|
| 1 | +# ---------------------------------------------------------------------- |
| 2 | +# Numenta Platform for Intelligent Computing (NuPIC) |
| 3 | +# Copyright (C) 2019, Numenta, Inc. Unless you have an agreement |
| 4 | +# with Numenta, Inc., for a separate license for this software code, the |
| 5 | +# following terms and conditions apply: |
| 6 | +# |
| 7 | +# This program is free software: you can redistribute it and/or modify |
| 8 | +# it under the terms of the GNU Affero Public License version 3 as |
| 9 | +# published by the Free Software Foundation. |
| 10 | +# |
| 11 | +# This program is distributed in the hope that it will be useful, |
| 12 | +# but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 14 | +# See the GNU Affero Public License for more details. |
| 15 | +# |
| 16 | +# You should have received a copy of the GNU Affero Public License |
| 17 | +# along with this program. If not, see http://www.gnu.org/licenses. |
| 18 | +# |
| 19 | +# http://numenta.org/licenses/ |
| 20 | +# ---------------------------------------------------------------------- |
| 21 | + |
| 22 | +import unittest |
| 23 | + |
| 24 | +import torch |
| 25 | + |
| 26 | +from nupic.torch.duty_cycle_metrics import \ |
| 27 | + binaryEntropy, maxEntropy |
| 28 | + |
| 29 | + |
| 30 | +class DutyCycleMetricsTest(unittest.TestCase): |
| 31 | + """ |
| 32 | + Simplistic tests of duty cycle entropy metrics |
| 33 | + """ |
| 34 | + |
| 35 | + def testBinaryEntropy(self): |
| 36 | + |
| 37 | + p = torch.tensor([0.1, 0.02, 0.99, 0.5, 0.75, 0.8, 0.3, 0.4, 0.0, 1.0]) |
| 38 | + entropy, entropySum = binaryEntropy(p) |
| 39 | + self.assertAlmostEqual(entropySum.item(), 5.076676985, places=4) |
| 40 | + self.assertAlmostEqual(entropySum.item(), entropy.sum(), places=4) |
| 41 | + self.assertAlmostEqual(entropy[0].item(), 0.468995594, places=4) |
| 42 | + self.assertAlmostEqual(entropy[1].item(), 0.141440543, places=4) |
| 43 | + self.assertAlmostEqual(entropy[2].item(), 0.080793136, places=4) |
| 44 | + self.assertEqual(entropy[8].item(), 0.0) |
| 45 | + self.assertEqual(entropy[9].item(), 0.0) |
| 46 | + |
| 47 | + p = torch.tensor([0.25, 0.25, 0.25, 0.25]) |
| 48 | + entropy, entropySum = binaryEntropy(p) |
| 49 | + self.assertAlmostEqual(entropySum, 3.245112498, places=4) |
| 50 | + self.assertAlmostEqual(entropySum, entropy.sum(), places=4) |
| 51 | + |
| 52 | + p = torch.tensor([0.5, 0.5, 0.5, 0.5]) |
| 53 | + entropy, entropySum = binaryEntropy(p) |
| 54 | + self.assertAlmostEqual(entropySum, 4.0, places=4) |
| 55 | + self.assertAlmostEqual(entropySum, entropy.sum(), places=4) |
| 56 | + self.assertAlmostEqual(entropy[0], 1.0, places=4) |
| 57 | + self.assertAlmostEqual(entropy[1], 1.0, places=4) |
| 58 | + self.assertAlmostEqual(entropy[2], 1.0, places=4) |
| 59 | + self.assertAlmostEqual(entropy[3], 1.0, places=4) |
| 60 | + |
| 61 | + |
| 62 | + def testMaxEntropy(self): |
| 63 | + |
| 64 | + entropy = maxEntropy(1,1) |
| 65 | + self.assertAlmostEqual(entropy, 0.0, places=4) |
| 66 | + |
| 67 | + entropy = maxEntropy(1,0) |
| 68 | + self.assertAlmostEqual(entropy, 0.0, places=4) |
| 69 | + |
| 70 | + entropy = maxEntropy(4,1) |
| 71 | + self.assertAlmostEqual(entropy, 3.245112498, places=4) |
| 72 | + |
| 73 | + entropy = maxEntropy(4,2) |
| 74 | + self.assertAlmostEqual(entropy, 4.0, places=4) |
| 75 | + |
| 76 | + entropy = maxEntropy(100,1) |
| 77 | + self.assertAlmostEqual(entropy, 8.07931359, places=4) |
| 78 | + |
| 79 | + entropy = maxEntropy(100,10) |
| 80 | + self.assertAlmostEqual(entropy, 46.89955936, places=4) |
| 81 | + |
| 82 | + entropy = maxEntropy(2048, 40) |
| 83 | + self.assertAlmostEqual(entropy, 284.2634199, places=4) |
| 84 | + |
| 85 | + |
| 86 | +if __name__ == "__main__": |
| 87 | + unittest.main() |
0 commit comments