diff --git a/1D-RISM.html b/1D-RISM.html index b6664d0486..bf01f8f896 100644 --- a/1D-RISM.html +++ b/1D-RISM.html @@ -733,7 +733,7 @@
The NWChem plane-wave (NWPW) module uses pseudopotentials and plane-wave basis sets to perform Density Functional Theory calculations (simple introduction pw-lecture.pdf). diff --git a/Pm-3.html b/Pm-3.html index ef2b449ab0..d2e7146cbb 100644 --- a/Pm-3.html +++ b/Pm-3.html @@ -724,7 +724,7 @@
The NWChem plane-wave (NWPW) module uses pseudopotentials and plane-wave basis sets to perform Density Functional Theory calculations (simple introduction pw-lecture.pdf). diff --git a/projects.html b/projects.html index 153bb4c410..f410e3427f 100644 --- a/projects.html +++ b/projects.html @@ -729,7 +729,7 @@
The NWChem software contains computational chemistry tools that are scalable both in their ability to efficiently treat large scientific problems, and in their use of available computing resources from high-performance parallel supercomputers to conventional workstation clusters.
NWChem can handle:
NWChem is actively developed by a consortium of developers and maintained by The Environmental Molecular Sciences Laboratory (EMSL) located at the Pacific Northwest National Laboratory (PNNL) in Washington State. Researchers interested in contributing to NWChem should review the Developers page. The code is distributed as open-source under the terms of the Educational Community License version 2.0 (ECL 2.0).
The NWChem development strategy is focused on providing new and essential scientific capabilities to its users in the areas of kinetics and dynamics of chemical transformations, chemistry at interfaces and in the condensed phase, and enabling innovative and integrated research at EMSL. At the same time continued development is needed to enable NWChem to effectively utilize architectures of tens of petaflops and beyond.
"},{"location":"index.html#latest-nwchem-release","title":"Latest NWChem release","text":"NWChem version 7.2.0 is the latest release available for download from the link https://github.com/nwchemgit/nwchem/releases.
"},{"location":"index.html#emsl-arrows","title":"EMSL Arrows","text":"Are you just learning how to use NWChem and would like to have an easy way to generate input decks, check your output decks against a large database of calculations, perform simple thermochemistry calculations, calculate the NMR and IR spectra of a modest size molecule, or just try out nwchem before installing it? EMSL Arrows scientific service can help. A web api to EMSL Arrows is now available for alpha testing.
for more information see EMSL Arrows - an easier way to use nwchem and EMSL Arrows
EMSL Arrows API
"},{"location":"index.html#nwchem-documentation","title":"NWChem Documentation","text":""},{"location":"index.html#nwchem-citation","title":"NWChem Citation","text":"Please cite the following reference when publishing results obtained with NWChem:
E. Apr\u00e0, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cau\u00ebt, Y. Chen, G. N. Chuev, C. J. Cramer, J. Daily, M. J. O. Deegan, T. H. Dunning Jr., M. Dupuis, K. G. Dyall, G. I. Fann, S. A. Fischer, A. Fonari, H. Fr\u00fcchtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann, A. W. G\u00f6tz, J. Hammond, V. Helms, E. D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B. G. Johnson, H. J\u00f3nsson, R. A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logsdail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin, T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J. Nichols, J. Nieplocha, A. Otero-de-la-Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M. Richard, P. Sadayappan, G. C. Schatz, W. A. Shelton, D. W. Silverstein, D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S. Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman, T. Van Voorhis, \u00c1. V\u00e1zquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis, D. Wang, J. H. Weare, M. J. Williamson, T. L. Windus, K. Woli\u0144ski, A. T. Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, and R. J. Harrison, \u201cNWChem: Past, present, and future\u201d, The Journal of Chemical Physics 152, 184102 (2020). DOI: 10.1063/5.0004997
"},{"location":"1D-RISM.html","title":"1-D RISM","text":""},{"location":"1D-RISM.html#overview","title":"Overview","text":"The 1D-RISM module in NWChem provides description of solvated systems following one-dimensional reference interaction site of model of Chandler and Anderson. Similar to ab-initio density-functional theory, 1D-RISM can be thought of as an approach where discrete particle representation of solvent degrees of freedom is replaced by average density field. Unlike traditional continuum solvation model, this density based representation is inherently inhomogenous and incorporates specific molecular features of the solvent. In the current implementation, 1D-RISM is not directly coupled to QM calculations but presumed to be used as a post processing step after QM calculations which provide ESP point charges for a given solute geometry.
Then parameters for 1D-RISM calculations are defined in the rism input block
rism\n\u00a0\u00a0solute\u00a0configuration\u00a0<filename>\n\u00a0\u00a0vdw\u00a0[rule\u00a0<arithmetic|geometric>\u00a0]\u00a0parameters\u00a0<filename>\n\u00a0\u00a0[temp\u00a0<float\u00a0default\u00a0298.15>]\n\u00a0\u00a0[closure\u00a0<hnc|kh>]\nend\n
At this point energy task is supported, which is invoked using standard directive
task\u00a0rism\u00a0energy\n
7\n\nO1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.092111\u00a0\u00a0\u00a0\u00a00.733461\u00a0\u00a0\u00a0\u00a01.237573\u00a0\u00a0-1.104415\u00a0O\nO2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.758765\u00a0\u00a0\u00a0-0.201687\u00a0\u00a0\u00a0\u00a00.473908\u00a0\u00a0-1.043019\u00a0O\nC1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.212954\u00a0\u00a0\u00a0\u00a01.568653\u00a0\u00a0\u00a0-0.833617\u00a0\u00a0-0.474263\u00a0C1\nC2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.174205\u00a0\u00a0\u00a0\u00a00.630432\u00a0\u00a0\u00a0\u00a00.357135\u00a0\u00a0\u00a01.276672\u00a0C2\nH1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.360636\u00a0\u00a0\u00a0\u00a01.160405\u00a0\u00a0\u00a0-1.668859\u00a0\u00a0\u00a00.102898\u00a0H\nH2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.242419\u00a0\u00a0\u00a0\u00a02.521128\u00a0\u00a0\u00a0-0.531952\u00a0\u00a0\u00a00.118979\u00a0H\nH3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.243967\u00a0\u00a0\u00a0\u00a01.772778\u00a0\u00a0\u00a0-1.139547\u00a0\u00a0\u00a00.123148\u00a0H\n
#Van\u00a0der\u00a0Waals\u00a0parameters\u00a0file\u00a0for\u00a0RISM\u00a0\n#\u00a0type\u00a0\u00a0\u00a0sigma(Angstrom)\u00a0epsilon\u00a0(kj/mol)\nC\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.3400E+01\u00a0\u00a00.3601E+00\nH\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.2600E+01\u00a0\u00a00.0628E-00\n
Upon completion of the run, the resulting radial distribution functions are saved into rdf_out.data file.
The computed chemical potentials in both HNC and gaussian approximations are written in the output file.
Here is the complete example input file for solvated calculation of acetic acid.
echo\nstart\u00a0rism\n\nmemory\u00a0global\u00a040\u00a0mb\u00a0stack\u00a023\u00a0mb\u00a0heap\u00a05\u00a0mb\n\nrism\n\u00a0\u00a0closure\u00a0kh\n\u00a0\u00a0temp\u00a0298\n\u00a0\u00a0vdw\u00a0rule\u00a0arithmetic\u00a0parameters\u00a0vdw.par\n\u00a0\u00a0solute\u00a0configuration\u00a0solute2.data\nend\n\ntask\u00a0energy\u00a0rism\n
solute2.data file
\u00a08\n\u00a0\n\u00a0O1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.15566663\u00a0\u00a0\u00a0\u00a0-0.86069508\u00a0\u00a0\u00a0\u00a0\u00a01.9256322\u00a0\u00a0\u00a0-0.7323104568123959\u00a0O1\n\u00a0O2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02.31302544\u00a0\u00a0\u00a0\u00a0-0.61550520\u00a0\u00a0\u00a0\u00a0\u00a01.32869265\u00a0\u00a0-0.7721248369124809\u00a0O2\n\u00a0C1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.69252260\u00a0\u00a0\u00a0\u00a0-1.26942616\u00a0\u00a0\u00a0\u00a0-0.34814880\u00a0\u00a0-0.4444201659837397\u00a0C1\n\u00a0C2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01.15967680\u00a0\u00a0\u00a0\u00a0-0.88531805\u00a0\u00a0\u00a0\u00a0\u00a01.02642840\u00a0\u00a0\u00a01.004561861052242\u00a0\u00a0C2\n\u00a0H1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.22862001\u00a0\u00a0\u00a0\u00a0-2.26160688\u00a0\u00a0\u00a0\u00a0-0.31011132\u00a0\u00a0\u00a00.1303963270585546\u00a0H\n\u00a0H2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.08170478\u00a0\u00a0\u00a0\u00a0-0.56654621\u00a0\u00a0\u00a0\u00a0-0.67834692\u00a0\u00a0\u00a00.1513209389506027\u00a0H\n\u00a0H3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01.53138139\u00a0\u00a0\u00a0\u00a0-1.28351200\u00a0\u00a0\u00a0\u00a0-1.04644134\u00a0\u00a0\u00a00.1454517042730594\u00a0H\n\u00a0H4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.48680931\u00a0\u00a0\u00a0\u00a0-0.66362820\u00a0\u00a0\u00a0\u00a0\u00a02.83551288\u00a0\u00a0\u00a00.5171246283741536\u00a0H4\n
vdw.par file
O1\u00a0\u00a03.0660\u00a0\u00a00.8809\nO2\u00a0\u00a02.9600\u00a0\u00a00.8792\nC1\u00a0\u00a03.4000\u00a0\u00a00.4580\nC2\u00a0\u00a03.4000\u00a0\u00a00.3601\nH\u00a0\u00a0\u00a02.1150\u00a0\u00a00.0657\nH4\u00a0\u00a00.8000\u00a0\u00a00.1926\n
"},{"location":"ARMCI.html","title":"Choosing the ARMCI Library","text":""},{"location":"ARMCI.html#overview","title":"Overview","text":"The Global Arrays parallel environment relies upon a one-sided communication runtime system. There are at least three options currently available:
By default, Global Arrays will choose ARMCI or ComEx, based upon the environment variables selected by the user (see GA documentation for details). When a native implementation is available and works reliably, this is the best option for the NWChem user. However, in cases where an native implementation of ARMCI is not available or is not reliable, the user should consider using one of the MPI-based implementations.
There are many different ways to use MPI as the communication runtime of Global Arrays:
ARMCI_NETWORK Result NotesMPI-PR
ARMCI with progress rank Recommended, except on Blue Gene/Q. MPI-PT
ARMCI with progress thread Appropriate for Blue Gene/Q. MPI-MT
ARMCI over multi-threaded MPI Do not use Open-MPI 1.x. MPI-TS
ARMCI over MPI without data server MPI-SPAWN
ARMCI using MPI dynamic processes Requires MPI_Comm_spawn support. ARMCI
Uses ARMCI-MPI See the ARMCI-MPI NWChem page for details. (please use mpi3rma branch) requires EXTERNAL_ARMCI_PATH
It is difficult to provide complete guidance to the user as to which option to choose. However, we observe the following:
ARMCI_NETWORK=MPI-PR
is stable and performs well on many platforms (including Cray XC platforms, e.g. NERSC Cori). This port will use one processes on each node for communication, therefore subtracting one process (again on each node) for NWChem. Therefore, when executing on a single node (i.e. the case of desktop execution) you would need to ask for n+1 processes; in other words, a serial execution would require the following mpirun invocation mpirun -np 2 ...
MPI-PR
is more reliable than OPENIB
or MPI-SPAWN
. ARMCI-MPI
with Casper and Intel MPI is also recommended. See this page for details. Contact Jeff Hammond for assistance.ARMCI-MPI
because MPI-3 is not fully supported. On all other platforms, the ARMCI-MPI
branch mpi3rma is recommended.ARMCI-MPI
is greatly enhanced by Casper. See this link for design details and this page for instructions on how to use it.When using ARMCI-MPI, please make sure to use the most recent version of MPI (MPICH 3.2+, Cray MPI 7.2+, MVAPICH2 2.0+, Intel MPI 5.1+, Open-MPI 2.0+). Older versions of MPI are known to have bugs in the MPI-3 RMA features that affect the correctness of NWChem.
"},{"location":"ARMCI.html#support","title":"Support","text":"Global Arrays, ARMCI and ComEx are developed and supported by PNNL. The user list for support is hpctools@googlegroups.com.
ARMCI-MPI is developed by Argonne and Intel. All ARMCI-MPI questions should be directed to armci-discuss@lists.mpich.org. ARMCI-MPI is not an Intel product.
"},{"location":"ARMCI.html#automated-installation-of-armci-mpi","title":"Automated installation of ARMCI-MPI","text":"If you wish to use ARMCI-MPI, a script is available to automatically install it:
cd\u00a0$NWCHEM_TOP/tools\u00a0&&\u00a0./install-armci-mpi\n
"},{"location":"Aba2.html","title":"Aba2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a041\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Aba2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Abm2.html","title":"Abm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a039\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Abm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y+1/2,+z\n-x,+y+1/2,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x,-y+1,+z+1/2\n-x,+y+1,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ama2.html","title":"Ama2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a040\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ama2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y,+z\n-x+1/2,+y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Amm2.html","title":"Amm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a038\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Amm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z\n-x,+y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Analysis.html","title":"Analysis","text":"The analysis module is used to analyze molecular trajectories generated by the NWChem molecular dynamics module, or partial charges generated by the NWChem electrostatic potential fit module. This module should not de run in parallel mode.
Directives for the analysis module are read from an input deck,
analysis\n ...\nend\n
The analysis is performed as post-analysis of trajectory files through using the task directive
task analysis\n
or
task analyze\n
"},{"location":"Analysis.html#system-specification","title":"System specification","text":"system <string systemid>_<string calcid>\n
where the strings systemid and calcid are user defined names for the chemical system and the type of calculation to ber performed, respectively. These names are used to derive the filenames used for the calculation. The topoly file used will be systemid.top, while all other files are named systemid_calcid.ext.
"},{"location":"Analysis.html#reference-coordinates","title":"Reference coordinates","text":"Most analyses require a set of reference coordinates. These coordinates are read from a NWChem restart file by the directive,
reference <string filename>\n
where filename is the name of an existing restart file. This input directive is required.
"},{"location":"Analysis.html#file-specification","title":"File specification","text":"The trajectory file(s) to be analyzed are specified with
file <string filename> [ <integer firstfile> <integer lastfile> ]\n
where filename is an existing trj trajectory file. If firstfile and lastfile are specified, the specified filename needs to have a ?
wildcard character that will be substituted by the 3-character integer number from firstfile to lastfile, and the analysis will be performed on the series of files. For example,
file tr_md?.trj 3 6\n
will instruct the analysis to be performed on files tr_md003.trj, tr_md004.trj, tr_md005.trj and tr_md006.trj.
From the specified files the subset of frames to be analyzed is specified by
frames [ <integer firstframe default 1> ] <integer lastframe> \\\n\n [ <integer frequency default 1> ]\n
For example, to analyze the first 100 frames from the specified trajectory files, use
frames 100\n
To analyze every 10-th frame between frames 200 and 400 recorded on the specified trajectory files, use
frames 200 400 10\n
A time offset can be specified with
time <real timoff>\n
Solute coordinates of the reference set and ech subsequent frame read from a trajectory file are translated to have the center of geometry of the specified solute molecule at the center of the simulation box. After this translation all molecules are folded back into the box according to the periodic boundary conditions. The directive for this operation is
center <integer imol> [ <integer jmol default imol> ]\n
Coordinates of each frame read from a trajectory file can be rotated using
rotate ( off | x | y | z ) <real angle units degrees>\n
If center was defined, rotation takes place after the system has been centered. The rotate directives only apply to frames read from the trajectory files, and not to the reference coordinates. Up to 100 rotate directives can be specified, which will be carried out in the order in which they appear in the input deck. rotate off cancels all previously defined rotate directives.
To perform a hydrogen bond analysis:
hbond [distance [[<real rhbmin default 0.0>] <real rhbmin>]] \\\n [angle [<real hbdmin> [ <real hbdmax default pi>]]] \\\n [solvent [<integer numwhb>]]\n
"},{"location":"Analysis.html#selection","title":"Selection","text":"Analyses can be applied to a selection of solute atoms and solvent molecules. The selection is determined by
select ( [ super ] [ { <string atomlist> } ] |\n solvent <real range> | save <string filename> | read <string filename> )\n
where {atomlist} is the set of atom names selected from the specified residues. By default all solute atoms are selected. When keyword super
is specified the selecion applies to the superimposition option.
The selected atoms are specified by the string atomlist which takes the form
[{isgm [ - jsgm ] [,]} [:] [{aname[,]}]\n
where isgm and jsgm are the first and last residue numbers, and aname is an atom name. In the atomname a question mark may be used as a wildcard character.
For example, all protein backbone atoms are selected by
select _N,_CA,_C\n
To select the backbone atoms in residues 20 to 80 and 90 to 100 only, use
select 20-80,90-100:_N,_CA,_C\n
This selection is reset to apply to all atoms after each file directive.
Solvent molecules within range nm from any selected solute atom are selected by
select solvent <real range>\n
After solvent selection, the solute atom selection is reset to being all selected.
The current selection can be saved to, or read from a file using the save and read keywords, respectively.
Some analysis are performed on groups of atoms. These groups of atoms are defined by
define <integer igroup> [<real rsel>] [solvent] { <string atomlist> }\n
The string atom in this definitions again takes the form
[{isgm [ - jsgm ] [,]} [:] [{aname[,]}]\n
where isgm and jsgm are the first and last residue numbers, and aname is an atom name. In the atomname a question mark may be used as a wildcard character.
Multiple define directive can be used to define a single set of atoms.
"},{"location":"Analysis.html#coordinate-analysis","title":"Coordinate analysis","text":"To analyze the root mean square deviation from the specified reference coordinates:
rmsd\n
To analyze protein \u03c6-\u03c8 and backbone hydrogen bonding:
ramachandran\n
To define a distance:
distance <integer ibond> <string atomi> <string atomj>\n
To define an angle:
angle <integer iangle> <string atomi> <string atomj> <string atomk>\n
To define a torsion:
torsion <integer itorsion> <string atomi> <string atomj> \\\n <string atomk> <string atoml>\n
To define a vector:
vector <integer ivector> <string atomi> <string atomj>\n
The atom string in these definitions takes the form
<integer segment>:<string atomname> | w<integer molecule>:<string atomname>\n
for solute and solvent atom specification, respectively.
To define charge distribution in z-direction:
charge_distribution <integer bins>\n
Analyses on atoms in a predefined group are specified by
group [<integer igroup> [periodic <integer ipbc>] \\\n ( local [<real rsel default 0.0>] [<real rval default rsel>]\n <string function> )\n
where igroup specifies the group of atoms defined with a define directive. Keyword periodic
can be used to specify the periodicity, ipbc=1 for periodicity in z, ipbc=2 for periodicity in x and y, and ipbc=3 for periodicity in x, y and z. Currently the only option is local which prints all selected solute atom with a distance between rsel and rval from the atoms defined in igroup. The actual analysis is done by the scan deirective. A formatted report is printed from group analyses using
report <string filename> local\n
Analyses on pairs of atoms in predefined groups are specified by
groups [<integer igroup> [<integer jgroup>]] [periodic [<integer ipbc default 3>]] \\ \n <string function> [<real value1> [<real value2>]] [<string filename>]\n
where igroup and jgroup are groups of atoms defined with a define directive. Keyword periodic
specifies that periodic boundary conditions need to be applied in ipbc dimensions. The type of analysis is define by function, value1 and value2. If filename is specified, the analysis is applied to the reference coordinates and written to the specified file. If no filename is given, the analysis is applied to the specified trajectory and performed as part of the scan directive. Implemented analyses defined by <string function> [<real value1> [<real value2>]]
include
Coordinate histograms are specified by
histogram <integer idef> [<integer length>] zcoordinate <string filename>\n
where idef is the atom group definition number, length is the size of the histogram, zcoordinate is the currently only histogram option, and filename is the filname to which the histogram is written.
Order parameters are evalated using
order <integer isel> <integer jsel> <string atomi> <string atomj>\n
This is an experimental feature.
To write the average coordinates of a trajectory
average [super] <string filename>\n
To perform the coordinate analysis:
scan [ super ] <string filename>\n
which will create, depending on the specified analysis options files filename.rms and filename.ana. After the scan directive previously defined coordinate analysis options are all reset. Optional keyword super
specifies that frames read from the trajectory file(s) are superimposed to the reference structure before the analysis is performed.
Essential dynamics analysis is performed by
essential\n
This can be followed by one or more
project <integer vector> <string filename>\n
to project the trajectory onto the specified vector. This will create files filename with extensions frm or trj, val, vec, _min.pdb and _max.pdb, with the projected trajectory, the projection value, the eigenvector, and the minimum and maximum projection structure.
For example, an essential dynamics analysis with projection onto the first vector generating files firstvec.{trj, val, vec, _min.pdb, _max.pdb} is generated by
essential\nproject 1 firstvec\n
"},{"location":"Analysis.html#trajectory-format-conversion","title":"Trajectory format conversion","text":"To write a single frame in PDB or XYZ format, use
write [<integer number default 1>] [super] [solute] <string filename>\n
To copy the selected frames from the specified trejctory file(s), onto a new file, use
copy [solute] [rotate <real tangle>] <string filename>\n
To superimpose the selected atoms for each specified frame to the reference coordinates before copying onto a new file, use
super [solute] [rotate <real tangle>] <string filename>\n
The rotate directive specifies that the structure will make a full ratation every tangle ps. This directive only has effect when writing povray files.
The format of the new file is determined from the extension, which can be one of
amb
AMBER formatted trajectory file (obsolete)arc
DISCOVER archive filebam
AMBER unformatted trajectory filecrd
AMBER formatted trajectory filedcd
CHARMM formatted trajectory fileesp
gOpenMol formatted electrostatic potential filesfrm
ecce frames file (obsolete)pov
povray input filestrj
NWChem trajectory filexyz
NWChem trajectory in xyz formatIf no extension is specified, a trj formatted file will be written.
A special tag can be added to frm and pov formatted files using
label <integer itag> <string tag> [ <real rval default 1.0> ] \\\\\n [ <integer iatag> [ <integer jatag default iatag> ] [ <real rtag default 0.0> ] ]\n [ <string anam> ]\n
where tag number itag is set to the string tag for all atoms anam within a distance rtag from segments iatag through jatag. A question mark can be used in anam as a wild card character.
Atom rendering is specified using
render ( cpk | stick ) [ <real rval default 1.0> ] \\\\\n [ <integer iatag> [ <integer jatag default iatag> ] [ <real rtag default 0.0> ] ]\n [ <string anam> ]\n
for all atoms anam within a distance rtag from segments iatag through jatag, and a scaling factor of rval. A question mark can be used in anam as a wild card character.
Atom color is specified using
color ( <string color> | atom ) \\\\\n\n [ <integer iatag> [ <integer jatag default iatag> ] [ <real rtag default 0.0> ] ]\n\n [ <string anam> ]\n
for all atoms anam within a distance rtag from segments iatag through jatag. A question mark can be used in anam as a wildcard character.
For example, to display all carbon atoms in segments 34 through 45 in green and rendered cpk in povray files can be specified with
render cpk 34 45 _C??\ncolor green 34 45 _C??\n
Coordinates written to a pov file can be scaled using
scale <real factor>\n
A zero or negative scaling factor will scale the coordinates to lie within [-1,1] in all dimensions.
The cpk rendering in povray files can be scaled by
cpk <real factor default 1.0>\n
The stick rendering in povray files can be scaled by
stick <real factor default 1.0>\n
The initial sequence number of esp related files is defined by
index <integer index default 1>\n
A sequence of trajectory files with unequal lengths can be converted to files with all nclean frames using
clean <integer nclean>\n
"},{"location":"Analysis.html#electrostatic-potentials","title":"Electrostatic potentials","text":"A file in plt format of the electrostatic potential resulting from partial charges generated by the ESP module is generated by the command
esp [ <integer spacing default 10> ] \\\n [ <real rcut default 1.0> ] [periodic [<integer iper default 3>]] \\\n [ <string xfile> [ <string pltfile> ] ]\n
The input coordinates are taken from the xyzq file that can be generated from a rst by the prepare module. Parameter spacing specifies the number of gridpoints per nm, rcut specifies extent of the charge grid beyond the molecule. Periodic boundaries will be used if periodic is specified. If iper is set to 2, periodic boundary conditions are applied in x and y dimensions only. If periodic is specified, a negative value of rcut will extend the grid in the periodic dimensions by abs(rcut), otherwise this value will be ignored in the periodic dimensions. The resulting plt formatted file pltfile can be viewed with the gOpenMol program. The resulting electrostatic potential grid is in units of . If no files are specified, only the parameters are set. This analysis applies to solute(s) only.
The electrostatic potential at specific point are evaluated using
esp_points [<string filpin> [<string filhol> [<string filpou> [<string filavg>]]]]\n
"},{"location":"Archived-Forum.html","title":"Archived Forum","text":"Clicking the link below will bring you to the archived forum entries from the old NWChem website
NWChem\u2019s Corner
You can use the form below to search the entries of the archived forum
"},{"location":"AvailableBasisSets.html","title":"Gaussian basis sets","text":"NWChem currently supports basis sets consisting of generally contracted Cartesian Gaussian functions up to a maximum angular momentum of six (h functions), and also sp (or L) functions. The BASIS directive is used to define these, and also to specify use of an Effective Core Potential that is associated with a basis set.
The basis functions to be used for a given calculation can be drawn from a standard set in the Basis set library that is included in the release of NWChem. Alternatively, the user can specify particular functions explicitly in the input, to define a particular basis set.
"},{"location":"Basis.html#basis-directive","title":"BASIS directive","text":"The general form of the BASIS directive is as follows:
BASIS [<string name default \"ao basis\">] \\ \n [(spherical || cartesian) default cartesian] \\ \n [(print || noprint) default print] \\\n [rel] [bse] \n <string tag> library [<string tag_in_lib>] \\ \n <string standard_set> [file <filename>] \\ \n [except <string tag list>] [rel] \n ... \n <string tag> <string shell_type> [rel] \n <real exponent> <real list_of_coefficients> \n ... \n END\n
The following sections examine the keywords on the first line of the BASIS
directive:
NAME
: By default, the basis set is stored in the database with the name \u201cao basis\u201d. Another name may be specified in the BASIS directive, thus, multiple basis sets may be stored simultaneously in the database. Also, the DFT and RI-MP2 modules and the Dyall-modified-Dirac relativistic method require multiple basis sets with specific names. The user can associate the \u201cao basis\u201d with another named basis using the SET directive (see SET).
SPHERICAL
|| CARTESIAN
: The keywords spherical
and cartesian
offer the option of using either spherical-harmonic (5 d, 7 f, 9 g, \u2026) or Cartesian (6 d, 10 f, 15 g, \u2026) angular functions. The default is Cartesian. Note that the correlation-consistent basis sets were designed using spherical harmonics and to use these, the spherical
keyword should be present in the BASIS
directive. The use of spherical functions also helps eliminate problems with linear dependence.
Order of functions.
"},{"location":"Basis.html#print-keyword","title":"PRINT keyword","text":"PRINT
or NOPRINT
: The default is for the input module to print all basis sets encountered. Specifying the keyword noprint allows the user to suppress this output.
REL
: This keyword marks the entire basis as a relativistic basis for the purposes of the Dyall-modified-Dirac relativistic integral code. The marking of the basis set is necessary for the code to make the proper association between the relativistic shells in the ao basis and the shells in the large and/or small component basis. This is only necessary for basis sets which are to be used as the ao basis. The user is referred to the section on Dyall\u2019s modified Dirac-Hamiltonian approximation for more details.
BSE
New in NWChem 7.2.0: This keyword loads the basis set library using data in $NWCHEM_TOP/src/basis/libraries.bse
from basisetexchanger.org. CAVEAT: use of this keyword will also use the spherical/cartesian keywords from the basis library files.
Basis sets are associated with centers by using the tag of a center in a geometry that has either been input by the user or is available elsewhere. Each atom or center with the same tag will have the same basis set. All atoms must have basis functions assigned to them \u2013 only dummy centers (X
or Bq
) may have no basis functions. To facilitate the specification of the geometry and the basis set for any chemical system, the matching process of a basis set tag to a geometry tag first looks for an exact match. If no match is found, NWChem will attempt to match, ignoring case, the name or symbol of the element. E.g., all hydrogen atoms in a system could be labeled \u201cH1
\u201d, \u201cH2
\u201d, \u2026, in the geometry but only one basis set specification for \u201cH
\u201d or \u201chydrogen
\u201d is necessary. If desired, a special basis may be added to one or more centers (e.g., \u201cH1
\u201d) by providing a basis for that tag. If the matching mechanism fails then NWChem stops with an appropriate error message.
A special set of tags, \u201c*
\u201d and tags ending with a \u201c*
\u201d (E.g. \u201cH*
\u201d) can be used in combination with the keyword library. These tags facilitate the definition of a certain type of basis set of all atoms, or a group of atoms, in a geometry using only a single or very few basis set entries. The \u201c*
\u201d tag will not place basis sets on dummy atoms, Bq*
can be used for that if necessary.
Examined next is how to reference standard basis sets in the basis set library, and finally, how to define a basis set using exponents and coefficients.
"},{"location":"Basis.html#basis-set-library","title":"Basis set library","text":"The keyword library
associated with each specific tag entry specifies that the calculation will use the standard basis set in NWChem for that center. The string <standard_set>
is the name that identifies the functions in the library. The names of standard basis sets are not case sensitive. For a complete list of basis sets and associated ECPs in the NWChem library see the available basis sets or the Basis Set Exchange for naming conventions and their specifications.
The general form of the input line requesting basis sets from the NWChem basis set library is:
<string tag> library [<string tag_in_lib>] \\ \n <string standard set> [file < filename> \\ \n [except <string tag list>] [rel] \n ...\n
For example, the NWChem basis set library contains the Dunning cc-pvdz basis set. These may be used as follows
basis \n oxygen library cc-pvdz \n hydrogen library cc-pvdz \n end\n
A default path of the NWChem basis set libraries is provided on installation of the code, but a different path can be defined by specifying the keyword file, and one can explicitly name the file to be accessed for the basis functions. For example,
basis \n o library 3-21g file /usr/d3g681/nwchem/library \n si library 6-31g file /usr/d3g681/nwchem/libraries/ \n end\n
This directive tells the code to use the basis set 3-21g in the file /usr/d3g681/nwchem/library for atom o and to use the basis set 6-31g in the directory /usr/d3g681/nwchem/libraries/ for atom si, rather than look for them in the default libraries. When a directory is defined the code will search for the basis set in a file with the name 6-31g.
The \u201c*
\u201d tag can be used to efficiently define basis set input directives for large numbers of atoms. An example is:
basis \n * library 3-21g \n end\n
This directive tells the code to assign the basis sets 3-21g to all the atom tags defined in the geometry. If one wants to place a different basis set on one of the atoms defined in the geometry, the following directive can be used:
basis \n * library 3-21g except H \n end\n
This directive tells the code to assign the basis sets 3-21g to all the atoms in the geometry, except the hydrogen atoms. Remember that the user will have to explicitly define the hydrogen basis set in this directive! One may also define tags that end with a \u201c*
\u201d:
basis \n oxy* library 3-21g \n end\n
This directive tells the code to assign the basis sets 3-21g to all atom tags in the geometry that start with \u201coxy
\u201d.
If standard basis sets are to be placed upon a dummy center, the variable <tag_in_lib>
must also be entered on this line, to identify the correct atom type to use from the basis function library (see the ghost atom example in SET and below). For example: To specify the cc-pvdz basis for a calculation on the water monomer in the dimer basis, where the dummy oxygen and dummy hydrogen centers have been identified as bqo
and bqh
respectively, the BASIS
directive is as follows:
basis \n o library cc-pvdz \n h library cc-pvdz \n bqo library o cc-pvdz \n bqh library h cc-pvdz \n end\n
A special dummy center tag is bq*
, which will assign the same basis set to all bq centers in the geometry. Just as with the *
tag, the except list can be used to assign basis sets to unique dummy centers.
The library basis sets can also be marked as relativistic by adding the rel
keyword to the tag line. See the section on relativistic all-electron approximations for more details. The correlation consistent basis sets have been contracted for relativistic effects and are included in the standard library.
There are also contractions in the standard library for both a point nucleus and a finite nucleus of Gaussian shape. These are usually distinguished by the suffix _pt
and _fi
. It is the user\u2019s responsibility to ensure that the contraction matches the nuclear type specified in the geometry object. The specification of a finite nucleus basis set does NOT automatically set the nuclear type for that atom to be finite. See Geometries for information.
In order to ensure compatibility with the existing basis libraries available in NWChem, we suggest the user to select the \u201cAdvanced Options\u201d menu and tick the boxes \u201cOptimize General Contractions\u201d and \u201cUncontract General\u201d, as in the image below, when downloading basis files from www.basissetexchange.org
As an alternative, basis set files downloaded from the basissetexchange.org website are available in the NWChem source code (after release 7.0.0). In order to switch from the default basis libraries to the library formed by files downloaded from www.basissetexchange.org, the following environment variable setting is required
NWCHEM_BASIS_LIBRARY=$NWCHEM_TOP/src/basis/libraries.bse/\n
"},{"location":"Basis.html#explicit-basis-set-definition","title":"Explicit basis set definition","text":"If the basis sets in the library or available in other external files are not suitable for a given calculation, the basis set may be explicitly defined. A generally contracted Gaussian basis function is associated with a center using an input line of the following form:
<string tag> <string shell_type> [rel] \n <real exponent> <real list_of_coefficients> \n ...\n
The variable identifies the angular momentum of the shell, s, p, d, .... NWChem is configured to handle up to h shells. The keyword rel
marks the shell as relativistic \u2013 see the Section on relativistic all-electron approximations for more details. Subsequent lines define the primitive function exponents and contraction coefficients. General contractions are specified by including multiple columns of coefficients.
The following example defines basis sets for the water molecule:
basis spherical \n oxygen s \n 11720.0000 0.000710 -0.000160 \n 1759.0000 0.005470 -0.001263 \n 400.8000 0.027837 -0.006267 \n 113.7000 0.104800 -0.025716 \n 37.0300 0.283062 -0.070924 \n 13.2700 0.448719 -0.165411 \n 5.0250 0.270952 -0.116955 \n 1.0130 0.015458 0.557368 \n 0.3023 -0.002585 0.572759 \n oxygen s \n 0.3023 1.000000 \n oxygen p \n 17.7000 0.043018 \n 3.8540 0.228913 \n 1.0460 0.508728 \n 0.2753 0.460531 \n oxygen p \n 0.2753 1.000000 \n oxygen d \n 1.1850 1.000000 \n hydrogen s \n 13.0100 0.019685 \n 1.9620 0.137977 \n 0.4446 0.478148 \n 0.1220 0.501240 \n hydrogen s \n 0.1220 1.000000 \n hydrogen p \n 0.7270 1.000000 \n oxygen s \n 0.01 1.0 \n hydrogen s \n 0.02974 1.0 \n hydrogen p \n 0.141 1.0 \n end\n
Explicit basis set specifications are available from the basis set exchange.
"},{"location":"Basis.html#combinations-of-library-and-explicit-basis-set-input","title":"Combinations of library and explicit basis set input","text":"The user can use a mixture of library basis and explicit basis set input to define the basis sets used on the various atoms.
For example, the following BASIS
directive augments the Dunning cc-pvdz basis set for the water molecule with a diffuse s-shell on oxygen and adds the aug-cc-pVDZ diffuse functions onto the hydrogen.
basis spherical \n oxygen library cc-pvdz \n hydrogen library cc-pvdz \n oxygen s \n 0.01 1.0 \n hydrogen library \"aug-cc-pVDZ Diffuse\" \n end\n
The resulting basis set defined is identical to the one defined above in the explicit basis set input.
"},{"location":"Benchmarks.html","title":"Benchmarks performed with NWChem","text":"This page contains a suite of benchmarks performed with NWChem. The benchmarks include a variety of computational chemistry methods on a variety of high performance computing platforms. The list of benchmarks available will evolve continuously as new data becomes available. If you have benchmark information you would like to add for your computing system, please contact one of the developers.
"},{"location":"Benchmarks.html#hybrid-density-functional-calculation-on-the-c240-buckyball","title":"Hybrid density functional calculation on the C240 Buckyball","text":"Performance of the Gaussian basis set DFT module in NWChem. This calculation involved performing a PBE0 calculation (in direct mode) on the on C240 system with the 6-31G* basis set (3600 basis functions) without symmetry. These calculations were performed on the Cascade supercomputer located at PNNL. Input and output files are available.
"},{"location":"Benchmarks.html#parallel-performance-of-ab-initio-molecular-dynamics-using-plane-waves","title":"Parallel performance of Ab initio Molecular Dynamics using plane waves","text":"AIMD Parallel timings for +122O. These calculations were performed on the Franklin Cray-XT4 computer system at NERSC.
AIMD and AIMD/MM Parallel Timings for +64O (unit cell parameters SC=12.4 Angs. and cutoff energy =100Ry). These calculations were performed on the Chinook HP computer system at MSCF EMSL, PNNL. Exact exchange timings \u2013 80 atom cell of hematite (cutoff energy=100Ry). These calculations were performed on the Franklin Cray-XT4 computer system at NERSC. Exact exchange timings \u2013 576 atom cell of water (cutoff energy=100Ry). These calculations were performed on the Hopper Cray-XE6 computer system at NERSC.
"},{"location":"Benchmarks.html#parallel-performance-of-the-cr-eomccsdt-method-triples-part","title":"Parallel performance of the CR-EOMCCSD(T) method (triples part)","text":"An example of the scalability of the triples part of the CR-EOMCCSD(T) approach for Green Fluorescent Protein Chromophore (GFPC) described by cc-pVTZ basis set (648 basis functions) as obtained from NWChem. Timings were determined from calculations on the Franklin Cray-XT4 computer system at NERSC. See the input file for details.
And more recent scalability test of the CR-EOMCCSD(T) formalism (Jaguar Cray XT5 at ORNL, see K. Kowalski, S. Krishnamoorthy, R.M. Olson, V. Tipparaju, E. Apr\u00e0 , SC2011, for details).
"},{"location":"Benchmarks.html#parallel-performance-of-the-multireference-coupled-cluster-mrcc-methods","title":"Parallel performance of the multireference coupled cluster (MRCC) methods","text":"In collaboration with Dr. Jiri Pittner\u2019s group from Heyrovsky Institute of Physical Chemistry implementations of two variants of state-specific MRCC approaches have been developed. During his internship at PNNL Jirka Brabec, using novel processor-group-based algorithms, implemented Brillouin-Wigner and Mukherjee MRCC models with singles and doubles. The scalabililty tests for the Brillouin-Wigner MRCCSD approach have been performed on Jaguar XT5 system at ORNL for -carotene in 6-31 basis set (472 orbitals, 216 correlated electrons, 20 reference functions; see J.Brabec, J. Pittner, H.J.J. van Dam, E. Apr\u00e0, K. Kowalski, JCTC 2012, 8(2), pp 487\u2013497). The input file and output files for runs at 6000 cores, at 12000 cores and at 24000 cores are available.
Former PNNL postdoctoral fellow Dr. Kiran Bhaskaran Nair developed perturbative MRCCSD(T) approaches, which accounts for the effect of triple excitations. Scaling of the triples part of the BW-MRCCSD(T) method for \u201d -carotene in 6-31 basis set (JCP 137, 094112 (2012)). The scalability tests of the BW-MRCCSD(T) implementation of NWChem have been performed on the Jaguar Cray-XK6 computer system of the National Center for Computational Sciences at Oak Ridge National Laboratory.
"},{"location":"Benchmarks.html#timings-of-ccsdeomccsd-for-the-oligoporphyrin-dimer","title":"Timings of CCSD/EOMCCSD for the oligoporphyrin dimer","text":"CCSD/EOMCCSD timings for oligoporphyrin dimer (942 basis functions, 270 correlated electrons, D2h symmetry, excited-state calculations were performed for state of b1g symmetry, in all test calculation convergence threshold was relaxed, 1024 cores were used). See the input file for details.
--------------------------------------------------------\n\u00a0Iter Residuum Correlation Cpu Wall\n --------------------------------------------------------\n 1 0.7187071521175 -7.9406033677717 640.9 807.7\n ......\n MICROCYCLE DIIS UPDATE: 10 5\n 11 0.0009737920958 -7.9953441809574 691.1 822.2\n --------------------------------------------------------\n Iterations converged\n CCSD correlation energy / hartree = -7.995344180957357\n CCSD total energy / hartree = -2418.570838364838890\n\n EOM-CCSD right-hand side iterations\n --------------------------------------------------------------\n Residuum Omega / hartree Omega / eV Cpu Wall\n --------------------------------------------------------------\n......\nIteration 2 using 6 trial vectors\n 0.1584284659595 0.0882389635508 2.40111 865.3 1041.2\nIteration 3 using 7 trial vectors\n 0.0575982107592 0.0810948687618 2.20670 918.0 1042.2\n
"},{"location":"Benchmarks.html#performance-tests-of-the-gpu-implementation-of-non-iterative-part-of-the-ccsdt-approach","title":"Performance tests of the GPU implementation of non-iterative part of the CCSD(T) approach","text":"Recent tests of the GPU CCSD(T) implementation performed on Titan Cray XK7 1 system at ORNL (C22H14, 378 basis set functions, C1 symmetry; 98 nodes: 8 cores per node + 1GPU)
Using 8 CPU cores
Using CUDA CCSD(T) code \nUsing 0 device(s) per node \nCCSD[T] correction energy / hartree = -0.150973754992986 \nCCSD[T] correlation energy / hartree = -3.067917061062492 \nCCSD[T] total energy / hartree = -844.403376796441080 \nCCSD(T) correction energy / hartree = -0.147996460406684 \nCCSD(T) correlation energy / hartree = -3.064939766476190 \nCCSD(T) total energy / hartree = -844.400399501854849 \nCpu & wall time / sec 9229.9 9240.3 \n
Using 7 CPU cores and one GPU
Using CUDA CCSD(T) code \nUsing 1 device(s) per node \nCCSD[T] correction energy / hartree = -0.150973754993019 \nCCSD[T] correlation energy / hartree = -3.067917061062597 \nCCSD[T] total energy / hartree = -844.403376796441307 \nCCSD(T) correction energy / hartree = -0.147996460406693 \nCCSD(T) correlation energy / hartree = -3.064939766476270 \nCCSD(T) total energy / hartree = -844.400399501854963 \nCpu & wall time / sec 1468.0 1630.7 \n
Using 1 CPU core and one GPU
Using CUDA CCSD(T) code\nUsing 1 device(s) per node\nCCSD[T] correction energy / hartree = -0.150973754993069\nCCSD[T] correlation energy / hartree = -3.067917061063028\nCCSD[T] total energy / hartree = -844.***************\nCCSD(T) correction energy / hartree = -0.147996460406749\nCCSD(T) correlation energy / hartree = -3.064939766476708\nCCSD(T) total energy / hartree = -844.400399501861216\nCpu & wall time / sec 1410.9 1756.5\n
Without GPU 9240.3 sec. With GPU 1630.7 sec.
