-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
352 lines (294 loc) · 14.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
from datetime import datetime
import os
import pickle
import random
import time
import warnings
import cv2
import numpy as np
from sklearn import svm
from sklearn.preprocessing import StandardScaler
from descriptor import Descriptor
def processFiles(pos_dir, neg_dir, recurse=False, output_file=False,
output_filename=None, color_space="bgr", channels=[0, 1, 2],
hog_features=False, hist_features=False, spatial_features=False,
hog_lib="cv", size=(64,64), hog_bins=9, pix_per_cell=(8,8),
cells_per_block=(2,2), block_stride=None, block_norm="L1",
transform_sqrt=True, signed_gradient=False, hist_bins=16,
spatial_size=(16,16)):
"""
Extract features from positive samples and negative samples.
Store feature vectors in a dict and optionally save to pickle file.
@param pos_dir (str): Path to directory containing positive samples.
@param neg_dir (str): Path to directory containing negative samples.
@param recurse (bool): Traverse directories recursively (else, top-level only).
@param output_file (bool): Save processed samples to file.
@param output_filename (str): Output file filename.
@param color_space (str): Color space conversion.
@param channels (list): Image channel indices to use.
For remaining arguments, refer to Descriptor class:
@see descriptor.Descriptor#__init__(...)
@return feature_data (dict): Lists of sample features split into training,
cross-validation, test sets; scaler object; parameters used to
construct descriptor and process images.
NOTE: OpenCV HOGDescriptor currently only supports 1-channel and 3-channel
images, not 2-channel images.
"""
if not (hog_features or hist_features or spatial_features):
raise RuntimeError("No features selected (set hog_features=True, "
+ "hist_features=True, and/or spatial_features=True.)")
pos_dir = os.path.abspath(pos_dir)
neg_dir = os.path.abspath(neg_dir)
if not os.path.isdir(pos_dir):
raise FileNotFoundError("Directory " + pos_dir + " does not exist.")
if not os.path.isdir(neg_dir):
raise FileNotFoundError("Directory " + neg_dir + " does not exist.")
print("Building file list...")
if recurse:
pos_files = [os.path.join(rootdir, file) for rootdir, _, files
in os.walk(pos_dir) for file in files]
neg_files = [os.path.join(rootdir, file) for rootdir, _, files
in os.walk(neg_dir) for file in files]
else:
pos_files = [os.path.join(pos_dir, file) for file in
os.listdir(pos_dir) if os.path.isfile(os.path.join(pos_dir, file))]
neg_files = [os.path.join(neg_dir, file) for file in
os.listdir(neg_dir) if os.path.isfile(os.path.join(neg_dir, file))]
print("{} positive files and {} negative files found.\n".format(
len(pos_files), len(neg_files)))
# Get color space information.
color_space = color_space.lower()
if color_space == "gray":
color_space_name = "grayscale"
cv_color_const = cv2.COLOR_BGR2GRAY
channels = [0]
elif color_space == "hls":
color_space_name = "HLS"
cv_color_const = cv2.COLOR_BGR2HLS
elif color_space == "hsv":
color_space_name = "HSV"
cv_color_const = cv2.COLOR_BGR2HSV
elif color_space == "lab":
color_space_name = "Lab"
cv_color_const = cv2.COLOR_BGR2Lab
elif color_space == "luv":
color_space_name = "Luv"
cv_color_const = cv2.COLOR_BGR2Luv
elif color_space == "ycrcb" or color_space == "ycc":
color_space_name = "YCrCb"
cv_color_const = cv2.COLOR_BGR2YCrCb
elif color_space == "yuv":
color_space_name = "YUV"
cv_color_const = cv2.COLOR_BGR2YUV
else:
color_space_name = "BGR"
cv_color_const = -1
# Get names of desired features.
features = [feature_name for feature_name, feature_bool
in zip(["HOG", "color histogram", "spatial"],
[hog_features, hist_features, spatial_features])
if feature_bool == True]
feature_str = features[0]
for feature_name in features[1:]:
feature_str += ", " + feature_name
# Get information about channel indices.
if len(channels) == 2 and hog_features and hog_lib == "cv":
warnings.warn("OpenCV HOG does not support 2-channel images",
RuntimeWarning)
channel_index_str = str(channels[0])
for ch_index in channels[1:]:
channel_index_str += ", {}".format(ch_index)
print("Converting images to " + color_space_name + " color space and "
+ "extracting " + feature_str + " features from channel(s) "
+ channel_index_str + ".\n")
# Store feature vectors for positive samples in list pos_features and
# for negative samples in neg_features.
pos_features = []
neg_features = []
start_time = time.time()
