-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdescriptor.py
154 lines (127 loc) · 6.45 KB
/
descriptor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import cv2
import numpy as np
from skimage import feature
class Descriptor:
"""
Class that combines feature descriptors into a single descriptor
to produce a feature vector for an input image.
"""
class _skHOGDescriptor:
"""
Wrapper subclass for skimage.feature.hog. Wrapping skimage.feature.hog
in a class in which we also define a compute() function allows us to
mirror the usage of OpenCV cv2.HOGDescriptor class method compute().
"""
def __init__(self, hog_bins, pix_per_cell, cells_per_block,
block_norm, transform_sqrt):
"""@see Descriptor.#__init__(...)"""
self.hog_bins = hog_bins
self.pix_per_cell = pix_per_cell
self.cells_per_block = cells_per_block
self.block_norm = block_norm
self.transform_sqrt = transform_sqrt
def compute(self, image):
multichannel = len(image.shape) > 2
sk_hog_vector = feature.hog(image, orientations=self.hog_bins,
pixels_per_cell=self.pix_per_cell,
cells_per_block=self.cells_per_block,
block_norm=self.block_norm, transform_sqrt=self.transform_sqrt,
multichannel=multichannel, feature_vector=True)
return np.expand_dims(sk_hog_vector, 1)
def __init__(self, hog_features=False, hist_features=False,
spatial_features=False, hog_lib="cv", size=(64,64),
hog_bins=9, pix_per_cell=(8,8), cells_per_block=(2,2),
block_stride=None, block_norm="L1", transform_sqrt=True,
signed_gradient=False, hist_bins=16, spatial_size=(16,16)):
"""
Set feature parameters. For HOG features, either the OpenCV
implementation (cv2.HOGDescriptor) or scikit-image implementation
(skimage.feature.hog) may be selected via @param hog_lib. Some
parameters apply to only one implementation (indicated below).
@param hog_features (bool): Include HOG features in feature vector.
@param hist_features (bool): Include color channel histogram features
in feature vector.
@param spatial_features (bool): Include spatial features in feature vector.
@param size (int, int): Resize images to this (width, height) before
computing features.
@param hog_lib ["cv", "sk"]: Select the library to be used for HOG
implementation. "cv" selects OpenCV (@see cv2.HOGDescriptor).
"sk" selects scikit-image (@see skimage.feature.hog).
@param pix_per_cell (int, int): HOG pixels per cell.
@param cells_per_block (int, int): HOG cells per block.
@param block_stride (int, int): [OpenCV only] Number of pixels by which
to shift block during HOG block normalization. Defaults to half of
cells_per_block.
@param block_norm: [scikit-image only] Block normalization method for
HOG. OpenCV uses L2-Hys.
@param transform_sqrt (bool): [scikit-image only].
@see skimage.feature.hog
@param hog_bins (int): Number of HOG gradient histogram bins.
@param signed_gradient (bool): [OpenCV only] Use signed gradient (True)
or unsigned gradient (False) for HOG. Currently, scikit-image HOG
only supports unsigned gradients.
@param hist_bins (int): Number of color histogram bins per color channel.
@param spatial_size (int, int): Resize images to (width, height) for
spatial binning.
"""
self.hog_features = hog_features
self.hist_features = hist_features
self.spatial_features = spatial_features
self.size = size
self.hog_lib = hog_lib
self.pix_per_cell = pix_per_cell
self.cells_per_block = cells_per_block
if hog_lib == "cv":
winSize = size
cellSize = pix_per_cell
blockSize = (cells_per_block[0] * cellSize[0],
cells_per_block[1] * cellSize[1])
if block_stride is not None:
blockStride = self.block_stride
else:
blockStride = (int(blockSize[0] / 2), int(blockSize[1] / 2))
nbins = hog_bins
derivAperture = 1
winSigma = -1.
histogramNormType = 0 # L2Hys (currently the only available option)
L2HysThreshold = 0.2
gammaCorrection = 1
nlevels = 64
signedGradients = signed_gradient
self.HOGDescriptor = cv2.HOGDescriptor(winSize, blockSize,
blockStride, cellSize, nbins, derivAperture, winSigma,
histogramNormType, L2HysThreshold, gammaCorrection,
nlevels, signedGradients)
else:
self.HOGDescriptor = self._skHOGDescriptor(hog_bins, pix_per_cell,
cells_per_block, block_norm, transform_sqrt)
self.hist_bins = hist_bins
self.spatial_size = spatial_size
def getFeatureVector(self, image):
"""Return the feature vector for an image."""
if image.shape[:2] != self.size:
image = cv2.resize(image, self.size, interpolation=cv2.INTER_AREA)
feature_vector = np.array([])
if self.hog_features:
feature_vector = np.hstack(
(feature_vector, self.HOGDescriptor.compute(image)[:,0]))
if self.hist_features:
# np.histogram() returns a tuple if given a 2D array and an array
# if given a 3D array. To maintain compatibility with other
# functions in the object detection pipeline, check that the input
# array has three dimensions. Add axis if necessary.
# Note that histogram bin range assumes uint8 array.
if len(image.shape) < 3:
image = image[:, :, np.newaxis]
hist_vector = np.array([])
for channel in range(image.shape[2]):
channel_hist = np.histogram(image[:, :, channel],
bins=self.hist_bins, range=(0, 255))[0]
hist_vector = np.hstack((hist_vector, channel_hist))
feature_vector = np.hstack((feature_vector, hist_vector))
if self.spatial_features:
spatial_image = cv2.resize(image, self.spatial_size,
interpolation=cv2.INTER_AREA)
spatial_vector = spatial_image.ravel()
feature_vector = np.hstack((feature_vector, spatial_vector))
return feature_vector