Next release: GPU implementation of non-iterative part of the MRCCSD(T) approach (K. Bhaskarsan-Nair, W. Ma, S. Krishnamoorthy, O. Villa, H. van Dam, E. Apr\u00e0, K. Kowalski, J. Chem. Theory Comput. 9, 1949 (2013))
"},{"location":"Benchmarks.html#performance-tests-of-the-xeon-phi-implementation-of-non-iterative-part-of-the-ccsdt-approach","title":"Performance tests of the Xeon Phi implementation of non-iterative part of the CCSD(T) approach","text":"Tests of the Xeon Phi CCSD(T) implementation performed on the EMSL cascade system at PNNL
Apr\u00e0, E.; Klemm, M.; Kowalski, K., \u201cEfficient Implementation of Many-Body Quantum Chemical Methods on the Intel\u00ae Xeon Phi Coprocessor,\u201d High Performance Computing, Networking, Storage and Analysis, SC14: International Conference for , vol., no., pp.674-684, 16-21 Nov. 2014 http://dx.doi.org/10.1109/SC.2014.60
(Triplet state of Si4C3N2H12, 706 basis set functions, C1 symmetry)
"},{"location":"Benchmarks.html#non-iterative-part-of-the-ccsdt-approach-comparing-xeon-phi-and-nvidia-k20x-performance","title":"Non-iterative part of the CCSD(T) approach: Comparing Xeon Phi and NVidia K20X performance","text":"Wall time to solution (in seconds) of non-iterative triples part of the single-reference CCSD(T) approach for the pentacene molecule using Intel MIC and Nvidia GPU implementations. Tests were performed using 96 compute nodes on the Cascade system at EMSL (Intel\u00ae Xeon\u2122 Phi 5110P) and Titan system at ORNL (NVIDIA Tesla\u00ae K20X).
( input file)
Tilesize Intel Xeon Phi 5110P Nvidia K20X 18 1806.4 1824.9 21 1652.2 1699.3 24 1453.3 1554.4"},{"location":"Benchmarks.html#current-developments-for-high-accuracy-alternative-task-schedulers-ats","title":"Current developments for high accuracy: alternative task schedulers (ATS)","text":"Currently various development efforts are underway for high accuracy methods that will be available in future releases of NWChem. The examples below shows the first results of the performance of the triples part of Reg-CCSD(T) on GPGPUs (left two examples) and of using alternative task schedules for the iterative CCSD and EOMCCSD.
Scalability of the triples part of the Reg-CCSD(T) approach for Spiro cation described by the Sadlej\u2019s TZ basis set (POL1). The calculations were performed using Barracuda cluster at EMSL. Speedup of GPU over CPU of the (T) part of the (T) part of the Reg-CCSD(T) approach as a function of the tile size for the uracil molecule. The calculations were performed using Barracuda cluster at EMSL. *Comparison of the CCSD/EOMCCSD iteration times for BacterioChlorophyll (BChl, Mg O6 N4 C 36 H38) for various tile sizes. Calculations were performed for 3-21G basis set (503 basis functions, C1 symmetry, 240 correlated electrons, 1020 cores).
*Time per CCSD iteration for BChl in 6-311G basis set (733 basis functions, C1 symmetry, 240 correlated electrons, 1020 cores) as a function of tile size. Scalability of the CCSD/EOMCCSD codes for BChl in 6-311G basis set (733 basis functions; tilesize=40, C1 symmetry, 240 correlated electrons).
Other tests:
The impact of the tilesize on the CCSD(ATS) timings: All tests have been performed for uracil trimer (6-31G* basis set; all core electrons frozen) on Hopper using 25 nodes (600 cores). One can observe almost 10-fold speedup of the CCSD(ATS) code for tilesize=40 compared to standard TCE CCSD implementation using tilesize=12.
Performance tests for water clusters
Luciferin (aug-cc-pVDZ basis set; RHF reference; frozen core) - time per CCSD iteration ( input file)
tilesize = 30 \n 256 cores 644 sec.\n 512 378 sec.\n 664 314 sec.\n 1020 278 sec.\n 1300 237 sec.\n
tilesize = 40\n 128 998 sec.\n 256 575 sec.\n
Sucrose (6-311G** basis set; RHF reference; frozen core) - time per CCSD iteration ( input file)
tilesize = 40\n 256 cores 1486 sec. \n 512 910 sec.\n 1024 608 sec.\n
Cytosine-OH (POL1; UHF reference; frozen core) - time per EOMCCSD iteration ( input file)
tilesize = 30\n 256 cores 44.5 sec.\n
tilesize = 40\n 128 cores 55.6 sec.\n
"},{"location":"Benchmarks.html#density-functional-calculation-of-a-zeolite-fragment","title":"Density functional calculation of a zeolite fragment","text":"Benchmark results with NWChem 7.0.0 for LDA calculations (energy plus gradient) on a 533 atoms siosi8 zeolite fragment. The input uses an atomic orbital basis set with 7108 functions and a charge density fitting basis with 16501 functions. The input file is available at this link.
computer # nodes cores/node total # cores Wall time (seconds) cascade 9 16 144 1247 cascade 20 16 320 703 tahoma 4 36 144 927 tahoma 9 36 324 524Hardware used:
The Bq module provides a way to perform QM calculations in the presence of point charges or Bq\u2019s, (as typically referred to in quantum chemistry community). Using Bq module versus geometry block is a recommended way to include point charges in your calculations, in particular if number of charges are big.
The format for including external point charges using the Bq module is shown below, supporting both explicit charge definition in the body of the block and/or loading from external files.
bq [units au|nm|pm|ang...] [namespace] \n [clear] \n [force|noforce] \n [load <file> [charges <chargefile>] [format ix iy iz iq] [units au|nm|pm|ang|...] [ scale <factor> ]] \n x y z q\n ... \nend \n
set bq <namespace>\n
Here is an example that illustrates this
... \n #store point charge in namespace \"foo\" \n bq \"foo\"\n ... \n end \n\n #perform calculation without actually loading charges in foo \n task dft energy \n\n #activate charges in foo \n set bq foo \n # now DFT calculation will performed in the presence of charges in foo \n task dft energy\n
#comment line\n fx fy fz\n ...\n
** format ix iy iz iq - this optional keyword allows to set the fields (separated by blanks) where x,y,z coordinates and respective charge values are to be found. If a specified field doe nor exist or contains no numerical value, the processing will skip to the next line. The default value for format is \u2018\u2019\u20182 3 4 5\u2019\u2018\u2019, which will work for the following example (note that the second line will not be processed here)
#this is a comment\n coordinates are in fields 2,3,4 and charge is field 5\n O 2.384 1.738 1.380 -0.9\n H 2.448 1.608 0.416 0.45\n H 1.560 1.268 1.608 0.45\n
** units au|nm|pm|ang|\u2026 - this optional keyword sets the local coordinate units valid only for this particular load directive. Otherwise global unit definition will apply (see above)
** scale - this optional keyword allows to scale loaded charge values by some factor
start w1 \n\n BASIS \"ao basis\" PRINT \n * library \"3-21G\" \n END \n\n dft \n mult 1 \n XC b3lyp \n iterations 5000 \n end \n\n geometry nocenter noautosym units angstrom noautoz print \n O 2.045 1.011 -1.505 \n H1 1.912 0.062 -1.314 \n H2 1.119 1.318 -1.544 \n end \n\n #example of explicit Bq input\n bq \n 2.384 1.738 1.380 -0.9 \n 2.448 1.608 0.416 0.45 \n 1.560 1.268 1.608 0.45 \n end \n\n task dft energy \n\n #example of implicit Bq input using load directive \n bq \n load bq.xyz format 1 2 3 4 \n end \n task dft energy \n\n #example of loading coordinates and charges separately \n bq \n load bq.xyz charges bq.xyz format 1 2 3 4 \n end \n task dft energy \n\n #example of loading Bq's with default format (1 2 3 4) and scaling charges (to zero) \n bq \n load bq.xyz scale 0.0 \n end \n task dft energy \n\n #example of mixed Bq input \n bq \n load bqO.xyz format 2 3 4 6 \n 2.448 1.608 0.416 0.45 \n 1.560 1.268 1.608 0.45 \n end \n task dft energy \n\n #example of erasing Bq's \n bq \n clear \n end \n task dft energy \n\n #example of storing Bq's in custom namespace (not activated) \n bq marat \n load bq.xyz format 1 2 3 4 \n end \n task dft energy \n\n #example of activating Bq's stored in custom namespace \n set bq marat \n\n task dft energy \n
group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a05\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,+y,-z\n+x+1/2,+y+1/2,+z\n-x+1/2,+y+1/2,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a05\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"C222.html","title":"C222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a021\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"C222_1.html","title":"C222 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a020\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0C222_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"C2Sc.html","title":"C2Sc","text":" group number = 15\n group name = C2/c\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,+y,-z+1/2\n -x,-y,-z\n +x,-y,+z+1/2\n +x+1/2,+y+1/2,+z\n -x+1/2,+y+1/2,-z+1/2\n -x+1/2,-y+1/2,-z\n +x+1/2,-y+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 15\n group name = C2/c\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 8\n\n +x,+y,+z\n -x+1/2,-y,+z\n -x,-y,-z\n +x+1/2,+y,-z\n +x,+y+1/2,+z+1/2\n -x+1/2,-y+1/2,+z+1/2\n -x,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 5 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n
"},{"location":"C2Sm.html","title":"C2Sm","text":" group number = 12\n group name = C2/m\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,+y,-z\n -x,-y,-z\n +x,-y,+z\n +x+1/2,+y+1/2,+z\n -x+1/2,+y+1/2,-z\n -x+1/2,-y+1/2,-z\n +x+1/2,-y+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 12\n group name = C2/m\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -x,-y,-z\n +x,+y,-z\n +x,+y+1/2,+z+1/2\n -x,-y+1/2,+z+1/2\n -x,-y+1/2,-z+1/2\n +x,+y+1/2,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 5 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n
"},{"location":"CCCA_method.html","title":"Correlation consistent Composite Approach (ccCA)","text":"The CCCA module calculates the total energy using the correlation consistent Composite Approach (ccCA). At present the ccCA module is designed for the study of main group species only.
where EMP2/CBS is the complete basis set extrapolation of MP2 energies with the aug-cc-pVnZ (n=T,D,Q) series of basis sets, is the correlation correction,
is the core-valence correction,
where symbolizes that all electrons of first-row atoms are correlated, all electrons of second-row atoms are correlated except the 1s MOs, and all electrons of atoms K\u2013Kr are correlated except the 1s2s2p MOs. is the scalar-relativistic correction,
and is the zero-point energy correction or thermal correction. Geometry optimization and subsequent frequency analysis are performed with B3LYP/cc-pVTZ.
Suggested reference: N.J. DeYonker, B. R. Wilson, A.W. Pierpont, T.R. Cundari, A.K. Wilson, Mol. Phys. 107, 1107 (2009). Earlier variants for ccCA algorithms can also be found in: N. J. DeYonker, T. R. Cundari, A. K. Wilson, J. Chem. Phys. 124, 114104 (2006).
The ccCA module can be used to calculate the total single point energy for a fixed geometry and the zero-point energy correction is not available in this calculation. Alternatively the geometry optimization by B3LYP/cc-pVTZ is performed before the single point energy evaluation. For open shell molecules, the number of unpaired electrons must be given explicitly.
CCCA\n\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(ENERGY||OPTIMIZE)\u00a0\u00a0\u00a0default\u00a0ENERGY] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(DFT||DIRECT)\u00a0\u00a0\u00a0default\u00a0DFT] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(MP2||MBPT2)\u00a0\u00a0\u00a0default\u00a0MP2] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(RHF||ROHF||UHF)\u00a0\u00a0\u00a0default\u00a0RHF] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(CCSD(T)||TCE)\u00a0\u00a0\u00a0default\u00a0CCSD(T)] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[NOPEN\u00a0\u00a0\u00a0<integer\u00a0number\u00a0of\u00a0unpaired\u00a0electrons\u00a0\u00a0\u00a0default\u00a0\u00a0\u00a00\u00a0>] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(THERM||NOTHERM)\u00a0\u00a0\u00a0default\u00a0\u00a0THERM] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(PRINT||NOPRINT)\u00a0default\u00a0NOPRINT] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[BASIS\u00a0<basis name for orbital projection guess>] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[MOVEC\u00a0<file name for orbital projection guess>] \nEND\n
One example of input file for single point energy evaluation is given here:
start h2o_ccca\n\ntitle \"H2O, ccCA test\"\n\ngeometry units au\n\n\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a01.4140780900\u00a0\u00a0-1.1031626600 \n\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0-1.4140780900\u00a0\u00a0-1.1031626600 \n O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0-0.0080100000\nend\n\ntask ccca\n
An input file for the ground state of O2 with geometry optimization is given below:
start o2_ccca\n\ntitle \"O2, ccCA test\"\n\ngeometry units au\n\n\u00a0O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0-2.0000 \n\u00a0O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a00.0000\n\nend\n\nccca\n\u00a0optimize\n\u00a0dft \n\u00a0nopen\u00a02\nend\n\ntask ccca\n
"},{"location":"CCSD.html","title":"Coupled Cluster Calculations","text":""},{"location":"CCSD.html#overview","title":"Overview","text":"The NWChem coupled cluster energy module is primarily the work of Alistair Rendell and Rika Kobayashi12, with contributions from Bert de Jong, David Bernholdt and Edoardo Apr\u00e03.
The coupled cluster code can perform calculations with full iterative treatment of single and double excitations and non-iterative inclusion of triple excitation effects. It is presently limited to closed-shell (RHF) references.
Note that symmetry is not used within most of the CCSD(T) code. This can have a profound impact on performance since the speed-up from symmetry is roughly the square of the number of irreducible representations. In the absence of symmetry, the performance of this code is competitive with other programs.
The operation of the coupled cluster code is controlled by the input block
CCSD\n [MAXITER <integer maxiter default 20>]\n [THRESH <real thresh default 1e-6>]\n [TOL2E <real tol2e default min(1e-12 , 0.01**`thresh`*`)>]\n [DIISBAS <integer diisbas default 5>]\n [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\\n [virtual <integer nfzv default 0>]]\n [NODISK]\n [IPRT <integer IPRT default 0>]\n [PRINT ...]\n [NOPRINT ...]\nEND\n
Note that the keyword CCSD is used for the input block regardless of the actual level of theory desired (specified with the TASK directive). The following directives are recognized within the CCSD group.
"},{"location":"CCSD.html#maxiter-maximum-number-of-iterations","title":"MAXITER \u2013 Maximum number of iterations","text":"The maximum number of iterations is set to 20 by default. This should be quite enough for most calculations, although particularly troublesome cases may require more.
MAXITER <integer maxiter default 20>\n
"},{"location":"CCSD.html#thresh-convergence-threshold","title":"THRESH \u2013 Convergence threshold","text":"Controls the convergence threshold for the iterative part of the calculation. Both the RMS error in the amplitudes and the change in energy must be less than thresh.
THRESH <real thresh default 1e-6>\n
"},{"location":"CCSD.html#tol2e-integral-screening-threshold","title":"TOL2E \u2013 integral screening threshold","text":" TOL2E <real tol2e default min(1e-12, 0.01*thresh)>\n
The variable tol2e is used in determining the integral screening threshold for the evaluation of the energy and related quantities.
CAUTION! At the present time, the tol2e parameter only affects the three- and four-virtual contributions, and the triples, all of which are done \u201con the fly\u201d. The transformations used for the other parts of the code currently have a hard-wired threshold of 10-12. The default for tol2e is set to match this, and since user input can only make the threshold smaller, setting this parameter can only make calculations take longer.
"},{"location":"CCSD.html#diisbas-diis-subspace-dimension","title":"DIISBAS \u2013 DIIS subspace dimension","text":"Specifies the maximum size of the subspace used in DIIS convergence acceleration. Note that DIIS requires the amplitudes and errors be stored for each iteration in the subspace. Obviously this can significantly increase memory requirements, and could force the user to reduce DIISBAS for large calculations.
Measures to alleviate this problem, including more compact storage of the quantities involved, and the possibility of disk storage are being considered, but have not yet been implemented.
DIISBAS <integer diisbas default 5>\n
"},{"location":"CCSD.html#freeze-freezing-orbitals","title":"FREEZE \u2013 Freezing orbitals","text":" [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\\n [virtual <integer nfzv default 0>]]\n
This directive is identical to that used in the MP2 module.
"},{"location":"CCSD.html#nodisk-on-the-fly-computation-of-integrals","title":"NODISK \u2013 On-the-fly computation of integrals","text":"The CCSD modules by default computes once and stores on disk the integrals. To avoid this kind of I/O operations, specify the keyword NODISK
This directive controls the level of output from the code, mostly to facilitate debugging and the like. The larger the value, the more output printed. From looking at the source code, the interesting values seem to be IPRT > 5, 10, and 50.
IPRT <integer IPRT default 0>\n
"},{"location":"CCSD.html#print-and-noprint","title":"PRINT and NOPRINT","text":"The coupled cluster module supports the standard NWChem print control keywords, although very little in the code is actually hooked into this mechanism yet.
Item Print Level Description \u201creference\u201d high Wavefunction information \u201cguess pair energies\u201d debug MP2 pair energies \u201cbyproduct energies\u201d default Intermediate energies \u201cterm debugging switches\u201d debug Switches for individual terms
"},{"location":"CCSD.html#methods-tasks-recognized","title":"Methods (Tasks) Recognized","text":"Currently available methods are
The calculation is invoked using the TASK directive, so to perform a CCSD+T(CCSD) calculation, for example, the input file should include the directive
TASK CCSD+T(CCSD)\n
Lower-level results which come as by-products (such as MP3/MP4) of the requested calculation are generally also printed in the output file and stored on the run-time database, but the method specified in the TASK directive is considered the primary result.
"},{"location":"CCSD.html#debugging-and-development-aids","title":"Debugging and Development Aids","text":"The information in this section is intended for use by experts (both with the methodology and with the code), primarily for debugging and development work. Messing with stuff in listed in this section will probably make your calculation quantitatively wrong! Consider yourself warned!
"},{"location":"CCSD.html#switching-on-and-off-terms","title":"Switching On and Off Terms","text":"The /DEBUG/ common block contains a number of arrays which control the calculation of particular terms in the program. These are 15-element integer arrays (although from the code only a few elements actually effect anything) which can be set from the input deck. See the code for details of how the arrays are interpreted.
Printing of this data at run-time is controlled by the \u201cterm debugging switches\u201d print option. The values are checked against the defaults at run-time and a warning is printed to draw attention to the fact that the calculation does not correspond precisely to the requested method.
DOA <integer array default 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2>\nDOB <integer array default 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2>\nDOG <integer array default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1>\nDOH <integer array default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1>\nDOJK <integer array default 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2>\nDOS <integer array default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1>\nDOD <integer array default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1>\n
"},{"location":"CCSD.html#alternative-implementations-of-triples","title":"Alternative Implementations of Triples","text":"There are four customized versions of the CCSD(T) triples driver that may improve performance on some architectures. These are not the default implementation and are not tested regularly. The burden is on the user to evaluate their correctness in comparison to the default triples driver. The triples driver only affects how the (T) energy contribution is evaluated; the CCSD code is the same in all cases.
All of the non-standard triples drivers are activated using RTDB set directives, which are specified outside of the CCSD input block.
"},{"location":"CCSD.html#nonblocking","title":"Nonblocking","text":"The nonblocking variant of the triples driver uses nonblocking Global Arrays get operations. It may improve communication overlap at large node code, provided that nonblocking communication makes asynchronous progress.
set ccsd:use_trpdrv_nb T\n
"},{"location":"CCSD.html#openmp","title":"OpenMP","text":"As of November 2016, the development version of semidirect CCSD(T) uses OpenMP extensively. The OpenMP variant of the triples driver includes OpenMP threaded kernels and attempts to run multiple DGEMM calls simultaneously. The CCSD iteration uses OpenMP threading in kernels with a relatively small number of parallel regions. It also uses nonblocking Global Arrays get operations.
set ccsd:use_ccsd_omp T\nset ccsd:use_trpdrv_omp T\n
If one runs with only the (T) portion of the code using threads, the CCSD code will run slower when using fewer cores. Thus, it may be prudent to run the CCSD portion with a larger number of processes and then run a second job for (T) that restarts the computation on a smaller number of processes and a larger number of threads.
Preliminary evaluation of this implementation indicates that a small number of threads (2 to 4) is optimal, with the assumption that single-threaded execution can utilize all of the cores. It is expected that nodes with a large number of cores may not be able to support process-only parallelism due to memory-capacity constraints, in which case the OpenMP implementation allows the user to make use of more cores than otherwise possible.
Because of the extensive refactoring of the code to maximize OpenMP performance and the intrinsic non-associativity of floating-point arithmetic, the OpenMP variant may not produce the exact same answer as the default one. If there is concern about the numerical fidelity of results, a more stringent numerical threshold for the CCSD equations may be required.
"},{"location":"CCSD.html#offload","title":"Offload","text":"The offload variant of the triples driver supports Intel Xeon Phi coprocessors (Knights Corner family), in addition to the aforementioned OpenMP and nonblocking features. This implementation has not been tested extensively and a recommendation concerning the right number of processes and threads is not available.
set ccsd:use_trpdrv_offload T\n
"},{"location":"CCSD.html#references","title":"References","text":"Rendell, A.P., Lee, T.J., Komornicki, A., and Wilson, S. (1992) \u201cEvaluation of the contribution from triply excited intermediates to the fourth-order perturbation theory energy on Intel distributed memory supercomputers\u201d, Theor. Chem. Acc., 84, 271-287, doi: 10.1007/BF01113267 \u21a9
Kobayashi, R. and Rendell, A.P. (1997) \u201cA direct coupled cluster algorithm for massively parallel computers\u201d, Chem. Phys. Lett., 265, 1-11, doi: 10.1016/S0009-2614(96)01387-5 \u21a9
Apr\u00e0, E., Harrison, R.J., de Jong, W.A., Rendell, A.P., Tipparaju, V. and Xantheas, S.S. (2009) \u201cLiquid Water: Obtaining the Right Answer for the Right Reasons\u201d, Proc. SC\u201809, doi: 10.1145/1654059.1654127 \u21a9
Two solvation models are available in NWChem: COSMO and SMD. Since some of the COSMO parameters are used for SMD, we suggest to read the COSMO section before the SMD one.
"},{"location":"COSMO-Solvation-Model.html#cosmo","title":"COSMO","text":""},{"location":"COSMO-Solvation-Model.html#overview_1","title":"Overview","text":"COSMO is the continuum solvation \u2018COnductor-like Screening MOdel\u2019 of A. Klamt and G. Sch\u00fc\u00fcrmann to describe dielectric screening effects in solvents1. This model has been enhanced by D.M. York and M. Karplus2 to create a smooth potential energy surface. The latter facilitates geometry optimization and dynamics and the implementation has been adapted to take advantage of those ideas.
The NWChem COSMO module implements algorithm for calculation of the energy for the following methods:
by determining the solvent reaction field self-consistently with the solute charge distribution from the respective methods. Note that COSMO for unrestricted Hartree-Fock (UHF) method can also be performed by invoking the DFT module with appropriate keywords.
Correlation energy of solvent molecules may also be evaluated at
levels of theory. It is cautioned, however, that these correlated COSMO calculations determine the solvent reaction field using the HF charge distribution of the solute rather than the charge distribution of the correlation theory and are not entirely self consistent in that respect. In other words, these calculations assume that the correlation effect and solvation effect are largely additive, and the combination effect thereof is neglected. COSMO for MCSCF has not been implemented yet.
In the current implementation the code calculates the gas-phase energy of the system followed by the solution-phase energy, and returns the electrostatic contribution to the solvation free energy. At the present gradients are calculated analytically, but frequencies are calculated by finite difference of the gradients. The non-electrostatic contributions can be calculated by turning on the SMD model. It should be noted that one must in general take into account the standard state correction besides the electrostatic and cavitation/dispersion contribution to the solvation free energy, when a comparison to experimental data is made.
"},{"location":"COSMO-Solvation-Model.html#cosmo-input-parameters","title":"COSMO Input Parameters","text":"Invoking the COSMO solvation model is done by specifying the input COSMO input block with the input options as:
cosmo \n [off] \n [dielec <real dielec default 78.4>] \n [parameters <filename>] \n [radius <real atom1> \n <real atom2> \n . . . \n <real atomN>] \n [iscren <integer iscren default 0>] \n [minbem <integer minbem default 2>] \n [ificos <integer ificos default 0>] \n [lineq <integer lineq default 1>] \n [zeta <real zeta default 0.98>] \n [gamma_s <real gammas default 1.0>] \n [sw_tol <real swtol default 1.0e-4>] \n [do_gasphase <logical do_gasphase default True>] \n [do_cosmo_ks]\n [do_cosmo_yk]\n [do_cosmo_smd]\nend\n
followed by the task directive specifying the wavefunction and type of calculation, e.g., task scf energy
, task mp2 energy
, task dft optimize
, etc.
off
can be used to turn off COSMO in a compound (multiple task) run. By default, once the COSMO solvation model has been defined it will be used in subsequent calculations. Add the keyword off
if COSMO is not needed in subsequent calculations.
dielec
is the value of the dielectric constant of the medium, with a default value of 78.4 (the dielectric constant for water).
parameters
specifies COSMO radii parameters file that stores custom setting for COSMO parameters. The format for such file consists of the atom or element name followed by the radii. The program will first attempt to match based on atom name and only then the element name. Otherwise radius will be set based on default parameters. The file has to present in one of the three location ( in the order of preference) - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, and run directory.
radius
is an array that specifies the radius of the spheres associated with each atom and that make up the molecule-shaped cavity. These values will override default radii setting including those specified in the COSMO parameter file (if any) Default values are Van der Waals radii. Values are in units of angstroms. The codes uses the following Van der Waals radii by default:
Default radii provided by Andreas Klamt (Cosmologic)
vdw radii: 1.17 (\u00b1 0.02) * Bondi radius3
optimal vdw radii for H, C, N, O, F, S, Cl, Br, I4
for heavy elements: 1.17*1.9
data (vander(i),i=1,102) \n 1 / 1.300,1.638,1.404,1.053,2.0475,2.00, \n 2 1.830,1.720,1.720,1.8018,1.755,1.638, \n 3 1.404,2.457,2.106,2.160,2.05,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.160,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 8 2.223,2.223,2.223,2.223,2.223,2.223, \n 9 2.223,2.223,2.223,2.223,2.320,2.223, \n 1 2.223,2.223,2.223,2.223,2.223,2.223, \n 2 2.223,2.223,2.223,2.223,2.223,2.223, \n 3 2.223,2.223,2.223,2.223,2.223,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223/\n
For examples see Stefanovich et al.5 and Barone et al.6
\u201cRsolv\u201d is no longer used.
"},{"location":"COSMO-Solvation-Model.html#cosmo-iscreen-keyword","title":"COSMO: ISCREEN keyword","text":"iscren
is a flag to define the dielectric charge scaling option. iscren 1
implies the original scaling from Klamt and Sch\u00fc\u00fcrmann, mainly \u201c(\u03b5-1)/(\u03b5+1/2)\u201d, where \u03b5 is the dielectric constant. iscren 0
implies the modified scaling suggested by Stefanovich and Truong5, mainly \u201c(\u03b5-1)/\u03b5\u201c. Default is to use the modified scaling. For high dielectric the difference between the scaling is not significant.
The next two parameters define the tesselation of the unit sphere. The approach still follows the original proposal by Klamt and Sch\u00fc\u00fcrmann to some degree. Basically a tesselation is generated from minbem
refining passes starting from either an octahedron or an icosahedron. Each level of refinement partitions the triangles of the current tesselation into four triangles. This procedure is repeated recursively until the desired granularity of the tesselation is reached. The induced point charges from the polarization of the medium are assigned to the centers of the tesselation. The default value is minbem 2
. The flag ificos
serves to select the original tesselation, ificos 0
for an octahedron (default) and ificos 1
for an icoshedron. Starting from an icosahedron yields a somewhat finer tesselation that converges somewhat faster. Solvation energies are not really sensitive to this choice for sufficiently fine tesselations. The old \u201cmaxbem\u201d directive is no longer used.
The lineq
parameter serves to select the numerical algorithm to solve the linear equations yielding the effective charges that represent the polarization of the medium. lineq 0
selects a dense matrix linear equation solver (default), lineq 1
selects an iterative method. For large molecules where the number of effective charges is large, the code selects the iterative method.
zeta
sets the width of the Gaussian charge distributions that were suggested by York and Karplus to avoid singularities when two surface charges coincide. The default value is zeta 0.98
this value was chosen to ensure that the results of the current implementation are as close as possible to those of the original Klamt and Sch\u00fc\u00fcrmann based implementation.
gamma_s
modifies the width of the smooth switching function that eliminates surface charges when their positions move into the sphere of a neighboring atom. gamma_s 0.0
leads to a heavyside or abrupt switching function, whereas gamma_s 1.0
maximizes the width of the switching function. The default value is gamma_s 1.0
.
sw_tol
specifies the cutoff of the switching function below which a surface charge at a particular point is eliminated. The values of the switching function lie in the domain from 0 to 1. This value should not be set too small as that leads to instabilities in the linear system solvers. The default value is sw_tol 1.0e-4
.
do_gasphase
is a flag to control whether the calculation of the solvation energy is preceded by a gas phase calculation. The default is to always perform a gas phase calculation first and then calculate the solvation starting from the converged gas phase electron density. However, in geometry optimizations this approach can double the cost. In such a case setting do_gasphase false
suppresses the gas phase calculations and only the solvated system calculations are performed. This option needs to be used with care as in some cases starting the COSMO solvation from an unconverged electron density can generate unphysical charges that lock the calculation into strange electron distributions.
do_cosmo_ks
is a flag to turn on the Klamt-Sch\u00fc\u00fcrmann model
do_cosmo_yk
is a flag to turn on the York-Karplus model (default)
do_cosmo_smd
is a flag to turn on the SMD model. More details can be found at the SMD Model documentation
The following example is for a water molecule in \u2018water\u2019, using the HF/6-31G** level of theory:
start \n\ngeometry \n o .0000000000 .0000000000 -.0486020332 \n h .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n o library 6-31g** \n h library 6-31g** \nend \ncosmo \n dielec 78.0 \n radius 1.40 \n 1.16 \n 1.16 \n lineq 0 \nend \ntask scf energy\n
Alternatively, instead of listing COSMO radii parameters in the input, the former can be loaded using an external file through the parameters
directive
start \n\ngeometry \n ow .0000000000 .0000000000 -.0486020332 \n hw .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n * library 6-31g** \nend\n\ncosmo \n dielec 78.0 \n lineq 0 \n parameters water.par \nend\n\ntask scf energy\n
where the water.par
file has the following form:
O 1.40\nH 1.16\n
This will set radii of all oxygen atoms to 1.4 and all hydrogen atoms to 1.16. More fine grained control may be achieved using specific atom names. For example, the following parameter file
O 1.40\nH 1.16\nHW 1.06\n
will set a different radii of 1.06 to hydrogen atoms named HW. Note that, as per general rule in NWChem, all names are case insensitive.
and placed in one of the these locations - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, or run directory.
SMD denotes \u201csolvation model based on density\u201d and it is described in detail in the 2009 paper by Marenich, Cramer and Truhlar7.
The SMD model is a universal continuum solvation model where \u201cuniversal\u201d denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known. The word \u201ccontinuum\u201d denotes that the solvent is not represented explicitly as a collection of discrete solvent molecules but rather as a dielectric medium with surface tensions at the solute-solvent interface.
SMD directly calculates the free energy of solvation of an ideal solvation process that occurs at fixed concentration (for example, from an ideal gas at a concentration of 1 mol/L to an ideal solution at a liquid-phase concentration of 1 mol/L) at 298 K, but this may converted by standard thermodynamic formulas to a standard-state free energy of solvation, which is defined as the transfer of molecules from an ideal gas at 1 bar to an ideal 1 molar solution.
The SMD model separates the fixed-concentration free energy of solvation into two components. The first component is the bulk-electrostatic contribution arising from a self-consistent reaction field (SCRF) treatment. The SCRF treatment involves an integration of the nonhomogeneous-dielectric Poisson equation for bulk electrostatics in terms of the COSMO model of Klamt and Sch\u00fc\u00fcrmann with the modified COSMO scaling factor suggested by Stefanovich and Truong and by using the SMD intrinsic atomic Coulomb radii. These radii have been optimized for H, C, N, O, F, Si, P, S, Cl, and Br. For any other atom the current implementation of the SMD model uses scaled values of the van der Waals radii of Mantina et al8.
The scaling factor equals 1.52 for group 17 elements heavier than Br (i.e., for I and At) and 1.18 for all other elements for which there are no optimized SMD radii.
The second contribution to the fixed-concentration free energy of solvation is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is called the cavity\u2013dispersion\u2013solvent-structure (CDS) term, and it is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas (SASAs) of the individual atoms of the solute.
"},{"location":"COSMO-Solvation-Model.html#smd-input-parameters","title":"SMD Input Parameters","text":"The SMD model requires additional parameters in the COSMO input block
cosmo \n [do_cosmo_smd <logical>]\n [solvent (keyword)]\n [icds <integer>]\n [sola <real>]\n [solb <real>]\n [solc <real>]\n [solg <real>]\n [solh <real>]\n [soln <real>]\nend \n
At the moment the SMD model is available in NWChem only with the DFT block
The SMD input options are as follows:
do_cosmo_smd <logical>\n
The do_cosmo_smd
keyword instructs NWChem to perform a ground-state SMD calculation when set to a true
value.
solvent (keyword)\n
a solvent
keyword from the short name entry in the list of available SMD solvent names.
When a solvent is specified by name, the descriptors for the solvent are based on the Minnesota Solvent Descriptor Database9.
The user can specify a solvent (by using a string using up to eight characters) that is not on the list by using a new solvent keyword and introducing user-provided values for the following solvent descriptors:
"},{"location":"COSMO-Solvation-Model.html#smd-dielec-keyword","title":"SMD: DIELEC keyword","text":"dielec (real input)\n
dielectric constant at 298 K
"},{"location":"COSMO-Solvation-Model.html#smd-sola-keyword","title":"SMD: SOLA keyword","text":"sola (real input) \n
Abraham\u2019s hydrogen bond acidity
"},{"location":"COSMO-Solvation-Model.html#smd-solb-keyword","title":"SMD: SOLB keyword","text":"solb (real input) \n
Abraham\u2019s hydrogen bond basicity
"},{"location":"COSMO-Solvation-Model.html#smd-solc-keyword","title":"SMD: SOLC keyword","text":"solc (real input)\n
aromaticity as a fraction of non-hydrogenic solvent atoms that are aromatic carbon atoms
"},{"location":"COSMO-Solvation-Model.html#smd-solg-keyword","title":"SMD: SOLG keyword","text":"solg (real input)\n
macroscopic surface tension of the solvent at an air/solvent interface at 298 K in units of cal mol\u20131 \u00c5\u20132 (note that 1 dyne/cm = 1.43932 cal mol\u20131 \u00c5\u20132)
"},{"location":"COSMO-Solvation-Model.html#smd-solh-keyword","title":"SMD: SOLH keyword","text":"solh (real input)\n
electronegative halogenicity as the fraction of non-hydrogenic solvent atoms that are F, Cl, or Br
"},{"location":"COSMO-Solvation-Model.html#smd-soln-keyword","title":"SMD: SOLN keyword","text":"soln (real input)\n
index of refraction at optical frequencies at 293 K
"},{"location":"COSMO-Solvation-Model.html#smd-icds-keyword","title":"SMD: ICDS keyword","text":"icds (integer input)\n
icds
should have a value of 1 for water. icds
should have a value of 2 for any nonaqueous solvent. If icds
is set equal to 2, then you need to provide the following solvent descriptors (see the MN solvent descriptor database ):
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in water\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent water\nend\ntask dft energy\n
"},{"location":"COSMO-Solvation-Model.html#smd-example-new-solvent","title":"SMD Example: new solvent","text":"Example using a user defined solvent, not present in the SMD list of solvents
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in my solvent\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent mysolv \n dielec 11.4\n sola 1.887\n solb 0.0\n soln 0.98\n icds 2\nend\ntask dft energy\n
"},{"location":"COSMO-Solvation-Model.html#solvents-list-solvent-keyword","title":"Solvents List - Solvent keyword","text":"The short name for the solvent from the table can be used with the solvent
keyword to define the solvent. Example with acetonitrile.
cosmo\n solvent acetntrl\nend\n
Long name short name dielec acetic acid acetacid 6.2528 acetone acetone 20.493 acetonitrile acetntrl 35.688 acetophenone acetphen 17.440 aniline aniline 6.8882 anisole anisole 4.2247 benzaldehyde benzaldh 18.220 benzene benzene 2.2706 benzonitrile benzntrl 25.592 benzyl chloride benzylcl 6.7175 1-bromo-2-methylpropane brisobut 7.7792 bromobenzene brbenzen 5.3954 bromoethane brethane 9.01 bromoform bromform 4.2488 1-bromooctane broctane 5.0244 1-bromopentane brpentan 6.269 2-bromopropane brpropa2 9.3610 1-bromopropane brpropan 8.0496 butanal butanal 13.450 butanoic acid butacid 2.9931 1-butanol butanol 17.332 2-butanol butanol2 15.944 butanone butanone 18.246 butanonitrile butantrl 24.291 butyl acetate butile 4.9941 butylamine nba 4.6178 n-butylbenzene nbutbenz 2.360 sec-butylbenzene sbutbenz 2.3446 tert-butylbenzene tbutbenz 2.3447 carbon disulfide cs2 2.6105 carbon tetrachloride carbntet 2.2280 chlorobenzene clbenzen 5.6968 sec-butyl chloride secbutcl 8.3930 chloroform chcl3 4.7113 1-chlorohexane clhexane 5.9491 1-chloropentane clpentan 6.5022 1-chloropropane clpropan 8.3548 o-chlorotoluene ocltolue 4.6331 m-cresol m-cresol 12.440 o-cresol o-cresol 6.760 cyclohexane cychexan 2.0165 cyclohexanone cychexon 15.619 cyclopentane cycpentn 1.9608 cyclopentanol cycpntol 16.989 cyclopentanone cycpnton 13.58 cis-decalin declncis 2.2139 trans-decalin declntra 2.1781 decalin (cis/trans mixture) declnmix 2.196 n-decane decane 1.9846 1-decanol decanol 7.5305 1,2-dibromoethane edb12 4.9313 dibromomethane dibrmetn 7.2273 dibutyl ether butyleth 3.0473 o-dichlorobenzene odiclbnz 9.9949 1,2-dichloroethane edc12 10.125 cis-dichloroethylene c12dce 9.200 trans-dichloroethylene t12dce 2.140 dichloromethane dcm 8.930 diethyl ether ether 4.2400 diethyl sulfide et2s 5.723 diethylamine dietamin 3.5766 diiodomethane mi 5.320 diisopropyl ether dipe 3.380 dimethyl disulfide dmds 9.600 dimethylsulfoxide dmso 46.826 N,N-dimethylacetamide dma 37.781 cis-1,2-dimethylcyclohexane cisdmchx 2.060 N,N-dimethylformamide dmf 37.219 2,4-dimethylpentane dmepen24 1.8939 2,4-dimethylpyridine dmepyr24 9.4176 2,6-dimethylpyridine dmepyr26 7.1735 1,4-dioxane dioxane 2.2099 diphenyl ether phoph 3.730 dipropylamine dproamin 2.9112 n-dodecane dodecan 2.0060 1,2-ethanediol meg 40.245 ethanethiol etsh 6.667 ethanol ethanol 24.852 ethyl acetate etoac 5.9867 ethyl formate etome 8.3310 ethylbenzene eb 2.4339 ethylphenyl ether phenetol 4.1797 fluorobenzene c6h5f 5.420 1-fluorooctane foctane 3.890 formamide formamid 108.94 formic acid formacid 51.100 n-heptane heptane 1.9113 1-heptanol heptanol 11.321 2-heptanone heptnon2 11.658 4-heptanone heptnon4 12.257 n-hexadecane hexadecn 2.0402 n-hexane hexane 1.8819 hexanoic acid hexnacid 2.600 1-hexanol hexanol 12.51 2-hexanone hexanon2 14.136 1-hexene hexene 2.0717 1-hexyne hexyne 2.615 iodobenzene c6h5i 4.5470 1-iodobutane iobutane 6.173 iodoethane c2h5i 7.6177 1-iodohexadecane iohexdec 3.5338 iodomethane ch3i 6.8650 1-iodopentane iopentan 5.6973 1-iodopropane iopropan 6.9626 isopropylbenzene cumene 2.3712 p-isopropyltoluene p-cymene 2.2322 mesitylene mesityln 2.2650 methanol methanol 32.613 2-methoxyethanol egme 17.200 methyl acetate meacetat 6.8615 methyl benzoate mebnzate 6.7367 methyl butanoate mebutate 5.5607 methyl formate meformat 8.8377 4-methyl-2-pentanone mibk 12.887 methyl propanoate mepropyl 6.0777 2-methyl-1-propanol isobutol 16.777 2-methyl-2-propanol terbutol 12.470 N-methylaniline nmeaniln 5.9600 methylcyclohexane mecychex 2.024 N-methylformamide (E/Z mixture) nmfmixtr 181.56 2-methylpentane isohexan 1.890 2-methylpyridine mepyrid2 9.9533 3-methylpyridine mepyrid3 11.645 4-methylpyridine mepyrid4 11.957 nitrobenzene c6h5no2 34.809 nitroethane c2h5no2 28.290 nitromethane ch3no2 36.562 1-nitropropane ntrprop1 23.730 2-nitropropane ntrprop2 25.654 o-nitrotoluene ontrtolu 25.669 n-nonane nonane 1.9605 1-nonanol nonanol 8.5991 5-nonanone nonanone 10.600 n-octane octane 1.9406 1-octanol octanol 9.8629 2-octanone octanon2 9.4678 n-pentadecane pentdecn 2.0333 pentanal pentanal 10.000 n-pentane npentane 1.8371 pentanoic acid pentacid 2.6924 1-pentanol pentanol 15.130 2-pentanone pentnon2 15.200 3-pentanone pentnon3 16.780 1-pentene pentene 1.9905 E-2-pentene e2penten 2.051 pentyl acetate pentacet 4.7297 pentylamine pentamin 4.2010 perfluorobenzene pfb 2.029 phenylmethanol benzalcl 12.457 propanal propanal 18.500 propanoic acid propacid 3.440 1-propanol propanol 20.524 2-propanol propnol2 19.264 propanonitrile propntrl 29.324 2-propen-1-ol propenol 19.011 propyl acetate propacet 5.5205 propylamine propamin 4.9912 pyridine pyridine 12.978 tetrachloroethene c2cl4 2.268 tetrahydrofuran thf 7.4257 tetrahydrothiophene-S,S-dioxide sulfolan 43.962 tetralin tetralin 2.771 thiophene thiophen 2.7270 thiophenol phsh 4.2728 toluene toluene 2.3741 tributyl phosphate tbp 8.1781 1,1,1-trichloroethane tca111 7.0826 1,1,2-trichloroethane tca112 7.1937 trichloroethene tce 3.422 triethylamine et3n 2.3832 2,2,2-trifluoroethanol tfe222 26.726 1,2,4-trimethylbenzene tmben124 2.3653 2,2,4-trimethylpentane isoctane 1.9358 n-undecane undecane 1.9910 m-xylene m-xylene 2.3478 o-xylene o-xylene 2.5454 p-xylene p-xylene 2.2705 xylene (mixture) xylenemx 2.3879 water h2o 78.400"},{"location":"COSMO-Solvation-Model.html#usage-tips","title":"Usage Tips","text":"Authors of paper 7 report that \u201d \u2026 the SMD/COSMO/NWChem calculations we employed finer grids (options minbem=3, maxbem=4, ificos=1) because the default NWChem tessellation parameters (options: minbem=2, maxbem=3, ificos=0) produced very large errors in solvation free energies.\u201d Since the maxbem
keyword is no longer in use, this paper\u2019s recommended input translate into
cosmo\n minbem 3\n ificos 1\nend\n
"},{"location":"COSMO-Solvation-Model.html#references","title":"References","text":"Klamt, A.; Sch\u00fc\u00fcrmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, No. 5, 799\u2013805. https://doi.org/10.1039/p29930000799.\u00a0\u21a9
York, D. M.; Karplus, M. A Smooth Solvation Potential Based on the Conductor-Like Screening Model. The Journal of Physical Chemistry A 1999, 103 (50), 11060\u201311079. https://doi.org/10.1021/jp992097l.\u00a0\u21a9
Bondi, A. Van Der Waals Volumes and Radii. The Journal of Physical Chemistry 1964, 68 (3), 441\u2013451. https://doi.org/10.1021/j100785a001.\u00a0\u21a9
Klamt, A.; Jonas, V.; B\u00fcrger, T.; Lohrenz, J. C. W. Refinement and Parametrization of COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 5074\u20135085. https://doi.org/10.1021/jp980017s.\u00a0\u21a9
Stefanovich, E. V.; Truong, T. N. Optimized Atomic Radii for Quantum Dielectric Continuum Solvation Models. Chemical Physics Letters 1995, 244 (1-2), 65\u201374. https://doi.org/10.1016/0009-2614(95)00898-e.\u00a0\u21a9\u21a9
Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. The Journal of Chemical Physics 1997, 107 (8), 3210\u20133221. https://doi.org/10.1063/1.474671.\u00a0\u21a9
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378\u20136396. https://doi.org/10.1021/jp810292n.\u00a0\u21a9\u21a9
Haynes, W. M. CRC Handbook of Chemistry and Physics; Mantina, M., Valero, R., Cramer, C. J., Truhlar, D. G., Eds.; Taylor & Francis Group, 2013; pp 9\u201349.\u00a0\u21a9
Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. Minneapolis, MN: Department of Chemistry and Supercomputer Institute 1999.\u00a0\u21a9
NWChem provides many methods for computing the properties of molecular and periodic systems using standard quantum mechanical descriptions of the electronic wavefunction or density. Its classical molecular dynamics capabilities provide for the simulation of macromolecules and solutions, including the computation of free energies using a variety of force fields. These approaches may be combined to perform mixed quantum-mechanics and molecular-mechanics simulations.
