeslice).stack()
timeslice_df = timeslice_df.dropna()
if len(timeslice_df) == 0: continue
timeslice_df['dpvolume_med_21'] = timeslice_df['dpvolume'].groupby(level='sid').apply(lambda x: pd.rolling_median(x.shift(1), 21))
timeslice_df['dpvolume_std_21'] = timeslice_df['dpvolume'].groupby(level='sid').apply(lambda x: pd.rolling_std(x.shift(1), 21))
m_df = timeslice_df.dropna()
print m_df.head()
print "Average dvol frac at {}: {}".format(timeslice, (m_df['dpvolume_med_21'] / (m_df['tradable_med_volume_21'] * m_df['close'])).mean())
full_df.ix[ timeslice_df.index, 'dpvolume_med_21'] = timeslice_df['dpvolume_med_21']
full_df.ix[ timeslice_df.index, 'dpvolume_std_21'] = timeslice_df['dpvolume_std_21']
return full_df
def calc_price_extras(daily_df):
daily_df['volat_ratio'] = daily_df['volat_21'] / daily_df['volat_60']
daily_df['volume_ratio'] = daily_df['tradable_volume'] / daily_df['shares_out']
daily_df['volume_ratio'] = daily_df['tradable_volume'] / daily_df['comp_volume']
daily_df['volat_move'] = daily_df['volat_21'].diff()
return daily_df
def calc_forward_returns(daily_df, horizon):
print "Calculating forward returns..."
results_df = pd.DataFrame( index=daily_df.index )
for ii in range(1, horizon+1):
retname = 'cum_ret'+str(ii)
cum_rets = daily_df['log_ret'].groupby(level='sid').apply(lambda x: pd.rolling_sum(x, ii))
shift_df = cum_rets.unstack().shift(-ii).stack()
results_df[retname] = shift_df
return results_df
def winsorize(data, std_level=5):
result = data.copy()
std = result.std() * std_level
mean = result.mean()
result[result > mean + std] = mean + std
result[result < mean - std] = mean - std
return result
def winsorize_by_date(data):
print "Winsorizing by day..."
return data.groupby(level='date', sort=False).transform(winsorize)
def winsorize_by_ts(data):
print "Winsorizing by day..."
return data.groupby(level='iclose_ts', sort=False).transform(winsorize)
def winsorize_by_group(data, group):
print "Winsorizing by day..."
return data.groupby([group], sort=False).transform(winsorize)
def rolling_ew_corr_pairwise(df, halflife):
all_results = {}
for col, left in df.iteritems():
all_results[col] = col_results = {}
for col, right in df.iteritems():
col_results[col] = moments.ewmcorr(left, right, span=(halflife-1)/2.0)
ret = pd.Panel(all_results)
ret = ret.swapaxes(0,1, copy=False)
return ret
def push_data(df, col):
#Careful, can push to next day...
lagged_df = df[[col]].unstack(level='sid').shift(-1).stack()
merged_df = pd.merge(df, lagged_df, left_index=True, right_index=True, sort=True, suffixes=['', '_n'])
return merged_df
def lag_data(daily_df):
lagged_df = daily_df.unstack(level=-1).shift(1).stack()
merged_df = pd.merge(daily_df, lagged_df, left_index=True, right_index=True, sort=True, suffixes=['', '_y'])
return merged_df
def calc_med_price_corr(daily_df):
pass
def calc_resid_vol(daily_df):
lookback = 20
daily_df['barraResidVol'] = np.sqrt(pd.rolling_var(daily_df['barraResidRet'], lookback))
return daily_df['barraResidVol']
def calc_factor_vol(factor_df):
halflife = 20.0
# factors = factor_df.index.get_level_values('factor').unique()
factors = ALL_FACTORS
ret = dict()
for factor1 in factors:
for factor2 in factors:
key = (factor1, factor2)
if key not in ret.keys():
ret[key] = moments.ewmcov(factor_df.xs(factor1, level=1)['ret'], factor_df.xs(factor2, level=1)['ret'], span=(halflife-1)/2.0)
# ret[key] = pd.rolling_cov(factor_df.xs(factor1, level=1)['ret'], factor_df.xs(factor2, level=1)['ret'], window=20)
# print "Created factor Cov on {} from {} to {}".format(key, min(ret[key].index), max(ret[key].index))
return ret
weights_df = None
def create_z_score(daily_df, name):
zscore = lambda x: ( (x - x.mean()) / x.std())
indgroups = daily_df[[name, 'gdate']].groupby(['gdate'], sort=True).transform(zscore)
daily_df[name + "_z"] = indgroups[name]
return daily_df
def calc_factors(daily_df, barraOnly=False):
print "Calculating factors..."
