forked from peterbjorgensen/DeepDFT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_with_model.py
262 lines (225 loc) · 10.1 KB
/
predict_with_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import logging
import os
import json
import argparse
import math
import contextlib
import timeit
import ase
import ase.io
import torch
import numpy as np
import dataset
import densitymodel
import utils
def get_arguments(arg_list=None):
parser = argparse.ArgumentParser(
description="Predict with pretrained model", fromfile_prefix_chars="@"
)
parser.add_argument("model_dir", type=str, help='Directory of pretrained model')
parser.add_argument("atoms_file", type=str, help='ASE compatible atoms xyz-file')
parser.add_argument("--grid_step", type=float, default=0.05, help="Step size in Ångstrøm")
parser.add_argument("--vacuum", type=float, default=1.0, help="Pad simulation box with vacuum (only used when boundary conditions are not periodic)")
parser.add_argument("--output_dir", type=str, default="model_prediction", help="Output directory")
parser.add_argument("--iri", action="store_true", help="Also compute interaction region indicator (IRI)")
parser.add_argument("--dori", action="store_true", help="Also compute density overlap region indicator (DORI)")
parser.add_argument("--hessian_eig", action="store_true", help="Also compute eigenvalues of density Hessian")
parser.add_argument("--probe_count", type=int, default=5000, help="How many probe points to compute per iteration")
parser.add_argument(
"--device",
type=str,
default="cuda",
help="Set which device to use for inference e.g. 'cuda' or 'cpu'",
)
parser.add_argument(
"--ignore_pbc",
action="store_true",
help="If flag is given, ignore periodic boundary conditions in atoms data",
)
return parser.parse_args(arg_list)
def load_model(model_dir, device):
with open(os.path.join(model_dir, "arguments.json"), "r") as f:
runner_args = argparse.Namespace(**json.load(f))
if runner_args.use_painn_model:
model = densitymodel.PainnDensityModel(runner_args.num_interactions, runner_args.node_size, runner_args.cutoff)
else:
model = densitymodel.DensityModel(runner_args.num_interactions, runner_args.node_size, runner_args.cutoff)
device = torch.device(device)
model.to(device)
state_dict = torch.load(os.path.join(model_dir, "best_model.pth"), map_location=device)
model.load_state_dict(state_dict["model"])
return model, runner_args.cutoff
class LazyMeshGrid():
def __init__(self, cell, grid_step, origin=None, adjust_grid_step=False):
self.cell = cell
if adjust_grid_step:
n_steps = np.round(self.cell.lengths()/grid_step)
self.scaled_grid_vectors = [np.arange(n)/n for n in n_steps]
self.adjusted_grid_step = self.cell.lengths()/n_steps
else:
self.scaled_grid_vectors = [np.arange(0, l, grid_step)/l for l in self.cell.lengths()]
self.shape = np.array([len(g) for g in self.scaled_grid_vectors] + [3])
if origin is None:
self.origin = np.zeros(3)
else:
self.origin = origin
self.origin = np.expand_dims(self.origin, 0)
def __getitem__(self, indices):
indices = np.array(indices)
indices_shape = indices.shape
if not (len(indices_shape) == 2 and indices_shape[0] == 3):
raise NotImplementedError("Indexing must be a 3xN array-like object")
gridA = self.scaled_grid_vectors[0][indices[0]]
gridB = self.scaled_grid_vectors[1][indices[1]]
gridC = self.scaled_grid_vectors[2][indices[2]]
grid_pos = np.stack([gridA, gridB, gridC], 1)
grid_pos = np.dot(grid_pos, self.cell)
grid_pos += self.origin
return grid_pos
def ceil_float(x, step_size):
# Round up to nearest step_size and subtract a small epsilon
x = math.ceil(x/step_size) * step_size
eps = 2*np.finfo(float).eps * x
return x - eps
def load_atoms(atomspath, vacuum, grid_step):
atoms = ase.io.read(atomspath)
if np.any(atoms.get_pbc()):
atoms, grid_pos, origin = load_material(atoms, grid_step)
else:
atoms, grid_pos, origin = load_molecule(atoms, grid_step, vacuum)
metadata = {"filename": atomspath}
res = {
"atoms": atoms,
"origin": origin,
"grid_position": grid_pos,
"metadat": metadata,
}
return res
def load_material(atoms, grid_step):
atoms = atoms.copy()
grid_pos = LazyMeshGrid(atoms.get_cell(), grid_step, adjust_grid_step=True)
origin = np.zeros(3)
return atoms, grid_pos, origin
def load_molecule(atoms, grid_step, vacuum):
atoms = atoms.copy()
atoms.center(vacuum=vacuum) # This will create a cell around the atoms