The specific methods for determining molecular electronic structure, molecular dynamics, and pseudopotential plane-wave electronic structure and related attributes are listed in the following sections.
"},{"location":"Capabilities.html#molecular-electronic-structure","title":"Molecular Electronic Structure","text":"Methods for determining energies and analytic first derivatives with respect to atomic coordinates include the following:
Analytic second derivatives with respect to atomic coordinates are available for RHF and UHF, and closed-shell DFT with all functionals.
The following methods are available to compute energies only:
For all methods, the following may be performed:
At the SCF and DFT level of theory various (response) properties are available, including NMR shielding tensors and indirect spin-spin coupling.
"},{"location":"Capabilities.html#quantum-mechanicsmolecular-mechanics-qmmm","title":"Quantum Mechanics/Molecular Mechanics (QM/MM)","text":"The QM/MM module in NWChem provides a comprehensive set of capabilities to study ground and excited state properties of large-molecular systems. The QM/MM module can be used with practically any quantum mechanical method available in NWChem. The following tasks are supported
The NWChem Plane-Wave (NWPW) module uses pseudopotentials and plane-wave basis sets to perform DFT calculations. This method\u2019s efficiency and accuracy make it a desirable first principles method of simulation in the study of complex molecular, liquid, and solid-state systems. Applications for this first principles method include the calculation of free energies, search for global minima, explicit simulation of solvated molecules, and simulations of complex vibrational modes that cannot be described within the harmonic approximation.
The NWPW module is a collection of three modules:
These capabilities are available:
The NWChem Molecular Dynamics (MD) module can perform classical simulations using the AMBER and CHARMM force fields, quantum dynamical simulations using any of the quantum mechanical methods capable of returning gradients, and mixed quantum mechanics molecular dynamics simulation and molecular mechanics energy minimization.
Classical molecular simulation functionality includes the following methods:
The classical force field includes the following elements:
The default in NWChem is to specify the geometry information entirely in Cartesian coordinates, and examples of this format have appeared above (e.g, Water Molecule Input). Each center (usually an atom) is identified on a line of the following form:
<string tag> <real x y z> [vx vy vz] \\\n [charge <real charge>] [mass <real mass>] \\\n [(nuc || nucl || nucleus) <string nucmodel>]\n
The string <tag>
is the name of the atom or center, and its case (upper or lower) is important. The tag is limited to 16 characters and is interpreted as follows:
<tag>
begins with either the symbol or name of an element (regardless of case), then the center is treated as an atom of that type. The default charge is the atomic number (adjusted for the presence of ECPs by the ECP NELEC directive). Additional characters can be added to the string, to distinguish between atoms of the same element (For example, the tags oxygen
, O
, o34
, olonepair
, and Oxygen-ether
, will all be interpreted as oxygen atoms.).<tag>
begins with the characters bq
or x
(regardless of case), then the center is treated as a dummy center with a default zero charge (Note: a tag beginning with the characters xe will be interpreted as a xenon atom rather than as a dummy center.). Dummy centers may optionally have basis functions or non-zero charge.It is important to be aware of the following points regarding the definitions and usage of the values specified for the variable <tag>
to describe the centers in a system:
BQ
or X
, then a fatal error is generated.The Cartesian coordinates of the atom in the molecule are specified as real numbers supplied for the variables x
, y
, and z
following the characters entered for the tag. The values supplied for the coordinates must be in the units specified by the value of the variable on the first line of the GEOMETRY
directive input.
After the Cartesian coordinate input, optional velocities may be entered as real numbers for the variables vx
, vy
, and vz
. The velocities should be given in atomic units and are used in QMD and PSPW calculations.
The Cartesian coordinate input line also contains the optional keywords charge
, mass
and nucleus
, which allow the user to specify the charge of the atom (or center) and its mass (in atomic mass units), and the nuclear model. The default charge for an atom is its atomic number, adjusted for the presence of ECPs. In order to specify a different value for the charge on a particular atom, the user must enter the keyword charge, followed by the desired value for the variable <charge>
.
The default mass for an atom is taken to be the mass of its most abundant naturally occurring isotope or of the isotope with the longest half-life. To model some other isotope of the element, its mass must be defined explicitly by specifying the keyword mass, followed by the value (in atomic mass units) for the variable <mass>
.
The default nuclear model is a point nucleus. The keyword nucleus
(or nucl
or nuc
) followed by the model name <nucmodel>
overrides this default. Allowed values of <nucmodel>
are point
or pt
and finite
or fi
. The finite option is a nuclear model with a Gaussian shape. The RMS radius of the Gaussian is determined by the atomic mass number via the formula rRMS = 0.836*A1/3+0.57 fm. The mass number A is derived from the variable <mass>
.
The geometry of the system can be specified entirely in Cartesian coordinates by supplying a <tag>
line of the type described above for each atom or center. The user has the option, however, of supplying the geometry of some or all of the atoms or centers using a Z-matrix description. In such a case, the user supplies the input tag line described above for any centers to be described by Cartesian coordinates, and then specifies the remainder of the system using the optional ZMATRIX
directive described below in Z-matrix input.
group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a09\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n+x,-y,+z+1/2\n+x+1/2,+y+1/2,+z\n+x+1/2,-y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a09\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n+x+1/2,+y,-z\n+x,+y+1/2,+z+1/2\n+x+1/2,+y+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"Ccc2.html","title":"Ccc2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a037\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ccc2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ccca.html","title":"Ccca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a068\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ccca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x,+y,-z\n+x+1/2,-y+1/2,-z\n-x,-y+1/2,-z+1/2\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x+1/2,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1,-y+1,+z\n-x+1/2,+y+1/2,-z\n+x+1,-y+1,-z\n-x+1/2,-y+1,-z+1/2\n+x+1,+y+1/2,-z+1/2\n+x+1/2,-y+1,+z+1/2\n-x+1,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a068\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ccca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y,+z\n-x,+y,-z+1/2\n+x+1/2,-y,-z+1/2\n-x,-y,-z\n+x+1/2,+y,-z\n+x,-y,+z+1/2\n-x+1/2,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1,-y+1/2,+z\n-x+1/2,+y+1/2,-z+1/2\n+x+1,-y+1/2,-z+1/2\n-x+1/2,-y+1/2,-z\n+x+1,+y+1/2,-z\n+x+1/2,-y+1/2,+z+1/2\n-x+1,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Cccm.html","title":"Cccm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a066\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cccm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z+1/2\n+x,-y,-z+1/2\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Charge.html","title":"CHARGE","text":"This is an optional top-level directive that allows the user to specify the total charge of the system. The form of the directive is as follows:
CHARGE\u00a0<real\u00a0charge\u00a0default\u00a00>\n
The charge directive, in conjunction with the charges of atomic nuclei (which can be changed via the geometry input, cf. Section Geometry), determines the total number of electrons in the chemical system. Therefore, a charge n
specification removes \u201cn\u201d electrons from the chemical system. Similarly, charge -n
adds \u201cn\u201d electrons. is zero if this directive is omitted. An example of a case where the directive would be needed is for a calculation on a doubly charged cation. In such a case, the directive is simply,
charge\u00a02\n
If centers with fractional charge have been specified the net charge of the system should be adjusted to ensure that there are an integral number of electrons.
The charge may be changed between tasks, and is used by all wavefunction types. For instance, in order to compute the first two vertical ionization energies of LiH, one might optimize the geometry of LiH using a UHF SCF wavefunction, and then perform energy calculations at the optimized geometry on LiH+ and LiH2+ in turn. This is accomplished with the following input:
geometry;\u00a0Li\u00a00\u00a00\u00a00;\u00a0H\u00a00\u00a00\u00a01.64;\u00a0end\u00a0basis;\u00a0Li\u00a0library\u00a03-21g;\u00a0H\u00a0library\u00a03-21g;\u00a0end \nscf;\u00a0uhf;\u00a0singlet;\u00a0end\u00a0task\u00a0scf\u00a0optimize \ncharge\u00a01\u00a0scf;\u00a0uhf;\u00a0doublet;\u00a0end\u00a0task\u00a0scf \ncharge\u00a02\u00a0scf;\u00a0uhf;\u00a0singlet;\u00a0end\u00a0task\u00a0scf\n
The GEOMETRY, BASIS, and SCF directives are described below (Geometry, Basis and SCF respectively) but their intent should be clear. The TASK directive is described above (TASK).
"},{"location":"Citation.html","title":"Citation","text":"Please cite the following reference when publishing results obtained with NWChem:
E. Apr\u00e0, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cau\u00ebt, Y. Chen, G. N. Chuev, C. J. Cramer, J. Daily, M. J. O. Deegan, T. H. Dunning Jr., M. Dupuis, K. G. Dyall, G. I. Fann, S. A. Fischer, A. Fonari, H. Fr\u00fcchtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann, A. W. G\u00f6tz, J. Hammond, V. Helms, E. D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B. G. Johnson, H. J\u00f3nsson, R. A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logsdail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin, T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J. Nichols, J. Nieplocha, A. Otero-de-la-Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M. Richard, P. Sadayappan, G. C. Schatz, W. A. Shelton, D. W. Silverstein, D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S. Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman, T. Van Voorhis, \u00c1. V\u00e1zquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis, D. Wang, J. H. Weare, M. J. Williamson, T. L. Windus, K. Woli\u0144ski, A. T. Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, and R. J. Harrison, \u201cNWChem: Past, present, and future\u201d, The Journal of Chemical Physics 152, 184102 (2020). DOI: 10.1063/5.0004997 BibTex entry
"},{"location":"Classical-Methods.html","title":"Classical Methods","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a08\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n+x,-y,+z\n+x+1/2,+y+1/2,+z\n+x+1/2,-y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a08\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n+x,+y,-z\n+x,+y+1/2,+z+1/2\n+x,+y+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"Cmc2_1.html","title":"Cmc2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a036\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Cmc2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmca.html","title":"Cmca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a064\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y+1/2,+z+1/2\n-x,+y+1/2,-z+1/2\n+x,-y,-z\n-x,-y,-z\n+x,+y+1/2,-z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1,+z+1/2\n-x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1,+z+1/2\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmcm.html","title":"Cmcm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a063\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmcm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z+1/2\n-x,+y,-z+1/2\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z+1/2\n+x,-y,+z+1/2\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmm2.html","title":"Cmm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a035\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmma.html","title":"Cmma","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a067\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmma\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y+1/2,+z\n-x,+y+1/2,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y+1/2,-z\n+x,-y+1/2,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1,+z\n-x+1/2,+y+1,-z\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1,-z\n+x+1/2,-y+1,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmmm.html","title":"Cmmm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a065\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmmm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Compiling-NWChem.html","title":"Compiling NWChem from source","text":"On this page, a step-by-step description of the build process and necessary and optional environment variables is outlined. In addition, based on the experiences of developers and users how-to\u2019s for various platforms have been created. These how-to\u2019s will be updated with additional platforms and better environment variables over time.
Download of the NWChem source is a step needed before compilation. Details for downloading as well as instructions for installing pre-compiled version of NWChem are available at the Download page.
"},{"location":"Compiling-NWChem.html#setting-up-the-proper-environment-variables","title":"Setting up the proper environment variables","text":"$NWCHEM_TOP
defines the top directory of the NWChem source tree, e.g.When dealing with source from a NWChem release (6.8 in this example)
export NWCHEM_TOP=<your path>/nwchem-6.8\n
$NWCHEM_TARGET
defines your target platform, e.g.export NWCHEM_TARGET=LINUX64\n
The following platforms are available:
NWCHEM_TARGET Platform OS Compilers LINUX x86 Linux GNU, Intel, PGI ppc Linux GNU, IBM arm Linux GNU, flang LINUX64 x86_64 Linux GNU, Intel, PGI, Flang ppc64le Linux GNU, IBM aarch64 Linux GNU, flang MACX x86 Darwin GNU, Intel MACX64 x86_64 Darwin GNU, Intel BGL Blue Gene/L IBM BGP Blue Gene/P IBM BGQ Blue Gene/Q IBM$ARMCI_NETWORK
must be defined in order to achieve best performance on high performance networks, e.g.export ARMCI_NETWORK=MPI-PR\n
For a single processor system, this environment variable does not have to be defined. Supported combination of ARMCI_NETWORK and NWCHEM_TARGET variables:
ARMCI_NETWORK NWCHEM_TARGET Network Protocol OPENIB LINUX, LINUX64 Mellanox InfiniBand Verbs MPI-PR LINUX64 Any network MPI MPI-MTMPI-SPAWN LINUX64 MPI supportingmulti-threading multiple MPI-2 MPI-TS MPI-PT any any network with MPI MPI BGMLMPI BGL IBM Blue Gene/L BGLMPI DC MFMPI BGP IBM Blue Gene/P DCMF,MPIPlease see Choosing the ARMCI Library for additional information on choosing the right network options.
"},{"location":"Compiling-NWChem.html#mpi-variables","title":"MPI variables","text":"Variable DescriptionUSE_MPI
Set to \u201cy\u201d to indicate that NWChem should be compiled with MPI USE_MPIF
Set to \u201cy\u201d for the NWPW module to use fortran-bindings of MPI. (Generally set when USE_MPI is set) USE_MPIF4
Set to \u201cy\u201d for the NWPW module to use Integer*4 fortran-bindings of MPI. (Generally set when USE_MPI is set on most platforms) LIBMPI
(deprecated) Name of the MPI library that should be linked with -l MPI_LIB
(deprecated) Directory where the MPI library resides MPI_INCLUDE
(deprecated) Directory where the MPI include files reside"},{"location":"Compiling-NWChem.html#automatic-detection-of-mpi-variables-with-mpif90","title":"Automatic detection of MPI variables with mpif90","text":"New in NWChem 6.6: If the location of the mpif90
command is part of your PATH
env. variable, NWChem will figure out the values of LIBMPI
, MPI_LIB
and MPI_INCLUDE
(if they are not set). Therefore, we do NOT recommend to set LIBMPI
, MPI_LIB
and MPI_INCLUDE
and add the location of mpif90
to the PATH
variable, instead. Therefore, the next section can be considered obsolete.
The information of this section should not be used because of the automatic detection of MPI variables described in the previous section.
The output of the command
mpif90 -show
can be used to extract the values of LIBMPI, MPI_LIB and MPI_INCLUDE
E.g. for MPICH2, this might look like:
\n$ mpif90 -show\nf95 -I/usr/local/mpich2.141p1/include -I/usr/local/mpich2.141p1/include -L/usr/local/mpich2.141p1/lib \\\n-lmpichf90 -lmpichf90 -lmpich -lopa -lmpl -lrt -lpthread\n
The corresponding environment variables are
\n % export USE_MPI=y\n % export LIBMPI=\"-lmpich -lopa -lmpl -lpthread -lmpichf90 -lfmpich -lmpich\"\n % export MPI_LIB=/usr/local/mpich2.141p1/lib \n % export MPI_INCLUDE='/usr/local/mpich2.141p1/include\n
"},{"location":"Compiling-NWChem.html#how-to-start-nwchem","title":"How to start NWChem","text":"When MPI is used, the appropriate MPI run command should be used to start an NWChem calculation, e.g.
% mpirun -np 8 $NWCHEM_TOP/bin/$NWCHEM_TARGET/nwchem h2o.nw\n
"},{"location":"Compiling-NWChem.html#nwchem_modules","title":"NWCHEM_MODULES","text":"$NWCHEM_MODULES
defines the modules to be compiled, e.g.export NWCHEM_MODULES=\"all python\"\n
The following modules are available:
Module Description all Everything useful all python Everything useful plus python qm All quantum mechanics modules md MD only buildNote that additional environment variables need to be defined to specify the location of the Python libraries, when the python module is compiled. See the optional environmental variables section for specifics.
"},{"location":"Compiling-NWChem.html#adding-optional-environmental-variables","title":"Adding optional environmental variables","text":"USE_NOFSCHECK can be set to avoid NWChem creating files for each process when testing the size of the scratch directory (a.k.a. creation of junk files), e.g.
export USE_NOFSCHECK=TRUE\n
USE_NOIO can be set to avoid NWChem 6.5 doing I/O for the ddscf, mp2 and ccsd modules (it automatically sets USE_NOFSCHECK
, too). It is strongly recommended on large clusters or supercomputers or any computer lacking any fast and large local filesystem.
export USE_NOIO=TRUE\n
~~LIB_DEFINES can be set to pass additional defines to the C preprocessor (for both Fortran and C), e.g.
export LIB_DEFINES=-DDFLT_TOT_MEM=16777216\n
Note: -DDFLT_TOT_MEM
sets the default dynamic memory available for NWChem to run, where the units are in doubles.~~ However, it is recommended that, instead of manually defining this environment variable, the getmem.nwchem script to be executed as described in the related section
MRCC_METHODS can be set to request the multireference coupled cluster capability to be included in the code, e.g.
export MRCC_METHODS=TRUE\n
CCSDTQ can be set to request the CCSDTQ method and its derivatives to be included in the code, e.g.
export CCSDTQ=TRUE\n
"},{"location":"Compiling-NWChem.html#setting-python-environment-variables","title":"Setting Python environment variables","text":"Python programs may be embedded into the NWChem input and used to control the execution of NWChem. To build with Python, Python needs to be available on your machine. The software can be download from https://www.python.org . Follow the Python instructions for installation and testing. NWChem has been tested with Python versions up to 3.11
The following environment variables need to be set when compiling with Python, together with having the location of your installed python binary part of the PATH
environment variable:
export PYTHONVERSION=3.8\n
Note that the third number in the version should not be kept: 3.8.1 should be set as 3.8
You will also need to set PYTHONPATH to include any modules that you are using in your input. Examples of Python within NWChem are in the $NWCHEM_TOP/QA/tests/pyqa3
and $NWCHEM_TOP/contrib/python
directories.
By default NWChem uses its own basic linear algebra subroutines (BLAS). To include faster BLAS routines, the environment variable BLASOPT needs to be set before building the code. For example, with OpenBLAS
export BLASOPT=\"-lopenblas\"\n
Good choices of optimized BLAS libraries on x86 (e.g. LINUX and LINUX64) hardware include:
BLIS https://github.com/flame/blis OpenBLAS https://github.com/xianyi/OpenBLAS GotoBLAS https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2 Intel MKL https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html Cray LibSci Available only on Cray hardware, it is automatically linked when compiling on Cray computers. IBM ESSL Available only on IBM hardware https://www.ibm.com/docs/en/essl/6.3
New since release 7.0.0 (after commit 6b0a971): If BLASOPT
is defined, the LAPACK_LIB
environment variable must be set up, too. LAPACK_LIB
must provide the location of the library containing the LAPACK routines. For example, OpenBLAS provides the full suite of LAPACK routines, therefore, in this case, LAPACK_LIB
can be set to the same value as BLASOPT
export BLASOPT=-lopenblas \nexport LAPACK_LIB=-lopenblas \n
NWChem can also take advantage of the ScaLAPACK library if it is installed on your system. The following environment variables need to be set:
export USE_SCALAPACK=y\n\nexport SCALAPACK=\"location of Scalapack and BLACS library\"\n
"},{"location":"Compiling-NWChem.html#how-to-deal-with-integer-size-of-linear-algebra-libraries","title":"How to deal with integer size of Linear Algebra libraries","text":"In the case of 64-bit platforms, most vendors optimized BLAS libraries cannot be used. This is due to the fact that while NWChem uses 64-bit integers (i.e. integer*8) on 64-bit platforms, most of the vendors optimized BLAS libraries used 32-bit integers. The same holds for the ScaLAPACK libraries, which internally use 32-bit integers. The BLAS_SIZE environment variable is used at compile time to set the size of integer arguments in BLAS calls.
BLAS_SIZE size of integer arguments in BLAS routines 4 32-bit (most common default) 8 64-bitA method is available to link against the libraries mentioned above, using the following procedure:
cd $NWCHEM_TOP/src\n make clean\n make 64_to_32\n make USE_64TO32=y BLAS_SIZE=4 BLASOPT=\" optimized BLAS\" SCALAPACK=\"location of Scalapack and BLACS library\"\n
E.g., for IBM64 this looks like
% make USE_64TO32=y BLAS_SIZE=4 BLASOPT=\"-lessl -lmass\"\n
Notes:
#INTERFACE64 = 1\n
needs to be changed to
INTERFACE64 = 1\n
New in NWChem 7.0.2:
BUILD_OPENBLAS
can be used to automatically build the OpenBLAS library during a NWChem compilation (either using BLAS_SIZE=8
or BLAS_SIZE=4
) BUILD_SCALAPACK
can be used to automatically build the ScaLapack library during a NWChem compilation (either using SCALAPACK_SIZE=8
or SCALAPACK_SIZE=4
)The following settings are strongly recommended over setting variables pointing to existing installations:
BUILD_OPENBLAS=1\nBUILD_SCALAPACK=1\nBLAS_SIZE=8\nSCALAPACK_SIZE=8\n
"},{"location":"Compiling-NWChem.html#linking-in-nbo","title":"Linking in NBO","text":"The 5.0 (obsolete) version of NBO provides a utility to generate source code that can be linked into computational chemistry packages such as NWChem. To utilize this functionality, follow the instructions in the NBO 5 package to generate an nwnbo.f file. Linking NBO into NWChem can be done using the following procedure:
% cd $NWCHEM_TOP/src \n % cp nwnbo.f $NWCHEM_TOP/src/nbo/. \n % make nwchem_config NWCHEM_MODULES=\"all nbo\" \n % make\n
One can now use \u201ctask nbo\u201d and incorporate NBO input into the NWChem input file directly:
nbo \n $NBO NRT $END \n ... \n end \n\n task nbo\n
"},{"location":"Compiling-NWChem.html#building-the-nwchem-binary","title":"Building the NWChem binary","text":"Once all required and optional environment variables have been set, NWChem can be compiled:
% cd $NWCHEM_TOP/src \n\n % make nwchem_config \n\n % make >& make.log\n
The make above will use the standard compilers available on your system. To use compilers different from the default one can either set environment variables:
% export FC=<fortran compiler> \n % export CC=<c compiler>\n
Or one can supply the compiler options to the make command (recommended option), e.g:
% make FC=ifort \n
For example, on Linux FC could be set either equal to ifort, gfortran or pgf90
Nota bene: NWChem does NOT support usage of the full path in FC and CC variables. Please provide filenames only as in the examples above!
Note 1: If in a Linux environment, FC is set equal to anything other than the tested compilers, there is no guarantee of a successful installation, since the makefile structure has not been tested to process other settings. In other words, please avoid make FC=\u201difort -O3 -xhost\u201d and stick to make FC=\u201difort\u201d, instead
Note 2: It\u2019s better to avoid redefining CC, since a) NWChem does not have C source that is a computational bottleneck and b) we typically test just the default C compiler. In other words, the recommendation is to compile with make FC=ifort
Note 3: It\u2019s better to avoid modifying the values of the FOPTIMIZE and COPTIMIZE variables. The reason is that the default values for FOPTIMIZE and COPTIMIZE have been tested by the NWChem developers (using the internal QA suites, among others), while any modification might produce incorrect results.
"},{"location":"Compiling-NWChem.html#setting-the-default-memory-values","title":"Setting the default memory values","text":"It is strongly recommended to use, after a successful compilation, the getmem.nwchem script in the $NWCHEM_TOP/contrib
directory. The script will choose the default memory settings based on the available physical memory, recompile the appropriate files and relink. Here is an example of its usage:
cd $NWCHEM_TOP/src\n../contrib/getmem.nwchem\n
If non default compiler are used, the getmem.nwchem
script must be called, using bash shell, by first specifying the compiler environment variable. The example below uses ifort as Fortran compiler
cd $NWCHEM_TOP/src\nFC=ifort ../contrib/getmem.nwchem\n
"},{"location":"Compiling-NWChem.html#how-to-linux-platforms","title":"How-to: Linux platforms","text":" % export NWCHEM_TOP=<your path>/nwchem \n % export NWCHEM_TARGET=LINUX64 \n % export NWCHEM_MODULES =all\n
The following environment variables need to be set when NWChem is compiled with MPI:
% export USE_MPI=y\n% export USE_MPIF=y\n% export USE_MPIF4=y\n\n
New in NWChem 6.6: If the location of the mpif90 command is part of your PATH env. variable, NWChem will figure out the values of LIBMPI, MPI_LIB and MPI_INCLUDE (if they are not set). Therefore, we recommend not to set LIBMPI, MPI_LIB and MPI_INCLUDE and add the location of mpif90 to the PATH variable, instead.
% cd $NWCHEM_TOP/src\n% make nwchem_config\n% make FC=gfortran >& make.log\n
"},{"location":"Compiling-NWChem.html#nwchem-66-on-ubuntu-1404-trusty-tahr","title":"NWChem 6.6 on Ubuntu 14.04 (Trusty Tahr)","text":"These instruction are likely to work (with minor modifications) on all Debian based distributions
python-dev gfortran libopenblas-dev libopenmpi-dev openmpi-bin tcsh make\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.7\nexport PYTHONHOME=/usr\nexport BLASOPT=\"-lopenblas -lpthread -lrt\"\nexport LAPACK_LIB=$BLASOPT\nexport BLAS_SIZE=4\nexport USE_64TO32=y\n
make nwchem_config NWCHEM_MODULES=\"all python\"\nmake 64_to_32\nmake\n
"},{"location":"Compiling-NWChem.html#nwchem-66-on-fedora-22","title":"NWChem 6.6 on Fedora 22","text":"python-devel gcc-gfortran openblas-devel openblas-serial64 openmpi-devel tcsh make patch\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.7\nexport PYTHONHOME=/usr\nexport BLASOPT=\"-lnwclapack -lopenblas64\"\nexport BLAS_SIZE=8\nexport PATH=/usr/lib64/openmpi/bin:$PATH\nexport LD_LIBRARY_PATH=/usr/lib64/openmpi/lib:$LD_LIBRARY_PATH\nexport USE_ARUR=y\n
make nwchem_config NWCHEM_MODULES=\"all python\"\nmake\n
"},{"location":"Compiling-NWChem.html#nwchem-68-on-centos-71fedora-27","title":"NWChem 6.8 on Centos 7.1/Fedora 27","text":"Once you have added the EPEL repository to your Centos/Fedora/RedHat installation, you can have a more efficient NWChem build.
sudo rpm -Uvh http://download.fedoraproject.org/pub/epel/7/x86_64/Packages/e/epel-release-7-11.noarch.rpm\n
python-devel gcc-gfortran openblas-devel openblas-serial64 openmpi-devel scalapack-openmpi-devel \\\nelpa-openmpi-devel tcsh openssh-clients which tar bzip2\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.7\nexport PYTHONHOME=/usr\nexport USE_64TO32=y\nexport BLAS_SIZE=4\nexport BLASOPT=\"-lopenblas -lpthread -lrt\"\nexport LAPACK_LIB=$BLASOPT\nexport SCALAPACK_SIZE=4\nexport SCALAPACK=\"-L/usr/lib64/openmpi/lib -lscalapack\"\nexport ELPA=\"-I/usr/lib64/gfortran/modules/openmpi -L/usr/lib64/openmpi/lib -lelpa\"\nexport LD_LIBRARY_PATH=/usr/lib64/openmpi/lib/:$LD_LIBRARY_PATH\nexport PATH=/usr/lib64/openmpi/bin/:$PATH\n
cd $NWCHEM_TOP/src \nmake nwchem_config NWCHEM_MODULES=\"all python\" \nmake 64_to_32 \nmake\n
"},{"location":"Compiling-NWChem.html#nwchem-66-on-redhat-6","title":"NWChem 6.6 on RedHat 6","text":"python-devel gcc-gfortran openmpi-devel tcsh make\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.6\nexport PYTHONHOME=/usr\nexport USE_INTERNALBLAS\nexport LD_LIBRARY_PATH=/usr/lib64/openmpi/lib/:$LD_LIBRARY_PATH\nexport PATH=/usr/lib64/openmpi/bin/:$PATH\n
make nwchem_config NWCHEM_MODULES=\"all python\"\nmake\n
"},{"location":"Compiling-NWChem.html#nwchem-66-on-redhat-6-epel-repository","title":"NWChem 6.6 on RedHat 6 & EPEL repository","text":"Once you have added the EPEL repository to you RedHat 6 installation, you can have a more efficient NWChem build. The settings are exactly the same as Centos 7.1
"},{"location":"Compiling-NWChem.html#nwchem-66-on-opensuse-13","title":"NWChem 6.6 on OpenSuse 13","text":"gcc-fortran make python-devel openblas-devel openmpi-devel tcsh\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.7\nexport PYTHONHOME=/usr\nexport USE_64TO32=y\nexport BLAS_SIZE=4\nexport BLASOPT=\"-lopenblas -lpthread -lrt\"\nexport PATH=/usr/lib64/mpi/gcc/openmpi/bin:$PATH\nexport LD_LIBRARY_PATH=/usr/lib64/mpi/gcc/openmpi/lib64:$LD_LIBRARY_PATH\nexport PATH=/usr/lib64/openmpi/bin/:$PATH\n
make nwchem_config NWCHEM_MODULES=\"all python\"\nmake 64_to_32\nmake\n
"},{"location":"Compiling-NWChem.html#how-to-mac-platforms","title":"How to: Mac platforms","text":""},{"location":"Compiling-NWChem.html#compilation-of-nwchem-65-release-on-mac-os-x-109-x86_64","title":"Compilation of NWChem 6.5 release on Mac OS X 10.9 x86_64","text":"ruby -e \"$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)\"\n
brew install mpich2\n
export USE_MPI=y\nexport NWCHEM_MODULES=all\nexport NWCHEM_TARGET=MACX64\nexport NWCHEM_TOP=/Users/johndoe/nwchem\n
export CFLAGS_FORGA=\"-DMPICH_NO_ATTR_TYPE_TAGS\"\n
cd /Users/johndoe/nwchem/src\nmake nwchem_config\nmake\n
"},{"location":"Compiling-NWChem.html#compilation-of-nwchem-66-on-mac-os-x-1010-yosemite-x86_64","title":"Compilation of NWChem 6.6 on Mac OS X 10.10 (Yosemite) x86_64","text":""},{"location":"Compiling-NWChem.html#method-1-using-gfortran-from-hpcsfnet-and-mpich-from-macports","title":"Method #1: using gfortran from hpc.sf.net and mpich from macports","text":"sudo port install mpich\nsudo port select mpi mpich-mp-fortran\n
export NWCHEM_TOP=/Users/johndoe/nwchem/\nexport NWCHEM_TARGET=MACX64\nexport USE_MPI=\"y\"\nexport USE_MPIF=\"y\"\nexport USE_MPIF4=\"y\"\nexport CFLAGS_FORGA=\"-DMPICH_NO_ATTR_TYPE_TAGS\"\nexport LIBMPI=\"-lmpifort -lmpi -lpmpi -lpthread\"\nexport BLASOPT=\" \"\n
cd /Users/johndoe/nwchem/src\nmake nwchem_config\nmake\n
"},{"location":"Compiling-NWChem.html#method-2-using-gfortran-and-openmpi-from-brew","title":"Method #2: using gfortran and openmpi from brew","text":" /usr/bin/ruby -e \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)\" \n
brew install open-mpi\n
export USE_MPI=y \nexport NWCHEM_TARGET=MACX64 \nexport NWCHEM_TOP=/Users/johndoe/nwchem \nexport USE_INTERNALBLAS=y\n
export CFLAGS_FORGA \"-DMPICH_NO_ATTR_TYPE_TAGS\"\n
cd /Users/johndoe/nwchem/src \n make nwchem_config` \n make\n
WARNING: Please do not use the Mac OS X default BLAS and LAPACK libraries available (or brew\u2019s veclibfort), since they are causing NWChem to produce erroneous results
"},{"location":"Compiling-NWChem.html#method-3-using-intel-compilers-and-mkl","title":"Method #3: using Intel compilers and MKL","text":"The Intel compilers and MKL work just fine on Mac with the following options:
NWCHEM_TARGET=MACX64\nCC=icc\nFC=ifort\nBLASOPT=\"-mkl -openmp\"\nUSE_OPENMP=T\n
MPICH and ARMCI-MPI work reliably on Mac. See Choosing the ARMCI Library for details on ARMCI-MPI
"},{"location":"Compiling-NWChem.html#how-to-cray-platforms","title":"How-to: Cray platforms","text":"Common environmental variables for building and running on the Cray XT, XE, XC and XK:
% export NWCHEM_TOP=<your path>/nwchem \n % export NWCHEM_TARGET=LINUX64 \n % export NWCHEM_MODULES=all \n % export USE_MPI=y\n % export USE_MPIF=y \n % export USE_MPIF4=y \n % export USE_SCALAPACK=y \n % export USE_64TO32=y \n % export LIBMPI=\" \"\n
% cd $NWCHEM_TOP/src\n % make nwchem_config\n % make 64_to_32\n % make FC=ftn >& make.log\n
The step make 64_to_32
is required only if either SCALAPACK_SIZE or BLAS_SIZE are set equal to 4.
This is a new option available in NWChem 6.6.
Set the environmental variables for compilation:
% export ARMCI_NETWORK=MPI-PR\n
"},{"location":"Compiling-NWChem.html#example-olcf-titan","title":"Example: OLCF Titan","text":"These are variables used for compilation on the OLCF Titan, a Cray XK7 We assume use of Portland Group compilers programming environment (module load PrgEnv-pgi
)
NWCHEM_TARGET=LINUX64 \nARMCI_NETWORK=MPI-PR \nUSE_64TO32=y \nUSE_MPI=y \nBLAS_SIZE=4 \nLAPACK_SIZE=4 \nSCALAPACK_SIZE=4 \nSCALAPACK=-lsci_pgi_mp \nBLASOPT=-lsci_pgi_mp\n
To enable the GPU part, set
TCE_CUDA=y\n
and load the cudatoolkit module
module load cudatoolkit\n
"},{"location":"Compiling-NWChem.html#aries-eg-xc30xc40","title":"Aries, e.g. XC30/XC40","text":""},{"location":"Compiling-NWChem.html#method-1-armci_networkmpi-pr","title":"Method #1: ARMCI_NETWORK=MPI-PR","text":"This is a new option available in NWChem 6.6.
Set the environmental variables for compilation:
% export ARMCI_NETWORK=MPI-PR\n
"},{"location":"Compiling-NWChem.html#example-nersc-edison","title":"Example: NERSC Edison","text":"These are variables used for compilation on NERSC Edison, a Cray XC30, as of October 23rd 2015, when using Intel compilers (i.e. after issuing the commands module swap PrgEnv-gnu PrgEnv-intel
). Very similar settings can be applied to other Cray XC30 computers, such as the UK ARCHER computer
CRAY_CPU_TARGET=sandybridge \nNWCHEM_TARGET=LINUX64 \nARMCI_NETWORK=MPI-PR \nUSE_MPI=y\nSCALAPACK=\"-L$MKLROOT/lib/intel64 -lmkl_scalapack_ilp64 -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential \\\\ \n-lmkl_blacs_intelmpi_ilp64 -lpthread -lm\" \nSCALAPACK_SIZE=8 \nBLAS_SIZE=8 \nBLASOPT=\"-L$MKLROOT/lib/intel64 -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential -lpthread -lm\" \nLD_LIBRARY_PATH=/opt/gcc/4.9.2/snos/lib64:$LD_LIBRARY_PATH \nPATH=/opt/gcc/4.9.2/bin:$PATH \nCRAYPE_LINK_TYPE=dynamic \n
To compile
make nwchem_config \nmake FC=ftn\n
The following env. variables needs to added to the batch queue submission script
MPICH_GNI_MAX_VSHORT_MSG_SIZE=8192\nMPICH_GNI_MAX_EAGER_MSG_SIZE=131027 \nMPICH_GNI_NUM_BUFS=300 \nMPICH_GNI_NDREG_MAXSIZE=16777216 \nMPICH_GNI_MBOX_PLACEMENT=nic \nCOMEX_MAX_NB_OUTSTANDING=6\n
"},{"location":"Compiling-NWChem.html#example-nersc-cori","title":"Example: NERSC Cori","text":"These are variables used for compilation on the Haswell partition of NERSC Edison, a Cray XC40, as of November 6th 2016, when using Intel compilers (i.e. after issuing the commands module swap PrgEnv-gnu PrgEnv-intel
).
export NWCHEM_TARGET=LINUX64 \nexport USE_MPI=y \nexport NWCHEM_TARGET=LINUX64 \nexport ARMCI_NETWORK=MPI-PR \nexport USE_MPI=y \nexport USE_SCALAPACK=y \nexport SCALAPACK=\"-L$MKLROOT/lib/intel64 -lmkl_scalapack_ilp64 -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential \\ \n-lmkl_blacs_intelmpi_ilp64 -lpthread -lm\" \nexport SCALAPACK_SIZE=8 \nexport SCALAPACK_LIB=\"$SCALAPACK\" \nexport BLAS_SIZE=8\nexport BLASOPT=\"-L$MKLROOT/lib/intel64 -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential -lmkl_core -liomp5 -lpthread -ldmapp -lm\" \nexport USE_NOIO=y \nexport CRAYPE_LINK_TYPE=dynamic\n
To compile
make nwchem_config\nmake FC=ftn\n
The following env. variables needs to added to the batch queue submission script
MPICH_GNI_MAX_VSHORT_MSG_SIZE=10000 \nMPICH_GNI_MAX_EAGER_MSG_SIZE=98304 \nMPICH_GNI_NUM_BUFS=300 \nMPICH_GNI_NDREG_MAXSIZE=16777216 \nMPICH_GNI_MBOX_PLACEMENT=nic\nCOMEX_MAX_NB_OUTSTANDING=6\n
"},{"location":"Compiling-NWChem.html#how-to-intel-xeon-phi","title":"How-to: Intel Xeon Phi","text":"This section describes both the newer KNL and older KNC hardware, in reverse chronological order.
