forked from naumenko-sa/crg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstructuralvariant.py
433 lines (364 loc) · 17.4 KB
/
structuralvariant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
import subprocess
import sqlite3
import numpy as np
import pandas as pd
import re
from pybedtools import BedTool
class GeneAnnotations:
def __init__(self, gene_name):
self.gene_name = gene_name
#DDD fields, not yet implemented
self.DDD_status = ""
self.DDD_mode = ""
self.DDD_consequence = ""
self.DDD_disease = ""
self.DDD_pmids = ""
self.is_in_hgmd = False
#HGMD GROSS mutation fields
self.hgmd_disease = []
self.hgmd_tag = []
self.hgmd_description = []
self.hgmd_comments = []
self.hgmd_journal = []
self.hgmd_author = []
self.hgmd_year = []
self.hgmd_pmid = []
#OMIM fields
self.mim_num = ""
self.mim_inheritance = ""
self.mim_phenotype = ""
#pLI scores
self.synz = ""
self.misz = ""
self.pli = ""
#PhenomeCentral HPO Terms
self.hpo_terms = []
def add_hgmd_anno(self, hgmd_annots):
for row in hgmd_annots:
disease, tag, description, comments, journal, author, year, pmid = row
self.hgmd_disease.append(disease)
self.hgmd_tag.append(tag)
self.hgmd_description.append(description)
self.hgmd_comments.append(comments)
self.hgmd_journal.append(journal)
self.hgmd_author.append(author)
self.hgmd_year.append(year)
self.hgmd_pmid.append(pmid)
def group_journal_fields(self):
journals = [':'.join([j, a, y, p]) for j, a, y, p in zip(self.hgmd_journal, self.hgmd_author, self.hgmd_year, self.hgmd_pmid)]
return ";".join(journals) if any(journals) else ""
class StructuralVariant:
def __init__(self, chr, start, end, svtype, genotype, svlen, svsum, svmax, svtop5, svtop10, svmean, dgv):
self.chr = chr
self.start = start
self.end = end
self.genotype = genotype
#SVSCORES fields
self.svlen = svlen
self.svtype = svtype
self.svmax = svmax
self.svsum = svsum
self.svtop5 = svtop5
self.svtop10 = svtop10
self.svmean = svmean
#Annotated by TCAG
self.dgv = dgv
# GeneAnnotation values
self.genes = {}
# Custom implementation
self.exons_spanned = 0
#AnnotSV - DGV Fields
self.dgv_gain_id = "NA"
self.dgv_gain_n_samples_with_sv = "NA"
self.dgv_gain_n_samples_tested = "NA"
self.dgv_gain_freq = "NA"
self.dgv_loss_id = "NA"
self.dgv_loss_n_samples_with_sv = "NA"
self.dgv_loss_n_samples_tested = "NA"
self.dgv_loss_freq = "NA"
#AnnotSV - DDD fields
self.ddd_sv = ""
self.ddd_dup_n_samples_with_sv = ""
self.ddd_dup_freq = ""
self.ddd_del_n_samples_with_sv = ""
self.ddd_del_freq = ""
def make_decipher_link(self):
return '=hyperlink("https://decipher.sanger.ac.uk/browser#q/{}:{}-{}")'.format(self.chr, self.start, self.end)
def key(self):
return (self.chr, self.start, self.end)
def make_interval_string(self):
return '{}:{}-{}:{}:{}'.format(self.chr, self.start, self.end, self.svtype, self.genotype)
def add_gene(self, gene_name):
if gene_name not in self.genes.keys():
self.genes[gene_name] = GeneAnnotations(gene_name)
return self.genes[gene_name]
else:
raise ValueError('Attempted to add %s twice to %s' % (gene_name, self.make_interval_string()))
def make_gene_list(self):
return ';'.join([gene for gene in self.genes])
def make_column_from_list(self, column_data):
def isListEmpty(inList):
#Returns true if inList contains some combination of empty nested lists and/or empty strings
