-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatch_localization.py
316 lines (269 loc) · 16.5 KB
/
match_localization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
from os.path import join
from os.path import exists
import numpy as np
import matchs
from sklearn.neighbors import NearestNeighbors
from tqdm.auto import tqdm
import pandas as pd
import time
import argparse
import cv2
import configparser
import warnings
warnings.filterwarnings("ignore", category=Warning)
def parse_gt_file(gtfile):
print('Parsing ground truth data file...')
gtdata = np.load(gtfile)
return gtdata['utmQ'], gtdata['utmDb'], gtdata['posDistThr']
def get_positives(utmQ, utmDb, posDistThr):
# positives for evaluation are those within trivial threshold range
# fit NN to find them, search by radius
knn = NearestNeighbors(n_jobs=-1)
knn.fit(utmDb)
distances, positives = knn.radius_neighbors(utmQ, radius=posDistThr)
return positives
def compute_recall(query_idx_list, gt, predictions, numQ, n_values, recall_str=''):
start2 = time.perf_counter()
correct_at_n = np.zeros(len(n_values))
for i, pred in enumerate(predictions):
for j, n in enumerate(n_values):
# if in top N then also in top NN, where NN > N
if np.any(np.in1d(pred[:n], gt[query_idx_list[i]])):
correct_at_n[i:] += 1
break
recall_at_n = correct_at_n / numQ
all_recalls = {} # make dict for output
for i, n in enumerate(n_values):
all_recalls[n] = recall_at_n[i]
tqdm.write("====> Recall {}@{}: {:.4f}".format(recall_str, n, recall_at_n[i]))
recall_time = time.perf_counter()
print('Compute recall time is %6.3f' % (recall_time - start2))
return all_recalls
def write_recalls(opt, netvlad_recalls, cnnmatch_recalls, n_values, rec_file):
with open(rec_file, 'w') as res_out:
res_out.write(str(opt)+'\n')
res_out.write("n_values: "+str(n_values)+'\n')
for n in n_values:
res_out.write("Recall {}@{}: {:.4f}\n".format('netvlad_match', n, netvlad_recalls[n]))
res_out.write("Recall {}@{}: {:.4f}\n".format('cnn_match', n, cnnmatch_recalls[n]))
def image_point2gps_point(keypoint_position: np.array, image_position: np.array, gsd, img_size):
half_img_size = img_size/2
point_position = np.array([image_position[0]+(keypoint_position[0]-half_img_size)*gsd, image_position[1]+(half_img_size - keypoint_position[1])*gsd])
alt = np.zeros(keypoint_position.shape[1])
point_position= np.vstack([*point_position,alt])
return point_position
def main():
parser = argparse.ArgumentParser(description='Patch-NetVLAD-Feature-Match')
parser.add_argument('--config_path', type=str, default='performance.ini',
help='File name (with extension) to an ini file that stores most of the configuration data for cnn-matching')
parser.add_argument('--ground_truth_path', type=str, default='/home/a409/users/huboni/Projects/code/Patch-NetVLAD/patchnetvlad/dataset_gt_files/mavic-xjtu_dist50.npz',
help='ground truth file dist 50')
parser.add_argument('--netvlad_result_path', type=str, default='/home/a409/users/huboni/Projects/code/Patch-NetVLAD/patchnetvlad/results/mavic-xjtu_2048_7_dist50/NetVLAD_predictions.txt',
help='netvlad predictions result path')
parser.add_argument('--reference_origin_path', type=str, default='/home/a409/users/huboni/Projects/dataset/TerraTrack/mavic-xjtu/reference.csv',
help='reference csv path')
parser.add_argument('--query_origin_path', type=str, default='/home/a409/users/huboni/Projects/dataset/TerraTrack/mavic-xjtu/query.csv',
help='query csv path')
parser.add_argument('--out_dir', type=str, default='/home/a409/users/huboni/Projects/code/cnn-matching/result/mavic-xjtu/',
help='Dir to save recall')
parser.add_argument('--out_1019_dir', type=str, default='/home/a409/users/huboni/Projects/code/cnn-matching/result/mavic-xjtu/',
help='Dir to save recall')