NWChem 6.6 (and later versions) support OpenMP threading, which is essential to obtaining good performance with NWChem on Intel Xeon Phi many-core processors. As of November 2016, the development version of NWChem contains threading support in the TCE coupled-cluster codes (primarily non-iterative triples in e.g. CCSD(T)), semi-direct CCSD(T), and plane-wave DFT (i.e. NWPW).
Required for compilation: Intel compilers, version 16+ (17+ is strongly recommended).
Environmental variables required for compilation:
% export USE_KNL=1 \n% export USE_OPENMP=1 \n% export USE_F90_ALLOCATABLE=T \n% export USE_FASTMEM=T\n
The latter two options are required to allocate temporaries in MCDRAM when running in flat mode. Please do not use cache mode for NWChem CCSD(T) codes. Note that using Fortran heap allocations means the memory statistics generated by MA are no longer accurate, but we doubt that anyone has been relying on these anyways.
USE_FASTMEM
requires the memkind library to be installed. An open source version of the memkind library can be downloaded from Github
Side note: With the exception of USE_FASTMEM
, all of the options in the KNL section apply to Intel Xeon processors as well. OpenMP is certainly useful on multicore processors as a way to reduce the communication overhead and memory footprint of NWChem.
When using MKL and Intel 16+, please use the following settings
% export BLASOPT =\"-mkl -qopenmp\" \n% export SCALAPACK=\"-mkl -qopenmp -lmkl_scalapack_ilp64 -lmkl_blacs_intelmpi_ilp64\"\n
The command require for compilation is
$ make FC=ifort CC=icc\n
Environmental variables recommended at runtime (assuming Intel OpenMP and MPI):
% export I_MPI_PIN=1 \n% export I_MPI_DEBUG=4 \n% export KMP_BLOCKTIME=1 \n% export KMP_AFFINITY=scatter,verbose\n
Once you are comfortable with the affinity settings, you can use these instead:
% export I_MPI_PIN=1\n% export KMP_BLOCKTIME=1 \n% export KMP_AFFINITY=scatter\n
Please consult the Intel or similar documentation regarding MPI+OpenMP affinity on your system. This is a complicated issue that depends on the software you use; it is impossible to document all the different combinations of MPI and OpenMP implementations that may be used with NWChem.
If you encounter segfaults not related to ARMCI, you may need to set the following or recompile with -heap-arrays
. Please create thread in the Forum if you observe this.
% ulimit -s unlimited \n% export OMP_STACKSIZE=32M\n
NWChem 6.5 (and later versions) offers the possibility of using Intel Xeon Phi hardware to perform the most computationally intensive part of the CCSD(T) calculations (non-iterative triples corrections).
Required for compilation: Intel Composer XE version 14.0.3 (or later versions)
Environmental variables required for compilation:
% export USE_OPENMP=1 \n% export USE_OFFLOAD=1\n
When using MKL and Intel Composer XE version 14 (or later versions), please use the following settings
% export BLASOPT =\"-mkl -openmp -lpthread -lm\" \n% export SCALAPACK=\"-mkl -openmp -lmkl_scalapack_ilp64 -lmkl_blacs_intelmpi_ilp64 -lpthread -lm\"\n
The command require for compilation is
$ make FC=ifort \n
From our experience using the CCSD(T) TCE module, we have determined that the optimal configuration is to use a single Global Arrays ranks for offloading work to each Xeon Phi card.
On the EMSL cascade system, each node is equipped with two coprocessors, and NWChem can allocate one GA ranks per coprocessor. In the job scripts, we recommend spawning just 6 GA ranks for each node, instead of 16 (number that would match the number of physical cores). Therefore, 2 out 6 GA ranks assigned to a particular compute node will offload to the coprocessors, while the remaining 6 cores while be used for traditional CPU processing duties. Since during offload the host core is idle, we can double the number of OpenMP threads for the host (OMP_NUM_THREADS=4
) in order to fill the idle core with work from another GA rank (4 process with 4 threads each will total 16 threads on each node).
NWChem itself automatically detects the available coprocessors in the system and properly partitions them for optimal use, therefore no action is required other than specifying the number of processes on each node (using the appropriate mpirun/mpiexec options) and setting the value of OMP_NUM_THREADS
as in the example above.
Environmental variables useful at run-time:
OMP_NUM_THREADS is needed for the thread-level parallelization on the Xeon CPU hosts
% export OMP_NUM_THREADS=4\n
MIC_USE_2MB_BUFFER greatly improve communication between host and Xeon Phi card
% export MIC_USE_2MB_BUFFER=16K\n
Very important: when running on clusters equipped with Xeon Phi and Infiniband network hardware (requiring ARMCI_NETWORK=OPENIB
), the following env. variable is required, even in the case when the Xeon Phi hardware is not utilized.
% export ARMCI_OPENIB_DEVICE=mlx4_0\n
"},{"location":"Compiling-NWChem.html#how-to-ibm-platforms","title":"How-to: IBM platforms","text":"The following environment variables need to be set
% export NWCHEM_TOP=<your path>/nwchem\n% export NWCHEM_TARGET=BGL\n% export ARMCI_NETWORK=BGMLMPI\n% export BGLSYS_DRIVER=/bgl/BlueLight/ppcfloor\n% export BGLSYS_ROOT=${BGLSYS_DRIVER}/bglsys\n% export BLRTS_GNU_ROOT=${BGLSYS_DRIVER}/blrts-gnu\n% export BGDRIVER=${BGLSYS_DRIVER}\n% export BGCOMPILERS=${BLRTS_GNU_ROOT}/bin\n% export USE_MPI=y\n% export LARGE_FILES=TRUE\n% export MPI_LIB=${BGLSYS_ROOT}/lib\n% export MPI_INCLUDE=${BGLSYS_ROOT}/include\n% export LIBMPI=\"-lfmpich_.rts -lmpich.rts -lmsglayer.rts -lrts.rts -ldevices.rts\"\n% export BGMLMPI_INCLUDE=/bgl/BlueLight/ppcfloor/bglsys/include\n% export BGMLLIBS=/bgl/BlueLight/ppcfloor/bglsys/lib\n
To compile, the following commands should be used:
% cd $NWCHEM_TOP/src\n% make nwchem_config\n% make FC=blrts_xlf >& make.log\n
The following environment variables need to be set
% export NWCHEM_TARGET=BGP\n% export ARMCI_NETWORK=DCMFMPI\n% export MSG_COMMS=DCMFMPI\n% export USE_MPI=y\n% export LARGE_FILES=TRUE\n% export BGP_INSTALLDIR=/bgsys/drivers/ppcfloor\n% export BGCOMPILERS=/bgsys/drivers/ppcfloor/gnu-linux/bin\n% export BGP_RUNTIMEPATH=/bgsys/drivers/ppcfloor/runtime\n% export ARMCIDRV=${BGP_INSTALLDIR}\n% export BGDRIVER=${ARMCIDRV}\n% export MPI_LIB=${BGDRIVER}/comm/lib\n% export MPI_INCLUDE=${BGDRIVER}/comm/include\n% export LIBMPI=\"-L${MPI_LIB} -lfmpich_.cnk -lmpich.cnk -ldcmfcoll.cnk -ldcmf.cnk -lpthread -lrt -L${BGP_RUNTIMEPATH}/SPI -lSPI.cna\"\n% export BGMLMPI_INCLUDE=${MPI_INCLUDE}\n
To compile, the following commands should be used:
% cd $NWCHEM_TOP/src\n% make nwchem_config\n% make FC=bgxlf >& make.log\n
The following environment variables need to be set
% export NWCHEM_TARGET=BGQ\n% export USE_MPI=y\n% export USE_MPIF=y\n% export USE_MPIF4=y\n% export MPI_INCLUDE=/bgsys/drivers/ppcfloor/comm/xl/include\n% export LIBMPI=\" \"\n% export BLASOPT=\"/opt/ibmmath/essl/5.1/lib64/libesslbg.a -llapack -lblas -Wl,-zmuldefs \"\n% export BLAS_LIB=\"/opt/ibmmath/essl/5.1/lib64/libesslbg.a -zmuldefs \"\n% export BLAS_SIZE=4\n% export USE_64TO32=y\n% set path=(/bgsys/drivers/ppcfloor/gnu-linux/bin/ $path)\n% export ARMCI_NETWORK=MPI-TS\n% export DISABLE_GAMIRROR=y\n
To compile, the following commands should be used:
% module load bgq-xl\n% make nwchem_config\n% make 64_to_32 >& make6t3.log\n% make >& make.log\n
WARNING: This is just a baseline port that we have tested and validated against our QA suite. There is large room for improvement both for serial performance (compiler options) and parallel performance (use of alternative ARMCI_NETWORKs other than MPI-TS)
The following environment variables should be set:
% export NWCHEM_TOP=<your path>/nwchem\n% export NWCHEM_TARGET=IBM64\n% export ARMCI_NETWORK=MPI-MT\n% export OBJECT_MODE=64\n% export USE_MPI=y\n
To compile, the following commands should be used:
% cd $NWCHEM_TOP/src\n% make nwchem_config\n% make FC=xlf >& make.log\n
"},{"location":"Compiling-NWChem.html#how-to-commodity-clusters-with-infiniband","title":"How-to: Commodity clusters with Infiniband","text":"Common environmental variables for building and running on most Infiniband clusters are:
export NWCHEM_TOP=<your path>/nwchem \n export NWCHEM_TARGET=LINUX64 \n export NWCHEM_MODULES=\"all\" \n export USE_MPI=y \n export USE_MPIF=y \n export USE_MPIF4=y \n
export ARMCI_NETWORK=OPENIB \n export IB_INCLUDE=<Location of Infiniband libraries>/include \n
cd $NWCHEM_TOP/src \n\n make nwchem_config \n\n make >& make.log\n
"},{"location":"Compiling-NWChem.html#how-to-commodity-clusters-with-intel-omni-path","title":"How-to: Commodity clusters with Intel Omni-Path","text":" export ARMCI_NETWORK=MPI-PR\n
The following setting is needed to avoid run-time errors
export PSM2_MEMORY=large\n
More details on this topic discussed a
https://github.com/nwchemgit/nwchem/issues/284
https://github.com/GlobalArrays/ga/issues/126
The current recommended approach for building a NWChem binary for a Windows platform is to build with the MinGW/Mingw32 environment. MinGW can be installed using a semi-automatic tool mingw-get-setup.exe (http://sourceforge.net/projects/mingw/files/Installer/). A basic MinGW installation is required (Basic Setup), plus pthreads-32, mingw32-gcc-fortran-dev of \u201cAll Packages\u201d and the MSYS software. More detailed MinGW/MSYS installation tips can be found in the following forum discussions
https://nwchemgit.github.io/Special_AWCforum/sp/id5124.html https://nwchemgit.github.io/Special_AWCforum/sp/id6628.htmlAnother essential prerequisite step is to install Mpich, which can be found at the following URL
http://www.mpich.org/static/tarballs/1.4.1p1/mpich2-1.4.1p1-win-ia32.msi
Once Mpich is installed, you should copy the installation files to a different location to avoid the failure of the tools compilation. You can use the following command
% cp -rp /c/Program\\ Files\\ \\(x86\\)/MPICH2/ ~/\n
You might want to install Python, too, by using the following installation file
https://www.python.org/ftp/python/2.7.8/python-2.7.8.msi
Next, you need to set the env.
% export NWCHEM_TOP=~/nwchem-6.8 \n% export NWCHEM_TARGET=LINUX\n% export USE_MPI=y \n% export MPI_LOC=~/MPICH2 \n% export MPI_INCLUDE=$MPI_LOC/include \n% export MPI_LIB=$MPI_LOC/lib \n% export LIBMPI=\"-lfmpich2g -lmpi\" \n% export PYTHONVERSION=27 \n% export DEPEND_CC=gcc\n% export USE_INTERNALBLAS=y\n% export NWCHEM_MODULES=all\n
Then, you can start the compilation by typing
% cd $NWCHEM_TOP/src \n% make nwchem_config \n% make FC=gfortran DEPEND_CC=gcc\n
"},{"location":"Compiling-NWChem.html#msys2","title":"MSYS2","text":"https://github.com/msys2/msys2/wiki/MSYS2-installation
pacman -Syuu\npacman -S mingw32/mingw-w64-i686-gcc-fortran\npacman -S mingw32/mingw-w64-i686-python3\npacman -S msys/make\n
"},{"location":"Compiling-NWChem.html#wsl-on-windows-10","title":"WSL on Windows 10","text":"A good alternative only on Windows 10 is Windows Subsystem for Linux (WSL). This option gives the best performance on Windows when WLS 2 is used. WSL allows you to obtain a functional command line Linux 64-bit NWChem environment, either by compiling the NWChem code from scratch or by using the Ubuntu precompiled NWChem package. Here is a link to the install guide
https://learn.microsoft.com/en-us/windows/wsl/install
Once Ubuntu is installed, the quickest method to install NWChem is by fetching the Ubuntu NWChem package by typing
sudo apt install nwchem\n
"},{"location":"Compiling-NWChem.html#general-site-installation","title":"General site installation","text":"The build procedures outlined above will allow use of NWChem within the NWChem directory structure. The code will look for the basis set library file in a default place within that directory structure. To install the code in a general, public place (e.g., /usr/local/NWChem) the following procedure can be applied:
mkdir /usr/local/NWChem\nmkdir /usr/local/NWChem/bin\nmkdir /usr/local/NWChem/data\n
cp $NWCHEM_TOP/bin/${NWCHEM_TARGET}/nwchem /usr/local/NWChem/bin\ncd /usr/local/NWChem/bin\nchmod 755 nwchem\n
cd $NWCHEM_TOP/src/basis\ncp -r libraries /usr/local/NWChem/data\ncd $NWCHEM_TOP/src/\ncp -r data /usr/local/NWChem\ncd $NWCHEM_TOP/src/nwpw\ncp -r libraryps /usr/local/NWChem/data\n
$HOME
directory is probably the best plan for new installations. Users would have to issue the following command prior to using NWChem:ln -s /usr/local/NWChem/data/default.nwchemrc $HOME/.nwchemrc\n
Contents of the default.nwchemrc
file based on the above information should be:
nwchem_basis_library /usr/local/NWChem/data/libraries/\nnwchem_nwpw_library /usr/local/NWChem/data/libraryps/\nffield amber\namber_1 /usr/local/NWChem/data/amber_s/\namber_2 /usr/local/NWChem/data/amber_q/\namber_3 /usr/local/NWChem/data/amber_x/\namber_4 /usr/local/NWChem/data/amber_u/\nspce /usr/local/NWChem/data/solvents/spce.rst\ncharmm_s /usr/local/NWChem/data/charmm_s/\ncharmm_x /usr/local/NWChem/data/charmm_x/\n
Of course users can copy this file instead of making the symbolic link described above and change these defaults at their discretion.
It is can also be useful to use the NWCHEM_BASIS_LIBRARY
environment variable when testing a new installation when an old one exists. This will allow you to overwrite the value of nwchem_basis_library
in your .nwchemrc
file and point to the new basis library. For example:
% export NWCHEM_BASIS_LIBRARY=\"$NWCHEM/data-5.0/libraries/\"\n
Do not forget the trailing \u201c/\u201d.
"},{"location":"Constraints.html","title":"Constraints","text":"The constraints directive allows the user to specify which constraints should be imposed on the system during the analysis of potential energy surface. Currently such constraints are limited to fixed atom positions and harmonic restraints (springs) on the distance between the two atoms. The general form of constraints block is presented below:
CONSTRAINTS [string name ] \\ \n [clear] \\ \n [enable||disable] \\ \n [fix atom <integer list>] \\ \n [spring bond <integer atom1> <integer atom2> <real k> <real r0> ] \n [spring dihedral <integer atom1> <integer atom2> <integer atom3> <integer atom4> <real k> <real phi0 in degrees> ] \n [spring bondings <real K0> <real gamma0> [<real ca> <integer atom1a> <integer atom2a> \n <real cb> <integer atom1b> <integer atom2b>\n ...]]\n [penalty pbondings <real K0> <real gcut0> <real gamma0> [<real ca> <integer atom1a> <integer atom2a> \n <real cb> <integer atom1b> <integer atom2b>\n ...]]\n END\n
The keywords are described below
name
- optional keyword that associates a name with a given set of constraints. Any unnamed set of constraints will be given a name default and will be automatically loaded prior to a calculation. Any constraints with the name other than default will have to be loaded manually using the SET directive. For example, CONSTRAINTS one \n spring bond 1 3 5.0 1.3\n fix atom 1 \n END \n
the above constraints can be loaded using the following set directive that assigns the name one
as the current constraint
set constraints one \n .... \n task ....\n
clear
- destroys any prior constraint information. This may be useful when the same constraints have to be redefined or completely removed from the runtime database.enable||disable
- enables or disables without actually removing the information from the runtime database.fix atom
- fixes atom positions during geometry optimization. This directive requires an integer list that specifies which atoms are to be fixed. This directive can be repeated within a given constraints block. To illustrate the use fix atom
directive let us consider a situation where we would like to fix atoms 1, 3, 4, 5, 6 while performing an optimization on some hypothetical system. There are actually several ways to enter this particular constraint. constraints \n fix atom 1 3 4 5 6 \n end\n
constraints \n fix atom 1 3:6 \n end\n
fix atom
directives: constraints \n fix atom 1 \n fix atom 3:6 \n end\n
spring bond
< i j k r0 > - places a spring with a spring constant k and equilibrium length r0 between atoms i and j (all in atomic units). Please note that this type of constraint adds an additional term to the total energy expressionE = Etotal + \u00bd k (rij - r0)2
This additional term forces the distance between atoms i and j to be in the vicinity of r0 but never exactly that. In general the spring energy term will always have some nonzero residual value, and this has to be accounted for when comparing total energies. The spring bond
directive can be repeated within a given constraints block. If the spring between the same pair of atoms is defined more than once, it will be replaced by the latest specification in the order it appears in the input block.
spring dihedral places a spring with....
spring bondings places a spring with....
penalty pbondings places a penalty function with....
Dockerfile recipes are available at the repository https://github.com/nwchemgit/nwchem-dockerfiles
Docker images of the 7.2.0 release are hosted at https://ghcr.io at the link https://github.com/nwchemgit/nwchem-dockerfiles/pkgs/container/nwchem-720 and can be used with the following command
docker run --shm-size 256m -u `id -u` --rm -v [host_system_dir]:/data ghcr.io/nwchemgit/nwchem-dev input.nw\n
For example, the following command can be used when starting from the /tmp
directory:
docker run --shm-size 256m -u `id -u` --rm -v /tmp:/data ghcr.io/nwchemgit/nwchem-dev /data/input.nw\n
where the input file input.nw
is located in the /tmp
directory.
The following docker command will run NWChem in parallel using three processes
docker run --shm-size 256m -u `id -u` --rm --entrypoint='mpirun' -v /tmp:/data ghcr.io/nwchemgit/nwchem-dev -np 2 nwchem /data/xvdw.nw\n
This example uses the input file xvdw.nw
available on the host directory /tmp
The associated Dockerfile is available at https://github.com/nwchemgit/nwchem-dockerfiles/blob/master/nwchem-dev/Dockerfile
"},{"location":"Containers.html#singularity","title":"Singularity","text":"Singularity recipes for NWChem are available at. https://github.com/edoapra/nwchem-singularity
Singularity images are available at https://cloud.sylabs.io/library/edoapra or at ghcr.io/edoapra/nwchem-singularity/nwchem-dev.ompi41x
"},{"location":"Containers.html#instruction-for-running-on-emsl-tahoma","title":"Instruction for running on EMSL Tahoma","text":"Instructions for running NWChem Singularity images on EMSL tahoma
#!/bin/bash\n#SBATCH -N 2\n#SBATCH -t 00:29:00\n#SBATCH -A allocation_name\n#SBATCH --ntasks-per-node 36\n#SBATCH -o singularity_library.output.%j\n#SBATCH -e ./singularity_library.err.%j\n#SBATCH -J singularity_library\n#SBATCH --export ALL\nsource /etc/profile.d/modules.sh\nexport https_proxy=http://proxy.emsl.pnl.gov:3128\nmodule purge\nmodule load gcc/9.3.0\nmodule load openmpi/4.1.4\nSCRATCH=/big_scratch\n# pull new image to the current directory\nsingularity pull -F --name ./nwchems_`id -u`.img oras://ghcr.io/edoapra/nwchem-singularity/nwchem-dev.ompi41x:latest\n# copy image from current directory to local /big_scratch/ on compute nodes\nsrun -N $SLURM_NNODES -n $SLURM_NNODES cp ./nwchems_`id -u`.img $SCRATCH/nwchems.img\n# basis library files\nexport SINGULARITYENV_NWCHEM_BASIS_LIBRARY=/cluster/apps/nwchem/nwchem/src/basis/libraries/\n# use /big_scratch as scratch_dir\nexport SINGULARITYENV_SCRATCH_DIR=$SCRATCH\n# run\nsrun --mpi=pmi2 -N $SLURM_NNODES -n $SLURM_NPROCS singularity exec --bind $SCRATCH $SCRATCH/nwchems.img nwchem \"file name\"\n
"},{"location":"Containers.html#podman","title":"Podman","text":"Docker images could be run using podman commands
podman run --rm --shm-size 256m --volume /tmp:/data -i -t ghcr.io/nwchemgit/nwchem-dev/amd64 xvdw.nw\n
"},{"location":"Current_events.html","title":"Current events","text":""},{"location":"Current_events.html#emsl-arrows-an-easier-way-to-use-nwchem","title":"EMSL Arrows - An Easier Way to Use NWChem","text":"Are you just learning NWChem and would like to have an easy way to generate input decks, check your output decks against a large database of calculations, perform simple thermochemistry calculations, calculate the NMR and IR spectra of modest size molecule, or just try out NWChem before installing it? EMSL Arrows scientific service can help. A Web API to EMSL Arrows is now available for Alpha testing. Click on this link. For more information contact Eric Bylaska (eric.bylaska@pnnl.gov).
\u2018 EMSL Arrows API\u2018
Besides using the Web API you can also use EMSL Arrows by just sending a simple email. Try it out by clicking here to send an email to arrows@emsl.pnnl.gov.
EMSL arrows is a scientific service that uses NWChem and chemical computational databases to make materials and chemical modeling accessible via a broad spectrum of digital communications including posts to web APIs, social networks, and traditional email. Molecular modeling software has previously been extremely complex, making it prohibitive to all but experts in the field, yet even experts can struggle to perform calculations. This service is designed to be used by experts and non-experts alike. Experts will be able carry out and keep track of large numbers of complex calculations with diverse levels of theories present in their workflows. Additionally, due to a streamlined and easy-to-use input, non-experts will be able to carry out a wide variety of molecular modeling calculations previously not accessible to them.
You do not need to be a molecular modeling expert to use EMSL Arrows. It is very easy to use. You simply email chemical reactions to arrows@emsl.pnnl.gov and then an email is sent back to you with thermodynamic, reaction pathway (kinetic), spectroscopy, and other results. There are currently 42,000+ calculations in the EMSL Arrows database and it is growing every day. If an EMSL Arrows request requires a calculation not already in the database, then it will automatically start the calculation on a small number of freely available computers and send back the results when finished. More information can be found at Arrows. We would like thank the DOD SERDP program and the DOE OS OBER EMSL project for their support.
Tutorial on YouTube (mobile devices)
"},{"location":"Current_events.html#nwchem-66-has-been-released","title":"NWChem 6.6 has been released","text":"NWChem team is pleased to announce the 6.6 release. We would like to express our sincere thanks to all the authors and contributors who made this release possible. This release includes several new capabilities and bug fixes. The key features of NWChem 6.6 include:
USE_NOIO=y
) of Semi-direct MP2In preparation for next-generation supercomputer Summit, the Oak Ridge Leadership Computing Facility (OLCF) selected 13 partnership projects into its Center for Accelerated Application Readiness (CAAR) program. A collaborative effort of application development teams and staff from the OLCF Scientific Computing group, CAAR is focused on redesigning, porting, and optimizing application codes for Summit\u2019s hybrid CPU\u2013GPU architecture. Researchers from Pacific Northwest National Laboratory and IBM Almaden Research Center aim to scale the NWChem application to utilize GPU accelerators to provide benchmark energies to allow for accurate parameterization of force fields for glycans as well as develop and disseminate an open-source database of accurate glycan conformational energies. New implementations of high-accuracy methods capable of taking advantage of Summit computational resources will significantly shift the system-size limit tractable by very accurate yet expensive methods accounting for the inter-electron correlation effects. https://www.olcf.ornl.gov/caar/
"},{"location":"Current_events.html#nwchem-tutorial-at-nsccs","title":"NWChem Tutorial at NSCCS","text":"Two day workshop (April 21st-22nd 2015) will introduce researchers in the field of computational chemistry to the NWChem software package. NWChem aims to provide its users with computational chemistry tools that can handle (bio)molecules, nanostructures, and solid-state from quantum to classical, and all combinations thereof. https://web.archive.org/web/20150911003831/https://www.nsccs.ac.uk/NWChem2015.php
"},{"location":"Current_events.html#emsl-named-an-intel-parallel-computing-center","title":"EMSL Named an Intel Parallel Computing Center","text":"Intel has named EMSL, located at Pacific Northwest National Laboratory, as an Intel Parallel Computing Center. As an Intel PCC, EMSL\u2019s scientific computing team will work with Intel to modernize the codes of NWChem to take advantage of technological advancements in computers. NWChem is one of the Department of Energy\u2019s premier open-source computational chemistry software suites and has been developed at EMSL. The modernized codes will be applicable to several science drivers including studies of aerosol particles, soil chemistry, biosystems, hormone-cofactor functionality in proteins, ionic liquids in cells, spectroscopies, new materials and large-scale reaction mechanisms. https://web.archive.org/web/20170502154826/http://www.emsl.pnl.gov/emslweb/news/emsl-named-intel%C2%AE-parallel-computing-center
"},{"location":"Current_events.html#nwchem-sc2014-paper","title":"NWChem SC2014 paper","text":"This paper presents the implementation and performance of the highly accurate CCSD(T) quantum chemistry method on the Intel Xeon Phi coprocessor within the context of the NWChem computational chemistry package. The widespread use of highly correlated methods in electronic structure calculations is contingent upon the interplay between advances in theory and the possibility of utilizing the ever-growing computer power of emerging heterogeneous architectures. We discuss the design decisions of our implementation as well as the optimizations applied to the compute kernels and data transfers between host and coprocessor. We show the feasibility of adopting the Intel Many Integrated Core Architecture and the Intel Xeon Phi coprocessor for developing efficient computational chemistry modeling tools. Remarkable scalability is demonstrated by benchmarks. Our solution scales up to a total of 62560 cores with the concurrent utilization of Intel Xeon processors and Intel Xeon Phi coprocessors. New CCSD(T) implementation is available in the 6.5 release of NWchem http://sc14.supercomputing.org/schedule/event_detail-evid=pap217.html
"},{"location":"Current_events.html#nwchem-65-has-been-released","title":"NWChem 6.5 has been released","text":"NWChem team is pleased to announce the 6.5 release. We would like to express our sincere thanks to all the authors and contributors who made this release possible. This release includes several new powerful capabilities.
On May 17, 2013 NWChem version 6.3 was released.
"},{"location":"Current_events.html#nwchem-highlighted-in-doe-pulse","title":"NWChem highlighted in DOE Pulse","text":"NWChem\u2019s efforts to solve chemistry challenges with high performance computing were highlighted in DOE Pulse.
"},{"location":"Current_events.html#nwchem-611-bug-fix-release-now-available","title":"NWChem 6.1.1 bug fix release now available","text":"On June 26, 2012 NWChem version 6.1.1 was released. This version is solely a bug fix release with the same functionality as NWChem 6.1.
"},{"location":"Current_events.html#nwchem-schedules-tutorials-and-hands-on-training","title":"NWChem Schedules Tutorials and Hands-On Training","text":"Centers or sites interested in hosting a workshop or tutorial with or without hands-on training, please contact nwchemgit@gmail.com
Past tutorial/training sessions:
On January 27, 2012 NWChem version 6.1 was released. An overview of the changes, added functionality, and bug fixes in this latest version can be found.
"},{"location":"Current_events.html#pccp-perspective-published","title":"PCCP Perspective Published","text":"Developers of NWChem at EMSL were the lead authors on a perspective article in the highly ranked PCCP journal on utilizing high performance computing for chemistry and parallel computational chemistry. The article and cover were published in Phys. Chem. Chem. Phys. 12, 6896 (2010).
"},{"location":"Current_events.html#nwchem-released-as-open-source","title":"NWChem released as open-source","text":"On September 30, 2010 NWChem version 6.0 was released. This version marks a transition of NWChem to an open-source software package. The software is being released under the Educational Community License 2.0 (ECL 2.0).
New functionality, improvements, and bug fixes include:
The Dynamical Nucleation Theory Monte Carlo (DNTMC) module utilizes Dynamical Nucleation Theory (DNT) to compute monomer evaporation rate constants at a given temperature. The reactant is a molecular cluster of i rigid monomers while the product is a molecular cluster with i-1 monomers plus a free monomer. A Metropolis Monte Carlo (MC) methodology is utilized to sample the configurational space of these i rigid monomers. Both homogenous and heterogenous clusters are supported.
"},{"location":"DNTMC.html#subgroups","title":"SubGroups","text":"The DNTMC module supports the use of subgroups in the MC simulations. The number of subgroups is defined in the input through a set directive:
set subgroup_number <integer number>\n
where the number of subgroups requested is the argument. The number of processors that each subgroup has access to is determined by Total/subgroup_number. A separate MC simulation is performed within each subgroup. To use this functionality, NWChem must be compiled with the USE_SUBGROUPS environmental variable set.
Each MC simulation starts at a different starting configuration, which is equally spaced along the reaction coordinate. The statistical distributions which these MC simulations produce are averaged to form the final statistical distribution. Output from these subgroups consists of various files whose names are of the form (*.#num
). These files include restart files and other data files. The NWChem runtime database (RTDB) is used as input for these subgroups and must be globally accessible (set through the Permanent_Dir directive) to all processes.
The input block has the following form:
DNTMC \n [nspecies <integer number>] \n [species <list of strings name[nspecies]] \n [nmol <list of integers number[nspecies]>] \n\n [temp <real temperature>] \n [rmin <real rmin>] \n [rmax <real rmax>] \n [nob <integer nob>] \n [mcsteps <integer number>] \n [tdisp <real disp>] \n [rdisp <real rot>] \n [rsim || rconfig] \n [mprnt <integer number>] \n [convergence <real limit>] \n [norestart] \n [dntmc_dir <string directory>] \n\n [print &&|| noprint] \n\n [procrestart <integer number>] \n END\n
"},{"location":"DNTMC.html#definition-of-monomers","title":"Definition of Monomers","text":"Geometry information is required for each unique monomer (species). See the geometry input section 6 for more information. A unique label must be given for each monomer geometry. Additionally, the noautosym and nocenter options are suggested for use with the DNTMC module to prevent NWChem from changing the input geometries. Symmetry should also not be used since cluster configurations will seldom exhibit any symmetry; although monomers themselves may exhibit symmetry.
GEOMETRY [<string name species_1>] noautosym nocenter ... \n ... \n symmetry c1 \n END \n\n GEOMETRY [<string name species_2>] noautosym nocenter ... \n ... \n symmetry c1 \n END \n\n ...\n
The molecular cluster is defined by the number of unique monomers (nspecies). The geometry labels for each unique monomer is given in a space delimited list (species). Also required are the number of each unique monomer in the molecular cluster given as a space delimited list (nmol). These keywords are required and thus have no default values.
[nspecies <integer number>] \n [species <list of strings name[nspecies]] \n [nmol <list of integers number[nspecies]>]\n
An example is shown for a 10 monomer cluster consisting of a 50/50 mixture of water and ammonia.
"},{"location":"DNTMC.html#dntmc-runtime-options","title":"DNTMC runtime options","text":"Several options control the behavior of the DNTMC module. Some required options such as simulation temperature (temp), cluster radius (rmin and rmax), and maximum number of MC steps (mcsteps) are used to control the MC simulation.
[temp <real temperature>]\n
This required option gives the simulation temperature in which the MC simulation is run. Temperature is given in kelvin.
[rmin <real rmin>] \n [rmax <real rmax>] \n [nob <integer nob>]\n
These required options define the minimum and maximum extent of the projected reaction coordinate (The radius of a sphere centered at the center of mass). Rmin should be large enough to contain the entire molecular cluster of monomers and Rmax should be large enough to include any relevant configurational space (such as the position of the reaction bottleneck). These values are given in Angstroms.
The probability distributions obtain along this projected reaction coordinate has a minimum value of Rmin and a maximum value of Rmax. The distributions are created by chopping this range into a number of smaller sized bins. The number of bins (nob) is controlled by the option of the same name.
[mcsteps <integer number>] \n [tdisp <real disp default 0.04>] \n [rdisp <real rot default 0.06>] \n [convergence <real limit default 0.00>]\n
These options define some characteristics of the MC simulations. The maximum number of MC steps (mcsteps) to take in the course of the calculation run is a required option. Once the MC simulation has performed this number of steps the calculation will end. This is a per Markov chain quantity. The maximum translational step size (tdisp) and rotational step size (rdisp) are optional inputs with defaults set at 0.04 Angstroms and 0.06 radians, respectively. The convergence keyword allows the convergence threshold to be set. The default is 0.00 which effectively turns off this checking. Once the measure of convergence goes below this threshold the calculation will end.
[rsim || rconfig]
These optional keywords allow the selection of two different MC sampling methods. rsim selects a Metropolis MC methodology which samples configurations according to a Canonical ensemble. The rconfig keyword selects a MC methodology which samples configurations according to a derivative of the Canonical ensemble with respect to the projected reaction coordinate. These keywords are optional with the default method being rconfig.
[mprnt <integer number default 10>] \n [dntmc_dir <string directory default ./>] \n [norestart]\n
These three options define some of the output and data analysis behavior. mprnt is an option which controls how often data analysis occurs during the simulation. Currently, every mprnt*nob
MC steps data analysis is performed and results are output to files and/or to the log file. Restart files are also written every mprnt number of MC steps during the simulation. The default value is 10. The keyword dntmc_dir allows the definition of an alternate directory to place DNTMC specific ouputfiles. These files can be very large so be sure enough space is available. This directory should be accessible by every process (although not necessarily globally accessible). The default is to place these files in the directory which NWChem is run (./). The keyword norestart turns off the production of restart files. By default restart files are produced every mprnt number of MC steps.
The DNTMC module supports the use of PRINT and NOPRINT Keywords. The specific labels which DNTMC recognizes are included below.
Name Print Level Description \u201cdebug\u201d debug Some debug information written in Output file. \u201cinformation\u201d none Some information such as energies and geometries. \u201cmcdata\u201d low Production of a set of files (Prefix.MCdata.#num
). These files are a concatenated list of structures, Energies, and Dipole Moments for each accepted configuration sampled in the MC run. \u201calldata\u201d low Production of a set of files (Prefix.Alldata.#num
). These files include the same information as MCdata files. However, they include ALL configurations (accepted or rejected). \u201cmcout\u201d debug - low Production of a set of files (Prefix.MCout.#num
). These files contain a set of informative and debug information. Also included is the set of information which mirrors the Alldata files. \u201cfdist\u201d low Production of a file (Prefix.fdist
) which contains a concatenated list of distributions every mprnt*100
MC steps. \u201ctimers\u201d debug Enables some timers in the code. These timers return performance statistics in the output file every time data analysis is performed. Two timers are used. One for the mcloop itself and one for the communication step.
Several output files are available in the DNTMC module. This section defines the format for some of these files.
*.fdist
This file is a concatenated list of radial distribution functions printed out every mprnt MC steps. Each distribution is normalized (sum equal to one) with respect to the entire (all species) distribution. The error is the RMS deviation of the average at each point. Each entry is as follows:
[1] # Total Configurations \n [2] Species number # \n [3](R coordinate in Angstroms) (Probability) (Error) \n [Repeats nob times] \n [2 and 3 Repeats for each species]\n [4] *** separator. \n ``` \n2. `*.MCdata.#` \n\n This file is a concatenated list of accepted configurations. Each\n file corresponds to a single Markov chain. The dipole is set to zero\n for methods which do not produce a dipole moment with energy\n calculations. Rsim is either the radial extent of the cluster\n (r-config) or the simulation radius (r-simulation). Each entry is as\n follows: \n
[1] (Atomic label) (X Coord.) (Y Coord.) (Z Coord.) \n[1 Repeats for each atom in the cluster configuration, units are in\nangstroms] \n[2] Ucalc = # hartree \n[3] Dipole = (X) (Y) (Z) au\n[4] Rsim = # Angstrom \n[1 through 4 repeats for each accepted configuration]\n
3. `*.MCout.#` \n\n This file has the same format and information content as the MCdata\n file except that additional output is included. This additional\n output includes summary statistics such as acceptance ratios,\n average potential energy, and average radius. The information\n included for accepted configurations does not include dipole moment\n or radius. \n\n4. `*.MCall.#` \n\n This file has the same format as the MCdata file expect that it\n includes information for all configurations for which an energy is\n determined. All accepted and rejected configurations are included in\n this file. \n\n5. `*.restart.#` \n\n This file contains the restart information for each subgroup. Its\n format is not very human readable but the basic fields are described\n in short here. \n
Random number seed Potential energy in hartrees\nSum of potential energy\nAverage potential energy\nSum of the squared potential energy\nSquared potential energy Dipole moment in au (x) (Y) (Z)\nRmin and Rmax Rsim (Radius corresponds to r-config or r-sim methods)\nArray of nspecies length, value indicates the number of each type of monomer which lies at radius Rsim from the center of mass [r-simulation sets these to zero]\nSum of Rsim Average of Rsim\nNumber of accepted translantional moves\nNumber of accepted rotational moves Number of accepted volume moves\nNumber of attempted moves (volume) (translational) (rotational)\nNumber of accepted moves (Zero)\nNumber of accepted moves (Zero)\nNumber of MC steps completed\n[1] (Atom label) (X Coord.) (Y Coord.) (Z Coord.)\n[1 repeats for each atom in cluster configurations, units are in angstroms]\n[2] Array of nspecies length, number of configurations in bin\n[3] Array of nspecies length, normalized number of configurations in each bin\n[4] (Value of bin in Angstroms) (Array of nspecies length, normalized probability of bin)\n[2 through 4 repeats nob times]\n
\n## DNTMC Restart\n
[procrestart ]
Flag to indicate restart postprocessing. It is suggested that this\npostprocessing run is done utilizing only one processor.\n\nIn order to restart a DNTMC run, postprocessing is required to put\nrequired information into the runtime database (RTDB). During a run\nrestart information is written to files (`Prefix.restart.#num`) every\nmprnt MC steps. This information must be read and deposited into the\nRTDB before a restart run can be done. The number taken as an argument\nis the number of files to read and must also equal the number of\nsubgroups the calculation utilizes. The start directive must also be set\nto restart for this to work properly. All input is read as usual.\nHowever, values from the restart files take precedence over input\nvalues. Some keywords such as mcsteps are not defined in the restart\nfiles. Task directives are ignored. You must have a RTDB present in your\npermanent directory.\n\nOnce postprocessing is done a standard restart can be done from the RTDB\nby removing the procrestart keyword and including the restart directive.\n\n## Task Directives\n\nThe DNTMC module can be used with any level of theory which can produce\nenergies. Gradients and Hessians are not required within this\nmethodology. If dipole moments are available, they are also utilized.\nThe task directive for the DNTMC module is shown below:\n
task dntmc
## Example\n\nThis example is for a molecular cluster of 10 monomers. A 50/50 mixture\nof water and ammonia. The energies are done at the SCF/6-31++G** level\nof\ntheory.\n
start # start or restart directive if a restart run MEMORY 1000 mb
PERMANENT_DIR /home/bill # Globally accessible directory which the # rtdb (*.db) file will/does reside.
basis \u201cao basis\u201d spherical noprint * library 6-31++G** end # basis set directive for scf energies
scf singlet rhf tol2e 1.0e-12 vectors input atomic thresh 1.0e-06 maxiter 200 print none end # scf directive for scf energies
geometry geom1 units angstroms noautosym nocenter noprint O 0.393676503613369 -1.743794626956820 -0.762291912129271 H -0.427227157125777 -1.279138812526320 -0.924898279781319 H 1.075463952717060 -1.095883929075060 -0.940073459864222 symmetry c1 end # geometry of a monomer with title \u201cgeom1\u201d
geometry geom2 units angstroms noautosym nocenter noprint N 6.36299e-08 0.00000 -0.670378 H 0.916275 0.00000 -0.159874 H -0.458137 0.793517 -0.159874 H -0.458137 -0.793517 -0.159874 symmetry c1 end # geometry of another monomer with title \u201cgeom2\u201d # other monomers may be included with different titles
set subgroups_number 8 # set directive which gives the number of subgroups # each group runs a separate MC simulation
dntmc # DNTMC input block nspecies 2 # The number of unique species (number of titled geometries # above) species geom1 geom2 # An array of geometry titles (one for each # nspecies/geometry) nmol 5 5 # An array stating the number of each # monomer/nspecies/geometry in simulation. temp 243.0 mcsteps 1000000 rmin 3.25 rmax 12.25 mprnt 10 tdisp 0.04 rdisp 0.06 print none fdist mcdata # this print line first sets the print-level to none # then it states that the .fdist and .mcdata.(#num) # files are to be written rconfig dntmc_dir /home/bill/largefile # An accessible directory which to place the .fdist, # .mcdata.(#num), and *.restart.(#num) files. convergence 1.0D+00 end
task scf dntmc # task directive stating that energies are to be done at the scf #level of theory. ```
"},{"location":"DPLOT.html","title":"DPLOT","text":""},{"location":"DPLOT.html#overview","title":"Overview","text":" DPLOT \n ... \n END\n
This directive is used to obtain the plots of various types of electron densities (or orbitals) of the molecule. The electron density is calculated on a specified set of grid points using the molecular orbitals from SCF or DFT calculation. The output file is either in MSI Insight II contour format (default) or in the Gaussian Cube format. DPLOT is not executed until the task dplot
directive is given. Different sub-directives are described below.