#Taken and modified from: https://stackoverflow.com/questions/1593564/python-how-to-check-if-a-nested-list-is-essentially-empty
if isinstance(inList, list): # is a list
return all( map(isListEmpty, inList) )
elif isinstance(inList, str) and not inList: # is an empty string
return True
elif isinstance(inList, str) and inList: # is a non-empty string
return False
else:
raise ValueError("Heterogenous list containing data elements other than list or str detected! Raw data: %s" % str(inList))
if isListEmpty(column_data):
return "NA"
elif all(isinstance(i, list) for i in column_data): #nested list
return ';'.join(['|'.join([data if data else "NA" for data in gene_data]) if any(gene_data) \
else "NA" \
for gene_data in column_data])
elif all(isinstance(i, str) for i in column_data): #all strs
return ';'.join([data if data \
else "NA" \
for data in column_data])
def make_hgmd_gene_list(self):
return self.make_column_from_list([gene.gene_name for gene in self.genes.values() if gene.is_in_hgmd])
def make_gene_mim_columns(self):
#return mim_num, mim_inheritance, mim_phenotype
return self.make_column_from_list([gene.mim_num for gene in self.genes.values()]), \
self.make_column_from_list([gene.mim_inheritance for gene in self.genes.values()]), \
self.make_column_from_list([gene.mim_phenotype for gene in self.genes.values()])
def make_gene_hgmd_columns(self):
#return disease, tag, description, comments, journal_info
return self.make_column_from_list([gene.hgmd_disease for gene in self.genes.values()]), \
self.make_column_from_list([gene.hgmd_tag for gene in self.genes.values()]), \
self.make_column_from_list([gene.hgmd_description for gene in self.genes.values()]), \
self.make_column_from_list([gene.hgmd_comments for gene in self.genes.values()]), \
self.make_column_from_list([gene.group_journal_fields() for gene in self.genes.values()])
def make_pli_columns(self):
#return pli, misz, synz
return self.make_column_from_list([ gene.pli for gene in self.genes.values() ]), \
self.make_column_from_list([ gene.misz for gene in self.genes.values() ]), \
self.make_column_from_list([ gene.synz for gene in self.genes.values() ])
def make_ddd_columns(self):
#return self.ddd_sv, self.ddd_dup_n_samples_with_sv, self.ddd_dup_freq, self.ddd_del_n_samples_with_sv, self.ddd_del_freq
return [column if column else "NA" for column in [self.ddd_sv, self.ddd_dup_n_samples_with_sv, self.ddd_dup_freq, self.ddd_del_n_samples_with_sv, self.ddd_del_freq]]
def make_HPO_columns(self):
unique_terms = list({term for gene in self.genes.values() for term in gene.hpo_terms})
return str(len(unique_terms)), \
self.make_column_from_list(unique_terms), \
self.make_column_from_list([gene.gene_name for gene in self.genes.values() if gene.hpo_terms])
class StructuralVariantRecords:
'''
Holds groupings of StructuralVariant.
Groupings in the dict grouped_sv follows this structure:
grouped_sv[ref_interval][samp_name] = [StructuralVariant]
Annotated information on the ref_interval used to group sample intervals is stored in:
all_ref_interval_data[(chr, start, end)] = StructuralVariant
'''
def __init__(self, _sample_list):
self.grouped_sv = {}
self.all_ref_interval_data = {}
self.sample_list = _sample_list
def add_interval(self, ref_interval, new_interval, column_data, samp_name):
'''