allreturns_df = pd.DataFrame(columns=['barraResidRet'], index=daily_df.index)
if barraOnly:
factors = BARRA_FACTORS + INDUSTRIES
else:
daily_df = create_z_score(daily_df, 'srisk_pct')
daily_df = create_z_score(daily_df, 'rating_mean')
factors = ALL_FACTORS
print "Total len: {}".format(len(daily_df))
cnt = 0
cnt1 = 0
factorrets = list()
for name, group in daily_df.groupby(level='date'):
print "Regressing {}".format(name)
cnt1 += len(group)
print "Size: {} {}".format(len(group), cnt1)
loadings_df = group[ factors ]
loadings_df = loadings_df.reset_index().fillna(0)
del loadings_df['sid']
del loadings_df['date']
# print "loadings len {}".format(len(loadings_df))
# print loadings_df.head()
returns_df = group['log_ret'].fillna(0)
# print "returns len {}".format(len(returns_df))
# print returns_df.head()
global weights_df
weights_df = np.log(group['capitalization']).fillna(0)
# print weights_df.head()
weights_df = pd.DataFrame( np.diag(weights_df) )
# print "weights len {}".format(len(weights_df))
indwgt = dict()
capsum = (group['capitalization'] / 1e6).sum()
for ind in INDUSTRIES:
indwgt[ind] = (group[ group['indname1'] == ind]['capitalization'] / 1e6).sum() / capsum
# print returns_df.head()
fRets, residRets = factorize(loadings_df, returns_df, weights_df, indwgt)
print "Factor Returns:"
# print fRets
# print residRets
cnt += len(residRets)
print "Running tally: {}".format(cnt)
fdf = pd.DataFrame([ [i,v] for i, v in fRets.items() ], columns=['factor', 'ret'])
fdf['date'] = name
factorrets.append( fdf )
allreturns_df.ix[ group.index, 'barraResidRet'] = residRets
fRets = residRets = None
gc.collect()
# print allreturns_df.tail()
factorRets_df = pd.concat(factorrets).set_index(['date', 'factor']).fillna(0)
print "Final len {}".format(len(allreturns_df))
daily_df['barraResidRet'] = allreturns_df['barraResidRet']
return daily_df, factorRets_df
def calc_intra_factors(intra_df, barraOnly=False):
print "Calculating intra factors..."
