-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting.py
44 lines (40 loc) · 1.96 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import pandas
import numpy as np
class ModelEvaluation(object):
def __init__(self,
visitor_id,
data,
predicted_revenue,
labeled_revenue):
"""
Class to evaluate the model success
:param visitor_id: pandas.Series with visitor ids
:param data: pandas.DataFrame with corresponding mapped variables
:param predicted_revenue: pandas.Series with corresponding prediction by model
:param labeled_revenue: pandas.Series with corresponding labeled revenue
"""
try:
assert isinstance(data, pandas.DataFrame)
assert all(isinstance(var, pandas.Series) for var in [visitor_id,
predicted_revenue,
labeled_revenue])
except AssertionError:
raise TypeError('Incorrect parameters passed to ModelEvaluation constructor')
self.visitor_id = visitor_id
self.data = data
self.predicted_revenue = predicted_revenue
self.labeled_revenue = labeled_revenue
def agg_transactions(self):
"""
test this idea: (pseudo-Python)
revenue = pandas.concat([visitor_id, predicted_revenue, labeled_revenue])
aggregated = revenue.groupby(['fullVisitorId']).sum()
:return: pandas.DataFrame with aggregated transaction values per fullVisitorId
"""
unique_ids = set(self.visitor_id.values)
pred = [sum(self.predicted_revenue[self.visitor_id == idx].values) for idx in unique_ids]
labeled = [sum(self.labeled_revenue[self.visitor_id == idx].values) for idx in unique_ids]
agg_transactions = pandas.DataFrame({'fullVisitorId': list(unique_ids),
'predictedRevenue': pred,
'labeledRevenue': labeled})
return agg_transactions