The implementation of the dplot functionality uses mostly local memory. The quantities stored in local memory are:
The stack memory setting in the input file must be sufficient to hold these quantities in local memory on a processor.
"},{"location":"DPLOT.html#gaussian-gaussian-cube-format","title":"GAUSSIAN: Gaussian Cube format","text":" GAUSSIAN\n
A outputfile is generate in Gaussian Cube format. You can visualize this file using gOpenMol (after converting the Gaussian Cube file with gcube2plt), Molden or Molekel.
"},{"location":"DPLOT.html#title-title-directive","title":"TITLE: Title directive","text":" TITLE <string Title default Unknown Title>\n
This sub-directive specifies a title line for the generated input to the Insight program or for the Gaussian cube file. Only one line is allowed.
"},{"location":"DPLOT.html#limitxyz-plot-limits","title":"LIMITXYZ: Plot limits","text":" LIMITXYZ [units <string Units default angstroms>] \n <real X_From> <real X_To> <integer No_Of_Spacings_X> \n <real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n <real Z_From> <real Z_To> <integer No_Of_Spacings_Z>\n
This sub-directive specifies the limits of the cell to be plotted. The grid is generated using No_Of_Spacings + 1 points along each direction. The known names for Units are angstroms, au and bohr.
"},{"location":"DPLOT.html#spin-density-to-be-plotted","title":"SPIN: Density to be plotted","text":" SPIN <string Spin default total>\n
This sub-directive specifies what kind of density is to be computed. The known names for Spin are total
, alpha
, beta
and spindens
, the last being computed as the difference between \u03b1 and \u03b2 electron densities.
OUTPUT <string File_Name default dplot>\n
This sub-directive specifies the name of the generated input to the Insight program or the generated Gaussian cube file. The name OUTPUT
is reserved for the standard NWChem output.
VECTORS <string File_Name default movecs> [<string File_Name2>]\n
This sub-directive specifies the name of the molecular orbital file. If the second file is optionally given the density is computed as the difference between the corresponding electron densities. The vector files have to match.
"},{"location":"DPLOT.html#where-density-evaluation","title":"WHERE: Density evaluation","text":" WHERE <string Where default grid>\n
This sub-directive specifies where the density is to be computed. The known names for where
are grid
(the calculation of the density is performed on the set of a grid points specified by the sub-directive LimitXYZ
and the file specified by the sub-directive Output is generated), nuclei
(the density is computed at the position of the nuclei and written to the NWChem output) and g+n
(both).
ORBITALS [<string Option default density>]\n <integer No_Of_Orbitals> \n <integer Orb_No_1 Orb_No_2 ...>\n
This sub-directive specifies the subset of the orbital space for the calculation of the electron density. The density is computed using the occupation numbers from the orbital file modified according to the spin
directive. If the contours of the orbitals are to be plotted Option should be set to view
(instead of the implicit default value density
). Note, that in this case No_Of_Orbitals should be set to 1 and sub-directive where
is automatically set to grid
. Also specification of two orbital files conflicts with the view option. alpha orbitals are always plotted unless spin
is set to beta
.
CIVECS [<string Name of civecs file>]\n
"},{"location":"DPLOT.html#densmat-density-matrix","title":"DENSMAT: Density matrix","text":"DENSMAT [<string Name of density matrix file>]\n
"},{"location":"DPLOT.html#examples","title":"Examples","text":""},{"location":"DPLOT.html#charge-density","title":"Charge Density","text":""},{"location":"DPLOT.html#example-of-hf-charge-density-plot-with-gaussian-cube-output","title":"Example of HF charge density plot (with Gaussian Cube output)","text":"start n2 \ngeometry \n n 0 0 0.53879155 \n n 0 0 -0.53879155 \nend \nbasis; n library cc-pvdz;end \nscf \nvectors output n2.movecs \nend \ndplot \n TITLE HOMO \n vectors n2.movecs \n LimitXYZ \n -3.0 3.0 10 \n -3.0 3.0 10 \n -3.0 3.0 10 \n spin total \n gaussian \n output chargedensity.cube \nend \ntask scf \ntask dplot\n
"},{"location":"DPLOT.html#example-of-ccsd-charge-density-plot-with-gaussian-cube-output","title":"Example of CCSD charge density plot (with Gaussian Cube output)","text":"start n2\ngeometry\n n 0 0 0.53879155\n n 0 0 -0.53879155\n symmetry c2v\nend\nbasis; n library cc-pvdz;end\ntce\n ccsd\n densmat n2.densmat\nend\ntask tce energy\ndplot\n TITLE HOMO\n LimitXYZ\n -3.0 3.0 10\n -3.0 3.0 10\n -3.0 3.0 10\n spin total\n gaussian\n densmat n2.densmat\n output ccsddensity.cube\nend\ntask dplot\n
"},{"location":"DPLOT.html#molecular-orbital","title":"Molecular Orbital","text":"Example of orbital plot (with Insight II contour output):
start n2 \ngeometry \n n 0 0 0.53879155 \n n 0 0 -0.53879155 \nend \nbasis; n library cc-pvdz;end \nscf \nvectors output n2.movecs \nend \ndplot \n TITLE HOMO \n vectors n2.movecs \n LimitXYZ \n -3.0 3.0 10 \n -3.0 3.0 10 \n -3.0 3.0 10 \n spin total \n orbitals view; 1; 7 \n output homo.grd \nend \ntask scf \ntask dplot\n
"},{"location":"DPLOT.html#transition-density","title":"Transition Density","text":"TDDFT calculation followed by a calculation of the transition density for a specific excited state using the DPLOT block
echo \nstart h2o-td \ntitle h2o-td \nmemory stack 400 mb heap 50 mb global 350 mb \ncharge 0 \ngeometry units au noautoz nocenter \nsymmetry group c1 \n O 0.00000000000000 0.00000000000000 0.00000000000000 \n H 0.47043554760291 1.35028113274600 1.06035416576826 \n H -1.74335410533480 -0.23369304784300 0.27360785442967 \nend \nbasis \"ao basis\" print \n H S \n 13.0107010 0.19682158E-01 \n 1.9622572 0.13796524 \n 0.44453796 0.47831935 \n H S \n 0.12194962 1.0000000 \n H P \n 0.8000000 1.0000000 \n O S \n 2266.1767785 -0.53431809926E-02 \n 340.87010191 -0.39890039230E-01 \n 77.363135167 -0.17853911985 \n 21.479644940 -0.46427684959 \n 6.6589433124 -0.44309745172 \n O S \n 0.80975975668 1.0000000 \n O S \n 0.25530772234 1.0000000 \n O P \n 17.721504317 0.43394573193E-01 \n 3.8635505440 0.23094120765 \n 1.0480920883 0.51375311064 \n O P \n 0.27641544411 1.0000000 \n O D \n 1.2000000 1.0000000 \nend \ndft \n xc bhlyp \n grid fine \n direct \n convergence energy 1d-5 \nend \ntddft \n rpa \n nroots 5 \n thresh 1d-5 \n singlet \n notriplet \n civecs \nend \ntask tddft energy \ndplot \n civecs h2o-td.civecs_singlet \n root 2 \n LimitXYZ \n -3.74335 2.47044 50 \n -2.23369 3.35028 50 \n -2 3.06035 50 \n gaussian \n output root-2.cube \nend \ntask dplot\n
"},{"location":"DPLOT.html#plot-the-excited-state-density","title":"Plot the excited state density","text":"echo \nstart tddftgrad_co_exden \ngeometry \n C 0.00000000 0.00000000 -0.64628342 \n O 0.00000000 0.00000000 0.48264375 \n symmetry c1 \nend \nbasis spherical \n * library \"3-21G\" \nend \ndft \n xc pbe0 \n direct \nend \ntddft \n nroots 3 \n notriplet \n target 1 \n civecs \n grad \n root 1 \n end \nend \ntask tddft gradient \ndplot \n densmat tddftgrad_co_exden.dmat \n LimitXYZ \n-4.0 4.0 50 \n-4.0 4.0 50 \n-4.0 4.0 50 \n gaussian \n output co_exden.cube \nend \ntask dplot\n
"},{"location":"Density-Functional-Theory-for-Molecules.html","title":"Density Functional Theory (DFT)","text":""},{"location":"Density-Functional-Theory-for-Molecules.html#overview","title":"Overview","text":"The NWChem density functional theory (DFT) module uses the Gaussian basis set approach to compute closed shell and open shell densities and Kohn-Sham orbitals in the:
The formal scaling of the DFT computation can be reduced by choosing to use auxiliary Gaussian basis sets to fit the charge density (CD) and/or fit the exchange-correlation (XC) potential.
DFT input is provided using the compound DFT directive
DFT \n ... \n END\n
The actual DFT calculation will be performed when the input module encounters the TASK directive.
TASK DFT\n
Once a user has specified a geometry and a Kohn-Sham orbital basis set the DFT module can be invoked with no input directives (defaults invoked throughout). There are sub-directives which allow for customized application; those currently provided as options for the DFT module are:
VECTORS [[input] (<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>)] \\ \n [swap [alpha||beta] <integer vec1 vec2> ...] \\ \n [output <string output_filename default input_movecs>] \\ \n XC [[acm] [b3lyp] [beckehandh] [pbe0]\\ \n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke97-d] [becke98] \\ \n [hcth] [hcth120] [hcth147] [hcth147@tz2p]\\\n [hcth407] [becke97gga1] [hcth407p]\\ \n [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\ \n [xpkzb99] [cpkzb99] [xtpss03] [ctpss03] [xctpssh]\\ \n [b1b95] [bb1k] [mpw1b95] [mpwb1k] [pw6b95] [pwb6k] [m05] [m05-2x] [vs98] \\ \n [m06] [m06-hf] [m06-L] [m06-2x] \\ \n [HFexch <real prefactor default 1.0>] \\ \n [becke88 [nonlocal] <real prefactor default 1.0>] \\ \n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [gill96 [nonlocal] <real prefactor default 1.0>] \\ \n [lyp <real prefactor default 1.0>] \\ \n [perdew81 <real prefactor default 1.0>] \\ \n [perdew86 [nonlocal] <real prefactor default 1.0>] \\ \n [perdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [pw91lda <real prefactor default 1.0>] \\ \n [slater <real prefactor default 1.0>] \\ \n [vwn_1 <real prefactor default 1.0>] \\ \n [vwn_2 <real prefactor default 1.0>] \\ \n [vwn_3 <real prefactor default 1.0>] \\ \n [vwn_4 <real prefactor default 1.0>] \\ \n [vwn_5 <real prefactor default 1.0>] \\ \n [vwn_1_rpa <real prefactor default 1.0>] \\ \n [xtpss03 [nonlocal] <real prefactor default 1.0>] \\ \n [ctpss03 [nonlocal] <real prefactor default 1.0>] \\ \n [bc95 [nonlocal] <real prefactor default 1.0>] \\ \n [xpw6b95 [nonlocal] <real prefactor default 1.0>] \\ \n [xpwb6k [nonlocal] <real prefactor default 1.0>] \\ \n [xm05 [nonlocal] <real prefactor default 1.0>] \\ \n [xm05-2x [nonlocal] <real prefactor default 1.0>] \\ \n [cpw6b95 [nonlocal] <real prefactor default 1.0>] \\ \n [cpwb6k [nonlocal] <real prefactor default 1.0>] \\ \n [cm05 [nonlocal] <real prefactor default 1.0>] \\ \n [cm05-2x [nonlocal] <real prefactor default 1.0>]] \\ \n [xvs98 [nonlocal] <real prefactor default 1.0>]] \\ \n [cvs98 [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-L [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-hf [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06 [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-2x [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-L [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-hf [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06 [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-2x [nonlocal] <real prefactor default 1.0>]] \n CONVERGENCE [[energy <real energy default 1e-7>] \\ \n [density <real density default 1e-5>] \\ \n [gradient <real gradient default 5e-4>] \\ \n [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>] \\ \n [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 30>] \\ \n [damp <integer ndamp default 0>] [nodamping] \\ \n [diis [nfock <integer nfock default 10>]] \\ \n [nodiis] [lshift <real lshift default 0.5>] \\ \n [nolevelshifting] \\ \n [hl_tol <real hl_tol default 0.1>] \\ \n [rabuck [n_rabuck <integer n_rabuck default 25>]\\\n [fast] ] \n GRID [(xcoarse||coarse||medium||fine||xfine||huge) default medium] \\ \n [(gausleg||lebedev ) default lebedev ] \\ \n [(becke||erf1||erf2||ssf) default erf1] \\ \n [(euler||mura||treutler) default mura] \\ \n [rm <real rm default 2.0>] \\ \n [nodisk] \n TOLERANCES [[tight] [tol_rho <real tol_rho default 1e-10>] \\ \n [accCoul <integer accCoul default 8>] \\ \n [radius <real radius default 25.0>]] \n [(LB94||CS00 <real shift default none>)] \n DECOMP \n ODFT \n DIRECT \n SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$>]\n INCORE \n ITERATIONS <integer iterations default 30> \n MAX_OVL \n CGMIN \n RODFT \n MULLIKEN \n DISP \n XDM [ a1 <real a1> ] [ a2 <real a2> ] \n MULT <integer mult default 1> \n NOIO \n PRINT||NOPRINT\n SYM <string (ON||OFF) default ON>\n ADAPT <string (ON||OFF) default ON>\n
The following sections describe these keywords and optional sub-directives that can be specified for a DFT calculation in NWChem.
"},{"location":"Density-Functional-Theory-for-Molecules.html#specification-of-basis-sets-for-the-dft-module","title":"Specification of Basis Sets for the DFT Module","text":"The DFT module requires at a minimum the basis set for the Kohn-Sham molecular orbitals. This basis set must be in the default basis set named \u201cao basis\u201d, or it must be assigned to this default name using the SET directive.
In addition to the basis set for the Kohn-Sham orbitals, the charge density fitting basis set can also be specified in the input directives for the DFT module. This basis set is used for the evaluation of the Coulomb potential in the Dunlap scheme12. The charge density fitting basis set must have the name cd basis
. This can be the actual name of a basis set, or a basis set can be assigned this name using the SET directive. If this basis set is not defined by input, the O(N4) exact Coulomb contribution is computed.
The user also has the option of specifying a third basis set for the evaluation of the exchange-correlation potential. This basis set must have the name xc basis
. If this basis set is not specified by input, the exchange contribution (XC) is evaluated by numerical quadrature. In most applications, this approach is efficient enough, so the \u201cxc basis\u201d basis set is not required.
For the DFT module, the input options for defining the basis sets in a given calculation can be summarized as follows:
ao basis
- Kohn-Sham molecular orbitals; required for all calculationscd basis
- charge density fitting basis set; optional, but recommended for evaluation of the Coulomb potentialUse of the auxiliary density functional theory method (ADFT)3 can be triggered by means of the adft
keyword. This can result in a large speed-up when using \u201cpure\u201d GGA functionals (e.g. PBE96) and Laplacian-dependent mGGA functionals (e.g. SCAN-L). The speed-up comes from the use of the fitted density obtained with the charge density fitting technique to approximate both the Coulomb and Exchange-Correlation contributions.
The ADFT method is similar in spirit to the exchange-correlation fitting technique triggered by specifying an xc basis without the adft
keyword. It is important to note that, different to straight exchange-correlation fitting, energy derivatives are well-defined within the ADFT framework. As a consequence, geometry optimizations and harmonic vibrational frequencies are well-behaved.
The ADFT method requires a charge density fitting basis set (see DFT basis set section). If not cd basis
set is provided, the weigend coulomb fitting
basis set will be loaded.
The VECTORS directive is the same as that in the SCF module. Currently, the LOCK keyword is not supported by the DFT module, however the directive
MAX_OVL\n
has the same effect.
"},{"location":"Density-Functional-Theory-for-Molecules.html#xc-and-decomp-exchange-correlation-potentials","title":"XC and DECOMP: Exchange-Correlation Potentials","text":" XC [[acm] [b3lyp] [beckehandh] [pbe0] [bhlyp]\\ \n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke98] [hcth] [hcth120] [hcth147] [hcth147@tz2p] \\\n [hcth407] [becke97gga1] [hcth407p] \\ \n [optx] [hcthp14] [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\ \n [m05] [m05-2x] [m06] [m06-l] [m06-2x] [m06-hf] [m08-hx] [m08-so] [m11] [m11-l]\\ \n [HFexch <real prefactor default 1.0>] \\ \n [becke88 [nonlocal] <real prefactor default 1.0>] \\ \n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [gill96 [nonlocal] <real prefactor default 1.0>] \\ \n [lyp <real prefactor default 1.0>] \\ \n [perdew81 <real prefactor default 1.0>] \\ \n [perdew86 [nonlocal] <real prefactor default 1.0>] \\ \n [perdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [pw91lda <real prefactor default 1.0>] \\ \n [slater <real prefactor default 1.0>] \\ \n [vwn_1 <real prefactor default 1.0>] \\ \n [vwn_2 <real prefactor default 1.0>] \\ \n [vwn_3 <real prefactor default 1.0>] \\ \n [vwn_4 <real prefactor default 1.0>] \\ \n [vwn_5 <real prefactor default 1.0>] \\ \n [vwn_1_rpa <real prefactor default 1.0>]]\n
The user has the option of specifying the exchange-correlation treatment in the DFT Module (see table below for full list of functionals). The default exchange-correlation functional is defined as the local density approximation (LDA) for closed shell systems and its counterpart the local spin-density (LSD) approximation for open shell systems. Within this approximation, the exchange functional is the Slater \u03c11/3 functional45, and the correlation functional is the Vosko-Wilk-Nusair (VWN) functional (functional V)6. The parameters used in this formula are obtained by fitting to the Ceperley and Alder Quantum Monte-Carlo solution of the homogeneous electron gas.
These defaults can be invoked explicitly by specifying the following keywords within the DFT module input directive, XC slater vwn_5
.
That is, this statement in the input file
dft \n XC slater vwn_5 \nend \ntask dft\n
is equivalent to the simple line
task dft\n
The DECOMP
directive causes the components of the energy corresponding to each functional to be printed, rather than just the total exchange-correlation energy that is the default. You can see an example of this directive in the sample input.
Many alternative exchange and correlation functionals are available to the user as listed in the table below. The following sections describe how to use these options.
"},{"location":"Density-Functional-Theory-for-Molecules.html#libxc-interface-new-in-nwchem-720","title":"Libxc interface New in NWChem 7.2.0:","text":"If NWChem is compiled by linking it with the libxc DFT library (as described in the Interfaces with External Software section), the user will be able to use most of the XC functionals available in libxc. The input syntax requires to use the xc keyword followed by the functionals name from list available in Libxc
For example, the following input for the NWChem libxc interface
dft\n xc gga_x_pbe 1.0 gga_x_pbe 1.0\nend\n
while trigger use of the same PBE96 functionals as in the NWChem built-in interface
dft\n xc xpbe96 1.0 cpbe96 1.0\nend\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#exchange-correlation-functionals","title":"Exchange-Correlation Functionals","text":"There are several Exchange and Correlation functionals in addition to the default slater
and vwn_5
functionals. These are either local or gradient-corrected functionals (GCA); a full list can be found in the table below.
The Hartree-Fock exact exchange functional, (which has O(N4) computation expense), is invoked by specifying
XC HFexch\n
Note that the user also has the ability to include only the local or nonlocal contributions of a given functional. In addition, the user can specify a multiplicative prefactor (the variable in the input) for the local/nonlocal component or total. An example of this might be,
XC becke88 nonlocal 0.72\n
The user should be aware that the Becke88 local component is simply the Slater exchange and should be input as such.
Any combination of the supported exchange functional options can be used. For example, the popular Gaussian B3 exchange could be specified as:
XC slater 0.8 becke88 nonlocal 0.72 HFexch 0.2\n
Any combination of the supported correlation functional options can be used. For example, B3LYP could be specified as:
XC vwn_1_rpa 0.19 lyp 0.81 HFexch 0.20 slater 0.80 becke88 nonlocal 0.72\n
and X3LYP as:
xc vwn_1_rpa 0.129 lyp 0.871 hfexch 0.218 slater 0.782 \\\nbecke88 nonlocal 0.542 xperdew91 nonlocal 0.167\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#setting-up-common-exchange-correlation-functionals","title":"Setting up common exchange-correlation functionals","text":"xc b3lyp
xc pbe0
xc xpbe96 cpbe96
xc xperdew91 perdew91
xc bhlyp
xc beckehandh
xc becke88 perdew86
xc becke88 perdew91
xc becke88 lyp
Minnesota Functionals
Analytic second derivatives are not supported with the Minnesota functionals yet.
"},{"location":"Density-Functional-Theory-for-Molecules.html#combined-exchange-and-correlation-functionals","title":"Combined Exchange and Correlation Functionals","text":"In addition to the options listed above for the exchange and correlation functionals, the user has the alternative of specifying combined exchange and correlation functionals.
The available hybrid functionals (where a Hartree-Fock Exchange component is present) consist of the Becke \u201chalf and half\u201d7, the adiabatic connection method8, Becke 1997 (\u201cBecke V\u201d paper9).
The keyword beckehandh
specifies that the exchange-correlation energy will be computed as
EXC \u2248 \u00bdEXHF + \u00bdEXSlater + \u00bdECPW91LDA
We know this is NOT the correct Becke prescribed implementation that requires the XC potential in the energy expression. But this is what is currently implemented as an approximation to it.
The keyword acm
specifies that the exchange-correlation energy is computed as
EXC = a0EXHF + (1 - a0)EXSlater + aX\u03b4EXBecke88 + ECVWN + aC\u03b4ECPerdew91
where
a0 = 0.20, aX = 0.72, aC = 0.81
and \u03b4 stands for a non-local component.
The keyword b3lyp
specifies that the exchange-correlation energy is computed as
EXC = a0EXHF + (1 - a0)EXSlater + aX\u03b4EXBecke88 + (1 - aC)ECVWN_1_RPA + aC\u03b4ECLYP
where
a0 = 0.20, aX = 0.72, aC = 0.81
"},{"location":"Density-Functional-Theory-for-Molecules.html#xc-functionals-summary","title":"XC Functionals Summary","text":"Table\u00a01: Available Exchange (X) and Correlation (C) functionals. GGA is the Generalized Gradient Approximation, and Meta refers to Meta-GGAs. The column 2nd refers to second derivatives of the energy with respect to nuclear position. Keyword X C GGA Meta Hybr. 2nd Ref. slater * Y 45 vwn_1 * Y 6 vwn_2 * Y 6 vwn_3 * Y 6 vwn_4 * Y 6 vwn_5 * Y 6 vwn_1_rpa * Y 6 perdew81 * Y 10 pw91lda * Y 11 xbecke86b * * N 12 becke88 * * Y 13 xperdew86 * * N 14 xperdew91 * * Y 11 xpbe96 * * Y 1516 gill96 * * Y 17 optx * * N 18 mpw91 * * Y 1920 xft97 * * N 2122 rpbe * * Y 23 revpbe * * Y 24 xpw6b95 * * N 25 xpwb6k * * N 25 perdew86 * * Y 14 lyp * * Y 26 perdew91 * * Y 2728 cpbe96 * * Y 1516 cft97 * * N 2122 op * * N 29 hcth * * * N 30 hcth120 * * * N 31 hcth147 * * * N 31 hcth147@tz2p * * * N 32 hcth407 * * * N 33 becke97gga1 * * * N 34 hcthp14 * * * N 35 ft97 * * * N 2122 htch407p * * * N 36 bop * * * N 29 pbeop * * * N 37 xpkzb99 * * N 38 cpkzb99 * * N 38 xtpss03 * * N 39 ctpss03 * * N 39 bc95 * * N 23 cpw6b95 * * N 25 cpwb6k * * N 25 xm05 * * * N 4041 cm05 * * N 4041 m05-2x * * * * N 42 xm05-2x * * * N 42 cm05-2x * * N 42 xctpssh * * N 43 bb1k * * N 24 mpw1b95 * * N 44 mpwb1k * * N 44 pw6b95 * * N 25 pwb6k * * N 25 m05 * * N 40 vs98 * * N 45 xvs98 * * N 45 cvs98 * * N 45 m06-L * * * N 46 xm06-L * * N 46 cm06-L * * N 46 m06-hf * * N 47 xm06-hf * * * N 47 cm06-hf * * N 47 m06 * * N 48 xm06 * * * N 48 cm06 * * N 48 m06-2x * * N 46 xm06-2x * * * N 46 cm06-2x * * N 46 cm08-hx * * N 49 xm08-hx * * N 49 m08-hx * * * * N 49 cm08-so * * N 49 xm08-so * * N 49 m08-so * * * * N 49 cm11 * * N 50 xm11 * * N 50 m11 * * * * N 50 cm11-l * * N 51 xm11-l * * N 51 m11-l * * * N 51 csogga * * N 49 xsogga * * N 49 sogga * * * N 49 csogga11 * * N 52 xsogga11 * * N 52 sogga11 * * * N 52 csogga11-x * N 53 xsogga11-x * * N 53 sogga11-x * * * * N 53 dldf * * * * N 54 beckehandh * * * Y 7 b3lyp * * * * Y 8 acm * * * * Y 8 becke97 * * * * N 9 becke97-1 * * * * N 30 becke97-2 * * * * N 55 becke97-3 * * * * N 56 becke97-d * * * * N 57 becke98 * * * * N 58 pbe0 * * * * Y 59 mpw1k * * * * Y 60 xmvs15 * * N 61 hle16 * * * * Y 62 scan * * * * N 63 scanl * * * * N 64 revm06-L * * * * N 65 revm06 * * * * * N 66 wb97x * * * * N 67 wb97x-d3 * * * * N 68 rscan * * * * N 69 r2scan * * * * N 70 r2scan0 * * * * * N 71 r2scanl * * * * N 7273 ncap * * * Y 74"},{"location":"Density-Functional-Theory-for-Molecules.html#meta-gga-functionals","title":"Meta-GGA Functionals","text":"One way to calculate meta-GGA energies is to use orbitals and densities from fully self-consistent GGA or LDA calculations and run them in one iteration in the meta-GGA functional. It is expected that meta-GGA energies obtained this way will be close to fully self consistent meta-GGA calculations.
It is possible to calculate metaGGA energies both ways in NWChem, that is, self-consistently or with GGA/LDA orbitals and densities. However, since second derivatives are not available for metaGGAs, in order to calculate frequencies, one must use task dft freq numerical. A sample file with this is shown below, in Sample input file. In this instance, the energy is calculated self-consistently and geometry is optimized using the analytical gradients.
(For more information on metaGGAs, see Kurth et al 1999 75 for a brief description of meta-GGAs, and citations 14-27 therein for thorough background)
Note: both TPSS and PKZB correlation require the PBE GGA CORRELATION (which is itself dependent on an LDA). The decision has been made to use these functionals with the accompanying local PW91LDA. The user cannot set the local part of these metaGGA functionals.
"},{"location":"Density-Functional-Theory-for-Molecules.html#range-separated-functionals","title":"Range-Separated Functionals","text":"Using the Ewald decomposition
we can split the the Exchange interaction as
Therefore, the long-range HF Exchange energy becomes
cam <real cam> cam_alpha <real cam_alpha> cam_beta <cam_beta>\n
cam
represents the attenuation parameter \u03bc, cam_alpha
and cam_beta
are the \u03b1 and \u03b2 parameters that control the amount of short-range DFT and long-range HF Exchange according to the Ewald decomposition. As r12 \u2192 0, the HF exchange fraction is \u03b1, while the DFT exchange fraction is 1 - \u03b1. As r12 \u2192 \u221e, the HF exchange fraction approaches \u03b1 + \u03b2 and the DFT exchange fraction approaches 1 - \u03b1 - \u03b2. In the HSE functional, the HF part is short-ranged and DFT is long-ranged.
Range separated functionals (or long-range corrected or LC) can be specified as follows:
CAM-B3LYP:
xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00 \ncam 0.33 cam_alpha 0.19 cam_beta 0.46\n
LC-BLYP:
xc xcamb88 1.00 lyp 1.0 hfexch 1.00 \ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
LC-PBE:
xc xcampbe96 1.0 cpbe96 1.0 HFexch 1.0 \ncam 0.30 cam_alpha 0.0 cam_beta 1.0\n
LC-PBE0 or CAM-PBE0:
xc xcampbe96 1.0 cpbe96 1.0 HFexch 1.0\ncam 0.30 cam_alpha 0.25 cam_beta 0.75\n
BNL (Baer, Neuhauser, Lifshifts):
xc xbnl07 0.90 lyp 1.00 hfexch 1.00 \ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
LC-wPBE:
xc xwpbe 1.00 cpbe96 1.0 hfexch 1.00 \ncam 0.4 cam_alpha 0.00 cam_beta 1.00\n
LRC-wPBEh:
xc xwpbe 0.80 cpbe96 1.0 hfexch 1.00 \ncam 0.2 cam_alpha 0.20 cam_beta 0.80\n
QTP-00
xc xcamb88 1.00 lyp 0.80 vwn_5 0.2 hfexch 1.00 \ncam 0.29 cam_alpha 0.54 cam_beta 0.37\n
rCAM-B3LYP
xc xcamb88 1.00 lyp 1.0 vwn_5 0. hfexch 1.00 becke88 nonlocal 0.13590\ncam 0.33 cam_alpha 0.18352 cam_beta 0.94979\n
HSE03 functional: 0.25*Ex(HF-SR) - 0.25*Ex(PBE-SR) + Ex(PBE) + Ec(PBE), where gamma(HF-SR) = gamma(PBE-SR)
xc hse03\n
or it can be explicitly set as
xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25\ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
HSE06 functional:
xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25\ncam 0.11 cam_alpha 0.0 cam_beta 1.0\n
Please see references 76777879808182838485868788 (not a complete list) for further details about the theory behind these functionals and applications.
Example illustrating the CAM-B3LYP functional:
start h2o-camb3lyp \ngeometry units angstrom \n O 0.00000000 0.00000000 0.11726921 \n H 0.75698224 0.00000000 -0.46907685 \n H -0.75698224 0.00000000 -0.46907685 \nend \nbasis spherical \n * library aug-cc-pvdz \nend \ndft \n xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00 \n cam 0.33 cam_alpha 0.19 cam_beta 0.46 \n direct \n iterations 100 \nend \ntask dft energy\n
Example illustrating the HSE03 functional:
echo \nstart h2o-hse \ngeometry units angstrom \nO 0.00000000 0.00000000 0.11726921 \nH 0.75698224 0.00000000 -0.46907685 \nH -0.75698224 0.00000000 -0.46907685 \nend \nbasis spherical \n * library aug-cc-pvdz \nend \ndft \n xc hse03 \n iterations 100 \n direct \n end \ntask dft energy\n
or alternatively
dft \n xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25 \n cam 0.33 cam_alpha 0.0 cam_beta 1.0 \n iterations 100 \n direct \nend \ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#ssb-d-functional","title":"SSB-D functional","text":"The SSB-D8990 functional is a small correction to the non-empirical PBE functional and includes a portion of Grimme\u2019s dispersion correction (s6=0.847455). It is designed to reproduce the good results of OPBE for spin-state splittings and reaction barriers, and the good results of PBE for weak interactions. The SSB-D functional works well for these systems, including for difficult systems for DFT (dimerization of anthracene, branching of octane, water-hexamer isomers, C12H12 isomers, stacked adenine dimers), and for NMR chemical shieldings.
It can be specified as
xc ssb-d\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#semi-empirical-hybrid-dft-combined-with-perturbative-mp2","title":"Semi-empirical hybrid DFT combined with perturbative MP2","text":"This theory combines hybrid density functional theory with MP2 semi-empirically. The B2PLYP functional, which is an example of this approximation, can be specified as:
mp2\n freeze atomic\nend\ndft \n xc HFexch 0.53 becke88 0.47 lyp 0.73 mp2 0.27 \n dftmp2 \nend\n
For details of the theory, please see reference91.
"},{"location":"Density-Functional-Theory-for-Molecules.html#lb94-and-cs00-asymptotic-correction","title":"LB94 and CS00: Asymptotic correction","text":"The keyword LB94
will correct the asymptotic region of the XC definition of exchange-correlation potential by the van-Leeuwen-Baerends exchange-correlation potential that has the correct asymptotic behavior. The total energy will be computed by the XC definition of exchange-correlation functional. This scheme is known to tend to overcorrect the deficiency of most uncorrected exchange-correlation potentials.
The keyword CS00
, when supplied with a real value of shift (in atomic units), will perform Casida-Salahub \u201800 asymptotic correction. This is primarily intended for use with TDDFT. The shift is normally positive (which means that the original uncorrected exchange-correlation potential must be shifted down).
When the keyword CS00
is specified without the value of shift, the program will automatically supply it according to the semi-empirical formula of Zhan, Nichols, and Dixon (again, see TDDFT for more details and references). As the Zhan\u2019s formula is calibrated against B3LYP results, it is most meaningful to use this with the B3LYP functional, although the program does not prohibit (or even warn) the use of any other functional.
Sample input files of asymptotically corrected TDDFT calculations can be found in the corresponding section.
"},{"location":"Density-Functional-Theory-for-Molecules.html#sample-input-file","title":"Sample input file","text":"A simple example calculates the geometry of water, using the metaGGA functionals xtpss03
and ctpss03
. This also highlights some of the print features in the DFT module. Note that you must use the line task dft freq numerical
because analytic hessians are not available for the metaGGAs:
title \"WATER 6-311G* meta-GGA XC geometry\" \necho \ngeometry units angstroms \n O 0.0 0.0 0.0 \n H 0.0 0.0 1.0 \n H 0.0 1.0 0.0 \nend \nbasis \n H library 6-311G* \n O library 6-311G* \nend \ndft \n iterations 50 \n print kinetic_energy \n xc xtpss03 ctpss03 \n decomp \nend \ntask dft optimize \ntask dft freq numerical\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#iterations-or-maxiter-number-of-scf-iterations","title":"ITERATIONS or MAXITER: Number of SCF iterations","text":" ITERATIONS or MAXITER <integer iterations default 30>\n
The default optimization in the DFT module is to iterate on the Kohn-Sham (SCF) equations for a specified number of iterations (default 30). The keyword that controls this optimization is ITERATIONS
, and has the following general form,
iterations <integer iterations default 30>\n
or
maxiter <integer iterations default 30>\n
The optimization procedure will stop when the specified number of iterations is reached or convergence is met. See an example that uses this directive in Sample input file.
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-scf-convergence-control","title":"CONVERGENCE: SCF Convergence Control","text":" CONVERGENCE [energy <real energy default 1e-6>] \\ \n [density <real density default 1e-5>] \\ \n [gradient <real gradient default 5e-4>] \\ \n [hl_tol <real hl_tol default 0.1>] \n [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 30>] \\ \n [damp <integer ndamp default 0>] [nodamping] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [(diis [nfock <integer nfock default 10>]) || nodiis] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>] \\ \n [(lshift <real lshift default 0.5>) || nolevelshifting] \\ \n [rabuck [n_rabuck <integer n_rabuck default 25>] \\\n [fast] ]\n
Convergence is satisfied by meeting any or all of three criteria;
CONVERGENCE energy <real energy default 1e-6>\n
CONVERGENCE density <real density default 1e-5>\n
CONVERGENCE gradient <real gradient default 5e-4>\n
The default optimization strategy is to immediately begin direct inversion of the iterative subspace. Damping is also initiated (using 70% of the previous density) for the first 2 iteration. In addition, if the HOMO - LUMO gap is small and the Fock matrix diagonally dominant, then level-shifting is automatically initiated. There are a variety of ways to customize this procedure to whatever is desired.
An alternative optimization strategy is to specify, by using the change in total energy (between iterations N and N-1), when to turn damping, level-shifting, and/or DIIS on/off. Start and stop keywords for each of these is available as,
CONVERGENCE [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>]\n
So, for example, damping, DIIS, and/or level-shifting can be turned on/off as desired.
Another strategy can be to specify how many iterations (cycles) you wish each type of procedure to be used. The necessary keywords to control the number of damping cycles (ncydp
), the number of DIIS cycles (ncyds
), and the number of level-shifting cycles (ncysh
) are input as,
CONVERGENCE [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 0>]\n
The amount of damping, level-shifting, time at which level-shifting is automatically imposed, and Fock matrices used in the DIIS extrapolation can be modified by the following keywords
CONVERGENCE [damp <integer ndamp default 0>] \\ \n [diis [nfock <integer nfock default 10>]] \\ \n [lshift <real lshift default 0.5>] \\ \n [hl_tol <real hl_tol default 0.1>]]\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-damp-keyword","title":"CONVERGENCE DAMP Keyword","text":"Damping is defined to be the percentage of the previous iterations density mixed with the current iterations density. So, for example
CONVERGENCE damp 70\n
would mix 30% of the current iteration density with 70% of the previous iteration density.
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-lshift-keyword","title":"CONVERGENCE LSHIFT Keyword","text":"Level-Shifting is defined as the amount of shift applied to the diagonal elements of the unoccupied block of the Fock matrix. The shift is specified by the keyword lshift
. For example the directive,
CONVERGENCE lshift 0.5\n
causes the diagonal elements of the Fock matrix corresponding to the virtual orbitals to be shifted by 0.5 a.u. By default, this level-shifting procedure is switched on whenever the HOMO-LUMO gap is small. Small is defined by default to be 0.05 au but can be modified by the directive hl_tol. An example of changing the HOMO-LUMO gap tolerance to 0.01 would be,
CONVERGENCE hl_tol 0.01\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-diis-keyword","title":"CONVERGENCE DIIS Keyword","text":"Direct inversion of the iterative subspace with extrapolation of up to 10 Fock matrices is a default optimization procedure. For large molecular systems the amount of available memory may preclude the ability to store this number of N2 arrays in global memory. The user may then specify the number of Fock matrices to be used in the extrapolation (must be greater than three (3) to be effective). To set the number of Fock matrices stored and used in the extrapolation procedure to 3 would take the form,
CONVERGENCE diis 3\n
The user has the ability to simply turn off any optimization procedures deemed undesirable with the obvious keywords,
CONVERGENCE [nodamping] [nodiis] [nolevelshifting]\n
For systems where the initial guess is very poor, the user can try using fractional occupation of the orbital levels during the initial cycles of the SCF convergence92. The input has the following form
CONVERGENCE rabuck [n_rabuck <integer n_rabuck default 25>]]\n
where the optional value n_rabuck
determines the number of SCF cycles during which the method will be active. For example, to set equal to 30 the number of cycles where the Rabuck method is active, you need to use the following line
CONVERGENCE rabuck 30\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-fast-keyword","title":"CONVERGENCE FAST Keyword","text":"convergence fast
turns on a series of parameters that most often speed-up convergence, but not in 100% of the cases.
CONVERGENCE fast\n
Here is an input snippet that would give you the same result as convergence fast
dft\nconvergence lshift 0. ncydp 0 dampon 1d99 dampoff 1d-4 damp 40\nend\nset quickguess t\ntask dft \n
"},{"location":"Density-Functional-Theory-for-Molecules.html#cdft-constrained-dft","title":"CDFT: Constrained DFT","text":"This option enables the constrained DFT formalism by Wu and Van Voorhis93:
CDFT <integer fatom1 latom1> [<integer fatom2 latom2>] (charge||spin <real constaint_value>) \\ \n [pop (becke||mulliken||lowdin) default lowdin]\n
Variables fatom1
and latom1
define the first and last atom of the group of atoms to which the constraint will be applied. Therefore, the atoms in the same group should be placed continuously in the geometry input. If fatom2
and latom2
are specified, the difference between group 1 and 2 (i.e. 1-2) is constrained.
The constraint can be either on the charge or the spin density (number of alpha - beta electrons) with a user specified constraint_value
. Note: No gradients have been implemented for the spin constraints case. Geometry optimizations can only be performed using the charge constraint.
To calculate the charge or spin density, the Becke, Mulliken, and Lowdin population schemes can be used. The Lowdin scheme is default while the Mulliken scheme is not recommended. If basis sets with many diffuse functions are used, the Becke population scheme is recommended.
Multiple constraints can be defined simultaniously by defining multiple cdft lines in the input. The same population scheme will be used for all constraints and only needs to be specified once. If multiple population options are defined, the last one will be used. When there are convergence problems with multiple constraints, the user is advised to do one constraint first and to use the resulting orbitals for the next step of the constrained calculations.
It is best to put convergence nolevelshifting
in the dft directive to avoid issues with gradient calculations and convergence in CDFT. Use orbital swap to get a broken-symmetry solution.
An input example is given below.
geometry \nsymmetry \n C 0.0 0.0 0.0 \n O 1.2 0.0 0.0 \n C 0.0 0.0 2.0 \n O 1.2 0.0 2.0 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc b3lyp \n convergence nolevelshifting \n odft \n mult 1 \n vectors swap beta 14 15 \n cdft 1 2 charge 1.0 \nend \ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#smear-fractional-occupation-of-the-molecular-orbitals","title":"SMEAR: Fractional Occupation of the Molecular Orbitals","text":"The SMEAR
keyword is useful in cases with many degenerate states near the HOMO (eg metallic clusters)
SMEAR <real smear default 0.001>\n
This option allows fractional occupation of the molecular orbitals. A Gaussian broadening function of exponent smear is used as described in the paper by Warren and Dunlap94. The user must be aware that an additional energy term is added to the total energy in order to have energies and gradients consistent.