parser.add_argument('--out_file', type=str, default='cnn_mavic-xjtu_dist50_v50',
help='Dir to save recall')
parser.add_argument('--fig_res_file', type=str, default='pnp_fig_res_npu_dist20.csv')
parser.add_argument('--global_res_file', type=str, default='pnp_fig_res_npu_dist20.csv')
parser.add_argument('--rerank_res_file', type=str, default='pnp_fig_res_npu_dist20.csv')
parser.add_argument('--rerank1_res_file', type=str, default='pnp_fig_res_npu_dist20.csv')
parser.add_argument('--pinpoint_res_file', type=str, default='pnp_fig_res_npu_dist20.csv')
parser.add_argument('--model_type', type=str, default='cnn', help='or cnn')
parser.add_argument('--img_size', type=int, default=500, help='or 224')
parser.add_argument('--checkpoint', type=str, default='/home/a409/users/huboni/Projects/code/cnn-matching/models/d2_tf.pth',
help='or ./models/d2_tf.pth')
opt = parser.parse_args()
print(opt)
n_values = [1, 5, 10, 20, 50] # FIXME
if opt.img_size == 500:
# gsd = 300 / 500 # alto
# gsd = 300 / 500 # xjtu
gsd = 0.167 # npu
print("gsd:", gsd)
# k = np.array([[345, 0, 247.328], [0, 345, 245], [0, 0, 1]]) # ALTO
# k = np.array([[350, 0, 250], [0, 350, 250], [0, 0, 1]]) # xjtu
k = np.array([[475.48, 0, 250], [0, 475.48, 250], [0, 0, 1]]) # npu
# k = np.array([[3051.6 / (3000/500), 0, 1500/(3000/500)], [0, 3051.6/(3000/500), 1500/(3000/500)], [0, 0, 1]]) # TerraTrack
elif opt.img_size == 224:
gsd = 300 / 500 * (500/224)
print("gsd:", gsd)
k = np.array([[345 / (500/224), 0, 247.328 / (500/224)], [0, 345 / (500/224), 245 / (500/224)], [0, 0, 1]])
num_rec = (n_values[-1])
with open(opt.netvlad_result_path, 'r') as file:
lines = file.readlines()[2:] # 前两行是注释数据
numQ = len(lines)//num_rec
print("numQ:", numQ)
query_idx_list_all = []
refidx_list = []
refidx_inliners_list = []
start0 = time.perf_counter()
# rerank by cnn match + flann + ransac
qData = pd.read_csv(opt.query_origin_path)
# qData = qData.sort_values(by='name', ascending=True)
print("qData", qData)
dbData = pd.read_csv(opt.reference_origin_path)
# dbData = dbData.sort_values(by='name', ascending=True)
# print("daData", dbData)
for i in tqdm(range(len(lines)), desc='cnn_match_ing'):
query_file = lines[i].split(',')[0].strip() # query_file 按照idx的顺序逐个存取的,所以只需要将ref的idx关联起来
query_name = os.path.basename(query_file)
reference_file = lines[i].split(',')[1].strip() # reference_name
# reference_name = os.path.join(reference_file.split('/')[-2], reference_file.split('/')[-1]) # alto
reference_name = os.path.basename(reference_file) # terratrack FIXME
# print("reference_name", reference_name)
query_idx = qData[qData.name == query_name].index.to_list()[0]
query_idx_list_all.append(query_idx)
ref_idx = dbData[dbData.name == reference_name].index.to_list()[0]
inliners, avg_dist, q_kps, r_kps = matchs.cnn_match(query_file, reference_file, opt.model_type, opt.checkpoint, opt.img_size)
# print("-------current avg_list------:", avg_dist)
# print("--------num inliners---------:", inliners)
refidx_list.append(ref_idx)
refidx_inliners_list.append([ref_idx, avg_dist, q_kps, r_kps])
query_idx_list = query_idx_list_all[0: len(query_idx_list_all) : num_rec]
print("-----------q idx list:", query_idx_list)
match_time = time.perf_counter()
print('CNN match time is %6.3f' % (match_time - start0))
# gen origin input netvlad predictions
refidx_list_split = [refidx_list[i:i + num_rec] for i in range(0, len(refidx_list), num_rec)]
netvlad_predictions = np.array(refidx_list_split)
# split every query rematch[ref_idx inliners]
refidx_inliners_list_split =[refidx_inliners_list[i:i+num_rec] for i in range(0, len(refidx_inliners_list), num_rec)]
# reranking every query rematch[ref_idx inliners] by inliners avg_dist
start1 = time.perf_counter()
cnnmatch_predictions = []
