-
Notifications
You must be signed in to change notification settings - Fork 89
/
train_encoder.py
384 lines (293 loc) · 15.1 KB
/
train_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
import numpy as np
import torch
import random
import torch.nn as nn
import pickle
torch.manual_seed(0)
import scipy.misc
import json
import torch.nn.functional as F
import os
import imageio
device_ids = [0]
from PIL import Image
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from models.encoder.encoder import FPNEncoder
from utils.data_utils import *
from utils.model_utils import *
import torch.optim as optim
import argparse
import glob
import lpips
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def embed_one_example(args, path, stylegan_encoder, g_all, upsamplers,
inter, percept, steps, sv_dir,
skip_exist=False):
if os.path.exists(sv_dir):
if skip_exist:
return 0,0,[], []
else:
pass
else:
os.system('mkdir -p %s' % (sv_dir))
print('SV folder at: %s' % (sv_dir))
image_path = path
label_im_tensor, im_id = load_one_image_for_embedding(image_path, args['im_size'])
print("****** Run optimization for ", path, " ******")
label_im_tensor = label_im_tensor.to(device)
label_im_tensor = label_im_tensor * 2.0 - 1.0
label_im_tensor = label_im_tensor.unsqueeze(0)
latent_in = stylegan_encoder(label_im_tensor)
im_out_wo_encoder, _ = latent_to_image(g_all, upsamplers, latent_in,
process_out=True, use_style_latents=True,
return_only_im=True)
out = run_embedding_optimization(args, g_all,
upsamplers, inter, percept,
label_im_tensor, latent_in, steps=steps,
stylegan_encoder=stylegan_encoder,
use_noise=args['use_noise'],
noise_loss_weight=args['noise_loss_weight']
)
if args['use_noise']:
optimized_latent, optimized_noise, loss_cache = out
optimized_noise = [torch.from_numpy(noise).cuda() for noise in optimized_noise]
else:
optimized_latent, optimized_noise, loss_cache = out
optimized_noise = None
print("Curr loss, ", loss_cache[0], loss_cache[-1] )
optimized_latent_np = optimized_latent.detach().cpu().numpy()[0]
if args['use_noise']:
loss_cache_np = [noise.detach().cpu().numpy() for noise in optimized_noise]
else:
loss_cache_np = []
# vis
img_out, _ = latent_to_image(g_all, upsamplers, optimized_latent,
process_out=True, use_style_latents=True,
return_only_im=True, noise=optimized_noise)
raw_im_show = (np.transpose(label_im_tensor.cpu().numpy(), (0, 2, 3, 1))) * 255.
vis_list = [im_out_wo_encoder[0], img_out[0]
]
curr_vis = np.concatenate(
vis_list, 0)
imageio.imsave(os.path.join(sv_dir, "reconstruction.jpg"),
curr_vis)
imageio.imsave(os.path.join(sv_dir, "real_im.jpg"),
raw_im_show[0])
return loss_cache[0], loss_cache[-1], optimized_latent_np, loss_cache_np
def test(args, resume, steps, latent_sv_folder='', skip_exist=False):
g_all, _, upsamplers, _, avg_latent = prepare_model(args)
inter = Interpolate(args['im_size'][1], 'bilinear')
percept = lpips.PerceptualLoss(
model='net-lin', net='vgg', use_gpu=device.startswith('cuda'), normalize=args['normalize']
).to(device)
stylegan_encoder = FPNEncoder(3, n_latent=args['n_latent'], only_last_layer=args['use_w'])
stylegan_encoder = stylegan_encoder.to(device)
stylegan_encoder.load_state_dict(torch.load(resume, map_location=device)['model_state_dict'], strict=True)
assert latent_sv_folder != ""
all_images = []
all_id = []
curr_images_all = glob.glob(args['testing_data_path'] + "*/*")
curr_images_all = [data for data in curr_images_all if ('jpg' in data or 'webp' in data or 'png' in data or 'jpeg' in data or 'JPG' in data) and not os.path.isdir(data) and not 'npy' in data ]
for i, image in enumerate(curr_images_all):
all_id.append(image.split("/")[-1].split(".")[0])
all_images.append(image)
print("All files, " , len(all_images))
all_loss_before_opti, all_loss_after_opti = [], []
for i, id in enumerate(tqdm(all_id)):
print("Curr dir,", id)
sv_folder = os.path.join(latent_sv_folder, id, 'crop_latent_' + str(steps))
