-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgr.ott
277 lines (217 loc) · 5.96 KB
/
gr.ott
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
grammar
G {{ tex \Gamma }}, D {{ tex \Delta }}, T {{ tex \Theta }} :: 'Ctx_' ::= {{ com contexts }}
| () :: :: Nil {{ com empty }}
| G . A :: :: Ext {{ com extension }}
A, B, C :: 'Ty_' ::= {{ com types }}
| Nat :: :: Nat {{ com type of natural numbers }}
| A s :: :: subst {{ com substitute in types }}
| Pi A B :: :: Pi {{ com type of dependent functions }}
| Sg A B :: :: Sg {{ com type of dependent pairs }}
| Let s in A :: :: Let {{ com type of effectful computations }}
| O A :: :: later
| [] B * t :: :: square
| ( A ) :: M:: paren {{ icho [[A]] }}
s {{ tex \sigma }}, d {{ tex \delta }}, n {{ tex \nu }} :: 'Sub_' ::= {{ com substitutions }}
| 1 :: :: one {{ com identity substitution }} {{ tex \textbf{1} }}
| s d :: :: comp {{ com substitutions composition }}
| p :: :: p {{ com first substitution projection }}
| ( s , u ) :: :: comma {{ com substitution extension }}
| [ t ] :: :: subst1
| ( s ) :: M:: paren {{ icho [[s]] }}
a, b, t, u, v, w, z :: 'Tm_' ::= {{ com terms }}
| t s :: :: subst {{ com substitute in terms }}
| q :: :: q {{ com second substitution projection }}
| \ b :: :: lam {{ com function definition }}
| ( t , v ) :: :: comma {{ com pair definition }}
| app( w , t ) :: :: app {{ com function application }} {{ tex \textbf{app}([[w]],\;[[t]]) }}
| fst z :: :: fst {{ com first pair projection }}
| snd z :: :: snd {{ com second pair projection }}
| let s in t :: :: let {{ com combining effects }}
| pure t :: :: pure
| t * u :: :: star
| ( t ) :: M:: paren {{ icho [[t]] }}
terminals :: 'terminals_' ::=
| \ :: :: lambda {{ tex \lambda }}
| --> :: :: red {{ tex \longrightarrow }}
| |- :: :: turnstile {{ tex \vdash }}
| Nat :: :: nat {{ tex \mathbb{N} }}
| Pi :: :: pi {{ tex \Pi }}
| Sg :: :: sg {{ tex \Sigma }}
| [] :: :: box {{ tex \square }}
| O :: :: later {{ tex \bigcirc }}
formula :: 'formula_' ::=
| judgement :: :: judgement
| formula1 hidden :: :: hidden {{ tex }}
defns
Jtype :: '' ::=
defn
G |- :: :: Cxt :: Cxt_ by
----- :: nil
() |-
G |-
G |- A
-------- :: ext
G . A |-
defn
G |- A :: :: Typ :: Typ_ by
-------- :: nat
G |- Nat
G |- hidden
D |- hidden
s : D --> G
G |- A
--------------- :: Let
D |- Let s in A
G |- hidden
D |- hidden
G |- A
s : D --> G
-------------- :: subst
D |- A s
G |- hidden
G |- A hidden
G.A |- B
-------------- :: pi
G |- Pi A B
G |- hidden
G |- A hidden
G.A |- B
-------------- :: sg
G |- Sg A B
defn
s : D --> G :: :: Sub :: Sub_ by
G |-
----------- :: one
1 : G --> G
D |- hidden
G |- hidden
T |- hidden
s : D --> G
d : T --> D
------------- :: comp
s d : T --> G
G |- hidden
G |- A
------------- :: p
p : G.A --> G
D |- hidden
G |- hidden
G |- A hidden
s : D --> G
D |- u : A s
------------------- :: comma
(s , u) : D --> G.A
defn
G |- t : A :: :: Tm :: Tm_ by
G |- hidden
D |- hidden
G |- A hidden
G |- t : A
s : D --> G
------------------- :: subst
D |- t s : A s
G |- hidden
D |- hidden
G |- A hidden
s : D --> G
G |- t : A
---------------------------- :: let
D |- let s in t : Let s in A
G |- hidden
G |- A
----------------- :: q
G.A |- q : A p
G |- hidden
G |- A hidden
G.A |- B
G.A |- b : B
----------------- :: lam
G |- \b : Pi A B
G |- hidden
G |- A hidden
G.A |- B
G |- t : A
G |- v : B [ t ]
------------------- :: comma
G |- (t,v) : Sg A B
G |- hidden
G |- A hidden
G.A |- B
G |- w : Pi A B
G |- t : A
---------------------- :: app
G |- app(w,t) : B [ t ]
G |- hidden
G |- A hidden
G.A |- B
G |- z : Sg A B
---------------- :: fst
G |- fst z : A
G |- hidden
G |- A hidden
G.A |- B
G |- z : Sg A B
------------------------ :: snd
G |- snd z : B [ fst z ]
defn
s = d :: :: Sub_eq :: Sub_eq_ by
------- :: left_id
1 s = s
------- :: right_id
s 1 = s
--------------- :: comp
(s d)n = s(d n)
------------ :: subst1
[u] = (1, u)
--------------------- :: dist
(s, u) d = (s d, u d)
------------- :: p
p (s, u) = s
----------- :: pq
(p , q) = 1
defn
A = B :: :: Ty_eq :: Ty_eq_ by
------- :: right_id
A 1 = A
----------------- :: comp
(A s) d = A (s d)
-------------------------------- :: Pi
(Pi A B)s = Pi (A s) (B (s p,q))
-------------------------------- :: Sg
(Sg A B)s = Sg (A s) (B (s p,q))
----------------- :: later
O A = Let 1 in A
----------------------------------- :: square
[] B * t = Let (1, let 1 in t) in B
defn
t = u :: :: Tm_eq :: Tm_eq_ by
------- :: right_id
u 1 = u
----------------- :: comp
(u s) d = u (s d)
------------ :: q
q(s , u) = u
----------------------- :: subst_lam
(\ b)s = \(b (s p , q))
-------------------------- :: subst_app
app(w,u) d = app(w d, u d)
--------------------- :: beta_app
app(\b , u) = b [ u ]
----------------- :: eta_lam
w = \(app(w , q))
--------------------- :: subst_fst
(fst t) d = fst (t d)
--------------------- :: subst_snd
(snd t) d = snd (t d)
-------------------- :: subst_pair
(t,v) d = (t d, v d)
------------- :: beta_fst
fst (t,v) = t
------------- :: beta_snd
snd (t,v) = v
------------------ :: beta_pair
(fst z, snd z) = z
------------------- :: pure
pure t = let 1 in t
------------------------------------ :: star
t * u = let ((1, t), u) in app(q p, q)