Adds new_interval to the dict under the key ref_interval
Column data relating to a ref_interval is stored as well
'''
if ref_interval not in self.grouped_sv.keys():
self.grouped_sv[ref_interval] = {}
self.all_ref_interval_data[ref_interval] = column_data[ref_interval]
if samp_name not in self.grouped_sv[ref_interval]:
self.grouped_sv[ref_interval][samp_name] = []
self.grouped_sv[ref_interval][samp_name].append(column_data[new_interval])
def make_header(self):
fields = ["CHR", "START", "END", "N_SAMPLES", "LIST", "EXONS_SPANNED", "N_GENES", "GENES", "LONGEST_SVTYPE", "GENES_IN_HPO", \
"N_UNIQUE_HPO_TERMS", "UNIQUE_HPO_TERMS", "N_GENES_IN_OMIM", "MIM_NUMBER", "OMIM_INHERITANCE", "OMIM_PHENOTYPE", \
"DGV", "DGV_GAIN_IDs", "DGV_GAIN_n_samples_with_SV", "DGV_GAIN_n_samples_tested", "DGV_GAIN_Frequency", "DGV_LOSS_IDs", \
"DGV_LOSS_n_samples_with_SV", "DGV_LOSS_n_samples_tested", "DGV_LOSS_Frequency", "SVLEN", "DECIPHER_LINK", \
"DDD_SV", "DDD_DUP_n_samples_with_SV", \
"DDD_DUP_Frequency", "DDD_DEL_n_samples_with_SV", "DDD_DEL_Frequency", \
"synZ", "misZ", "pLI", "GENES_IN_HGMD", "HGMD_SV_DISEASE", "HGMD_SV_TAG", "HGMD_SV_DESCRIPTION", "HGMD_SV_COMMENTS", "HGMD_SV_JOURNAL_INFO" ]
fields.extend(self.sample_list)
fields.extend(["%s_SV_details" % s for s in self.sample_list])
fields.extend(["%s_genotype" % s for s in self.sample_list])
fields.extend(["SVSCORE_MAX", "SVSCORE_SUM", "SVSCORE_TOP5", "SVSCORE_TOP10", "SVSCORE_MEAN"])
return "%s\n" % ",".join(fields)
def make_bed(self, bed_name):
'''
Creates a bed file containing all reference intervals
'''
with open(bed_name, "w") as f:
for sv in self.grouped_sv:
f.write('{}\t{}\t{}\t{}\n'.format(sv[0], sv[1], sv[2], bed_name))
def all_ref_BedTool(self):
return BedTool([sv for sv in self.all_ref_interval_data.keys()])
def write_results(self, outfile_name):
'''
A lot of string manipulation to generate the final CSV file line by line
'''
def make_sample_list_index(sample_list, interval):
'''
Makes strings for LIST and SAMPLENAME column
e.g. 1;2;3;4;5;6;7 and 1,1,1,1,1,1,1
'''
return ";".join([str(i+1) for i, sample in enumerate(self.sample_list) if sample in interval]), \
",".join(["1" if sample in interval else "0" for sample in sample_list])
def make_sample_sv_details(sample_list, interval):
'''
Makes list for SAMPLENAME_details column
e.g. 1:10334731-10334817:DEL;1:10334769-10334833:DUP
'''
return ','.join(["NA" if sample not in interval \
else ";".join([variant.make_interval_string() for variant in interval[sample]]) \
for sample in sample_list ])
def make_sample_genotype_details(sample_list, interval):
return ','.join(["NA" if sample not in interval \
else "HOM" if "HOM" in [variant.genotype for variant in interval[sample]] \
else "HET" \
for sample in sample_list])
def get_longest_svtype(interval):
'''
Returns SVTYPE of largest SV in a grouping
'''
def svlen(type_len):
return abs(int(type_len[1]))
svtype_and_svlen = [(variant.svtype, variant.svlen) for sample in interval.values() for variant in sample]
svtype_and_svlen.sort(key=svlen)
return svtype_and_svlen[-1][0] #largest SV is last value in sorted list, hence [-1]
with open(outfile_name, "w") as out:
out.write(self.make_header())
for key in sorted(self.grouped_sv.keys()):
chr, start, end = key
ref = self.all_ref_interval_data[key]
