-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstacked_autoencoder.py
196 lines (163 loc) · 6.63 KB
/
stacked_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""Stacked autoencoder class.
The main class in this file is StackedAutoEncoder. This model is an autoencoder
comprised of convolutional blocks. Each block autoencodes the representation
from the block below. The model is trained piecemeal, namely the lowest block is
trained first, then it is restored from snapshot to train the second block, etc.
"""
import image_utils
import nets
import torch
from torch import nn
from torch import distributions
class IdentityModel(object):
"""Dummy model used as the lowest module of a stacked autoencoder."""
def full_encode(self, x_0):
return x_0
def full_decode(selfself, latent):
return latent
def images(self, image):
return {}
def restore_model(model, checkpoint_path):
"""Returns a model restored from checkpoint."""
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['state_dict'])
class AutoEncoderBlock(nn.Module):
"""Block of a stacked autoencoder."""
def __init__(self, encoder_layers, decoder_type='resize', noise_stddev=0.,
activation=None, activate_dec=False):
"""Construct autoencoder block.
Args:
encoder_layers: Iterable of layers. These layers should be instances
of nets.Conv2D.
decoder_type: String. 'resize' or 'deconv'. Which decoder type to
use.
noise_stddev: Float. Stddev of the latent space noise.
Activation: None or activation module. If None, defaults to
torch.nn.Sigmoid().
activate_dec: Boolean. Whether to apply activation function to
decoder.
"""
super(AutoEncoderBlock, self).__init__()
self._activate_dec = activate_dec
self._encoder_layers = encoder_layers
if decoder_type == 'resize':
self._decoder_layers = tuple([
nets.ReSizeAndConv(conv2d=conv2d)
for conv2d in self._encoder_layers[::-1]
])
elif decoder_type == 'deconv':
self._decoder_layers = tuple([
nets.get_deconv(conv2d)
for conv2d in self._encoder_layers[::-1]
])
else:
raise ValueError('Invalid decoder_tpye {}'.format(decoder_type))
for i, enc_module in enumerate(self._encoder_layers):
self.add_module("_enc_module_" + str(i), enc_module)
for i, dec_module in enumerate(self._decoder_layers):
self.add_module("_dec_module_" + str(i), dec_module)
self._noise = distributions.normal.Normal(0., noise_stddev)
if activation is None:
activation = nn.Sigmoid()
self._activation = activation
def forward(self, x, noise=True):
"""Autoencode input x, optionally with latent noise."""
z = self.encode(x)
if noise:
z = z + self._noise.sample()
recons = self.decode(z)
return recons
def encode(self, x):
"""Encode from input space x to latent space."""
for conv2d in self._encoder_layers:
x = conv2d(x)
x = self._activation(x)
return x
def decode(self, x):
"""Decode from latent space x to input space."""
x = self._decoder_layers[0](x)
for conv2d in self._decoder_layers[1:]:
x = self._activation(x)
x = conv2d(x)
if self._activate_dec:
x = self._activation(x)
return x
class StackedAutoEncoder(nn.Module):
"""Stacked autoencoder model."""
def __init__(self, block, prev_model=None):
"""Construct stacked autoencoder model.
Args:
block: Instance of AutoEncoderBlock. The current block to train.
prev_model: None or instance of StackedAutoEncoder. If None,
defaults to IdentityModel. This model is the model below the
current block. Namely, the block is trained to autoencode the
latent space of prev_model.
"""
super(StackedAutoEncoder, self).__init__()
self.add_module("_block", block)
if prev_model is None:
self._prev_model = IdentityModel()
else:
self.add_module("_prev_model", prev_model)
for param in self._prev_model.parameters():
param.requires_grad = False
self._loss = nn.MSELoss().cuda()
def forward(self, image):
"""Forward pass on an image.
Args:
image: Tensor of shape [batch, channels, height, width]. Input
image.
Returns:
prev_latent: 4-tensor. Latent space of self._prev_model.
recons: Current block's reconstruction of prev_latent.
"""
prev_latent = self._prev_model.full_encode(image)
recons = self._block.forward(prev_latent.detach())
return prev_latent, recons
def full_encode(self, image):
"""Encode from image, returning current latent space."""
prev_latent = self._prev_model.full_encode(image)
return self._block.encode(prev_latent)
def full_decode(self, latent):
"""Decode from latent, return reconstructed image."""
recons = self._block.decode(latent)
return self._prev_model.full_decode(recons)
def loss(self, image):
"""Compute model loss to be optimized."""
prev_latent, recons = self.forward(image)
return self._loss(prev_latent.detach(), recons)
def scalars(self, image):
"""Get dictionary of scalars for logging."""
prev_latent, recons = self.forward(image)
scalars = {
'loss': self._loss(prev_latent, recons),
'mean_prev_latent': torch.mean(prev_latent),
'mean_recons': torch.mean(recons),
'std_prev_latent': torch.std(prev_latent),
'std_recons': torch.std(recons),
}
return scalars
@property
def scalar_keys(self):
scalar_keys = [
'loss', 'mean_input', 'mean_recons', 'std_input', 'std_recons']
return scalar_keys
def images(self, image):
"""Get dictionary of numpy images for logging."""
decoding = self.full_decode(self.full_encode(image))
images = {
'input': image,
'recons': decoding,
'diff': image - decoding,
}
images = {
k: image_utils.images_to_grid(
image_utils.normalize_0_1(v.detach().cpu().numpy()),
padding_value=1.)
for k, v in images.items()
}
prev_images = self._prev_model.images(image)
images.update(
{'prev_' + k: v for k, v in prev_images.items()}
)
return images