allreturns_df = pd.DataFrame(columns=['barraResidRetI'], index=intra_df.index)
if barraOnly:
factors = BARRA_FACTORS + INDUSTRIES
else:
factors = ALL_FACTORS
print "Total len: {}".format(len(intra_df))
cnt = 0
cnt1 = 0
factorrets = list()
for name, group in intra_df.groupby(level='iclose_ts'):
print "Regressing {}".format(name)
cnt1 += len(group)
print "Size: {} {}".format(len(group), cnt1)
loadings_df = group[ factors ]
loadings_df = loadings_df.reset_index().fillna(0)
del loadings_df['sid']
del loadings_df['iclose_ts']
# print "loadings len {}".format(len(loadings_df))
# print loadings_df.head()
returns_df = (group['overnight_log_ret'] + np.log(group['iclose'] / group['dopen'])).fillna(0)
# print "returns len {}".format(len(returns_df))
# print returns_df.head()
global weights_df
weights_df = np.log(group['capitalization']).fillna(0)
# print weights_df.head()
weights_df = pd.DataFrame( np.diag(weights_df) )
# print "weights len {}".format(len(weights_df))
indwgt = dict()
capsum = (group['capitalization'] / 1e6).sum()
for ind in INDUSTRIES:
indwgt[ind] = (group[ group['indname1'] == ind]['capitalization'] / 1e6).sum() / capsum
# print returns_df.head()
fRets, residRets = factorize(loadings_df, returns_df, weights_df, indwgt)
print "Factor Returns:"
print fRets
# print residRets
cnt += len(residRets)
print "Running tally: {}".format(cnt)
fdf = pd.DataFrame([ [i,v] for i, v in fRets.items() ], columns=['factor', 'ret'])
fdf['iclose_ts'] = name
factorrets.append( fdf )
allreturns_df.ix[ group.index, 'barraResidRetI'] = residRets
fRets = residRets = None
gc.collect()
# print allreturns_df.tail()
factorRets_df = pd.concat(factorrets).set_index(['iclose_ts', 'factor']).fillna(0)
print "Final len {}".format(len(allreturns_df))
intra_df['barraResidRetI'] = allreturns_df['barraResidRetI']
return intra_df, factorRets_df
def factorize(loadings_df, returns_df, weights_df, indwgt):
print "Factorizing..."
params = Parameters()
for colname in loadings_df.columns:
expr = None
if colname == 'country':
expr = "0"
for ind in INDUSTRIES:
expr += "+" + ind + "*" + str(indwgt[ind])
# expr += "+" + ind
print expr
params.add(colname, value=0.0, expr=expr)
print "Minimizing..."
result = minimize(fcn2min, params, args=(loadings_df, returns_df))
print "Result: "
if not result.success:
print "ERROR: failed fit"
exit(1)
fRets_d = dict()
for param in params:
val = params[param].value
error = params[param].stderr
fRets_d[param] = val
upper = val + error * 2
lower = val - error * 2
if upper * lower < 0:
print "{} not significant: {}, {}".format(param, val, error)
print "SEAN"
print result
print result.residual
print result.message
print result.lmdif_message
print result.nfev
print result.ndata
residRets_na = result.residual
return fRets_d, residRets_na
def fcn2min(params, x, data):
# f1 = params['BBETANL_b'].value
# f2 = params['SIZE_b'].value
# print "f1: " + str(type(f1))
# print f1
ps = list()
for param in params:
val = params[param].value
# if val is None: val = 0.0
ps.append(val)
# print "adding {} of {}".format(param, val)
# print ps
f = np.array(ps)
f.shape = (len(params),1)
# print "f: " + str(f.shape)
# print f
# print "x: " + str(type(x)) + str(x.shape)
# print x
model = np.dot(x, f)
# print "model: " + str(type(model)) + " " + str(model.shape)
# print model
# print "data: " + str(type(data)) + " " + str(data.shape)
#
# print data
global weights_df
cap_sq = weights_df.as_matrix()
# cap_sq.shape = (cap_sq.shape[0], 1)
# print model.shape
# print data.values.shape
# print cap_sq.shape
# print "SEAN2"
# print model
# print data.values
# print cap_sq
#ret = np.multiply((model - data.values), cap_sq) / cap_sq.mean()
ret = np.multiply((model - data.values), cap_sq)
# print str(ret)
# ret = model - data
ret = ret.diagonal()
# print ret.shape
# ret = ret.as_matrix()
ret.shape = (ret.shape[0], )
#UGH XXX should really make sure types are correct at a higher level
ret = ret.astype(np.float64, copy=False)
# print
# print "ret: " + str(type(ret)) + " " + str(ret.shape)
# print ret
return ret
def mkt_ret(group):
d = group['cum_ret1']
w = group['mkt_cap'] / 1e6
res = (d * w).sum() / w.sum()
return res