sample_list_index, sample_list_isthere_index = make_sample_list_index(self.sample_list, self.grouped_sv[key])
n_samples = str(len(self.grouped_sv[key]))
svtype = get_longest_svtype(self.grouped_sv[key])
samp_sv_details = make_sample_sv_details(self.sample_list, self.grouped_sv[key])
samp_genotype_details = make_sample_genotype_details(self.sample_list, self.grouped_sv[key])
n_genes = str(len(ref.genes))
n_mim_genes = str(len([ gene for gene in ref.genes.values() if gene.mim_num ]))
ddd_sv, ddd_dup_n_samples_with_sv, ddd_dup_freq, ddd_del_n_samples_with_sv, ddd_del_freq = ref.make_ddd_columns()
#GeneAnnotations
synz, misz, pli = ref.make_pli_columns()
hgmd_disease, hgmd_tag, hgmd_description, hgmd_comments, hgmd_journal_info = ref.make_gene_hgmd_columns()
mim_num, mim_inheritance, mim_phenotype = ref.make_gene_mim_columns()
genes = ref.make_gene_list()
#HPO
n_unique_hpo_terms, unique_hpo_terms, genes_in_HPO_panel = ref.make_HPO_columns()
out_line = '%s\n' % ','.join([str(chr), str(start), str(end), n_samples, sample_list_index, str(ref.exons_spanned), n_genes, genes, svtype, \
genes_in_HPO_panel, n_unique_hpo_terms, unique_hpo_terms, n_mim_genes, mim_num, mim_inheritance, mim_phenotype, \
ref.dgv, ref.dgv_gain_id, ref.dgv_gain_n_samples_with_sv, ref.dgv_gain_n_samples_tested, ref.dgv_gain_freq, ref.dgv_loss_id, \
ref.dgv_loss_n_samples_with_sv, ref.dgv_loss_n_samples_tested, ref.dgv_loss_freq, \
ref.svlen, ref.make_decipher_link(), \
ddd_sv, ddd_dup_n_samples_with_sv, ddd_dup_freq, ddd_del_n_samples_with_sv, ddd_del_freq, \
synz, misz, pli, \
ref.make_hgmd_gene_list(), hgmd_disease, hgmd_tag, hgmd_description, hgmd_comments, hgmd_journal_info, \
sample_list_isthere_index, samp_sv_details, samp_genotype_details, \
ref.svmax, ref.svsum, ref.svtop5, ref.svtop10, ref.svmean ])
out.write(out_line)
def annotate(self, exon_bed, hgmd_db, hpo, exac, omim):
def calc_exons_spanned(exon_bed):
'''
exons_spanned: Count the number of overlapping exonic regions for all reference intervals
'''
exon_ref = BedTool(exon_bed)
all_ref_sv = self.all_ref_BedTool()
for interval in all_ref_sv.intersect(exon_ref, wa=True):
self.all_ref_interval_data[str(interval.chrom), str(interval.start), str(interval.stop)].exons_spanned += 1
def annotsv():
'''
Handles DGV, DDD annotations
'''
all_sv_bed_name = "all_sv.bed"
annotated = "./{}.annotated.tsv".format(all_sv_bed_name)
self.make_bed(all_sv_bed_name)
subprocess.call("$ANNOTSV/bin/AnnotSV -SVinputFile {} -SVinputInfo 1 -outputFile {}".format(all_sv_bed_name, annotated), shell=True)
with open(annotated, "r") as f:
next(f) #skip header
for fields in f:
field = fields.rstrip('\n').replace(',', ';').split('\t')
field = [ "" if not f else str(f) for f in field ]
sv = self.all_ref_interval_data[(field[0], field[1], field[2])]
if field[4] == "full":
#DGV Annotations
sv.dgv_gain_id = field[13]
sv.dgv_gain_n_samples_with_sv = field[14]
sv.dgv_gain_n_samples_tested = field[15]
sv.dgv_gain_freq = field[16]
sv.dgv_loss_id = field[17]
sv.dgv_loss_n_samples_with_sv = field[18]
sv.dgv_loss_n_samples_tested = field[19]
sv.dgv_loss_freq = field[20]
#DDD Annotations
sv.ddd_sv = field[21]
sv.ddd_dup_n_samples_with_sv = field[22]
sv.ddd_dup_freq = field[23]
sv.ddd_del_n_samples_with_sv =field[24]
sv.ddd_del_freq = field[25]