pinpoint_utms = []
name_l = []
arr_ppl = []
arr_r1l = []
global_candidates_utm = []
rerank_candidates_utm = []
rerank_1_utm = []
pinpoint_utm_list = []
pass_count = 0
fig_csv_file = os.path.join(opt.out_dir, opt.fig_res_file)
global_csv_file = os.path.join(opt.out_1019_dir, opt.global_res_file)
rerank_csv_file = os.path.join(opt.out_1019_dir, opt.rerank_res_file)
rerank1_csv_file = os.path.join(opt.out_1019_dir, opt.rerank1_res_file)
pinpoint_csv_file = os.path.join(opt.out_1019_dir, opt.pinpoint_res_file)
pnp_select_res_dict = pd.DataFrame()
for i, idx_inliners_list in enumerate(refidx_inliners_list_split):
print("-----------------",i)
reranked_rf_idx = np.array(sorted(idx_inliners_list, key=lambda x:x[1], reverse=False))[:, 0][:5] # 按照第二位 降序排列 并输出第一位 FIXME Terratrack
cnnmatch_predictions.append(reranked_rf_idx)
reranked_query_kps = np.array(sorted(idx_inliners_list, key=lambda x:x[1], reverse=False))[:, 2][:5] # FIXME
reranked_ref_kps = np.array(sorted(idx_inliners_list, key=lambda x:x[1], reverse=False))[:, 3][:5] # FIXME
query_utm = np.array(qData.loc[query_idx_list[i], ["easting", "northing"]])
query_utm = query_utm[::-1] # terratrack swap easting northing
print("query name:", qData.loc[query_idx_list[i], ["name"]])
# print("query name:", qData.loc[query_id, ["name"]])
ref_image_position_o = dbData.loc[reranked_rf_idx.tolist(), ["easting", "northing"]]
# ref_image_position = np.array([ref_image_position_o["easting"], ref_image_position_o["northing"]]).transpose() # alto
ref_image_position = np.array([ref_image_position_o["northing"], ref_image_position_o["easting"]]).transpose() # terratrack
ref_kpts_position = []
for j, image_position in enumerate(ref_image_position):
ref_kpts_position.append(image_point2gps_point(np.array(reranked_ref_kps[j]).transpose(), image_position, gsd, opt.img_size))
ref_kpts_position = np.hstack(ref_kpts_position).transpose() # 关键点GPS坐标
query_kps = [np.array(ii) for ii in reranked_query_kps]
query_kps_position = np.vstack(query_kps)
success, R_vec, t, inliers = cv2.solvePnPRansac(ref_kpts_position, query_kps_position, k, np.zeros(4),
flags=cv2.SOLVEPNP_ITERATIVE, iterationsCount=5000,
reprojectionError=10)
# print("R_vec:", R_vec)
print("success:", success)
if not success:
continue
r_w2c, _ = cv2.Rodrigues(R_vec)
t_w2c = t
r_c2w = np.linalg.inv(r_w2c)
t_c2w = -r_c2w @ t_w2c
# print("---------t_c2w-------:", t_c2w)
pinpoint_utm = t_c2w[:, 0][:2]
name_l.append(qData.loc[query_idx_list[i], ["name"]])
pinpoint_utms.append(pinpoint_utm)
# print("pinpoint utm:", pinpoint_utm)
pp_loss = np.linalg.norm(query_utm - pinpoint_utm)
print("pp_loss", pp_loss)
# if pp_loss>10:
# pass_count += 1
# continue
arr_ppl.append(pp_loss)
r1_utm = dbData.loc[reranked_rf_idx.tolist()[0], ["easting", "northing"]]
print("r1 name:", dbData.loc[reranked_rf_idx.tolist()[0], ["name"]])
r2_utm = dbData.loc[reranked_rf_idx.tolist()[1], ["easting", "northing"]]
r3_utm = dbData.loc[reranked_rf_idx.tolist()[2], ["easting", "northing"]]
r4_utm = dbData.loc[reranked_rf_idx.tolist()[3], ["easting", "northing"]]
r5_utm = dbData.loc[reranked_rf_idx.tolist()[4], ["easting", "northing"]]
# swap easting northing below
r1_loss = np.linalg.norm(query_utm - np.array(r1_utm)[::-1])
r2_loss = np.linalg.norm(query_utm - np.array(r2_utm)[::-1])
r3_loss = np.linalg.norm(query_utm - np.array(r3_utm)[::-1])
r4_loss = np.linalg.norm(query_utm - np.array(r4_utm)[::-1])
r5_loss = np.linalg.norm(query_utm - np.array(r5_utm)[::-1])
r_mean_loss = sum([r1_loss,r2_loss,r3_loss,r4_loss,r5_loss])/5
arr_r1l.append(r1_loss)
print("localization loss:", pp_loss)
print("recall@1 loss:", r1_loss)
# save csv for localization fig
# if r_mean_loss-pp_loss>=50.0 and pp_loss<2.0:
# if r1_loss-pp_loss>10.0:
if True:
global_candidates_utm.extend((dbData.loc[np.array(idx_inliners_list)[:,0][:5], ["easting", "northing"]]).to_numpy().tolist())
rerank_candidates_utm.extend((dbData.loc[reranked_rf_idx.tolist()[:5], ["easting", "northing"]]).to_numpy().tolist())
rerank_1_utm.append((dbData.loc[reranked_rf_idx.tolist()[0], ["easting", "northing"]]).to_numpy().tolist())
pinpoint_utm_list.append(pinpoint_utm.tolist())
fig_res = dict(query_name = (qData.loc[query_idx_list[i], ["name"]]).to_numpy(),
global_recall5_idx = (np.array(idx_inliners_list)[:, 0][:5]), global_recall5_name = (dbData.loc[np.array(idx_inliners_list)[:, 0][:5],["name"]]).to_numpy(),
global_recall5_utm = (dbData.loc[np.array(idx_inliners_list)[:,0][:5], ["easting", "northing"]]).to_numpy(),
rerank_recall5_idx = (reranked_rf_idx.tolist()[:5]), rerank_recall5_name = (dbData.loc[reranked_rf_idx.tolist()[:5], ["name"]]).to_numpy(),
rerank_recall5_utm = (dbData.loc[reranked_rf_idx.tolist()[:5], ["easting", "northing"]]).to_numpy(),
rerank_recall1_idx = (reranked_rf_idx.tolist()[0]), rerank_recall1_name = (dbData.loc[reranked_rf_idx.tolist()[:1], ["name"]]).to_numpy(),
rerank_recall1_utm = (dbData.loc[reranked_rf_idx.tolist()[0], ["easting", "northing"]]).to_numpy(),
pinpoint_utm = pinpoint_utm,
query_utm = query_utm, r1_loss = r1_loss, pp_loss=pp_loss)
# print(fig_res)
pnp_select_res_dict = pnp_select_res_dict._append(fig_res, ignore_index=True)
pd.DataFrame(pnp_select_res_dict).to_csv(fig_csv_file, index=True, encoding='gbk',float_format='%.6f')
pd.DataFrame(global_candidates_utm).to_csv(global_csv_file, index=True, encoding='gbk',float_format='%.6f')
pd.DataFrame(rerank_candidates_utm).to_csv(rerank_csv_file, index=True, encoding='gbk',float_format='%.6f')
pd.DataFrame(rerank_1_utm).to_csv(rerank1_csv_file, index=True, encoding='gbk',float_format='%.6f')
pd.DataFrame(pinpoint_utm_list).to_csv(pinpoint_csv_file, index=True, encoding='gbk',float_format='%.6f')
# print("global candidates list:", global_candidates_utm)
# print("rerank candidates list:", rerank_candidates_utm)
# print("rerank 1 utm list:", rerank_1_utm)
# print("pinpoint utm list", pinpoint_utm_list)
print("pass count:", pass_count)
print("avg pinpoint loss:", np.mean(np.array(arr_ppl)))
print("avg recall@1 loss:", np.mean(np.array(arr_r1l)))
print("var pinpoint loss:", np.var(np.array(arr_ppl)))
print("var recall@1 loss:", np.var(np.array(arr_r1l)))
print("std pinpoint loss:", np.std(np.array(arr_ppl)))
print("std recall@1 loss:", np.std(np.array(arr_r1l)))
# 保存pinpoint.csv
pinpoint_dict = {"easting":np.array(pinpoint_utms)[:,0],
"northing":np.array(pinpoint_utms)[:,1],
"name":name_l}
out_csv_file = os.path.join(opt.out_file + '.csv')
print("pinpoint utm save to %s" % out_csv_file)
pd.DataFrame(pinpoint_dict).to_csv(os.path.join(opt.out_dir, 'pinpoint_utm', out_csv_file), index=False)
cnnmatch_predictions = np.array(cnnmatch_predictions)
cnn_pred_time = time.perf_counter()
print('rerank match get cnn predict time is %6.3f' % (cnn_pred_time - start1))
# get ground truth
utmQ,utmDb,posDistThr = parse_gt_file(opt.ground_truth_path)
gt = get_positives(utmQ, utmDb, posDistThr)
netvlad_recalls = compute_recall(query_idx_list, gt, netvlad_predictions, numQ, n_values, 'netvlad_match')
cnnmatch_recalls = compute_recall(query_idx_list, gt, cnnmatch_predictions, numQ, n_values, 'cnn_match')
# out_recall_file = os.path.join(opt.out_dir, 'recalls', opt.checkpoint.split('/')[-3] + '_' + str(opt.img_size) + '.txt')
out_recall_file = os.path.join(opt.out_dir, 'recalls', opt.out_file + '.txt')
print('Writing recalls to', out_recall_file)
write_recalls(opt, netvlad_recalls, cnnmatch_recalls, n_values, out_recall_file)
if __name__ == "__main__":
main()