"},{"location":"Density-Functional-Theory-for-Molecules.html#fon-calculations-with-fractional-numbers-of-electrons","title":"FON: Calculations with fractional numbers of electrons","text":""},{"location":"Density-Functional-Theory-for-Molecules.html#restricted","title":"Restricted","text":"fon partial 3 electrons 1.8 filled 2\n
Here 1.8 electrons will be equally divided over 3 valence orbitals and 2 orbitals are fully filled. The total number of electrons here is 5.8
Example input:
echo \ntitle \"carbon atom\" \nstart carbon_fon \ngeometry \nsymmetry c1 \n C 0.0 0.0 0.0 \nend \nbasis \n * library 6-31G \nend\ndft \n direct \n grid xfine \n convergence energy 1d-8 \n xc pbe0 \n fon partial 3 electrons 1.8 filled 2 \nend\ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#unrestricted","title":"Unrestricted","text":"fon alpha partial 3 electrons 0.9 filled 2 \nfon beta partial 3 electrons 0.9 filled 2\n
Here 0.9 electrons will be equally divided over 3 alpha valence orbitals and 2 alpha orbitals are fully filled. Similarly for beta. The total number of electrons here is 5.8
Example input:
echo \ntitle \"carbon atom\" \nstart carbon_fon \ngeometry \n C 0.0 0.0 0.0 \nend \nbasis \n * library 6-31G \nend \ndft \n odft \n fon alpha partial 3 electrons 0.9 filled 2 \n fon beta partial 3 electrons 0.9 filled 2 \nend \ntask dft energy\n
To set fractional numbers in the core orbitals, add the following directive in the input file:
set dft:core_fon .true.\n
Example input:
dft\n print \"final vectors analysis\"\n odft\n direct\n fon alpha partial 2 electrons 1.0 filled 2\n fon beta partial 2 electrons 1.0 filled 2\n xc pbe0\n convergence energy 1d-8\nend\ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#occup-controlling-the-occupations-of-molecular-orbitals","title":"OCCUP: Controlling the occupations of molecular orbitals","text":"Example:
echo \nstart h2o_core_hole \nmemory 1000 mb \ngeometry units au \n O 0 0 0 \n H 0 1.430 -1.107 \n H 0 -1.430 -1.107 \nend \nbasis \n O library 6-31g* \n H library 6-31g* \nend \noccup \n 6 6 # occupation list for 6 alpha and 6 beta orbitals \n 1.0 0.0 # core-hole in the first beta orbital\n 1.0 1.0 \n 1.0 1.0 \n 1.0 1.0 \n 1.0 1.0 \n 0.0 0.0 \nend \ndft \n odft \n mult 1 \n xc beckehandh \nend \ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#grid-numerical-integration-of-the-xc-potential","title":"GRID: Numerical Integration of the XC Potential","text":" GRID [(xcoarse||coarse||medium||fine||xfine||huge) default medium] \\ \n [(gausleg||lebedev ) default lebedev ] \\ \n [(becke||erf1||erf2||ssf) default erf1] \\ \n [(euler||mura||treutler) default mura] \\ \n [rm <real rm default 2.0>] \\ \n [nodisk]\n
A numerical integration is necessary for the evaluation of the exchange-correlation contribution to the density functional. The default quadrature used for the numerical integration is an Euler-MacLaurin scheme for the radial components (with a modified Mura-Knowles transformation) and a Lebedev scheme for the angular components. Within this numerical integration procedure various levels of accuracy have been defined and are available to the user. The user can specify the level of accuracy with the keywords; xcoarse
, coarse
, medium
, fine
, xfine
and huge
. The default is medium
.
GRID [xcoarse||coarse||medium||fine||xfine||huge]\n
Our intent is to have a numerical integration scheme which would give us approximately the accuracy defined below regardless of molecular composition.
Keyword Total Energy Target Accuracy xcoarse 1\u22c510-4 coarse 1\u22c510-5 medium 1\u22c510-6 fine 1\u22c510-7 xfine 1\u22c510-8 huge 1\u22c510-10In order to determine the level of radial and angular quadrature needed to give us the target accuracy, we computed total DFT energies at the LDA level of theory for many homonuclear atomic, diatomic and triatomic systems in rows 1-4 of the periodic table. In each case all bond lengths were set to twice the Bragg-Slater radius. The total DFT energy of the system was computed using the converged SCF density with atoms having radial shells ranging from 35-235 (at fixed 48/96 angular quadratures) and angular quadratures of 12/24-48/96 (at fixed 235 radial shells). The error of the numerical integration was determined by comparison to a \u201cbest\u201d or most accurate calculation in which a grid of 235 radial points 48 theta and 96 phi angular points on each atom was used. This corresponds to approximately 1 million points per atom. The following tables were empirically determined to give the desired target accuracy for DFT total energies. These tables below show the number of radial and angular shells which the DFT module will use for for a given atom depending on the row it is in (in the periodic table) and the desired accuracy. Note, differing atom types in a given molecular system will most likely have differing associated numerical grids. The intent is to generate the desired energy accuracy (at the expense of speed of the calculation).
Keyword Radial Angular xcoarse 21 194 coarse 35 302 medium 49 434 fine 70 590 xfine 100 1202Program default number of radial and angular shells empirically determined for Row 1 atoms (Li \u2192 F) to reach the desired accuracies.
Keyword Radial Angular xcoarse 42 194 coarse 70 302 medium 88 434 fine 123 770 xfine 125 1454 huge 300 1454Program default number of radial and angular shells empirically determined for Row 2 atoms (Na \u2192 Cl) to reach the desired accuracies.
Keyword Radial Angular xcoarse 75 194 coarse 95 302 medium 112 590 fine 130 974 xfine 160 1454 huge 400 1454Program default number of radial and angular shells empirically determined for Row 3 atoms (K \u2192 Br) to reach the desired accuracies.
Keyword Radial Angular xcoarse 84 194 coarse 104 302 medium 123 590 fine 141 974 xfine 205 1454 huge 400 1454Program default number of radial and angular shells empirically determined for Row 4 atoms (Rb \u2192 I) to reach the desired accuracies.
"},{"location":"Density-Functional-Theory-for-Molecules.html#angular-grids","title":"Angular grids","text":"In addition to the simple keyword specifying the desired accuracy as described above, the user has the option of specifying a custom quadrature of this type in which ALL atoms have the same grid specification. This is accomplished by using the gausleg
keyword.
GRID gausleg <integer nradpts default 50> <integer nagrid default 10>\n
In this type of grid, the number of phi points is twice the number of theta points. So, for example, a specification of,
GRID gausleg 80 20\n
would be interpreted as 80 radial points, 20 theta points, and 40 phi points per center (or 64000 points per center before pruning).
"},{"location":"Density-Functional-Theory-for-Molecules.html#lebedev-angular-grid","title":"Lebedev angular grid","text":"A second quadrature is the Lebedev scheme for the angular components. Within this numerical integration procedure various levels of accuracy have also been defined and are available to the user. The input for this type of grid takes the form,
GRID lebedev <integer radpts > <integer iangquad >\n
In this context the variable iangquad
specifies a certain number of angular points as indicated by the table below:
Therefore the user can specify any number of radial points along with the level of angular quadrature (1-29).
The user can also specify grid parameters specific for a given atom type: parameters that must be supplied are: atom tag and number of radial points. As an example, here is a grid input line for the water molecule
grid lebedev 80 11 H 70 8 O 90 11\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#partitioning-functions","title":"Partitioning functions","text":"GRID [(becke||erf1||erf2||ssf) default erf1]\n
Erfn partitioning functions
"},{"location":"Density-Functional-Theory-for-Molecules.html#radial-grids","title":"Radial grids","text":"
GRID [[euler||mura||treutler] default mura]\n
NODISK\n
This keyword turns off storage of grid points and weights on disk.
"},{"location":"Density-Functional-Theory-for-Molecules.html#tolerances-screening-tolerances","title":"TOLERANCES: Screening tolerances","text":" TOLERANCES [[tight] [tol_rho <real tol_rho default 1e-10>] \\ \n [accCoul <integer accCoul default 8>] \\ \n [radius <real radius default 25.0>]]\n
The user has the option of controlling screening for the tolerances in the integral evaluations for the DFT module. In most applications, the default values will be adequate for the calculation, but different values can be specified in the input for the DFT module using the keywords described below.
The input parameter accCoul
is used to define the tolerance in Schwarz screening for the Coulomb integrals. Only integrals with estimated values greater than 10(-accCoul) are evaluated.
TOLERANCES accCoul <integer accCoul default 8>\n
Screening away needless computation of the XC functional (on the grid) due to negligible density is also possible with the use of,
TOLERANCES tol_rho <real tol_rho default 1e-10>\n
XC functional computation is bypassed if the corresponding density elements are less than tol_rho
.
A screening parameter, radius, used in the screening of the Becke or Delley spatial weights is also available as,
TOLERANCES radius <real radius default 25.0>\n
where radius
is the cutoff value in bohr.
The tolerances as discussed previously are insured at convergence. More sleazy tolerances are invoked early in the iterative process which can speed things up a bit. This can also be problematic at times because it introduces a discontinuity in the convergence process. To avoid use of initial sleazy tolerances the user can invoke the tight option:
TOLERANCES tight\n
This option sets all tolerances to their default/user specified values at the very first iteration.
"},{"location":"Density-Functional-Theory-for-Molecules.html#direct-semidirect-and-noio-hardware-resource-control","title":"DIRECT, SEMIDIRECT and NOIO: Hardware Resource Control","text":" DIRECT||INCORE \n SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$] \n NOIO\n
The inverted charge-density and exchange-correlation matrices for a DFT calculation are normally written to disk storage. The user can prevent this by specifying the keyword noio
within the input for the DFT directive. The input to exercise this option is as follows,
noio\n
If this keyword is encountered, then the two matrices (inverted charge-density and exchange-correlation) are computed \u201con-the-fly\u201d whenever needed.
The INCORE
option is always assumed to be true but can be overridden with the option DIRECT
in which case all integrals are computed \u201con-the-fly\u201d.
The SEMIDIRECT
option controls caching of integrals. A full description of this option is described in the Hartree-Fock section. Some functionality which is only compatible with the DIRECT
option will not, at present, work when using SEMIDIRECT
.
ODFT\n MULT <integer mult default 1>\n
Both closed-shell and open-shell systems can be studied using the DFT module. Specifying the keyword MULT
within the DFT
directive allows the user to define the spin multiplicity of the system. The form of the input line is as follows;
MULT <integer mult default 1>\n
When the keyword MULT
is specified, the user can define the integer variable mult
, where mult is equal to the number of alpha electrons minus beta electrons, plus 1.
When MULT
is set to a negative number. For example, if MULT = -3
, a triplet calculation will be performed with the beta electrons preferentially occupied. For MULT = 3
, the alpha electrons will be preferentially occupied.
The keyword ODFT
is unnecessary except in the context of forcing a singlet system to be computed as an open shell system (i.e., using a spin-unrestricted wavefunction).
The cgmin
keyword will use the quadratic convergence algorithm. It is possible to turn the use of the quadratic convergence algorithm off with the nocgmin
keyword.
The rodft
keyword will perform restricted open-shell calculations. This keyword can only be used with the CGMIN
keyword.
sic [perturbative || oep || oep-loc ]\n<default perturbative>\n
The Perdew and Zunger10 method to remove the self-interaction contained in many exchange-correlation functionals has been implemented with the Optimized Effective Potential method100101 within the Krieger-Li-Iafrate approximation102103104. Three variants of these methods are included in NWChem:
sic perturbative
This is the default option for the sic directive. After a self-consistent calculation, the Kohn-Sham orbitals are localized with the Foster-Boys algorithm (see section on orbital localization) and the self-interaction energy is added to the total energy. All exchange-correlation functionals implemented in the NWChem can be used with this option.sic oep
With this option the optimized effective potential is built in each step of the self-consistent process. Because the electrostatic potential generated for each orbital involves a numerical integration, this method can be expensive.sic oep-loc
This option is similar to the oep option with the addition of localization of the Kohn-Sham orbitals in each step of the self-consistent process.With oep
and oep-loc
options a xfine grid
(see section about numerical integration ) must be used in order to avoid numerical noise, furthermore the hybrid functionals can not be used with these options. More details of the implementation of this method can be found in the paper by Garza105. The components of the sic energy can be printed out using:
print \"SIC information\"\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#mulliken-mulliken-analysis","title":"MULLIKEN: Mulliken analysis","text":"Mulliken analysis of the charge distribution is invoked by the keyword:
MULLIKEN\n
When this keyword is encountered, Mulliken analysis of both the input density as well as the output density will occur. For example, to perform a mulliken analysis and print the explicit population analysis of the basis functions, use the following
dft\n mulliken\n print \"mulliken ao\"\nend\ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#fukui-fukui-indices","title":"FUKUI: Fukui Indices","text":"Fukui indices analysis is invoked by the keyword:
FUKUI\n
When this keyword is encounters, the condensed Fukui indices will be calculated and printed in the output. Detailed information about the analysis can be obtained using the following
dft \n fukui \n print \"Fukui information\" \n end \n task dft\n
The implementation of the Fukui analyis in NWChem was based on the papers by Galvan106 and by Chamorro107. This implementation makes use of the generalized Fukui indices (). The traditional, spin-restricted, Fukui indices are given by , and their average:
"},{"location":"Density-Functional-Theory-for-Molecules.html#bsse-basis-set-superposition-error","title":"BSSE: Basis Set Superposition Error","text":"Particular care is required to compute BSSE by the counter-poise method for the DFT module. In order to include terms deriving from the numerical grid used in the XC integration, the user must label the ghost atoms not just bq, but bq followed by the given atomic symbol. For example, the first component needed to compute the BSSE for the water dimer, should be written as follows
geometry h2o autosym units au\n O 0.00000000 0.00000000 0.22143139\n H 1.43042868 0.00000000 -0.88572555\n H -1.43042868 0.00000000 -0.88572555\n bqH 0.71521434 0.00000000 -0.33214708\n bqH -0.71521434 0.00000000 -0.33214708\n bqO 0.00000000 0.00000000 -0.88572555\nend\nbasis\n H library aug-cc-pvdz\n O library aug-cc-pvdz\n bqH library H aug-cc-pvdz\n bqO library O aug-cc-pvdz\nend\n
Please note that the ghost oxygen atom has been labeled bqO
, and not just bq
.
DISP \\\n [ vdw <real vdw integer default 2]] \\\n [[s6 <real s6 default depends on XC functional>] \\\n [ alpha <real alpha default 20.0d0] \\\n [ off ] \n
When systems with high dependence on van der Waals interactions are computed, the dispersion term may be added empirically through long-range contribution DFT-D, i.e. EDFT-D=EDFT-KS+Edisp, where:
In this equation, the s6 term depends in the functional and basis set used, C6ij is the dispersion coefficient between pairs of atoms. Rvdw and Rij are related with van der Waals atom radii and the nucleus distance respectively. The \u03b1 value contributes to control the corrections at intermediate distances.
There are available three ways to compute C6ij:
where Neff and C6 are obtained from references 108 and 109 (Use vdw 0
)
See details in reference110. (Use vdw 1)
See details in reference91. (Use vdw 2
)
Note that in each option there is a certain set of C6 and Rvdw. Also note that Grimme only defined parameters for elements up to Z=54 for the dispersion correction above. C6 values for elements above Z=54 have been set to zero.
For options vdw 1
and vdw 2
, there are s6 values by default for some functionals and triple-zeta plus double polarization basis set (TZV2P):
vdw 1
BLYP 1.40, PBE 0.70 and BP86 1.30.vdw 2
BLYP 1.20, PBE 0.75, BP86 1.05, B3LYP 1.05, Becke97-D 1.25 and TPSS 1.00.Grimme\u2019s DFT-D3 is also available. Here the dispersion term has the following form:
This new dispersion correction covers elements through Z=94. Cijn (n=6,8) are coordination and geometry dependent. Details about the functional form can be found in reference 111.
To use the Grimme DFT-D3 dispersion correction, use the option
vdw 3
(s6
and alpha
cannot be set manually). Functionals for which DFT-D3 is available in NWChem are BLYP, B3LYP, BP86, Becke97-D, PBE96, TPSS, PBE0, B2PLYP, BHLYP, TPSSH, PWB6K, B1B95, SSB-D, MPW1B95, MPWB1K, M05, M05-2X, M06L, M06, M06-2X, and M06HF
vdw 4
triggers the DFT-D3BJ dispersion model. Currently only BLYP, B3LYP, BHLYP, TPSS, TPSSh, B2-PLYP, B97-D, BP86, PBE96, PW6B95, revPBE, B3PW91, pwb6k, b1b95, CAM-B3LYP, LC-wPBE, HCTH120, MPW1B95, BOP, OLYP, BPBE, OPBE and SSB are supported.
This capability is also supported for energy gradients and Hessian. Is possible to be deactivated with OFF.
"},{"location":"Density-Functional-Theory-for-Molecules.html#noscf-non-self-consistent-calculations","title":"NOSCF: Non Self-Consistent Calculations","text":"The noscf
keyword can be used to to calculate the non self-consistent energy for a set of input vectors. For example, the following input shows how a non self-consistent B3LYP energy can be calculated using a self-consistent set of vectors calculated at the Hartree-Fock level.
start h2o-noscf\n\ngeometry units angstrom\n O 0.00000000 0.00000000 0.11726921\n H 0.75698224 0.00000000 -0.46907685\n H -0.75698224 0.00000000 -0.46907685\nend\n\nbasis spherical\n * library aug-cc-pvdz\nend\ndft\n xc hfexch\n vectors output hf.movecs \nend\ntask dft energy\ndft\n xc b3lyp\n vectors input hf.movecs \n noscf \nend\ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#xdm-exchange-hole-dipole-moment-dispersion-model","title":"XDM: Exchange-hole dipole moment dispersion model","text":"XDM [ a1 <real a1> ] [ a2 <real a2> ]\n
See details (including list of a1 and a2 parameters) in paper[delaroza2013] and the website http://schooner.chem.dal.ca/wiki/XDM
geometry \n O -0.190010095135 -1.168397415155 0.925531922479\n H -0.124425719598 -0.832776238160 1.818190662986\n H -0.063897685990 -0.392575837594 0.364048725248\n O 0.174717244879 1.084630474836 -0.860510672419\n H -0.566281023931 1.301941006866 -1.427261487135\n H 0.935093179777 1.047335209207 -1.441842151158\n end\n\n basis spherical\n * library aug-cc-pvdz\n end\n\n dft\n direct\n xc b3lyp\n xdm a1 0.6224 a2 1.7068\n end\n\n task dft optimize\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#print-control","title":"Print Control","text":" PRINT||NOPRINT\n
The PRINT||NOPRINT
options control the level of output in the DFT. Please see some examples using this directive in Sample input file. Known controllable print options are:
DFT Print Control Specifications
"},{"location":"Density-Functional-Theory-for-Molecules.html#spin-orbit-density-functional-theory-sodft","title":"Spin-Orbit Density Functional Theory (SODFT)","text":"The spin-orbit DFT module (SODFT) in the NWChem code allows for the variational treatment of the one-electron spin-orbit operator within the DFT framework. Calculations can be performed either with an electron relativistic approach (ZORA) or with an effective core potential (ECP) and a matching spin-orbit potential (SO). The current implementation does NOT use symmetry.
The actual SODFT calculation will be performed when the input module encounters the TASK directive (TASK).
TASK SODFT\n
Input parameters are the same as for the DFT. Some of the DFT options are not available in the SODFT. These are max_ovl
and sic
.
Besides using the standard ECP and basis sets, see Effective Core Potentials for details, one also has to specify a spin-orbit (SO) potential. The input specification for the SO potential can be found in Effective Core Potentials. At this time we have not included any spin-orbit potentials in the basis set library. However, one can get these from the Stuttgart/K\u00f6ln web pages http://www.tc.uni-koeln.de/PP/clickpse.en.html.
Note: One should use a combination of ECP and SO potentials that were designed for the same size core, i.e., don\u2019t use a small core ECP potential with a large core SO potential (it will produce erroneous results).
The following is an example of a calculation of UO2:
start uo2_sodft \necho \n\ncharge 2 \ngeometry \n U 0.00000 0.00000 0.00000 \n O 0.00000 0.00000 1.68000 \n O 0.00000 0.00000 -1.68000 \nend \nbasis \"ao basis\" \n * library \"stuttgart rlc ecp\"\nEND\nECP\n * library \"stuttgart rlc ecp\"\nEND\nSO \n U p \n 2 3.986181 1.816350 \n 2 2.000160 11.543940 \n 2 0.960841 0.794644 \n U d \n 2 4.147972 0.353683 \n 2 2.234563 3.499282 \n 2 0.913695 0.514635 \n U f \n 2 3.998938 4.744214 \n 2 1.998840 -5.211731 \n 2 0.995641 1.867860 \nEND \ndft \n mult 1 \n xc hfexch \nend \ntask sodft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#sym-and-adapt","title":"SYM and ADAPT","text":"The options SYM
and ADAPT
works the same way as the analogous options for the SCF code. Therefore please use the following links for SYM and ADAPT, respectively.
Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. On First-Row Diatomic Molecules and Local Density Models. The Journal of Chemical Physics 1979, 71 (12), 4993. https://doi.org/10.1063/1.438313.\u00a0\u21a9
Eichkorn, K.; Treutler, O.; \u00d6hm, H.; H\u00e4ser, M.; Ahlrichs, R. Auxiliary Basis Sets to Approximate Coulomb Potentials. Chemical Physics Letters 1995, 240 (4), 283\u2013290. https://doi.org/10.1016/0009-2614(95)00621-a.\u00a0\u21a9
K\u00f6ster, A. M.; Reveles, J. U.; Campo, J. M. del. Calculation of Exchange-Correlation Potentials with Auxiliary Function Densities. The Journal of Chemical Physics 2004, 121 (8), 3417\u20133424. https://doi.org/10.1063/1.1771638.\u00a0\u21a9
Slater, J. C.; Johnson, K. H. Self-Consistent-Field X\u03b1 Cluster Method for Polyatomic Molecules and Solids. Phys. Rev. B 1972, 5, 844\u2013853. https://doi.org/10.1103/PhysRevB.5.844.\u00a0\u21a9\u21a9
Slater, J. C. Quantum Theory of Molecules and Solids: The Self-Consistent Field for Molecules and Solids; McGraw-Hill Education, 1974; p 640.\u00a0\u21a9\u21a9
Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Canadian Journal of physics 1980, 58 (8), 1200\u20131211. https://doi.org/10.1139/p80-159.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. The Journal of Chemical Physics 1993, 98 (2), 1372\u20131377. https://doi.org/https://aip.scitation.org/doi/abs/10.1063/1.464304.\u00a0\u21a9\u21a9
Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics 1993, 98 (7), 5648\u20135652. https://doi.org/10.1063/1.464913.\u00a0\u21a9\u21a9\u21a9
Becke, A. D. Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. The Journal of Chemical Physics 1997, 107 (20), 8554\u20138560. https://doi.org/10.1063/1.475007.\u00a0\u21a9\u21a9
Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048\u20135079. https://doi.org/10.1103/PhysRevB.23.5048.\u00a0\u21a9\u21a9
Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244\u201313249. https://doi.org/10.1103/PhysRevB.45.13244.\u00a0\u21a9\u21a9
Becke, A. D. On the Large-Gradient Behavior of the Density Functional Exchange Energy. The Journal of Chemical Physics 1986, 85 (12), 7184\u20137187. https://doi.org/10.1063/1.451353.\u00a0\u21a9
Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A 1988, 38 (6), 3098\u20133100. https://doi.org/10.1103/PhysRevA.38.3098.\u00a0\u21a9
Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Physical Review B 1986, 33 (12), 8822\u20138824. https://doi.org/10.1103/PhysRevB.33.8822.\u00a0\u21a9\u21a9
Perdew, J. P.; Burke, K.; Ernzerhof, M. Errata: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865\u20133868. https://doi.org/10.1103/PhysRevLett.77.3865.\u00a0\u21a9\u21a9
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396\u20131396. https://doi.org/10.1103/PhysRevLett.78.1396.\u00a0\u21a9\u21a9
Gill, P. M. W. A New Gradient-Corrected Exchange Functional. Molecular Physics 1996, 89 (2), 433\u2013445. https://doi.org/10.1080/002689796173813.\u00a0\u21a9
Handy, N. C.; Cohen, A. J. Left-Right Correlation Energy. Molecular Physics 2001, 99 (5), 403\u2013412. https://doi.org/10.1080/00268970010018431.\u00a0\u21a9
Adamo, C.; Barone, V. Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods Without Adjustable Parameters: The mPW and mPW1PW Models. The Journal of Chemical Physics 1998, 108 (2), 664\u2013675. https://doi.org/10.1063/1.475428.\u00a0\u21a9
Zhao, Y.; Truhlar, D. G. Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. The Journal of Physical Chemistry A 2005, 109 (25), 5656\u20135667. https://doi.org/10.1021/jp050536c.\u00a0\u21a9
Filatov, M.; Thiel, W. A New Gradient-Corrected Exchange-Correlation Density Functional. Molecular Physics 1997, 91 (5), 847\u2013860. https://doi.org/10.1080/002689797170950.\u00a0\u21a9\u21a9\u21a9
Filatov, M.; Thiel, W. A Nonlocal Correlation Energy Density Functional from a Coulomb Hole Model. International Journal of Quantum Chemistry 1997, 62 (6), 603\u2013616. https://doi.org/10.1002/(sici)1097-461x(1997)62:6<603::aid-qua4>3.0.co;2-#.\u00a0\u21a9\u21a9\u21a9
Hammer, B.; Hansen, L. B.; N\u00f8rskov, J. K. Improved Adsorption Energetics Within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B 1999, 59 (11), 7413\u20137421. https://doi.org/10.1103/physrevb.59.7413.\u00a0\u21a9\u21a9
Zhang, Y.; Yang, W. Comment on Generalized Gradient Approximation Made Simple. Physical Review Letters 1998, 80 (4), 890\u2013890. https://doi.org/10.1103/physrevlett.80.890.\u00a0\u21a9\u21a9
Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics. The Journal of Physical Chemistry A 2004, 108 (14), 2715\u20132719. https://doi.org/10.1021/jp049908s.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B 1988, 37 (2), 785\u2013789. https://doi.org/10.1103/PhysRevB.37.785.\u00a0\u21a9
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1992, 46 (11), 6671\u20136687. https://doi.org/10.1103/PhysRevB.46.6671.\u00a0\u21a9
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1993, 48 (7), 4978\u20134978. https://doi.org/10.1103/PhysRevB.48.4978.2.\u00a0\u21a9
Tsuneda, T.; Suzumura, T.; Hirao, K. A New One-Parameter Progressive Collesalvetti-Type Correlation Functional. The Journal of Chemical Physics 1999, 110 (22), 10664\u201310678. https://doi.org/10.1063/1.479012.\u00a0\u21a9\u21a9
Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. Development and Assessment of New Exchange-Correlation Functionals. The Journal of Chemical Physics 1998, 109 (15), 6264\u20136271. https://doi.org/10.1063/1.477267.\u00a0\u21a9\u21a9
Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. New Generalized Gradient Approximation Functionals. The Journal of Chemical Physics 2000, 112 (4), 1670\u20131678. https://doi.org/10.1063/1.480732.\u00a0\u21a9\u21a9
Boese, A. D.; Martin, J. M. L.; Handy, N. C. The Role of the Basis Set: Assessing Density Functional Theory. The Journal of Chemical Physics 2003, 119 (6), 3005\u20133014. https://doi.org/10.1063/1.1589004.\u00a0\u21a9
Boese, A. D.; Handy, N. C. A New Parametrization of Exchangecorrelation Generalized Gradient Approximation Functionals. The Journal of Chemical Physics 2001, 114 (13), 5497\u20135503. https://doi.org/10.1063/1.1347371.\u00a0\u21a9
Cohen, A. J.; Handy, N. C. Assessment of Exchange Correlation Functionals. Chemical Physics Letters 2000, 316 (1-2), 160\u2013166. https://doi.org/10.1016/s0009-2614(99)01273-7.\u00a0\u21a9
Menconi, G.; Wilson, P. J.; Tozer, D. J. Emphasizing the Exchange-Correlation Potential in Functional Development. The Journal of Chemical Physics 2001, 114 (9), 3958\u20133967. https://doi.org/10.1063/1.1342776.\u00a0\u21a9
Boese, A. D.; Chandra, A.; Martin, J. M. L.; Marx, D. From Ab Initio Quantum Chemistry to Molecular Dynamics: The Delicate Case of Hydrogen Bonding in Ammonia. The Journal of Chemical Physics 2003, 119 (12), 5965\u20135980. https://doi.org/10.1063/1.1599338.\u00a0\u21a9
Tsuneda, T.; Suzumura, T.; Hirao, K. A Reexamination of Exchange Energy Functionals. The Journal of Chemical Physics 1999, 111 (13), 5656\u20135667. https://doi.org/10.1063/1.479954.\u00a0\u21a9
Perdew, J. P.; Kurth, S.; Zupan, A.; Blaha, P. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Physical Review Letters 1999, 82 (12), 2544\u20132547. https://doi.org/10.1103/physrevlett.82.2544.\u00a0\u21a9\u21a9
Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters 2003, 91 (14), 146401. https://doi.org/10.1103/physrevlett.91.146401.\u00a0\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van Der Waals Interactions. The Journal of Physical Chemistry A 2004, 108 (33), 6908\u20136918. https://doi.org/10.1021/jp048147q.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Exchange-Correlation Functional with Broad Accuracy for Metallic and Nonmetallic Compounds, Kinetics, and Noncovalent Interactions. The Journal of Chemical Physics 2005, 123 (16), 161103. https://doi.org/10.1063/1.2126975.\u00a0\u21a9\u21a9
Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation 2006, 2 (2), 364\u2013382. https://doi.org/10.1021/ct0502763.\u00a0\u21a9\u21a9\u21a9
Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. The Journal of Chemical Physics 2003, 119 (23), 12129\u201312137. https://doi.org/10.1063/1.1626543.\u00a0\u21a9
Becke, A. D. Density-Functional Thermochemistry. IV. A New Dynamical Correlation Functional and Implications for Exact-Exchange Mixing. The Journal of Chemical Physics 1996, 104 (3), 1040\u20131046. https://doi.org/10.1063/1.470829.\u00a0\u21a9\u21a9
Voorhis, T. V.; Scuseria, G. E. A Novel Form for the Exchange-Correlation Energy Functional. The Journal of Chemical Physics 1998, 109 (2), 400\u2013410. https://doi.org/10.1063/1.476577.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. The Journal of Chemical Physics 2006, 125 (19), 194101. https://doi.org/10.1063/1.2370993.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average Than B3LYP for Ground States. The Journal of Physical Chemistry A 2006, 110 (49), 13126\u201313130. https://doi.org/10.1021/jp066479k.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theoretical Chemistry Accounts 2008, 120 (1-3), 215\u2013241. https://doi.org/10.1007/s00214-007-0310-x.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Construction of a Generalized Gradient Approximation by Restoring the Density-Gradient Expansion and Enforcing a Tight Lieboxford Bound. The Journal of Chemical Physics 2008, 128 (18), 184109. https://doi.org/10.1063/1.2912068.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. The Journal of Physical Chemistry Letters 2011, 2 (21), 2810\u20132817. https://doi.org/10.1021/jz201170d.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. M11-l: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. The Journal of Physical Chemistry Letters 2012, 3 (1), 117\u2013124. https://doi.org/10.1021/jz201525m.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Zhao, Y.; Truhlar, D. G. Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance. The Journal of Physical Chemistry Letters 2011, 2 (16), 1991\u20131997. https://doi.org/10.1021/jz200616w.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. Communication: A Global Hybrid Generalized Gradient Approximation to the Exchange-Correlation Functional That Satisfies the Second-Order Density-Gradient Constraint and Has Broad Applicability in Chemistry. The Journal of Chemical Physics 2011, 135 (19), 191102. https://doi.org/10.1063/1.3663871.\u00a0\u21a9\u21a9\u21a9
Pernal, K.; Podeszwa, R.; Patkowski, K.; Szalewicz, K. Dispersionless Density Functional Theory. Physical Review Letters 2009, 103 (26), 263201. https://doi.org/10.1103/physrevlett.103.263201.\u00a0\u21a9
Wilson, P. J.; Bradley, T. J.; Tozer, D. J. Hybrid Exchange-Correlation Functional Determined from Thermochemical Data and Ab Initio Potentials. The Journal of Chemical Physics 2001, 115 (20), 9233\u20139242. https://doi.org/10.1063/1.1412605.\u00a0\u21a9
Keal, T. W.; Tozer, D. J. Semiempirical Hybrid Functional with Improved Performance in an Extensive Chemical Assessment. The Journal of Chemical Physics 2005, 123 (12), 121103. https://doi.org/10.1063/1.2061227.\u00a0\u21a9
Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. Journal of Computational Chemistry 2006, 27 (15), 1787\u20131799. https://doi.org/10.1002/jcc.20495.\u00a0\u21a9
Schmider, H. L.; Becke, A. D. Optimized Density Functionals from the Extended G2 Test Set. The Journal of Chemical Physics 1998, 108 (23), 9624\u20139631. https://doi.org/10.1063/1.476438.\u00a0\u21a9
Adamo, C.; Barone, V. Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model. The Journal of Chemical Physics 1999, 110 (13), 6158\u20136170. https://doi.org/10.1063/1.478522.\u00a0\u21a9
Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. Adiabatic Connection for Kinetics. The Journal of Physical Chemistry A 2000, 104 (21), 4811\u20134815. https://doi.org/10.1021/jp000497z.\u00a0\u21a9
Sun, J.; Perdew, J. P.; Ruzsinszky, A. Semilocal Density Functional Obeying a Strongly Tightened Bound for Exchange. Proceedings of the National Academy of Sciences 2015, 112 (3), 685\u2013689. https://doi.org/10.1073/pnas.1423145112.\u00a0\u21a9
Verma, P.; Truhlar, D. G. HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies. The Journal of Physical Chemistry Letters 2017, 8 (2), 380\u2013387. https://doi.org/10.1021/acs.jpclett.6b02757.\u00a0\u21a9
Yang, Z.; Peng, H.; Sun, J.; Perdew, J. P. More Realistic Band Gaps from Meta-Generalized Gradient Approximations: Only in a Generalized Kohn-Sham Scheme. Physical Review B 2016, 93 (20), 205205. https://doi.org/10.1103/physrevb.93.205205.\u00a0\u21a9
Mejia-Rodriguez, D.; Trickey, S. B. Deorbitalization Strategies for Meta-Generalized-Gradient-Approximation Exchange-Correlation Functionals. Physical Review A 2017, 96 (5), 052512. https://doi.org/10.1103/physreva.96.052512.\u00a0\u21a9
Wang, Y.; Jin, X.; Yu, H. S.; Truhlar, D. G.; He, X. Revised M06-l Functional for Improved Accuracy on Chemical Reaction Barrier Heights, Noncovalent Interactions, and Solid-State Physics. Proceedings of the National Academy of Sciences 2017, 114 (32), 8487\u20138492. https://doi.org/10.1073/pnas.1705670114.\u00a0\u21a9
Wang, Y.; Verma, P.; Jin, X.; Truhlar, D. G.; He, X. Revised M06 Density Functional for Main-Group and Transition-Metal Chemistry. Proceedings of the National Academy of Sciences 2018, 115 (41), 10257\u201310262. https://doi.org/10.1073/pnas.1810421115.\u00a0\u21a9
Chai, J.-D.; Head-Gordon, M. Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. The Journal of Chemical Physics 2008, 128 (8), 084106. https://doi.org/10.1063/1.2834918.\u00a0\u21a9
Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. Journal of Chemical Theory and Computation 2012, 9 (1), 263\u2013272. https://doi.org/10.1021/ct300715s.\u00a0\u21a9
Bart\u00f3k, A. P.; Yates, J. R. Regularized SCAN Functional. The Journal of Chemical Physics 2019, 150 (16), 161101. https://doi.org/10.1063/1.5094646.\u00a0\u21a9
Furness, J. W.; Kaplan, A. D.; Ning, J.; Perdew, J. P.; Sun, J. Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation. The Journal of Physical Chemistry Letters 2020, 11 (19), 8208\u20138215. https://doi.org/10.1021/acs.jpclett.0c02405.\u00a0\u21a9
Bursch, M.; Neugebauer, H.; Ehlert, S.; Grimme, S. Dispersion Corrected r2SCAN Based Global Hybrid Functionals: r2SCANh, r2SCAN0, and r2SCAN50. The Journal of Chemical Physics 2022, 156 (13), 134105. https://doi.org/10.1063/5.0086040.\u00a0\u21a9
Mej\u00eda-Rodr\u00edguez, D.; Trickey, S. B. Meta-GGA Performance in Solids at Almost GGA Cost. Physical Review B 2020, 102 (12), 121109. https://doi.org/10.1103/physrevb.102.121109.\u00a0\u21a9
Mej\u00eda-Rodr\u00edguez, D.; Trickey, S. B. Spin-Crossover from a Well-Behaved, Low-Cost Meta-GGA Density Functional. The Journal of Physical Chemistry A 2020, 124 (47), 9889\u20139894. https://doi.org/10.1021/acs.jpca.0c08883.\u00a0\u21a9
Carmona-Esp\u00edndola, J.; G\u00e1zquez, J. L.; Vela, A.; Trickey, S. B. Generalized Gradient Approximation Exchange Energy Functional with Near-Best Semilocal Performance. Journal of Chemical Theory and Computation 2018, 15 (1), 303\u2013310. https://doi.org/10.1021/acs.jctc.8b00998.\u00a0\u21a9
Kurth, S.; Perdew, J. P.; Blaha, P. Molecular and Solid-State Tests of Density Functional Approximations: LSD, GGAs, and Meta-GGAs. International Journal of Quantum Chemistry 1999, 75 (4-5), 889\u2013909. https://doi.org/10.1002/(sici)1097-461x(1999)75:4/5<889::aid-qua54>3.0.co;2-8.\u00a0\u21a9
Savin, A. Beyond the Kohn-Sham Determinant. In Recent advances in density functional methods; WORLD SCIENTIFIC, 1995; pp 129\u2013153. https://doi.org/10.1142/9789812830586\\_0004.\u00a0\u21a9
Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A Long-Range Correction Scheme for Generalized-Gradient-Approximation Exchange Functionals. The Journal of Chemical Physics 2001, 115 (8), 3540\u20133544. https://doi.org/10.1063/1.1383587.\u00a0\u21a9
Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A Long-Range-Corrected Time-Dependent Density Functional Theory. The Journal of Chemical Physics 2004, 120 (18), 8425\u20138433. https://doi.org/10.1063/1.1688752.\u00a0\u21a9
Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chemical Physics Letters 2004, 393 (1-3), 51\u201357. https://doi.org/10.1016/j.cplett.2004.06.011.\u00a0\u21a9
Peach, M. J. G.; Cohen, A. J.; Tozer, D. J. Influence of Coulomb-Attenuation on Exchange-Correlation Functional Quality. Phys. Chem. Chem. Phys. 2006, 8 (39), 4543\u20134549. https://doi.org/10.1039/b608553a.\u00a0\u21a9
Song, J.-W.; Hirosawa, T.; Tsuneda, T.; Hirao, K. Long-Range Corrected Density Functional Calculations of Chemical Reactions: Redetermination of Parameter. The Journal of Chemical Physics 2007, 126 (15), 154105. https://doi.org/10.1063/1.2721532.\u00a0\u21a9
Livshits, E.; Baer, R. A Well-Tempered Density Functional Theory of Electrons in Molecules. Physical Chemistry Chemical Physics 2007, 9 (23), 2932. https://doi.org/10.1039/b617919c.\u00a0\u21a9
Cohen, A. J.; Mori-S\u00e1nchez, P.; Yang, W. Development of Exchange-Correlation Functionals with Minimal Many-Electron Self-Interaction Error. The Journal of Chemical Physics 2007, 126 (19), 191109. https://doi.org/10.1063/1.2741248.\u00a0\u21a9
Rohrdanz, M. A.; Herbert, J. M. Simultaneous Benchmarking of Ground- and Excited-State Properties with Long-Range-Corrected Density Functional Theory. The Journal of Chemical Physics 2008, 129 (3), 034107. https://doi.org/10.1063/1.2954017.\u00a0\u21a9
Govind, N.; Valiev, M.; Jensen, L.; Kowalski, K. Excitation Energies of Zinc Porphyrin in Aqueous Solution Using Long-Range Corrected Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A 2009, 113 (21), 6041\u20136043. https://doi.org/10.1021/jp902118k.\u00a0\u21a9
Baer, R.; Livshits, E.; Salzner, U. Tuned Range-Separated Hybrids in Density Functional Theory. Annual Review of Physical Chemistry 2010, 61 (1), 85\u2013109. https://doi.org/10.1146/annurev.physchem.012809.103321.\u00a0\u21a9
Autschbach, J.; Srebro, M. Delocalization Error and Functional Tuning in Kohn-Sham Calculations of Molecular Properties. Accounts of Chemical Research 2014, 47 (8), 2592\u20132602. https://doi.org/10.1021/ar500171t.\u00a0\u21a9
Verma, P.; Bartlett, R. J. Increasing the Applicability of Density Functional Theory. IV. Consequences of Ionization-Potential Improved Exchange-Correlation Potentials. The Journal of Chemical Physics 2014, 140 (18), 18A534. https://doi.org/10.1063/1.4871409.\u00a0\u21a9
Swart, M.; Sol\u00e0, M.; Bickelhaupt, F. M. A New All-Round Density Functional Based on Spin States and SN2 Barriers. The Journal of Chemical Physics 2009, 131 (9), 094103. https://doi.org/10.1063/1.3213193.\u00a0\u21a9
Swart, M.; Sol\u00e0, M.; Bickelhaupt, F. M. Switching Between OPTX and PBE Exchange Functionals. Journal of Computational Methods in Sciences and Engineering 2009, 9 (1-2), 69\u201377. https://doi.org/10.3233/jcm-2009-0230.\u00a0\u21a9
Grimme, S. Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. The Journal of Chemical Physics 2006, 124 (3), 034108. https://doi.org/10.1063/1.2148954.\u00a0\u21a9\u21a9
Rabuck, A. D.; Scuseria, G. E. Improving Self-Consistent Field Convergence by Varying Occupation Numbers. The Journal of Chemical Physics 1999, 110 (2), 695\u2013700. https://doi.org/10.1063/1.478177.\u00a0\u21a9
Wu, Q.; Voorhis, T. V. Direct Optimization Method to Study Constrained Systems Within Density-Functional Theory. Physical Review A 2005, 72 (2), 024502. https://doi.org/10.1103/physreva.72.024502.\u00a0\u21a9
Warren, R. W.; Dunlap, B. I. Fractional Occupation Numbers and Density Functional Energy Gradients Within the Linear Combination of Gaussian-Type Orbitals Approach. Chemical Physics Letters 1996, 262 (3-4), 384\u2013392. https://doi.org/10.1016/0009-2614(96)01107-4.\u00a0\u21a9
Becke, A. D. A Multicenter Numerical Integration Scheme for Polyatomic Molecules. The Journal of Chemical Physics 1988, 88 (4), 2547\u20132553. https://doi.org/10.1063/1.454033.\u00a0\u21a9
Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. Achieving Linear Scaling in Exchange-Correlation Density Functional Quadratures. Chemical Physics Letters 1996, 257 (3-4), 213\u2013223. https://doi.org/10.1016/0009-2614(96)00600-8.\u00a0\u21a9
Murray, C. W.; Handy, N. C.; Laming, G. J. Quadrature Schemes for Integrals of Density Functional Theory. Molecular Physics 1993, 78 (4), 997\u20131014. https://doi.org/10.1080/00268979300100651.\u00a0\u21a9
Mura, M. E.; Knowles, P. J. Improved Radial Grids for Quadrature in Molecular Density-Functional Calculations. The Journal of Chemical Physics 1996, 104 (24), 9848\u20139858. https://doi.org/10.1063/1.471749.\u00a0\u21a9
Treutler, O.; Ahlrichs, R. Efficient Molecular Numerical Integration Schemes. The Journal of Chemical Physics 1995, 102 (1), 346\u2013354. https://doi.org/10.1063/1.469408.\u00a0\u21a9
Sharp, R. T.; Horton, G. K. A Variational Approach to the Unipotential Many-Electron Problem. Physical Review 1953, 90 (2), 317\u2013317. https://doi.org/10.1103/physrev.90.317.\u00a0\u21a9
Talman, J. D.; Shadwick, W. F. Optimized Effective Atomic Central Potential. Physical Review A 1976, 14 (1), 36\u201340. https://doi.org/10.1103/physreva.14.36.\u00a0\u21a9
Krieger, J. B.; Li, Y.; Iafrate, G. J. Construction and Application of an Accurate Local Spin-Polarized Kohn-Sham Potential with Integer Discontinuity: Exchange-Only Theory. Physical Review A 1992, 45 (1), 101\u2013126. https://doi.org/10.1103/physreva.45.101.\u00a0\u21a9
Krieger, J. B.; Li, Y.; Iafrate, G. J. Systematic Approximations to the Optimized Effective Potential: Application to Orbital-Density-Functional Theory. Physical Review A 1992, 46 (9), 5453\u20135458. https://doi.org/10.1103/physreva.46.5453.\u00a0\u21a9
Li, Y.; Krieger, J. B.; Iafrate, G. J. Self-Consistent Calculations of Atomic Properties Using Self-Interaction-Free Exchange-Only Kohn-Sham Potentials. Physical Review A 1993, 47 (1), 165\u2013181. https://doi.org/10.1103/physreva.47.165.\u00a0\u21a9
Garza, J.; Nichols, J. A.; Dixon, D. A. The Optimized Effective Potential and the Self-Interaction Correction in Density Functional Theory: Application to Molecules. The Journal of Chemical Physics 2000, 112 (18), 7880\u20137890. https://doi.org/10.1063/1.481421.\u00a0\u21a9
Galvan, M.; Vela, A.; Gazquez, J. L. Chemical Reactivity in Spin-Polarized Density Functional Theory. The Journal of Physical Chemistry 1988, 92 (22), 6470\u20136474. https://doi.org/10.1021/j100333a056.\u00a0\u21a9
Chamorro, E.; P\u00e9rez, P. Condensed-to-Atoms Electronic Fukui Functions Within the Framework of Spin-Polarized Density-Functional Theory. The Journal of Chemical Physics 2005, 123 (11), 114107. https://doi.org/10.1063/1.2033689.\u00a0\u21a9
Wu, Q.; Yang, W. Empirical Correction to Density Functional Theory for van Der Waals Interactions. The Journal of Chemical Physics 2002, 116 (2), 515\u2013524. https://doi.org/10.1063/1.1424928.\u00a0\u21a9
Zimmerli, U.; Parrinello, M.; Koumoutsakos, P. Dispersion Corrections to Density Functionals for Water Aromatic Interactions. The Journal of Chemical Physics 2004, 120 (6), 2693\u20132699. https://doi.org/10.1063/1.1637034.\u00a0\u21a9
Grimme, S. Accurate Description of van Der Waals Complexes by Density Functional Theory Including Empirical Corrections. Journal of Computational Chemistry 2004, 25 (12), 1463\u20131473. https://doi.org/10.1002/jcc.20078.\u00a0\u21a9
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-d) for the 94 Elements h-Pu. The Journal of Chemical Physics 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.\u00a0\u21a9
The NWChem density functional theory (DFT) module uses the Gaussian basis set approach to compute closed shell and open shell densities and Kohn-Sham orbitals in the:
The formal scaling of the DFT computation can be reduced by choosing to use auxiliary Gaussian basis sets to fit the charge density (CD) and/or fit the exchange-correlation (XC) potential.