# Readjust cell lengths to be a multiple of grid_step
a, b, c, ang_bc, ang_ac, ang_ab = atoms.get_cell_lengths_and_angles()
a, b, c = ceil_float(a, grid_step), ceil_float(b, grid_step), ceil_float(c, grid_step)
atoms.set_cell([a, b, c, ang_bc, ang_ac, ang_ab])
origin = np.zeros(3)
grid_pos = LazyMeshGrid(atoms.get_cell(), grid_step)
return atoms, grid_pos, origin
def main():
args = get_arguments()
# Setup logging
os.makedirs(args.output_dir, exist_ok=True)
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s [%(levelname)-5.5s] %(message)s",
handlers=[
logging.FileHandler(
os.path.join(args.output_dir, "printlog.txt"), mode="w"
),
logging.StreamHandler(),
],
)
model, cutoff = load_model(args.model_dir, args.device)
density_dict = load_atoms(args.atoms_file, args.vacuum, args.grid_step)
device = torch.device(args.device)
cubewriter = utils.CubeWriter(
os.path.join(args.output_dir, "prediction.cube"),
density_dict["atoms"],
density_dict["grid_position"].shape[0:3],
density_dict["origin"],
"predicted by DeepDFT model",
)
if args.iri:
cubewriter_iri = utils.CubeWriter(
os.path.join(args.output_dir, "iri.cube"),
density_dict["atoms"],
density_dict["grid_position"].shape[0:3],
density_dict["origin"],
"predicted by DeepDFT model",
)
if args.dori:
cubewriter_dori = utils.CubeWriter(
os.path.join(args.output_dir, "dori.cube"),
density_dict["atoms"],
density_dict["grid_position"].shape[0:3],
density_dict["origin"],
"predicted by DeepDFT model",
)
if args.hessian_eig:
cubewriter_hessian_eig = []
for i in range(3):
cubewriter_hessian_eig.append(
utils.CubeWriter(
os.path.join(args.output_dir, "hessian_eig_%d.cube" % i),
density_dict["atoms"],
density_dict["grid_position"].shape[0:3],
density_dict["origin"],
"predicted by DeepDFT model",
)
)
start_time = timeit.default_timer()
if args.iri or args.dori or args.hessian_eig:
contextmanager = contextlib.nullcontext()
else:
# No gradients needed from the model
contextmanager = torch.no_grad()
with contextmanager:
# Make graph with no probes
logging.debug("Computing atom-to-atom graph")
collate_fn = dataset.CollateFuncAtoms(
cutoff=cutoff,
pin_memory=device.type == "cuda",
disable_pbc=args.ignore_pbc,
)
graph_dict = collate_fn([density_dict])
logging.debug("Computing atom representation")
device_batch = {
k: v.to(device=device, non_blocking=True) for k, v in graph_dict.items()
}
if isinstance(model, densitymodel.PainnDensityModel):
atom_representation_scalar, atom_representation_vector = model.atom_model(device_batch)
else:
atom_representation = model.atom_model(device_batch)
logging.debug("Atom representation done")
# Loop over all slices
density_iter = dataset.DensityGridIterator(density_dict, args.ignore_pbc, args.probe_count, cutoff)
density = []
for probe_graph_dict in density_iter:
probe_dict = dataset.collate_list_of_dicts([probe_graph_dict])
probe_dict = {
k: v.to(device=device, non_blocking=True) for k, v in probe_dict.items()
}
device_batch["probe_edges"] = probe_dict["probe_edges"]
device_batch["probe_edges_displacement"] = probe_dict["probe_edges_displacement"]
device_batch["probe_xyz"] = probe_dict["probe_xyz"]
device_batch["num_probe_edges"] = probe_dict["num_probe_edges"]
device_batch["num_probes"] = probe_dict["num_probes"]
if isinstance(model, densitymodel.PainnDensityModel):
res = model.probe_model(device_batch, atom_representation_scalar, atom_representation_vector, compute_iri=args.iri, compute_dori=args.dori, compute_hessian=args.hessian_eig)
else:
res = model.probe_model(device_batch, atom_representation, compute_iri=args.iri, compute_dori=args.dori, compute_hessian=args.hessian_eig)
if args.iri or args.dori or args.hessian_eig:
density, grad_outputs = res
else:
density = res
if args.iri:
iri = grad_outputs["iri"].cpu().detach().numpy().flatten()
cubewriter_iri.write(iri)
if args.dori:
cubewriter_dori.write(grad_outputs["dori"].cpu().detach().numpy().flatten())
if args.hessian_eig:
eigs = torch.linalg.eigvalsh(grad_outputs["hessian"])
eiglist = torch.unbind(eigs, dim=-1)
for writer, val in zip(cubewriter_hessian_eig, eiglist):
writer.write(val.cpu().detach().numpy().flatten())
cubewriter.write(density.cpu().detach().numpy().flatten())
logging.debug("Written %d/%d", cubewriter.numbers_written, np.prod(density_dict["grid_position"].shape[0:3]))
end_time = timeit.default_timer()
logging.info("done time_elapsed=%f", end_time-start_time)
if __name__ == "__main__":
main()