loss_before_opti, loss_after_opti , all_final_latent, all_final_noise = embed_one_example(args, all_images[i],
stylegan_encoder, g_all,
upsamplers, inter, percept, steps,
sv_folder, skip_exist=skip_exist)
all_loss_before_opti.append(loss_before_opti)
all_loss_after_opti.append(loss_after_opti)
id_num = id.split("_")[-1]
latent_name = latent_sv_folder + '/latents_image_%s.npy' % str(id_num)
np.save(latent_name, all_final_latent)
if len(all_final_noise) != 0:
latent_name = latent_sv_folder + '/latents_image_%s_npose.npy' % str(id_num)
with open(latent_name, 'wb') as handle:
pickle.dump(all_final_noise, handle)
result = {"before:": np.mean(all_loss_before_opti), "after": np.mean(all_loss_after_opti)}
with open(latent_sv_folder + '/result.json', 'w') as f:
json.dump(result, f)
def main(args, resume):
base_path = os.path.join(args['exp_dir'], "checkpoint")
if not os.path.exists(base_path):
os.mkdir(base_path)
g_all, _, upsamplers, _, avg_latent = prepare_model(args)
percept = lpips.PerceptualLoss(
model='net-lin', net='vgg',
use_gpu=device.startswith('cuda'), normalize=args['normalize']
).to(device)
stylegan_encoder = FPNEncoder(3, n_latent=args['n_latent'], only_last_layer=args['use_w'], same_view_code=args['same_view_code'])
stylegan_encoder = stylegan_encoder.to(device)
if resume != "":
stylegan_encoder.load_state_dict(torch.load(resume, map_location=device)['model_state_dict'])
optimizer = optim.Adam(stylegan_encoder.parameters(), lr=args['lr'])
inter = Interpolate(args['im_size'][1], 'bilinear')
images_all = glob.glob(args['training_data_path'] + "/*")
images_all = [data for data in images_all if 'jpg' in data or 'webp' in data or 'png' in data]
if args['debug']:
images_all = images_all[:1]
print( "Training data length, ", len(images_all))
if 'car' in args['category']:
fill_blank = True
else:
fill_blank = False
train_data = trainData(images_all, img_size=args['im_size'], fill_blank=fill_blank)
shuffle = True
if args['debug']:
args['bs'] = 1
shuffle = False
train_data_loader = DataLoader(train_data, batch_size=args['bs'], shuffle=shuffle, num_workers=8)
if args['debug']:
np.random.seed(41)
sampling_latent = np.random.randn(1, 512)
best_loss = 999999999
for epoch in range(100):
for i, da, in enumerate(train_data_loader):
if i % 10 == 0:
gc.collect()
img_tensor = da[0].to(device)
img_tensor = img_tensor * 2.0 - 1.0
stylegan_encoder.train()
latent_in = stylegan_encoder(img_tensor)
if args['truncation']:
latent_in = g_all.module.truncation(latent_in)
img_out , _ = latent_to_image(g_all, upsamplers, latent_in, use_style_latents=True,
return_only_im=True, process_out=False)
img_out = inter(img_out)
img_tensor = (img_tensor + 1.0) / 2.0
img_out = (img_out + 1.0) / 2.0
p_loss = percept(img_out, img_tensor).mean()
mse_loss = F.mse_loss(img_out, img_tensor)
loss = p_loss * args['loss_dict']['p_loss'] + \
mse_loss * args['loss_dict']['mse_loss']
if epoch > args['train_real_start_epochs']:
optimizer.zero_grad()
loss.backward()
optimizer.step()
if args['sampling_training']:
sampling_loss = 0
sample_img = []
sample_latnet = []
for round in range(args['sample_bs']):
if args['debug']:
latent = sampling_latent
else:
latent = np.random.randn(1, 512)
latent = torch.from_numpy(latent).type(torch.FloatTensor).to(device)
with torch.no_grad():
curr_sample_img, curr_sample_latnet = latent_to_image(g_all, upsamplers, latent,
return_only_im=True, process_out=False)
sample_img.append(curr_sample_img)
sample_latnet.append(curr_sample_latnet)
sample_img = torch.cat(sample_img, 0)
sample_img = inter(sample_img)
sample_latnet = torch.cat(sample_latnet, 0)
encode_latent = stylegan_encoder(sample_img)
encoder_loss = F.mse_loss(encode_latent, sample_latnet)
sampling_loss += encoder_loss * args['loss_dict']['encoder_loss']
if args['truncation']:
encode_latent = g_all.module.truncation(encode_latent)