DFT input is provided using the compound DFT directive
DFT \n ... \n END\n
The actual DFT calculation will be performed when the input module encounters the TASK directive.
TASK DFT\n
Once a user has specified a geometry and a Kohn-Sham orbital basis set the DFT module can be invoked with no input directives (defaults invoked throughout). There are sub-directives which allow for customized application; those currently provided as options for the DFT module are:
VECTORS [[input] (<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>)] \\ \n [swap [alpha||beta] <integer vec1 vec2> ...] \\ \n [output <string output_filename default input_movecs>] \\ \n XC [[acm] [b3lyp] [beckehandh] [pbe0]\\ \n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke97-d] [becke98] \\ \n [hcth] [hcth120] [hcth147] [hcth147@tz2p]\\\n [hcth407] [becke97gga1] [hcth407p]\\ \n [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\ \n [xpkzb99] [cpkzb99] [xtpss03] [ctpss03] [xctpssh]\\ \n [b1b95] [bb1k] [mpw1b95] [mpwb1k] [pw6b95] [pwb6k] [m05] [m05-2x] [vs98] \\ \n [m06] [m06-hf] [m06-L] [m06-2x] \\ \n [HFexch <real prefactor default 1.0>] \\ \n [becke88 [nonlocal] <real prefactor default 1.0>] \\ \n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [gill96 [nonlocal] <real prefactor default 1.0>] \\ \n [lyp <real prefactor default 1.0>] \\ \n [perdew81 <real prefactor default 1.0>] \\ \n [perdew86 [nonlocal] <real prefactor default 1.0>] \\ \n [perdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [pw91lda <real prefactor default 1.0>] \\ \n [slater <real prefactor default 1.0>] \\ \n [vwn_1 <real prefactor default 1.0>] \\ \n [vwn_2 <real prefactor default 1.0>] \\ \n [vwn_3 <real prefactor default 1.0>] \\ \n [vwn_4 <real prefactor default 1.0>] \\ \n [vwn_5 <real prefactor default 1.0>] \\ \n [vwn_1_rpa <real prefactor default 1.0>] \\ \n [xtpss03 [nonlocal] <real prefactor default 1.0>] \\ \n [ctpss03 [nonlocal] <real prefactor default 1.0>] \\ \n [bc95 [nonlocal] <real prefactor default 1.0>] \\ \n [xpw6b95 [nonlocal] <real prefactor default 1.0>] \\ \n [xpwb6k [nonlocal] <real prefactor default 1.0>] \\ \n [xm05 [nonlocal] <real prefactor default 1.0>] \\ \n [xm05-2x [nonlocal] <real prefactor default 1.0>] \\ \n [cpw6b95 [nonlocal] <real prefactor default 1.0>] \\ \n [cpwb6k [nonlocal] <real prefactor default 1.0>] \\ \n [cm05 [nonlocal] <real prefactor default 1.0>] \\ \n [cm05-2x [nonlocal] <real prefactor default 1.0>]] \\ \n [xvs98 [nonlocal] <real prefactor default 1.0>]] \\ \n [cvs98 [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-L [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-hf [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06 [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-2x [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-L [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-hf [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06 [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-2x [nonlocal] <real prefactor default 1.0>]] \n CONVERGENCE [[energy <real energy default 1e-7>] \\ \n [density <real density default 1e-5>] \\ \n [gradient <real gradient default 5e-4>] \\ \n [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>] \\ \n [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 30>] \\ \n [damp <integer ndamp default 0>] [nodamping] \\ \n [diis [nfock <integer nfock default 10>]] \\ \n [nodiis] [lshift <real lshift default 0.5>] \\ \n [nolevelshifting] \\ \n [hl_tol <real hl_tol default 0.1>] \\ \n [rabuck [n_rabuck <integer n_rabuck default 25>]\\\n [fast] ] \n GRID [(xcoarse||coarse||medium||fine||xfine||huge) default medium] \\ \n [(gausleg||lebedev ) default lebedev ] \\ \n [(becke||erf1||erf2||ssf) default erf1] \\ \n [(euler||mura||treutler) default mura] \\ \n [rm <real rm default 2.0>] \\ \n [nodisk] \n TOLERANCES [[tight] [tol_rho <real tol_rho default 1e-10>] \\ \n [accCoul <integer accCoul default 8>] \\ \n [radius <real radius default 25.0>]] \n [(LB94||CS00 <real shift default none>)] \n DECOMP \n ODFT \n DIRECT \n SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$>]\n INCORE \n ITERATIONS <integer iterations default 30> \n MAX_OVL \n CGMIN \n RODFT \n MULLIKEN \n DISP \n XDM [ a1 <real a1> ] [ a2 <real a2> ] \n MULT <integer mult default 1> \n NOIO \n PRINT||NOPRINT\n SYM <string (ON||OFF) default ON>\n ADAPT <string (ON||OFF) default ON>\n
The following sections describe these keywords and optional sub-directives that can be specified for a DFT calculation in NWChem.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#specification-of-basis-sets-for-the-dft-module","title":"Specification of Basis Sets for the DFT Module","text":"The DFT module requires at a minimum the basis set for the Kohn-Sham molecular orbitals. This basis set must be in the default basis set named \u201cao basis\u201d, or it must be assigned to this default name using the SET directive.
In addition to the basis set for the Kohn-Sham orbitals, the charge density fitting basis set can also be specified in the input directives for the DFT module. This basis set is used for the evaluation of the Coulomb potential in the Dunlap scheme. The charge density fitting basis set must have the name cd basis
. This can be the actual name of a basis set, or a basis set can be assigned this name using the SET directive. If this basis set is not defined by input, the O(N4) exact Coulomb contribution is computed.
The user also has the option of specifying a third basis set for the evaluation of the exchange-correlation potential. This basis set must have the name xc basis
. If this basis set is not specified by input, the exchange contribution (XC) is evaluated by numerical quadrature. In most applications, this approach is efficient enough, so the \u201cxc basis\u201d basis set is not required.
For the DFT module, the input options for defining the basis sets in a given calculation can be summarized as follows:
ao basis
- Kohn-Sham molecular orbitals; required for all calculationscd basis
- charge density fitting basis set; optional, but recommended for evaluation of the Coulomb potentialUse of the auxiliary density functional theory method (ADFT)1 can be triggered by means of the adft
keyword. This can result in a large speed-up when using \u201cpure\u201d GGA functionals (e.g. PBE96) and Laplacian-dependent mGGA functionals (e.g. SCAN-L). The speed-up comes from the use of the fitted density obtained with the charge density fitting technique to approximate both the Coulomb and Exchange-Correlation contributions.
The ADFT method is similar in spirit to the exchange-correlation fitting technique triggered by specifying an xc basis without the adft
keyword. It is important to note that, different to straight exchange-correlation fitting, energy derivatives are well-defined within the ADFT framework. As a consequence, geometry optimizations and harmonic vibrational frequencies are well-behaved.
The ADFT method requires a charge density fitting basis set (see DFT basis set section). If not cd basis
set is provided, the weigend coulomb fitting
basis set will be loaded.
The VECTORS directive is the same as that in the SCF module. Currently, the LOCK keyword is not supported by the DFT module, however the directive
MAX_OVL\n
has the same effect.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#xc-and-decomp-exchange-correlation-potentials","title":"XC and DECOMP: Exchange-Correlation Potentials","text":" XC [[acm] [b3lyp] [beckehandh] [pbe0] [bhlyp]\\ \n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke98] [hcth] [hcth120] [hcth147] [hcth147@tz2p] \\\n [hcth407] [becke97gga1] [hcth407p] \\ \n [optx] [hcthp14] [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\ \n [m05] [m05-2x] [m06] [m06-l] [m06-2x] [m06-hf] [m08-hx] [m08-so] [m11] [m11-l]\\ \n [HFexch <real prefactor default 1.0>] \\ \n [becke88 [nonlocal] <real prefactor default 1.0>] \\ \n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [gill96 [nonlocal] <real prefactor default 1.0>] \\ \n [lyp <real prefactor default 1.0>] \\ \n [perdew81 <real prefactor default 1.0>] \\ \n [perdew86 [nonlocal] <real prefactor default 1.0>] \\ \n [perdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [pw91lda <real prefactor default 1.0>] \\ \n [slater <real prefactor default 1.0>] \\ \n [vwn_1 <real prefactor default 1.0>] \\ \n [vwn_2 <real prefactor default 1.0>] \\ \n [vwn_3 <real prefactor default 1.0>] \\ \n [vwn_4 <real prefactor default 1.0>] \\ \n [vwn_5 <real prefactor default 1.0>] \\ \n [vwn_1_rpa <real prefactor default 1.0>]]\n
The user has the option of specifying the exchange-correlation treatment in the DFT Module (see table below for full list of functionals). The default exchange-correlation functional is defined as the local density approximation (LDA) for closed shell systems and its counterpart the local spin-density (LSD) approximation for open shell systems. Within this approximation, the exchange functional is the Slater \u03c11/3 functional23, and the correlation functional is the Vosko-Wilk-Nusair (VWN) functional (functional V)4. The parameters used in this formula are obtained by fitting to the Ceperley and Alder Quantum Monte-Carlo solution of the homogeneous electron gas.
These defaults can be invoked explicitly by specifying the following keywords within the DFT module input directive, XC slater vwn_5
.
That is, this statement in the input file
dft \n XC slater vwn_5 \nend \ntask dft\n
is equivalent to the simple line
task dft\n
The DECOMP
directive causes the components of the energy corresponding to each functional to be printed, rather than just the total exchange-correlation energy that is the default. You can see an example of this directive in the sample input.
Many alternative exchange and correlation functionals are available to the user as listed in the table below. The following sections describe how to use these options.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#libxc-interface-new-in-nwchem-720","title":"Libxc interface New in NWChem 7.2.0:","text":"If NWChem is compiled by linking it with the libxc DFT library (as described in the Interfaces with External Software section), the user will be able to use most of the XC functionals available in libxc. The input syntax requires to use the xc keyword followed by the functionals name from list available in Libxc
For example, the following input for the NWChem libxc interface
dft\n xc gga_x_pbe 1.0 gga_x_pbe 1.0\nend\n
while trigger use of the same PBE96 functionals as in the NWChem built-in interface
dft\n xc xpbe96 1.0 cpbe96 1.0\nend\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#exchange-correlation-functionals","title":"Exchange-Correlation Functionals","text":"There are several Exchange and Correlation functionals in addition to the default slater
and vwn_5
functionals. These are either local or gradient-corrected functionals (GCA); a full list can be found in the table below.
The Hartree-Fock exact exchange functional, (which has O(N4) computation expense), is invoked by specifying
XC HFexch\n
Note that the user also has the ability to include only the local or nonlocal contributions of a given functional. In addition, the user can specify a multiplicative prefactor (the variable in the input) for the local/nonlocal component or total. An example of this might be,
XC becke88 nonlocal 0.72\n
The user should be aware that the Becke88 local component is simply the Slater exchange and should be input as such.
Any combination of the supported exchange functional options can be used. For example, the popular Gaussian B3 exchange could be specified as:
XC slater 0.8 becke88 nonlocal 0.72 HFexch 0.2\n
Any combination of the supported correlation functional options can be used. For example, B3LYP could be specified as:
XC vwn_1_rpa 0.19 lyp 0.81 HFexch 0.20 slater 0.80 becke88 nonlocal 0.72\n
and X3LYP as:
xc vwn_1_rpa 0.129 lyp 0.871 hfexch 0.218 slater 0.782 \\\nbecke88 nonlocal 0.542 xperdew91 nonlocal 0.167\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#setting-up-common-exchange-correlation-functionals","title":"Setting up common exchange-correlation functionals","text":"xc b3lyp
xc pbe0
xc xpbe96 cpbe96
xc xperdew91 perdew91
xc bhlyp
xc beckehandh
xc becke88 perdew86
xc becke88 perdew91
xc becke88 lyp
Minnesota Functionals
Analytic second derivatives are not supported with the Minnesota functionals yet.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#combined-exchange-and-correlation-functionals","title":"Combined Exchange and Correlation Functionals","text":"In addition to the options listed above for the exchange and correlation functionals, the user has the alternative of specifying combined exchange and correlation functionals.
The available hybrid functionals (where a Hartree-Fock Exchange component is present) consist of the Becke \u201chalf and half\u201d5, the adiabatic connection method6, Becke 1997 (\u201cBecke V\u201d paper7).
The keyword beckehandh
specifies that the exchange-correlation energy will be computed as
EXC \u2248 \u00bdEXHF + \u00bdEXSlater + \u00bdECPW91LDA
We know this is NOT the correct Becke prescribed implementation that requires the XC potential in the energy expression. But this is what is currently implemented as an approximation to it.
The keyword acm
specifies that the exchange-correlation energy is computed as
EXC = a0EXHF + (1 - a0)EXSlater + aX\u03b4EXBecke88 + ECVWN + aC\u03b4ECPerdew91
where
a0 = 0.20, aX = 0.72, aC = 0.81
and \u03b4 stands for a non-local component.
The keyword b3lyp
specifies that the exchange-correlation energy is computed as
EXC = a0EXHF + (1 - a0)EXSlater + aX\u03b4EXBecke88 + (1 - aC)ECVWN_1_RPA + aC\u03b4ECLYP
where
a0 = 0.20, aX = 0.72, aC = 0.81
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#xc-functionals-summary","title":"XC Functionals Summary","text":"Table\u00a01: Available Exchange (X) and Correlation (C) functionals. GGA is the Generalized Gradient Approximation, and Meta refers to Meta-GGAs. The column 2nd refers to second derivatives of the energy with respect to nuclear position. Keyword X C GGA Meta Hybr. 2nd Ref. slater * Y 23 vwn_1 * Y 4 vwn_2 * Y 4 vwn_3 * Y 4 vwn_4 * Y 4 vwn_5 * Y 4 vwn_1_rpa * Y 4 perdew81 * Y 8 pw91lda * Y 9 xbecke86b * * N 10 becke88 * * Y 11 xperdew86 * * N 12 xperdew91 * * Y 9 xpbe96 * * Y 1314 gill96 * * Y 15 optx * * N 16 mpw91 * * Y 1718 xft97 * * N 1920 rpbe * * Y 21 revpbe * * Y 22 xpw6b95 * * N 23 xpwb6k * * N 23 perdew86 * * Y 12 lyp * * Y 24 perdew91 * * Y 2526 cpbe96 * * Y 1314 cft97 * * N 1920 op * * N 27 hcth * * * N 28 hcth120 * * * N 29 hcth147 * * * N 29 hcth147@tz2p * * * N 30 hcth407 * * * N 31 becke97gga1 * * * N 32 hcthp14 * * * N 33 ft97 * * * N 1920 htch407p * * * N 34 bop * * * N 27 pbeop * * * N 35 xpkzb99 * * N 36 cpkzb99 * * N 36 xtpss03 * * N 37 ctpss03 * * N 37 bc95 * * N 21 cpw6b95 * * N 23 cpwb6k * * N 23 xm05 * * * N 38,39 cm05 * * N 38,39 m05-2x * * * * N 40 xm05-2x * * * N 40 cm05-2x * * N 40 xctpssh * * N 41 bb1k * * N 22 mpw1b95 * * N 42 mpwb1k * * N 42 pw6b95 * * N 23 pwb6k * * N 23 m05 * * N 38 vs98 * * N 43 xvs98 * * N 43 cvs98 * * N 43 m06-L * * * N 44 xm06-L * * N 44 cm06-L * * N 44 m06-hf * * N 45 xm06-hf * * * N 45 cm06-hf * * N 45 m06 * * N 46 xm06 * * * N 46 cm06 * * N 46 m06-2x * * N 44 xm06-2x * * * N 44 cm06-2x * * N 44 cm08-hx * * N 47 xm08-hx * * N 47 m08-hx * * * * N 47 cm08-so * * N 47 xm08-so * * N 47 m08-so * * * * N 47 cm11 * * N 48 xm11 * * N 48 m11 * * * * N 48 cm11-l * * N 49 xm11-l * * N 49 m11-l * * * N 49 csogga * * N 47 xsogga * * N 47 sogga * * * N 47 csogga11 * * N 50 xsogga11 * * N 50 sogga11 * * * N 50 csogga11-x * N [@peverati2001] xsogga11-x * * N [@peverati2001] sogga11-x * * * * N [@peverati2001] dldf * * * * N 51 beckehandh * * * Y 5 b3lyp * * * * Y 6 acm * * * * Y 6 becke97 * * * * N 7 becke97-1 * * * * N 28 becke97-2 * * * * N 52 becke97-3 * * * * N 53 becke97-d * * * * N 54 becke98 * * * * N 55 pbe0 * * * * Y 56 mpw1k * * * * Y 57 xmvs15 * * N 58 hle16 * * * * Y 59 scan * * * * N [@yang20176] scanl * * * * N 60 revm06-L * * * * N 61 revm06 * * * * * N 62 wb97x * * * * N 94 wb97x-d3 * * * * N 95 rscan * * * * N 96 r2scan * * * * N 97 r2scan0 * * * * * N [^101] r2scanl * * * * N [^100],[^r2scanl] ncap * * * Y [^102]"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#meta-gga-functionals","title":"Meta-GGA Functionals","text":"One way to calculate meta-GGA energies is to use orbitals and densities from fully self-consistent GGA or LDA calculations and run them in one iteration in the meta-GGA functional. It is expected that meta-GGA energies obtained this way will be close to fully self consistent meta-GGA calculations.
It is possible to calculate metaGGA energies both ways in NWChem, that is, self-consistently or with GGA/LDA orbitals and densities. However, since second derivatives are not available for metaGGAs, in order to calculate frequencies, one must use task dft freq numerical. A sample file with this is shown below, in Sample input file. In this instance, the energy is calculated self-consistently and geometry is optimized using the analytical gradients.
(For more information on metaGGAs, see Kurth et al 1999 63 for a brief description of meta-GGAs, and citations 14-27 therein for thorough background)
Note: both TPSS and PKZB correlation require the PBE GGA CORRELATION (which is itself dependent on an LDA). The decision has been made to use these functionals with the accompanying local PW91LDA. The user cannot set the local part of these metaGGA functionals.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#range-separated-functionals","title":"Range-Separated Functionals","text":"Using the Ewald decomposition
we can split the the Exchange interaction as
Therefore, the long-range HF Exchange energy becomes
cam <real cam> cam_alpha <real cam_alpha> cam_beta <cam_beta>\n
cam
represents the attenuation parameter \u03bc, cam_alpha
and cam_beta
are the \u03b1 and \u03b2 parameters that control the amount of short-range DFT and long-range HF Exchange according to the Ewald decomposition. As r12 \u2192 0, the HF exchange fraction is \u03b1, while the DFT exchange fraction is 1 - \u03b1. As r12 \u2192 \u221e, the HF exchange fraction approaches \u03b1 + \u03b2 and the DFT exchange fraction approaches 1 - \u03b1 - \u03b2. In the HSE functional, the HF part is short-ranged and DFT is long-ranged.
Range separated functionals (or long-range corrected or LC) can be specified as follows:
CAM-B3LYP:
xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00 \ncam 0.33 cam_alpha 0.19 cam_beta 0.46\n
LC-BLYP:
xc xcamb88 1.00 lyp 1.0 hfexch 1.00 \ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
LC-PBE:
xc xcampbe96 1.0 cpbe96 1.0 HFexch 1.0 \ncam 0.30 cam_alpha 0.0 cam_beta 1.0\n
LC-PBE0 or CAM-PBE0:
xc xcampbe96 1.0 cpbe96 1.0 HFexch 1.0\ncam 0.30 cam_alpha 0.25 cam_beta 0.75\n
BNL (Baer, Neuhauser, Lifshifts):
xc xbnl07 0.90 lyp 1.00 hfexch 1.00 \ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
LC-wPBE:
xc xwpbe 1.00 cpbe96 1.0 hfexch 1.00 \ncam 0.4 cam_alpha 0.00 cam_beta 1.00\n
LRC-wPBEh:
xc xwpbe 0.80 cpbe96 1.0 hfexch 1.00 \ncam 0.2 cam_alpha 0.20 cam_beta 0.80\n
QTP-00
xc xcamb88 1.00 lyp 0.80 vwn_5 0.2 hfexch 1.00 \ncam 0.29 cam_alpha 0.54 cam_beta 0.37\n
rCAM-B3LYP
xc xcamb88 1.00 lyp 1.0 vwn_5 0. hfexch 1.00 becke88 nonlocal 0.13590\ncam 0.33 cam_alpha 0.18352 cam_beta 0.94979\n
HSE03 functional: 0.25*Ex(HF-SR) - 0.25*Ex(PBE-SR) + Ex(PBE) + Ec(PBE), where gamma(HF-SR) = gamma(PBE-SR)
xc hse03\n
or it can be explicitly set as
xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25\ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
HSE06 functional:
xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25\ncam 0.11 cam_alpha 0.0 cam_beta 1.0\n
Please see references 64, 65, 66, 67, 68, [vydrov2006], 69, 70, 71, 72, 73, 74, 75 and 76 (not a complete list) for further details about the theory behind these functionals and applications.
Example illustrating the CAM-B3LYP functional:
start h2o-camb3lyp \ngeometry units angstrom \n O 0.00000000 0.00000000 0.11726921 \n H 0.75698224 0.00000000 -0.46907685 \n H -0.75698224 0.00000000 -0.46907685 \nend \nbasis spherical \n * library aug-cc-pvdz \nend \ndft \n xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00 \n cam 0.33 cam_alpha 0.19 cam_beta 0.46 \n direct \n iterations 100 \nend \ntask dft energy\n
Example illustrating the HSE03 functional:
echo \nstart h2o-hse \ngeometry units angstrom \nO 0.00000000 0.00000000 0.11726921 \nH 0.75698224 0.00000000 -0.46907685 \nH -0.75698224 0.00000000 -0.46907685 \nend \nbasis spherical \n * library aug-cc-pvdz \nend \ndft \n xc hse03 \n iterations 100 \n direct \n end \ntask dft energy\n
or alternatively
dft \n xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25 \n cam 0.33 cam_alpha 0.0 cam_beta 1.0 \n iterations 100 \n direct \nend \ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#ssb-d-functional","title":"SSB-D functional","text":"The SSB-D7778 functional is a small correction to the non-empirical PBE functional and includes a portion of Grimme\u2019s dispersion correction (s6=0.847455). It is designed to reproduce the good results of OPBE for spin-state splittings and reaction barriers, and the good results of PBE for weak interactions. The SSB-D functional works well for these systems, including for difficult systems for DFT (dimerization of anthracene, branching of octane, water-hexamer isomers, C12H12 isomers, stacked adenine dimers), and for NMR chemical shieldings.
It can be specified as
xc ssb-d\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#semi-empirical-hybrid-dft-combined-with-perturbative-mp2","title":"Semi-empirical hybrid DFT combined with perturbative MP2","text":"This theory combines hybrid density functional theory with MP2 semi-empirically. The B2PLYP functional, which is an example of this approximation, can be specified as:
mp2\n freeze atomic\nend\ndft \n xc HFexch 0.53 becke88 0.47 lyp 0.73 mp2 0.27 \n dftmp2 \nend\n
For details of the theory, please see reference79.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#lb94-and-cs00-asymptotic-correction","title":"LB94 and CS00: Asymptotic correction","text":"The keyword LB94
will correct the asymptotic region of the XC definition of exchange-correlation potential by the van-Leeuwen-Baerends exchange-correlation potential that has the correct asymptotic behavior. The total energy will be computed by the XC definition of exchange-correlation functional. This scheme is known to tend to overcorrect the deficiency of most uncorrected exchange-correlation potentials.
The keyword CS00
, when supplied with a real value of shift (in atomic units), will perform Casida-Salahub \u201800 asymptotic correction. This is primarily intended for use with TDDFT. The shift is normally positive (which means that the original uncorrected exchange-correlation potential must be shifted down).
When the keyword CS00
is specified without the value of shift, the program will automatically supply it according to the semi-empirical formula of Zhan, Nichols, and Dixon (again, see TDDFT for more details and references). As the Zhan\u2019s formula is calibrated against B3LYP results, it is most meaningful to use this with the B3LYP functional, although the program does not prohibit (or even warn) the use of any other functional.
Sample input files of asymptotically corrected TDDFT calculations can be found in the corresponding section.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#sample-input-file","title":"Sample input file","text":"A simple example calculates the geometry of water, using the metaGGA functionals xtpss03
and ctpss03
. This also highlights some of the print features in the DFT module. Note that you must use the line task dft freq numerical
because analytic hessians are not available for the metaGGAs:
title \"WATER 6-311G* meta-GGA XC geometry\" \necho \ngeometry units angstroms \n O 0.0 0.0 0.0 \n H 0.0 0.0 1.0 \n H 0.0 1.0 0.0 \nend \nbasis \n H library 6-311G* \n O library 6-311G* \nend \ndft \n iterations 50 \n print kinetic_energy \n xc xtpss03 ctpss03 \n decomp \nend \ntask dft optimize \ntask dft freq numerical\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#iterations-or-maxiter-number-of-scf-iterations","title":"ITERATIONS or MAXITER: Number of SCF iterations","text":" ITERATIONS or MAXITER <integer iterations default 30>\n
The default optimization in the DFT module is to iterate on the Kohn-Sham (SCF) equations for a specified number of iterations (default 30). The keyword that controls this optimization is ITERATIONS
, and has the following general form,
iterations <integer iterations default 30>\n
or
maxiter <integer iterations default 30>\n
The optimization procedure will stop when the specified number of iterations is reached or convergence is met. See an example that uses this directive in Sample input file.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-scf-convergence-control","title":"CONVERGENCE: SCF Convergence Control","text":" CONVERGENCE [energy <real energy default 1e-6>] \\ \n [density <real density default 1e-5>] \\ \n [gradient <real gradient default 5e-4>] \\ \n [hl_tol <real hl_tol default 0.1>] \n [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 30>] \\ \n [damp <integer ndamp default 0>] [nodamping] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [(diis [nfock <integer nfock default 10>]) || nodiis] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>] \\ \n [(lshift <real lshift default 0.5>) || nolevelshifting] \\ \n [rabuck [n_rabuck <integer n_rabuck default 25>] \\\n [fast] ]\n
Convergence is satisfied by meeting any or all of three criteria;
CONVERGENCE energy <real energy default 1e-6>\n
CONVERGENCE density <real density default 1e-5>\n
CONVERGENCE gradient <real gradient default 5e-4>\n
The default optimization strategy is to immediately begin direct inversion of the iterative subspace. Damping is also initiated (using 70% of the previous density) for the first 2 iteration. In addition, if the HOMO - LUMO gap is small and the Fock matrix diagonally dominant, then level-shifting is automatically initiated. There are a variety of ways to customize this procedure to whatever is desired.
An alternative optimization strategy is to specify, by using the change in total energy (between iterations N and N-1), when to turn damping, level-shifting, and/or DIIS on/off. Start and stop keywords for each of these is available as,
CONVERGENCE [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>]\n
So, for example, damping, DIIS, and/or level-shifting can be turned on/off as desired.
Another strategy can be to specify how many iterations (cycles) you wish each type of procedure to be used. The necessary keywords to control the number of damping cycles (ncydp
), the number of DIIS cycles (ncyds
), and the number of level-shifting cycles (ncysh
) are input as,
CONVERGENCE [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 0>]\n
The amount of damping, level-shifting, time at which level-shifting is automatically imposed, and Fock matrices used in the DIIS extrapolation can be modified by the following keywords
CONVERGENCE [damp <integer ndamp default 0>] \\ \n [diis [nfock <integer nfock default 10>]] \\ \n [lshift <real lshift default 0.5>] \\ \n [hl_tol <real hl_tol default 0.1>]]\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-damp-keyword","title":"CONVERGENCE DAMP Keyword","text":"Damping is defined to be the percentage of the previous iterations density mixed with the current iterations density. So, for example
CONVERGENCE damp 70\n
would mix 30% of the current iteration density with 70% of the previous iteration density.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-lshift-keyword","title":"CONVERGENCE LSHIFT Keyword","text":"Level-Shifting is defined as the amount of shift applied to the diagonal elements of the unoccupied block of the Fock matrix. The shift is specified by the keyword lshift
. For example the directive,
CONVERGENCE lshift 0.5\n
causes the diagonal elements of the Fock matrix corresponding to the virtual orbitals to be shifted by 0.5 a.u. By default, this level-shifting procedure is switched on whenever the HOMO-LUMO gap is small. Small is defined by default to be 0.05 au but can be modified by the directive hl_tol. An example of changing the HOMO-LUMO gap tolerance to 0.01 would be,
CONVERGENCE hl_tol 0.01\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-diis-keyword","title":"CONVERGENCE DIIS Keyword","text":"Direct inversion of the iterative subspace with extrapolation of up to 10 Fock matrices is a default optimization procedure. For large molecular systems the amount of available memory may preclude the ability to store this number of N2 arrays in global memory. The user may then specify the number of Fock matrices to be used in the extrapolation (must be greater than three (3) to be effective). To set the number of Fock matrices stored and used in the extrapolation procedure to 3 would take the form,
CONVERGENCE diis 3\n
The user has the ability to simply turn off any optimization procedures deemed undesirable with the obvious keywords,
CONVERGENCE [nodamping] [nodiis] [nolevelshifting]\n
For systems where the initial guess is very poor, the user can try using fractional occupation of the orbital levels during the initial cycles of the SCF convergence80. The input has the following form
CONVERGENCE rabuck [n_rabuck <integer n_rabuck default 25>]]\n
where the optional value n_rabuck
determines the number of SCF cycles during which the method will be active. For example, to set equal to 30 the number of cycles where the Rabuck method is active, you need to use the following line
CONVERGENCE rabuck 30\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-fast-keyword","title":"CONVERGENCE FAST Keyword","text":"convergence fast
turns on a series of parameters that most often speed-up convergence, but not in 100% of the cases.
CONVERGENCE fast\n
Here is an input snippet that would give you the same result as convergence fast
dft\nconvergence lshift 0. ncydp 0 dampon 1d99 dampoff 1d-4 damp 40\nend\nset quickguess t\ntask dft \n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#cdft-constrained-dft","title":"CDFT: Constrained DFT","text":"This option enables the constrained DFT formalism by Wu and Van Voorhis81:
CDFT <integer fatom1 latom1> [<integer fatom2 latom2>] (charge||spin <real constaint_value>) \\ \n [pop (becke||mulliken||lowdin) default lowdin]\n
Variables fatom1
and latom1
define the first and last atom of the group of atoms to which the constraint will be applied. Therefore, the atoms in the same group should be placed continuously in the geometry input. If fatom2
and latom2
are specified, the difference between group 1 and 2 (i.e. 1-2) is constrained.
The constraint can be either on the charge or the spin density (number of alpha - beta electrons) with a user specified constraint_value
. Note: No gradients have been implemented for the spin constraints case. Geometry optimizations can only be performed using the charge constraint.
To calculate the charge or spin density, the Becke, Mulliken, and Lowdin population schemes can be used. The Lowdin scheme is default while the Mulliken scheme is not recommended. If basis sets with many diffuse functions are used, the Becke population scheme is recommended.
Multiple constraints can be defined simultaniously by defining multiple cdft lines in the input. The same population scheme will be used for all constraints and only needs to be specified once. If multiple population options are defined, the last one will be used. When there are convergence problems with multiple constraints, the user is advised to do one constraint first and to use the resulting orbitals for the next step of the constrained calculations.
It is best to put convergence nolevelshifting
in the dft directive to avoid issues with gradient calculations and convergence in CDFT. Use orbital swap to get a broken-symmetry solution.
An input example is given below.
geometry \nsymmetry \n C 0.0 0.0 0.0 \n O 1.2 0.0 0.0 \n C 0.0 0.0 2.0 \n O 1.2 0.0 2.0 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc b3lyp \n convergence nolevelshifting \n odft \n mult 1 \n vectors swap beta 14 15 \n cdft 1 2 charge 1.0 \nend \ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#smear-fractional-occupation-of-the-molecular-orbitals","title":"SMEAR: Fractional Occupation of the Molecular Orbitals","text":"The SMEAR
keyword is useful in cases with many degenerate states near the HOMO (eg metallic clusters)
SMEAR <real smear default 0.001>\n
This option allows fractional occupation of the molecular orbitals. A Gaussian broadening function of exponent smear is used as described in the paper by Warren and Dunlap82. The user must be aware that an additional energy term is added to the total energy in order to have energies and gradients consistent.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#fon-calculations-with-fractional-numbers-of-electrons","title":"FON: Calculations with fractional numbers of electrons","text":""},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#restricted","title":"Restricted","text":"fon partial 3 electrons 1.8 filled 2\n
Here 1.8 electrons will be equally divided over 3 valence orbitals and 2 orbitals are fully filled. The total number of electrons here is 5.8
Example input:
echo \ntitle \"carbon atom\" \nstart carbon_fon \ngeometry \nsymmetry c1 \n C 0.0 0.0 0.0 \nend \nbasis \n * library 6-31G \nend\ndft \n direct \n grid xfine \n convergence energy 1d-8 \n xc pbe0 \n fon partial 3 electrons 1.8 filled 2 \nend\ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#unrestricted","title":"Unrestricted","text":"fon alpha partial 3 electrons 0.9 filled 2 \nfon beta partial 3 electrons 0.9 filled 2\n
Here 0.9 electrons will be equally divided over 3 alpha valence orbitals and 2 alpha orbitals are fully filled. Similarly for beta. The total number of electrons here is 5.8
Example input:
echo \ntitle \"carbon atom\" \nstart carbon_fon \ngeometry \n C 0.0 0.0 0.0 \nend \nbasis \n * library 6-31G \nend \ndft \n odft \n fon alpha partial 3 electrons 0.9 filled 2 \n fon beta partial 3 electrons 0.9 filled 2 \nend \ntask dft energy\n
To set fractional numbers in the core orbitals, add the following directive in the input file:
set dft:core_fon .true.\n
Example input:
dft\n print \"final vectors analysis\"\n odft\n direct\n fon alpha partial 2 electrons 1.0 filled 2\n fon beta partial 2 electrons 1.0 filled 2\n xc pbe0\n convergence energy 1d-8\nend\ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#occup-controlling-the-occupations-of-molecular-orbitals","title":"OCCUP: Controlling the occupations of molecular orbitals","text":"Example:
echo \nstart h2o_core_hole \nmemory 1000 mb \ngeometry units au \n O 0 0 0 \n H 0 1.430 -1.107 \n H 0 -1.430 -1.107 \nend \nbasis \n O library 6-31g* \n H library 6-31g* \nend \noccup \n 6 6 # occupation list for 6 alpha and 6 beta orbitals \n 1.0 0.0 # core-hole in the first beta orbital\n 1.0 1.0 \n 1.0 1.0 \n 1.0 1.0 \n 1.0 1.0 \n 0.0 0.0 \nend \ndft \n odft \n mult 1 \n xc beckehandh \nend \ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#grid-numerical-integration-of-the-xc-potential","title":"GRID: Numerical Integration of the XC Potential","text":" GRID [(xcoarse||coarse||medium||fine||xfine||huge) default medium] \\ \n [(gausleg||lebedev ) default lebedev ] \\ \n [(becke||erf1||erf2||ssf) default erf1] \\ \n [(euler||mura||treutler) default mura] \\ \n [rm <real rm default 2.0>] \\ \n [nodisk]\n
A numerical integration is necessary for the evaluation of the exchange-correlation contribution to the density functional. The default quadrature used for the numerical integration is an Euler-MacLaurin scheme for the radial components (with a modified Mura-Knowles transformation) and a Lebedev scheme for the angular components. Within this numerical integration procedure various levels of accuracy have been defined and are available to the user. The user can specify the level of accuracy with the keywords; xcoarse
, coarse
, medium
, fine
, xfine
and huge
. The default is medium
.
GRID [xcoarse||coarse||medium||fine||xfine||huge]\n
Our intent is to have a numerical integration scheme which would give us approximately the accuracy defined below regardless of molecular composition.
Keyword Total Energy Target Accuracy xcoarse 1\u22c510-4 coarse 1\u22c510-5 medium 1\u22c510-6 fine 1\u22c510-7 xfine 1\u22c510-8 huge 1\u22c510-10In order to determine the level of radial and angular quadrature needed to give us the target accuracy, we computed total DFT energies at the LDA level of theory for many homonuclear atomic, diatomic and triatomic systems in rows 1-4 of the periodic table. In each case all bond lengths were set to twice the Bragg-Slater radius. The total DFT energy of the system was computed using the converged SCF density with atoms having radial shells ranging from 35-235 (at fixed 48/96 angular quadratures) and angular quadratures of 12/24-48/96 (at fixed 235 radial shells). The error of the numerical integration was determined by comparison to a \u201cbest\u201d or most accurate calculation in which a grid of 235 radial points 48 theta and 96 phi angular points on each atom was used. This corresponds to approximately 1 million points per atom. The following tables were empirically determined to give the desired target accuracy for DFT total energies. These tables below show the number of radial and angular shells which the DFT module will use for for a given atom depending on the row it is in (in the periodic table) and the desired accuracy. Note, differing atom types in a given molecular system will most likely have differing associated numerical grids. The intent is to generate the desired energy accuracy (at the expense of speed of the calculation).
Keyword Radial Angular xcoarse 21 194 coarse 35 302 medium 49 434 fine 70 590 xfine 100 1202Program default number of radial and angular shells empirically determined for Row 1 atoms (Li \u2192 F) to reach the desired accuracies.
Keyword Radial Angular xcoarse 42 194 coarse 70 302 medium 88 434 fine 123 770 xfine 125 1454 huge 300 1454Program default number of radial and angular shells empirically determined for Row 2 atoms (Na \u2192 Cl) to reach the desired accuracies.
Keyword Radial Angular xcoarse 75 194 coarse 95 302 medium 112 590 fine 130 974 xfine 160 1454 huge 400 1454Program default number of radial and angular shells empirically determined for Row 3 atoms (K \u2192 Br) to reach the desired accuracies.
Keyword Radial Angular xcoarse 84 194 coarse 104 302 medium 123 590 fine 141 974 xfine 205 1454 huge 400 1454Program default number of radial and angular shells empirically determined for Row 4 atoms (Rb \u2192 I) to reach the desired accuracies.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#angular-grids","title":"Angular grids","text":"In addition to the simple keyword specifying the desired accuracy as described above, the user has the option of specifying a custom quadrature of this type in which ALL atoms have the same grid specification. This is accomplished by using the gausleg
keyword.