# Get feature descriptor object to call on each sample.
descriptor = Descriptor(hog_features=hog_features, hist_features=hist_features,
spatial_features=spatial_features, hog_lib=hog_lib, size=size,
hog_bins=hog_bins, pix_per_cell=pix_per_cell,
cells_per_block=cells_per_block, block_stride=block_stride,
block_norm=block_norm, transform_sqrt=transform_sqrt,
signed_gradient=signed_gradient, hist_bins=hist_bins,
spatial_size=spatial_size)
# Iterate through files and extract features.
for i, filepath in enumerate(pos_files + neg_files):
image = cv2.imread(filepath)
if cv_color_const > -1:
image = cv2.cvtColor(image, cv_color_const)
if len(image.shape) > 2:
image = image[:,:,channels]
feature_vector = descriptor.getFeatureVector(image)
if i < len(pos_files):
pos_features.append(feature_vector)
else:
neg_features.append(feature_vector)
print("Features extracted from {} files in {:.1f} seconds\n".format(
len(pos_features) + len(neg_features), time.time() - start_time))
# Store the length of the feature vector produced by the descriptor.
num_features = len(pos_features[0])
# Instantiate scaler and scale features.
print("Scaling features.\n")
scaler = StandardScaler().fit(pos_features + neg_features)
pos_features = scaler.transform(pos_features)
neg_features = scaler.transform(neg_features)
# Randomize lists of feature vectors. Split 75/20/5 into training,
# cross-validation, and test sets.
print("Shuffling samples into training, cross-validation, and test sets.\n")
random.shuffle(pos_features)
random.shuffle(neg_features)
num_pos_train = int(round(0.75 * len(pos_features)))
num_neg_train = int(round(0.75 * len(neg_features)))
num_pos_val = int(round(0.2 * len(pos_features)))
num_neg_val = int(round(0.2 * len(neg_features)))
pos_train = pos_features[0 : num_pos_train]
neg_train = neg_features[0 : num_neg_train]
pos_val = pos_features[num_pos_train : (num_pos_train + num_pos_val)]
neg_val = neg_features[num_neg_train : (num_neg_train + num_neg_val)]
pos_test = pos_features[(num_pos_train + num_pos_val):]
neg_test = neg_features[(num_neg_train + num_neg_val):]
print("{} samples in positive training set.".format(len(pos_train)))
print("{} samples in positive cross-validation set.".format(len(pos_val)))
print("{} samples in positive test set.".format(len(pos_test)))
print("{} total positive samples.\n".format(len(pos_train) +
len(pos_val) + len(pos_test)))
print("{} samples in negative training set.".format(len(neg_train)))
print("{} samples in negative cross-validation set.".format(len(neg_val)))
print("{} samples in negative test set.".format(len(neg_test)))
print("{} total negative samples.\n".format(len(neg_train) +
len(neg_val) + len(neg_test)))
# Store sample data and parameters in dict.
# Descriptor class object seems to produce errors when unpickling and
# has been commented out below. The descriptor will be re-instantiated
# by the Detector object later.
feature_data = {
"pos_train": pos_train,
"neg_train": neg_train,
"pos_val": pos_val,
"neg_val": neg_val,
"pos_test": pos_test,
"neg_test": neg_test,
#"descriptor": descriptor,
"scaler": scaler,
"hog_features": hog_features,
"hist_features": hist_features,
"spatial_features": spatial_features,
"color_space": color_space,
"cv_color_const": cv_color_const,
"channels": channels,
"hog_lib": hog_lib,
"size": size,
"hog_bins": hog_bins,
"pix_per_cell": pix_per_cell,
"cells_per_block": cells_per_block,
"block_stride": block_stride,
"block_norm": block_norm,
"transform_sqrt": transform_sqrt,
"signed_gradient": signed_gradient,
"hist_bins": hist_bins,
"spatial_size": spatial_size,
"num_features": num_features
}
# Pickle to file if desired.
if output_file:
if output_filename is None:
output_filename = (datetime.now().strftime("%Y%m%d%H%M")
+ "_data.pkl")
pickle.dump(feature_data, open(output_filename, "wb"))
print("Sample and parameter data saved to {}\n".format(output_filename))
return feature_data
def trainSVM(filepath=None, feature_data=None, C=1,
loss="squared_hinge", penalty="l2", dual=False, fit_intercept=False,
output_file=False, output_filename=None):
"""
Train a classifier from feature data extracted by processFiles().
@param filepath (str): Path to feature data pickle file.
@param feature_data (dict): Feature data dict returned by processFiles().
NOTE: Either a file or dict may be supplied.
@param output_file (bool): Save classifier and parameters to file.
@param output_filename (str): Name of output file.