os.remove(all_sv_bed_name)
os.remove(annotated)
def hgmd(db_path):
def decode_rows(rows):
return [ [ "" if field is None or not field else \
str(field) if isinstance(field,int) else \
field.replace(',', ';') \
for field in row ] \
for row in rows ]
conn = sqlite3.connect(db_path)
cur = conn.cursor()
for sv in self.all_ref_interval_data.values():
svtype = sv.svtype
for gene_anno in sv.genes.values():
gene_name = gene_anno.gene_name
cur.execute('SELECT GENE FROM ALLGENES WHERE GENE=?', (gene_name, ))
if cur.fetchone() is not None:
gene_anno.is_in_hgmd = True
if svtype == "DEL":
cur.execute('SELECT DISEASE, TAG, DESCR, COMMENTS, JOURNAL, AUTHOR, YEAR, PMID FROM GROSDEL WHERE GENE=?', (gene_name, ) )
elif svtype == "INS":
cur.execute('SELECT DISEASE, TAG, DESCR, COMMENTS, JOURNAL, AUTHOR, YEAR, PMID FROM GROSINS WHERE GENE=? AND TYPE=?', (gene_name, 'I'))
elif svtype == "DUP":
cur.execute('SELECT DISEASE, TAG, DESCR, COMMENTS, JOURNAL, AUTHOR, YEAR, PMID FROM GROSINS WHERE GENE=? AND TYPE=?', (gene_name, 'D'))
gene_anno.add_hgmd_anno(decode_rows(cur.fetchall()))
else:
gene_anno.is_in_hgmd = False
conn.close()
def annotate_genes(exac, hpo, omim):
def process_OMIM_phenotype(phenotype):
# Re-implemented string processing from AnnotSV-omim.tcl
inheritance_codes = {"Autosomal dominant":"AD", \
"Autosomal recessive":"AR", \
"X-linked dominant":"XLD", \
"X-linked recessive":"XLR", \
"Y-linked dominant":"YLD", \
"Y-linked recessive":"YLR", \
"X-linked":"XL", \
"Y-linked":"YL"}
inheritance = []
for p in phenotype.split(';'):
multiple_inheritance = [code for description, code in inheritance_codes.items() if description in p]
if multiple_inheritance: inheritance.append('&'.join(multiple_inheritance))
return phenotype.replace(', ', '|'), ';'.join(inheritance)
hpo_exists = os.path.isfile(hpo)
if hpo_exists: hpo_terms = pd.read_csv(hpo, sep='\t').set_index(' Gene symbol')
exac_scores = pd.read_csv(exac, sep='\t').set_index('gene')
exac_scores[['pLI', 'mis_z', 'syn_z']] = exac_scores[['pLI', 'mis_z', 'syn_z']].astype(str)
omim_phenotypes = pd.read_csv(omim, sep='\t', header=3, skipfooter=61, engine='python')
omim_phenotypes[['Mim Number', 'Phenotypes']] = omim_phenotypes[['Mim Number', 'Phenotypes']].astype(str)
omim_phenotypes = omim_phenotypes.groupby('Approved Symbol').agg({'Mim Number': '; '.join, 'Phenotypes': '; '.join})
for ref_interval in self.all_ref_interval_data.values():
for gene_name, gene_annots in ref_interval.genes.items():
if hpo_exists and gene_name in hpo_terms.index:
gene_annots.hpo_terms = hpo_terms.loc[gene_name, 'Features'].replace(', ', '|').split('; ')
if gene_name in exac_scores.index:
gene_annots.pli, gene_annots.misz, gene_annots.synz = exac_scores.loc[gene_name, ['pLI', 'mis_z', 'syn_z']]
if gene_name in omim_phenotypes.index:
gene_annots.mim_num, phenotype = omim_phenotypes.loc[gene_name, ['Mim Number', 'Phenotypes']]
gene_annots.mim_phenotype, gene_annots.mim_inheritance = process_OMIM_phenotype(phenotype)
print('Querrying HGMD for solved cases involving SV/CNV\'s...')
hgmd(hgmd_db)
print('Running AnnotSV for DDD, DGV structural variants')
annotsv()
print('Calculating exons spanned ...')
calc_exons_spanned(exon_bed)
print('Annotating genes with HPO terms, ExAC scores, OMIM phenotypes ...')
annotate_genes(exac, hpo, omim)