img_out_sampling, _ = latent_to_image(g_all, upsamplers, encode_latent, use_style_latents=True, return_only_im=True, process_out=False)
img_out_sampling = inter(img_out_sampling)
img_out_sampling = (img_out_sampling + 1.0) / 2.0
sample_img = (sample_img + 1.0) / 2.0
p_loss = percept(img_out_sampling, sample_img).mean()
mse_loss = F.mse_loss(img_out_sampling, sample_img)
sampling_loss += p_loss * args['loss_dict']['p_loss'] + \
mse_loss * args['loss_dict']['mse_loss']
optimizer.zero_grad()
sampling_loss.backward()
optimizer.step()
if args['debug']:
image_name = os.path.join(args['exp_dir'], 'real.png')
img_out = 255 * np.transpose( (img_out.detach().cpu().numpy()[0]), (1,2,0))
img_gt = 255 * np.transpose( (img_tensor.cpu().numpy()[0]), (1,2,0))
img_save = (np.concatenate( (img_out, img_gt), 1)).astype(np.uint8)
img_out = Image.fromarray(img_save)
img_out.save(image_name)
if args['sampling_training']:
image_name = os.path.join(args['exp_dir'], 'sampling.png')
img_out = 255 * np.transpose((img_out_sampling.detach().cpu().numpy()[0]), (1, 2, 0))
img_gt = 255 * np.transpose((sample_img.detach().cpu().numpy()[0]), (1, 2, 0))
img_save = (np.concatenate((img_out, img_gt), 1)).astype(np.uint8)
img_out = Image.fromarray(img_save)
img_out.save(image_name)
exit()
if i % 10 == 0 :
if args['sampling_training']:
print(epoch, 'epoch', 'iteration', i, 'loss: ', loss.item(), " sampling loss: ", sampling_loss.item())
else:
print(epoch, 'epoch', 'iteration', i, 'loss', loss)
if i % 2000 == 0 and i!=0 and not args['debug']:
image_name = os.path.join(args['exp_dir'], 'Epoch_' + str(epoch) + "_iter_"+ str(i) + '.png')
img_out = np.transpose(img_out.detach().cpu().numpy()[0], (1,2,0))
img_gt = np.transpose(img_tensor.cpu().numpy()[0], (1,2,0))
img_save= (255 * np.concatenate( (img_out, img_gt), 0)).astype(np.uint8)
img_out = Image.fromarray(img_save)
img_out.save(image_name)
image_name = os.path.join(args['exp_dir'], 'Epoch_' + str(epoch) + "_iter_" + str(i) + '_sampling.png')
img_out = 255 * np.transpose((img_out_sampling.detach().cpu().numpy()[0]), (1, 2, 0))
img_gt = 255 * np.transpose((sample_img.detach().cpu().numpy()[0]), (1, 2, 0))
img_save = (np.concatenate((img_out, img_gt), 1)).astype(np.uint8)
img_out = Image.fromarray(img_save)
img_out.save(image_name)
loss = loss.item()
model_path = os.path.join(base_path, 'epoch_' + str(epoch) + '_iter_' + str(i) + '_loss_' + str(loss) + '.pth')
print('Save to:', model_path)
torch.save({'model_state_dict': stylegan_encoder.state_dict()},
model_path)
if epoch > 2:
if loss < best_loss:
best_loss = loss
model_path = os.path.join(base_path, 'BEST_' + 'loss' + str(loss) + '.pth')
print('Save to:', model_path)
torch.save({'model_state_dict': stylegan_encoder.state_dict()},
model_path)
del loss
if args['sampling_training']:
del sampling_loss
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--exp', type=str)
parser.add_argument('--resume', type=str, default="")
parser.add_argument('--test', type=bool, default=False)
parser.add_argument('--testing_path', type=str, default='')
parser.add_argument('--latent_sv_folder', type=str, default='')
parser.add_argument('--skip_exist', type=bool, default=False)
parser.add_argument('--steps', type=int, default=500)
parser.add_argument('--use_noise', type=bool, default=False)
parser.add_argument('--noise_loss_weight', type=float, default=100)
args = parser.parse_args()
opts = json.load(open(args.exp, 'r'))
path =opts['exp_dir']
if os.path.exists(path):
pass
else:
os.system('mkdir -p %s' % (path))
print('Experiment folder created at: %s' % (path))
os.system('cp %s %s' % (args.exp, opts['exp_dir']))
opts['use_noise'] = args.use_noise
opts['noise_loss_weight'] = args.noise_loss_weight
print("Opt", opts)
if args.testing_path != "":
opts['testing_data_path'] = args.testing_path
if args.test:
test(opts, args.resume, args.steps,
latent_sv_folder=args.latent_sv_folder, skip_exist=args.skip_exist)
else:
main(opts, args.resume)