forked from armartin/ancestry_pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_pca.py
72 lines (54 loc) · 1.74 KB
/
simple_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
'''
Chris Gignoux
simple Marsland-esque PCA
ideal for post-processing pcamask data
input: a column of labels, columns from 2 on are features, each row is a single observation
'''
from numpy import *
from sys import argv
debugging = 0
if debugging:
infile = 'tempcaitlin2_2.pca.txt'
else:
infile = argv[-1]
print '%s\nRunning PCA post-PCAmask\n%s\n\n\n' % ('#'*50,'#'*50)
print 'reading in data from %s' % (infile)
try:
data = [line.strip().split() for line in file(infile)]
except IOError:
print 'sorry, input file %s not found' % (infile)
# quit
assert 1 == 0
labels = [line[0] for line in data]
features = array([line[1:] for line in data], dtype=float)
# filter out individuals with nan/no relevant ancestry
print 'finding non-missing values'
numberfilter = features[:,0] * 1 == features[:,0]
usedata = features[numberfilter,:]
print 'running PCA'
# covariance is teensy, can use eigenvalue decomposition
evals, evecs = linalg.eig(cov(usedata.T))
# sort output by PC
print 'post-processing PCA'
indices = argsort(evals)[::-1]
evals = evals[indices]
evecs = evecs[:,indices]
# normalize data
for i in range(evecs.shape[1]):
evecs[:,i] /= linalg.norm(evecs[:,i]) * sqrt(evals[i])
x = dot(evecs.T,usedata.T).T
# revise output
outputvals = where(features,-999.,0)
outputvals[numberfilter,:] = x
outfile = file(infile.replace('.pca.txt','.pca.orthog.txt') , 'w')
print 'writing output to %s' % (outfile)
outfile.write('ID\t%s\n' % ('\t'.join(['PC%s' % (i+1) for i in range(outputvals.shape[1])])))
for i, line in enumerate(outputvals):
outputdata = line
if -999 in outputdata:
outputdata = '\t'.join(['NA','NA'])
else:
outputdata = '\t'.join([str(val) for val in line])
outfile.write('%s\t%s\n' % (labels[i], outputdata))
outfile.close()
print 'done'