For remaining arguments, @see sklearn.svm.LinearSVC()
@return classifier_data (dict): Dict containing trained classifier and
relevant training/processing feature parameters.
"""
print("Loading sample data.")
if filepath is not None:
filepath = os.path.abspath(filepath)
if not os.path.isfile(filepath):
raise FileNotFoundError("File " + filepath + " does not exist.")
feature_data = pickle.load(open(filepath, "rb"))
elif feature_data is None:
raise ValueError("Invalid feature data supplied.")
# Train classifier on training set.
pos_train = np.asarray(feature_data["pos_train"])
neg_train = np.asarray(feature_data["neg_train"])
pos_val = np.asarray(feature_data["pos_val"])
neg_val = np.asarray(feature_data["neg_val"])
pos_test = np.asarray(feature_data["pos_test"])
neg_test = np.asarray(feature_data["neg_test"])
train_set = np.vstack((pos_train, neg_train))
train_labels = np.concatenate(
(np.ones(pos_train.shape[0],), np.zeros(neg_train.shape[0],)))
print("Training classifier...")
start_time = time.time()
classifier = svm.LinearSVC(C=C, loss=loss, penalty=penalty, dual=dual,
fit_intercept=fit_intercept)
classifier.fit(train_set, train_labels)
print("Classifier trained in {:.1f} s.\n".format(time.time() - start_time))
# Run classifier on cross-validation set.
pos_val_predicted = classifier.predict(pos_val)
neg_val_predicted = classifier.predict(neg_val)
false_neg_val = np.sum(pos_val_predicted != 1)
false_pos_val = np.sum(neg_val_predicted == 1)
pos_predict_accuracy = 1 - (false_neg_val / float(pos_val.shape[0]))
neg_predict_accuracy = 1 - (false_pos_val / float(neg_val.shape[0]))
total_accuracy = 1 - ((false_neg_val + false_pos_val) /
float(pos_val.shape[0] + neg_val.shape[0]))
print("Val set false negatives: {} / {} ({:.3}% accuracy)".format(
false_neg_val, pos_val.shape[0], 100 * pos_predict_accuracy))
print("Val set false positives: {} / {} ({:.3f}% accuracy)".format(
false_pos_val, neg_val.shape[0], 100 * neg_predict_accuracy))
print("Val set total misclassifications: {} / {} ({:.3f}% accuracy)\n".format(
false_neg_val + false_pos_val, pos_val.shape[0] + neg_val.shape[0],
100 * total_accuracy))
# Retrain classifier with misses from validation set. Run on test set.
print("Augmenting training set with misclassified validation samples and "
+ "retraining classifier.\n")
pos_train = np.vstack((pos_train, pos_val[pos_val_predicted != 1, :]))
neg_train = np.vstack((neg_train, neg_val[neg_val_predicted == 1, :]))
train_set = np.vstack((pos_train, neg_train))
train_labels = np.concatenate(
(np.ones(pos_train.shape[0],), np.zeros(neg_train.shape[0],)))
classifier.fit(train_set, train_labels)
pos_test_predicted = classifier.predict(pos_test)
neg_test_predicted = classifier.predict(neg_test)
false_neg_test = np.sum(pos_test_predicted != 1)
false_pos_test = np.sum(neg_test_predicted == 1)
pos_predict_accuracy = 1 - (false_neg_test / float(pos_test.shape[0]))
neg_predict_accuracy = 1 - (false_pos_test / float(neg_test.shape[0]))
total_accuracy = 1 - ((false_neg_test + false_pos_test) /
float(pos_test.shape[0] + neg_test.shape[0]))
print("Test set false negatives: {} / {} ({:.3}% accuracy)".format(
false_neg_test, pos_test.shape[0], 100 * pos_predict_accuracy))
print("Test set false positives: {} / {} ({:.3f}% accuracy)".format(
false_pos_test, neg_test.shape[0], 100 * neg_predict_accuracy))
print("Test set total misclassifications: {} / {} ({:.3f}% accuracy)".format(
false_neg_test + false_pos_test, pos_test.shape[0] + neg_test.shape[0],
100 * total_accuracy))
# Store classifier data and parameters in new dict that excludes
# sample data from feature_data dict.
excludeKeys = ("pos_train", "neg_train", "pos_val", "neg_val",
"pos_test", "neg_test")
classifier_data = {key: val for key, val in feature_data.items()
if key not in excludeKeys}
classifier_data["classifier"] = classifier
if output_file:
if output_filename is None:
output_filename = (datetime.now().strftime("%Y%m%d%H%M")
+ "_classifier.pkl")
pickle.dump(classifier_data, open(output_filename, "wb"))
print("\nSVM classifier data saved to {}".format(output_filename))
return classifier_data