GRID gausleg <integer nradpts default 50> <integer nagrid default 10>\n
In this type of grid, the number of phi points is twice the number of theta points. So, for example, a specification of,
GRID gausleg 80 20\n
would be interpreted as 80 radial points, 20 theta points, and 40 phi points per center (or 64000 points per center before pruning).
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#lebedev-angular-grid","title":"Lebedev angular grid","text":"A second quadrature is the Lebedev scheme for the angular components. Within this numerical integration procedure various levels of accuracy have also been defined and are available to the user. The input for this type of grid takes the form,
GRID lebedev <integer radpts > <integer iangquad >\n
In this context the variable iangquad
specifies a certain number of angular points as indicated by the table below:
Therefore the user can specify any number of radial points along with the level of angular quadrature (1-29).
The user can also specify grid parameters specific for a given atom type: parameters that must be supplied are: atom tag and number of radial points. As an example, here is a grid input line for the water molecule
grid lebedev 80 11 H 70 8 O 90 11\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#partitioning-functions","title":"Partitioning functions","text":"GRID [(becke||erf1||erf2||ssf) default erf1]\n
Erfn partitioning functions
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#radial-grids","title":"Radial grids","text":"
GRID [[euler||mura||treutler] default mura]\n
NODISK\n
This keyword turns off storage of grid points and weights on disk.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#tolerances-screening-tolerances","title":"TOLERANCES: Screening tolerances","text":" TOLERANCES [[tight] [tol_rho <real tol_rho default 1e-10>] \\ \n [accCoul <integer accCoul default 8>] \\ \n [radius <real radius default 25.0>]]\n
The user has the option of controlling screening for the tolerances in the integral evaluations for the DFT module. In most applications, the default values will be adequate for the calculation, but different values can be specified in the input for the DFT module using the keywords described below.
The input parameter accCoul
is used to define the tolerance in Schwarz screening for the Coulomb integrals. Only integrals with estimated values greater than 10(-accCoul) are evaluated.
TOLERANCES accCoul <integer accCoul default 8>\n
Screening away needless computation of the XC functional (on the grid) due to negligible density is also possible with the use of,
TOLERANCES tol_rho <real tol_rho default 1e-10>\n
XC functional computation is bypassed if the corresponding density elements are less than tol_rho
.
A screening parameter, radius, used in the screening of the Becke or Delley spatial weights is also available as,
TOLERANCES radius <real radius default 25.0>\n
where radius
is the cutoff value in bohr.
The tolerances as discussed previously are insured at convergence. More sleazy tolerances are invoked early in the iterative process which can speed things up a bit. This can also be problematic at times because it introduces a discontinuity in the convergence process. To avoid use of initial sleazy tolerances the user can invoke the tight option:
TOLERANCES tight\n
This option sets all tolerances to their default/user specified values at the very first iteration.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#direct-semidirect-and-noio-hardware-resource-control","title":"DIRECT, SEMIDIRECT and NOIO: Hardware Resource Control","text":" DIRECT||INCORE \n SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$] \n NOIO\n
The inverted charge-density and exchange-correlation matrices for a DFT calculation are normally written to disk storage. The user can prevent this by specifying the keyword noio
within the input for the DFT directive. The input to exercise this option is as follows,
noio\n
If this keyword is encountered, then the two matrices (inverted charge-density and exchange-correlation) are computed \u201con-the-fly\u201d whenever needed.
The INCORE
option is always assumed to be true but can be overridden with the option DIRECT
in which case all integrals are computed \u201con-the-fly\u201d.
The SEMIDIRECT
option controls caching of integrals. A full description of this option is described in the Hartree-Fock section. Some functionality which is only compatible with the DIRECT
option will not, at present, work when using SEMIDIRECT
.
ODFT\n MULT <integer mult default 1>\n
Both closed-shell and open-shell systems can be studied using the DFT module. Specifying the keyword MULT
within the DFT
directive allows the user to define the spin multiplicity of the system. The form of the input line is as follows;
MULT <integer mult default 1>\n
When the keyword MULT
is specified, the user can define the integer variable mult
, where mult is equal to the number of alpha electrons minus beta electrons, plus 1.
When MULT
is set to a negative number. For example, if MULT = -3
, a triplet calculation will be performed with the beta electrons preferentially occupied. For MULT = 3
, the alpha electrons will be preferentially occupied.
The keyword ODFT
is unnecessary except in the context of forcing a singlet system to be computed as an open shell system (i.e., using a spin-unrestricted wavefunction).
The cgmin
keyword will use the quadratic convergence algorithm. It is possible to turn the use of the quadratic convergence algorithm off with the nocgmin
keyword.
The rodft
keyword will perform restricted open-shell calculations. This keyword can only be used with the CGMIN
keyword.
sic [perturbative || oep || oep-loc ]\n<default perturbative>\n
The Perdew and Zunger8 method to remove the self-interaction contained in many exchange-correlation functionals has been implemented with the Optimized Effective Potential method8889 within the Krieger-Li-Iafrate approximation909192. Three variants of these methods are included in NWChem:
sic perturbative
This is the default option for the sic directive. After a self-consistent calculation, the Kohn-Sham orbitals are localized with the Foster-Boys algorithm (see section on orbital localization) and the self-interaction energy is added to the total energy. All exchange-correlation functionals implemented in the NWChem can be used with this option.sic oep
With this option the optimized effective potential is built in each step of the self-consistent process. Because the electrostatic potential generated for each orbital involves a numerical integration, this method can be expensive.sic oep-loc
This option is similar to the oep option with the addition of localization of the Kohn-Sham orbitals in each step of the self-consistent process.With oep
and oep-loc
options a xfine grid
(see section about numerical integration ) must be used in order to avoid numerical noise, furthermore the hybrid functionals can not be used with these options. More details of the implementation of this method can be found in the paper by Garza93. The components of the sic energy can be printed out using:
print \"SIC information\"\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#mulliken-mulliken-analysis","title":"MULLIKEN: Mulliken analysis","text":"Mulliken analysis of the charge distribution is invoked by the keyword:
MULLIKEN\n
When this keyword is encountered, Mulliken analysis of both the input density as well as the output density will occur. For example, to perform a mulliken analysis and print the explicit population analysis of the basis functions, use the following
dft\n mulliken\n print \"mulliken ao\"\nend\ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#fukui-fukui-indices","title":"FUKUI: Fukui Indices","text":"Fukui inidces analysis is invked by the keyword:
FUKUI\n
When this keyword is encounters, the condensed Fukui indices will be calculated and printed in the output. Detailed information about the analysis can be obtained using the following
dft \n fukui \n print \"Fukui information\" \n end \n task dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#bsse-basis-set-superposition-error","title":"BSSE: Basis Set Superposition Error","text":"Particular care is required to compute BSSE by the counter-poise method for the DFT module. In order to include terms deriving from the numerical grid used in the XC integration, the user must label the ghost atoms not just bq, but bq followed by the given atomic symbol. For example, the first component needed to compute the BSSE for the water dimer, should be written as follows
geometry h2o autosym units au\n O 0.00000000 0.00000000 0.22143139\n H 1.43042868 0.00000000 -0.88572555\n H -1.43042868 0.00000000 -0.88572555\n bqH 0.71521434 0.00000000 -0.33214708\n bqH -0.71521434 0.00000000 -0.33214708\n bqO 0.00000000 0.00000000 -0.88572555\nend\nbasis\n H library aug-cc-pvdz\n O library aug-cc-pvdz\n bqH library H aug-cc-pvdz\n bqO library O aug-cc-pvdz\nend\n
Please note that the ghost oxygen atom has been labeled bqO
, and not just bq
.
DISP \\\n [ vdw <real vdw integer default 2]] \\\n [[s6 <real s6 default depends on XC functional>] \\\n [ alpha <real alpha default 20.0d0] \\\n [ off ] \n
When systems with high dependence on van der Waals interactions are computed, the dispersion term may be added empirically through long-range contribution DFT-D, i.e. EDFT-D=EDFT-KS+Edisp, where:
In this equation, the s6 term depends in the functional and basis set used, C6ij is the dispersion coefficient between pairs of atoms. Rvdw and Rij are related with van der Waals atom radii and the nucleus distance respectively. The \u03b1 value contributes to control the corrections at intermediate distances.
There are available three ways to compute C6ij:
where Neff and C6 are obtained from references 94 and 95 (Use vdw 0
)
See details in reference96. (Use vdw 1)
See details in reference79. (Use vdw 2
)
Note that in each option there is a certain set of C6 and Rvdw. Also note that Grimme only defined parameters for elements up to Z=54 for the dispersion correction above. C6 values for elements above Z=54 have been set to zero.
For options vdw 1
and vdw 2
, there are s6 values by default for some functionals and triple-zeta plus double polarization basis set (TZV2P):
vdw 1
BLYP 1.40, PBE 0.70 and BP86 1.30.vdw 2
BLYP 1.20, PBE 0.75, BP86 1.05, B3LYP 1.05, Becke97-D 1.25 and TPSS 1.00.Grimme\u2019s DFT-D3 is also available. Here the dispersion term has the following form:
This new dispersion correction covers elements through Z=94. Cijn (n=6,8) are coordination and geometry dependent. Details about the functional form can be found in reference 97.
To use the Grimme DFT-D3 dispersion correction, use the option
vdw 3
(s6
and alpha
cannot be set manually). Functionals for which DFT-D3 is available in NWChem are BLYP, B3LYP, BP86, Becke97-D, PBE96, TPSS, PBE0, B2PLYP, BHLYP, TPSSH, PWB6K, B1B95, SSB-D, MPW1B95, MPWB1K, M05, M05-2X, M06L, M06, M06-2X, and M06HF
vdw 4
triggers the DFT-D3BJ dispersion model. Currently only BLYP, B3LYP, BHLYP, TPSS, TPSSh, B2-PLYP, B97-D, BP86, PBE96, PW6B95, revPBE, B3PW91, pwb6k, b1b95, CAM-B3LYP, LC-wPBE, HCTH120, MPW1B95, BOP, OLYP, BPBE, OPBE and SSB are supported.
This capability is also supported for energy gradients and Hessian. Is possible to be deactivated with OFF.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#noscf-non-self-consistent-calculations","title":"NOSCF: Non Self-Consistent Calculations","text":"The noscf
keyword can be used to to calculate the non self-consistent energy for a set of input vectors. For example, the following input shows how a non self-consistent B3LYP energy can be calculated using a self-consistent set of vectors calculated at the Hartree-Fock level.
start h2o-noscf\n\ngeometry units angstrom\n O 0.00000000 0.00000000 0.11726921\n H 0.75698224 0.00000000 -0.46907685\n H -0.75698224 0.00000000 -0.46907685\nend\n\nbasis spherical\n * library aug-cc-pvdz\nend\ndft\n xc hfexch\n vectors output hf.movecs \nend\ntask dft energy\ndft\n xc b3lyp\n vectors input hf.movecs \n noscf \nend\ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#xdm-exchange-hole-dipole-moment-dispersion-model","title":"XDM: Exchange-hole dipole moment dispersion model","text":"XDM [ a1 <real a1> ] [ a2 <real a2> ]\n
See details (including list of a1 and a2 parameters) in paper[delaroza2013] and the website http://schooner.chem.dal.ca/wiki/XDM
geometry \n O -0.190010095135 -1.168397415155 0.925531922479\n H -0.124425719598 -0.832776238160 1.818190662986\n H -0.063897685990 -0.392575837594 0.364048725248\n O 0.174717244879 1.084630474836 -0.860510672419\n H -0.566281023931 1.301941006866 -1.427261487135\n H 0.935093179777 1.047335209207 -1.441842151158\n end\n\n basis spherical\n * library aug-cc-pvdz\n end\n\n dft\n direct\n xc b3lyp\n xdm a1 0.6224 a2 1.7068\n end\n\n task dft optimize\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#print-control","title":"Print Control","text":" PRINT||NOPRINT\n
The PRINT||NOPRINT
options control the level of output in the DFT. Please see some examples using this directive in Sample input file. Known controllable print options are:
DFT Print Control Specifications
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#spin-orbit-density-functional-theory-sodft","title":"Spin-Orbit Density Functional Theory (SODFT)","text":"The spin-orbit DFT module (SODFT) in the NWChem code allows for the variational treatment of the one-electron spin-orbit operator within the DFT framework. Calculations can be performed either with an electron relativistic approach (ZORA) or with an effective core potential (ECP) and a matching spin-orbit potential (SO). The current implementation does NOT use symmetry.
The actual SODFT calculation will be performed when the input module encounters the TASK directive (TASK).
TASK SODFT\n
Input parameters are the same as for the DFT. Some of the DFT options are not available in the SODFT. These are max_ovl
and sic
.
Besides using the standard ECP and basis sets, see Effective Core Potentials for details, one also has to specify a spin-orbit (SO) potential. The input specification for the SO potential can be found in Effective Core Potentials. At this time we have not included any spin-orbit potentials in the basis set library. However, one can get these from the Stuttgart/K\u00f6ln web pages http://www.tc.uni-koeln.de/PP/clickpse.en.html.
Note: One should use a combination of ECP and SO potentials that were designed for the same size core, i.e., don\u2019t use a small core ECP potential with a large core SO potential (it will produce erroneous results).
The following is an example of a calculation of UO2:
start uo2_sodft \necho \n\ncharge 2 \ngeometry \n U 0.00000 0.00000 0.00000 \n O 0.00000 0.00000 1.68000 \n O 0.00000 0.00000 -1.68000 \nend \nbasis \"ao basis\" \n * library \"stuttgart rlc ecp\"\nEND\nECP\n * library \"stuttgart rlc ecp\"\nEND\nSO \n U p \n 2 3.986181 1.816350 \n 2 2.000160 11.543940 \n 2 0.960841 0.794644 \n U d \n 2 4.147972 0.353683 \n 2 2.234563 3.499282 \n 2 0.913695 0.514635 \n U f \n 2 3.998938 4.744214 \n 2 1.998840 -5.211731 \n 2 0.995641 1.867860 \nEND \ndft \n mult 1 \n xc hfexch \nend \ntask sodft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#sym-and-adapt","title":"SYM and ADAPT","text":"The options SYM
and ADAPT
works the same way as the analogous options for the SCF code. Therefore please use the following links for SYM and ADAPT, respectively.
K\u00f6ster, A. M.; Reveles, J. U.; Campo, J. M. del. Calculation of Exchange-Correlation Potentials with Auxiliary Function Densities. The Journal of Chemical Physics 2004, 121 (8), 3417\u20133424. https://doi.org/10.1063/1.1771638.\u00a0\u21a9
Slater, J. C.; Johnson, K. H. Self-Consistent-Field X\u03b1 Cluster Method for Polyatomic Molecules and Solids. Phys. Rev. B 1972, 5, 844\u2013853. https://doi.org/10.1103/PhysRevB.5.844.\u00a0\u21a9\u21a9
Slater, J. C. Quantum Theory of Molecules and Solids: The Self-Consistent Field for Molecules and Solids; McGraw-Hill Education, 1974; p 640.\u00a0\u21a9\u21a9
Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Canadian Journal of physics 1980, 58 (8), 1200\u20131211. https://doi.org/10.1139/p80-159.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. The Journal of Chemical Physics 1993, 98 (2), 1372\u20131377. https://doi.org/https://aip.scitation.org/doi/abs/10.1063/1.464304.\u00a0\u21a9\u21a9
Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics 1993, 98 (7), 5648\u20135652. https://doi.org/10.1063/1.464913.\u00a0\u21a9\u21a9\u21a9
Becke, A. D. Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. The Journal of Chemical Physics 1997, 107 (20), 8554\u20138560. https://doi.org/10.1063/1.475007.\u00a0\u21a9\u21a9
Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048\u20135079. https://doi.org/10.1103/PhysRevB.23.5048.\u00a0\u21a9\u21a9
Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244\u201313249. https://doi.org/10.1103/PhysRevB.45.13244.\u00a0\u21a9\u21a9
Becke, A. D. On the Large-Gradient Behavior of the Density Functional Exchange Energy. The Journal of Chemical Physics 1986, 85 (12), 7184\u20137187. https://doi.org/10.1063/1.451353.\u00a0\u21a9
Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A 1988, 38 (6), 3098\u20133100. https://doi.org/10.1103/PhysRevA.38.3098.\u00a0\u21a9
Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Physical Review B 1986, 33 (12), 8822\u20138824. https://doi.org/10.1103/PhysRevB.33.8822.\u00a0\u21a9\u21a9
Perdew, J. P.; Burke, K.; Ernzerhof, M. Errata: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865\u20133868. https://doi.org/10.1103/PhysRevLett.77.3865.\u00a0\u21a9\u21a9
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396\u20131396. https://doi.org/10.1103/PhysRevLett.78.1396.\u00a0\u21a9\u21a9
Gill, P. M. W. A New Gradient-Corrected Exchange Functional. Molecular Physics 1996, 89 (2), 433\u2013445. https://doi.org/10.1080/002689796173813.\u00a0\u21a9
Handy, N. C.; Cohen, A. J. Left-Right Correlation Energy. Molecular Physics 2001, 99 (5), 403\u2013412. https://doi.org/10.1080/00268970010018431.\u00a0\u21a9
Adamo, C.; Barone, V. Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods Without Adjustable Parameters: The mPW and mPW1PW Models. The Journal of Chemical Physics 1998, 108 (2), 664\u2013675. https://doi.org/10.1063/1.475428.\u00a0\u21a9
Zhao, Y.; Truhlar, D. G. Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. The Journal of Physical Chemistry A 2005, 109 (25), 5656\u20135667. https://doi.org/10.1021/jp050536c.\u00a0\u21a9
Filatov, M.; Thiel, W. A New Gradient-Corrected Exchange-Correlation Density Functional. Molecular Physics 1997, 91 (5), 847\u2013860. https://doi.org/10.1080/002689797170950.\u00a0\u21a9\u21a9\u21a9
Filatov, M.; Thiel, W. A Nonlocal Correlation Energy Density Functional from a Coulomb Hole Model. International Journal of Quantum Chemistry 1997, 62 (6), 603\u2013616. https://doi.org/10.1002/(sici)1097-461x(1997)62:6<603::aid-qua4>3.0.co;2-#.\u00a0\u21a9\u21a9\u21a9
Hammer, B.; Hansen, L. B.; N\u00f8rskov, J. K. Improved Adsorption Energetics Within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B 1999, 59 (11), 7413\u20137421. https://doi.org/10.1103/physrevb.59.7413.\u00a0\u21a9\u21a9
Zhang, Y.; Yang, W. Comment on Generalized Gradient Approximation Made Simple. Physical Review Letters 1998, 80 (4), 890\u2013890. https://doi.org/10.1103/physrevlett.80.890.\u00a0\u21a9\u21a9
Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics. The Journal of Physical Chemistry A 2004, 108 (14), 2715\u20132719. https://doi.org/10.1021/jp049908s.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B 1988, 37 (2), 785\u2013789. https://doi.org/10.1103/PhysRevB.37.785.\u00a0\u21a9
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1992, 46 (11), 6671\u20136687. https://doi.org/10.1103/PhysRevB.46.6671.\u00a0\u21a9
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1993, 48 (7), 4978\u20134978. https://doi.org/10.1103/PhysRevB.48.4978.2.\u00a0\u21a9
Tsuneda, T.; Suzumura, T.; Hirao, K. A New One-Parameter Progressive Collesalvetti-Type Correlation Functional. The Journal of Chemical Physics 1999, 110 (22), 10664\u201310678. https://doi.org/10.1063/1.479012.\u00a0\u21a9\u21a9
Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. Development and Assessment of New Exchange-Correlation Functionals. The Journal of Chemical Physics 1998, 109 (15), 6264\u20136271. https://doi.org/10.1063/1.477267.\u00a0\u21a9\u21a9
Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. New Generalized Gradient Approximation Functionals. The Journal of Chemical Physics 2000, 112 (4), 1670\u20131678. https://doi.org/10.1063/1.480732.\u00a0\u21a9\u21a9
Boese, A. D.; Martin, J. M. L.; Handy, N. C. The Role of the Basis Set: Assessing Density Functional Theory. The Journal of Chemical Physics 2003, 119 (6), 3005\u20133014. https://doi.org/10.1063/1.1589004.\u00a0\u21a9
Boese, A. D.; Handy, N. C. A New Parametrization of Exchangecorrelation Generalized Gradient Approximation Functionals. The Journal of Chemical Physics 2001, 114 (13), 5497\u20135503. https://doi.org/10.1063/1.1347371.\u00a0\u21a9
Cohen, A. J.; Handy, N. C. Assessment of Exchange Correlation Functionals. Chemical Physics Letters 2000, 316 (1-2), 160\u2013166. https://doi.org/10.1016/s0009-2614(99)01273-7.\u00a0\u21a9
Menconi, G.; Wilson, P. J.; Tozer, D. J. Emphasizing the Exchange-Correlation Potential in Functional Development. The Journal of Chemical Physics 2001, 114 (9), 3958\u20133967. https://doi.org/10.1063/1.1342776.\u00a0\u21a9
Boese, A. D.; Chandra, A.; Martin, J. M. L.; Marx, D. From Ab Initio Quantum Chemistry to Molecular Dynamics: The Delicate Case of Hydrogen Bonding in Ammonia. The Journal of Chemical Physics 2003, 119 (12), 5965\u20135980. https://doi.org/10.1063/1.1599338.\u00a0\u21a9
Tsuneda, T.; Suzumura, T.; Hirao, K. A Reexamination of Exchange Energy Functionals. The Journal of Chemical Physics 1999, 111 (13), 5656\u20135667. https://doi.org/10.1063/1.479954.\u00a0\u21a9
Perdew, J. P.; Kurth, S.; Zupan, A.; Blaha, P. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Physical Review Letters 1999, 82 (12), 2544\u20132547. https://doi.org/10.1103/physrevlett.82.2544.\u00a0\u21a9\u21a9
Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters 2003, 91 (14), 146401. https://doi.org/10.1103/physrevlett.91.146401.\u00a0\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van Der Waals Interactions. The Journal of Physical Chemistry A 2004, 108 (33), 6908\u20136918. https://doi.org/10.1021/jp048147q.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Exchange-Correlation Functional with Broad Accuracy for Metallic and Nonmetallic Compounds, Kinetics, and Noncovalent Interactions. The Journal of Chemical Physics 2005, 123 (16), 161103. https://doi.org/10.1063/1.2126975.\u00a0\u21a9\u21a9
Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation 2006, 2 (2), 364\u2013382. https://doi.org/10.1021/ct0502763.\u00a0\u21a9\u21a9\u21a9
Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. The Journal of Chemical Physics 2003, 119 (23), 12129\u201312137. https://doi.org/10.1063/1.1626543.\u00a0\u21a9
Becke, A. D. Density-Functional Thermochemistry. IV. A New Dynamical Correlation Functional and Implications for Exact-Exchange Mixing. The Journal of Chemical Physics 1996, 104 (3), 1040\u20131046. https://doi.org/10.1063/1.470829.\u00a0\u21a9\u21a9
Voorhis, T. V.; Scuseria, G. E. A Novel Form for the Exchange-Correlation Energy Functional. The Journal of Chemical Physics 1998, 109 (2), 400\u2013410. https://doi.org/10.1063/1.476577.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. The Journal of Chemical Physics 2006, 125 (19), 194101. https://doi.org/10.1063/1.2370993.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average Than B3LYP for Ground States. The Journal of Physical Chemistry A 2006, 110 (49), 13126\u201313130. https://doi.org/10.1021/jp066479k.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theoretical Chemistry Accounts 2008, 120 (1-3), 215\u2013241. https://doi.org/10.1007/s00214-007-0310-x.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Construction of a Generalized Gradient Approximation by Restoring the Density-Gradient Expansion and Enforcing a Tight Lieboxford Bound. The Journal of Chemical Physics 2008, 128 (18), 184109. https://doi.org/10.1063/1.2912068.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. The Journal of Physical Chemistry Letters 2011, 2 (21), 2810\u20132817. https://doi.org/10.1021/jz201170d.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. M11-l: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. The Journal of Physical Chemistry Letters 2012, 3 (1), 117\u2013124. https://doi.org/10.1021/jz201525m.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Zhao, Y.; Truhlar, D. G. Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance. The Journal of Physical Chemistry Letters 2011, 2 (16), 1991\u20131997. https://doi.org/10.1021/jz200616w.\u00a0\u21a9\u21a9\u21a9
Pernal, K.; Podeszwa, R.; Patkowski, K.; Szalewicz, K. Dispersionless Density Functional Theory. Physical Review Letters 2009, 103 (26), 263201. https://doi.org/10.1103/physrevlett.103.263201.\u00a0\u21a9
Wilson, P. J.; Bradley, T. J.; Tozer, D. J. Hybrid Exchange-Correlation Functional Determined from Thermochemical Data and Ab Initio Potentials. The Journal of Chemical Physics 2001, 115 (20), 9233\u20139242. https://doi.org/10.1063/1.1412605.\u00a0\u21a9
Keal, T. W.; Tozer, D. J. Semiempirical Hybrid Functional with Improved Performance in an Extensive Chemical Assessment. The Journal of Chemical Physics 2005, 123 (12), 121103. https://doi.org/10.1063/1.2061227.\u00a0\u21a9
Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. Journal of Computational Chemistry 2006, 27 (15), 1787\u20131799. https://doi.org/10.1002/jcc.20495.\u00a0\u21a9
Schmider, H. L.; Becke, A. D. Optimized Density Functionals from the Extended G2 Test Set. The Journal of Chemical Physics 1998, 108 (23), 9624\u20139631. https://doi.org/10.1063/1.476438.\u00a0\u21a9
Adamo, C.; Barone, V. Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model. The Journal of Chemical Physics 1999, 110 (13), 6158\u20136170. https://doi.org/10.1063/1.478522.\u00a0\u21a9
Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. Adiabatic Connection for Kinetics. The Journal of Physical Chemistry A 2000, 104 (21), 4811\u20134815. https://doi.org/10.1021/jp000497z.\u00a0\u21a9
Sun, J.; Perdew, J. P.; Ruzsinszky, A. Semilocal Density Functional Obeying a Strongly Tightened Bound for Exchange. Proceedings of the National Academy of Sciences 2015, 112 (3), 685\u2013689. https://doi.org/10.1073/pnas.1423145112.\u00a0\u21a9
Verma, P.; Truhlar, D. G. HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies. The Journal of Physical Chemistry Letters 2017, 8 (2), 380\u2013387. https://doi.org/10.1021/acs.jpclett.6b02757.\u00a0\u21a9
Mejia-Rodriguez, D.; Trickey, S. B. Deorbitalization Strategies for Meta-Generalized-Gradient-Approximation Exchange-Correlation Functionals. Physical Review A 2017, 96 (5), 052512. https://doi.org/10.1103/physreva.96.052512.\u00a0\u21a9
Wang, Y.; Jin, X.; Yu, H. S.; Truhlar, D. G.; He, X. Revised M06-l Functional for Improved Accuracy on Chemical Reaction Barrier Heights, Noncovalent Interactions, and Solid-State Physics. Proceedings of the National Academy of Sciences 2017, 114 (32), 8487\u20138492. https://doi.org/10.1073/pnas.1705670114.\u00a0\u21a9
Wang, Y.; Verma, P.; Jin, X.; Truhlar, D. G.; He, X. Revised M06 Density Functional for Main-Group and Transition-Metal Chemistry. Proceedings of the National Academy of Sciences 2018, 115 (41), 10257\u201310262. https://doi.org/10.1073/pnas.1810421115.\u00a0\u21a9
Kurth, S.; Perdew, J. P.; Blaha, P. Molecular and Solid-State Tests of Density Functional Approximations: LSD, GGAs, and Meta-GGAs. International Journal of Quantum Chemistry 1999, 75 (4-5), 889\u2013909. https://doi.org/10.1002/(sici)1097-461x(1999)75:4/5<889::aid-qua54>3.0.co;2-8.\u00a0\u21a9
Savin, A. Beyond the Kohn-Sham Determinant. In Recent advances in density functional methods; WORLD SCIENTIFIC, 1995; pp 129\u2013153. https://doi.org/10.1142/9789812830586\\_0004.\u00a0\u21a9
Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A Long-Range Correction Scheme for Generalized-Gradient-Approximation Exchange Functionals. The Journal of Chemical Physics 2001, 115 (8), 3540\u20133544. https://doi.org/10.1063/1.1383587.\u00a0\u21a9
Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A Long-Range-Corrected Time-Dependent Density Functional Theory. The Journal of Chemical Physics 2004, 120 (18), 8425\u20138433. https://doi.org/10.1063/1.1688752.\u00a0\u21a9
Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chemical Physics Letters 2004, 393 (1-3), 51\u201357. https://doi.org/10.1016/j.cplett.2004.06.011.\u00a0\u21a9
Peach, M. J. G.; Cohen, A. J.; Tozer, D. J. Influence of Coulomb-Attenuation on Exchange-Correlation Functional Quality. Phys. Chem. Chem. Phys. 2006, 8 (39), 4543\u20134549. https://doi.org/10.1039/b608553a.\u00a0\u21a9
Song, J.-W.; Hirosawa, T.; Tsuneda, T.; Hirao, K. Long-Range Corrected Density Functional Calculations of Chemical Reactions: Redetermination of Parameter. The Journal of Chemical Physics 2007, 126 (15), 154105. https://doi.org/10.1063/1.2721532.\u00a0\u21a9
Livshits, E.; Baer, R. A Well-Tempered Density Functional Theory of Electrons in Molecules. Physical Chemistry Chemical Physics 2007, 9 (23), 2932. https://doi.org/10.1039/b617919c.\u00a0\u21a9
Cohen, A. J.; Mori-S\u00e1nchez, P.; Yang, W. Development of Exchange-Correlation Functionals with Minimal Many-Electron Self-Interaction Error. The Journal of Chemical Physics 2007, 126 (19), 191109. https://doi.org/10.1063/1.2741248.\u00a0\u21a9
Rohrdanz, M. A.; Herbert, J. M. Simultaneous Benchmarking of Ground- and Excited-State Properties with Long-Range-Corrected Density Functional Theory. The Journal of Chemical Physics 2008, 129 (3), 034107. https://doi.org/10.1063/1.2954017.\u00a0\u21a9
Govind, N.; Valiev, M.; Jensen, L.; Kowalski, K. Excitation Energies of Zinc Porphyrin in Aqueous Solution Using Long-Range Corrected Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A 2009, 113 (21), 6041\u20136043. https://doi.org/10.1021/jp902118k.\u00a0\u21a9
Baer, R.; Livshits, E.; Salzner, U. Tuned Range-Separated Hybrids in Density Functional Theory. Annual Review of Physical Chemistry 2010, 61 (1), 85\u2013109. https://doi.org/10.1146/annurev.physchem.012809.103321.\u00a0\u21a9
Autschbach, J.; Srebro, M. Delocalization Error and Functional Tuning in Kohn-Sham Calculations of Molecular Properties. Accounts of Chemical Research 2014, 47 (8), 2592\u20132602. https://doi.org/10.1021/ar500171t.\u00a0\u21a9
Verma, P.; Bartlett, R. J. Increasing the Applicability of Density Functional Theory. IV. Consequences of Ionization-Potential Improved Exchange-Correlation Potentials. The Journal of Chemical Physics 2014, 140 (18), 18A534. https://doi.org/10.1063/1.4871409.\u00a0\u21a9
Swart, M.; Sol\u00e0, M.; Bickelhaupt, F. M. A New All-Round Density Functional Based on Spin States and SN2 Barriers. The Journal of Chemical Physics 2009, 131 (9), 094103. https://doi.org/10.1063/1.3213193.\u00a0\u21a9
Swart, M.; Sol\u00e0, M.; Bickelhaupt, F. M. Switching Between OPTX and PBE Exchange Functionals. Journal of Computational Methods in Sciences and Engineering 2009, 9 (1-2), 69\u201377. https://doi.org/10.3233/jcm-2009-0230.\u00a0\u21a9
Grimme, S. Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. The Journal of Chemical Physics 2006, 124 (3), 034108. https://doi.org/10.1063/1.2148954.\u00a0\u21a9\u21a9
Rabuck, A. D.; Scuseria, G. E. Improving Self-Consistent Field Convergence by Varying Occupation Numbers. The Journal of Chemical Physics 1999, 110 (2), 695\u2013700. https://doi.org/10.1063/1.478177.\u00a0\u21a9
Wu, Q.; Voorhis, T. V. Direct Optimization Method to Study Constrained Systems Within Density-Functional Theory. Physical Review A 2005, 72 (2), 024502. https://doi.org/10.1103/physreva.72.024502.\u00a0\u21a9
Warren, R. W.; Dunlap, B. I. Fractional Occupation Numbers and Density Functional Energy Gradients Within the Linear Combination of Gaussian-Type Orbitals Approach. Chemical Physics Letters 1996, 262 (3-4), 384\u2013392. https://doi.org/10.1016/0009-2614(96)01107-4.\u00a0\u21a9
Becke, A. D. A Multicenter Numerical Integration Scheme for Polyatomic Molecules. The Journal of Chemical Physics 1988, 88 (4), 2547\u20132553. https://doi.org/10.1063/1.454033.\u00a0\u21a9
Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. Achieving Linear Scaling in Exchange-Correlation Density Functional Quadratures. Chemical Physics Letters 1996, 257 (3-4), 213\u2013223. https://doi.org/10.1016/0009-2614(96)00600-8.\u00a0\u21a9
Murray, C. W.; Handy, N. C.; Laming, G. J. Quadrature Schemes for Integrals of Density Functional Theory. Molecular Physics 1993, 78 (4), 997\u20131014. https://doi.org/10.1080/00268979300100651.\u00a0\u21a9
Mura, M. E.; Knowles, P. J. Improved Radial Grids for Quadrature in Molecular Density-Functional Calculations. The Journal of Chemical Physics 1996, 104 (24), 9848\u20139858. https://doi.org/10.1063/1.471749.\u00a0\u21a9
Treutler, O.; Ahlrichs, R. Efficient Molecular Numerical Integration Schemes. The Journal of Chemical Physics 1995, 102 (1), 346\u2013354. https://doi.org/10.1063/1.469408.\u00a0\u21a9
Sharp, R. T.; Horton, G. K. A Variational Approach to the Unipotential Many-Electron Problem. Physical Review 1953, 90 (2), 317\u2013317. https://doi.org/10.1103/physrev.90.317.\u00a0\u21a9
Talman, J. D.; Shadwick, W. F. Optimized Effective Atomic Central Potential. Physical Review A 1976, 14 (1), 36\u201340. https://doi.org/10.1103/physreva.14.36.\u00a0\u21a9
Krieger, J. B.; Li, Y.; Iafrate, G. J. Construction and Application of an Accurate Local Spin-Polarized Kohn-Sham Potential with Integer Discontinuity: Exchange-Only Theory. Physical Review A 1992, 45 (1), 101\u2013126. https://doi.org/10.1103/physreva.45.101.\u00a0\u21a9
Krieger, J. B.; Li, Y.; Iafrate, G. J. Systematic Approximations to the Optimized Effective Potential: Application to Orbital-Density-Functional Theory. Physical Review A 1992, 46 (9), 5453\u20135458. https://doi.org/10.1103/physreva.46.5453.\u00a0\u21a9
Li, Y.; Krieger, J. B.; Iafrate, G. J. Self-Consistent Calculations of Atomic Properties Using Self-Interaction-Free Exchange-Only Kohn-Sham Potentials. Physical Review A 1993, 47 (1), 165\u2013181. https://doi.org/10.1103/physreva.47.165.\u00a0\u21a9
Garza, J.; Nichols, J. A.; Dixon, D. A. The Optimized Effective Potential and the Self-Interaction Correction in Density Functional Theory: Application to Molecules. The Journal of Chemical Physics 2000, 112 (18), 7880\u20137890. https://doi.org/10.1063/1.481421.\u00a0\u21a9
Wu, Q.; Yang, W. Empirical Correction to Density Functional Theory for van Der Waals Interactions. The Journal of Chemical Physics 2002, 116 (2), 515\u2013524. https://doi.org/10.1063/1.1424928.\u00a0\u21a9\u21a9
Zimmerli, U.; Parrinello, M.; Koumoutsakos, P. Dispersion Corrections to Density Functionals for Water Aromatic Interactions. The Journal of Chemical Physics 2004, 120 (6), 2693\u20132699. https://doi.org/10.1063/1.1637034.\u00a0\u21a9\u21a9
Grimme, S. Accurate Description of van Der Waals Complexes by Density Functional Theory Including Empirical Corrections. Journal of Computational Chemistry 2004, 25 (12), 1463\u20131473. https://doi.org/10.1002/jcc.20078.\u00a0\u21a9\u21a9
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-d) for the 94 Elements h-Pu. The Journal of Chemical Physics 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.\u00a0\u21a9\u21a9
NWChem is being developed by a consortium of scientists and maintained at the EMSL at PNNL. A current list of developers can be found here. This page provides important information for current and new developers.
"},{"location":"Developer.html#downloading-from-and-committing-to-the-nwchem-source-tree","title":"Downloading from and Committing to the NWChem source tree","text":"The NWChem source is maintained with git, an open-source version control system. To download NWChem you must have git installed on your development platform. For an extensive description of the GIT functionality and commands, please check the git documentation.
The NWChem GIT repository is hosted on Github at https://github.com/nwchemgit/nwchem/
The development version (git master branch) of NWChem can be downloaded using the command
% git clone https://github.com/nwchemgit/nwchem\n
A branch version cane be downloaded by using the -b option of git clone. For example, the hotfix/release-6-8 branch can be downloaded with the command
git clone -b hotfix/release-6-8 \\\nhttps://github.com/nwchemgit/nwchem nwchem-6.8.1\n
Committing changes to existing source files can be done using the command
TBD ....
TBD Instructions on Fork & Pull
Developer access to the NWChem source tree branches in svn is password restricted. New potential developers should contact members of the NWChem Core Developer Team.
Before contributions from this new developer can be incorporated into NWChem, this person will have to provide written feedback that the contributions can be released within NWChem under a ECL 2.0 open-source license.
A (Trusted) Developer will receive the appropriate access to the nwchemgit github repository. If a Developer consistently incorporates code changes that negatively affect the development tree, access to the nwchemgit github repository can be revoked.
To Be Revised: %% The type of developer and their level of access are:
A detailed step-by-step description of the build process and necessary and optional environment variables is outlined on the Compiling NWChem page.
"},{"location":"Developer.html#development-contribution-requirements","title":"Development Contribution Requirements","text":"All new functionality or capability contributions require:
Proposed new modules and tasks, and their impact on existing modules and functionality need to be documented for review. New modules or tasks will require agreement from the full team before they can be added.
"},{"location":"Developer.html#programming-model-and-languages","title":"Programming Model and Languages","text":"The programming model in is based on independent \u201ctask\u201d modules that perform various functions in the code and are build on modular APIs. Modules and APIs can share data, or share access to files containing data, only through a (most of the time) disk-resident run time database, which is similar to the GAMESS-UK dumpfile or the Gaussian checkpoint file. The run time database contains all the information necessary to restart a task.
The structure and flow of the program and input are such that it allows for performing multiple tasks within one job. Input is read and stored into the run time database until a TASK directive is encountered. When a TASK directive is found in the input, the appropriate module will extract relevant data from the database and any associated files and perform the requested calculation. Upon completion of the task, the module will store significant results in the database, and may also modify other database entries in order to affect the behavior of subsequent computations.
The archive of the NWChem Mailing list can be found here.
"},{"location":"Developer.html#nwchem-wiki-page-guidelines","title":"NWChem Wiki Page Guidelines","text":"Follow the link to the NWChem Wiki Page Guidelines.
"},{"location":"Developer.html#nwchem-doxygen-documentation","title":"NWChem Doxygen documentation","text":"The source code in NWChem is documented using Doxygen in a number of places. In order to enable documentation for a given directory only a script has been created in
nwchem/contrib/doxygen/run_doxygen
This script can be run in any subdirectory of the NWChem source tree. It will automatically adapt the Doxygen configuration file for the directory it is run in and generate documentation for that directory and all its children. The documentation is generated in a subdirectory
doxydocs\n
and can be viewed, for example, by running
% firefox doxydocs/html/index.html\n
Doxygen has many capabilities and a number of them can be driven through the run_doxygen script. Run
% run_doxygen -h\n
for more details.
"},{"location":"Developer.html#module-specific-details","title":"Module specific details","text":""},{"location":"Developer.html#the-nwxc-module-higher-order-derivatives-of-density-functionals","title":"The NWXC module: higher order derivatives of density functionals","text":"The NWXC module was primarily developed to provide higher order derivatives of density functionals. In addition it provides infrastructure needed to manage all aspects of a DFT energy expression in one place, including the range separation of the exchange integrals and dispersion corrections.
The derivatives of the density functionals can be optained in two different ways:
nwxc is the top-level directory. It also contains the code for the module API as well as the automatically differentiated code of the density functionals.
nwad contains the automatic differentiation module.
nwad/maxima contains a script to help create the automatic differentiation unit tests.
nwad/unit_tests contains the unit tests.
maxima contains the symbolic algebra tools as well as the code they generate
maxima/bin contains the scripts that driver the Maxima symbolic algebra engine as well as utility scripts that process the Maxima generated Fortran.
maxima/max contains the Maxima specifications of the functionals.
maxima/f77 contains the Maxima generated Fortran code.
"},{"location":"Developer.html#api-functions","title":"API functions","text":"API routines of the NWXC module are
Within the NWXC module specific terms of the density fucntionals are identified by an integer constant. These constants are listed in nwxcP.fh, Currently the order of the constants is: exchange functionals first, correlation functionals second, and finally combined exchange-correlation functionals. Within each class the constants are sorted alphabetically. To add a new functional a new constant needs to be inserted into nwxcP.fh first.
Internally a functional is stored as two lists of terms. One list contains the specification as entered by the user. This specification is used to print the functional in the output, and to store the functional on the runtime data base. The other list contains the specification of the functional as it is used to evaluate the expression. These lists as well as the Coulomb attenuation and dispersion correction parameters are controlled from nwxc_add_df . The translation of an input string to the appropriate functional needs to be added here.
In order to print the functional the code uses the name and reference for the functional (or functional terms). The function nwxc_get_info returns the corresponding character string given the integer identifier of a functional. For a new functional this reference needs to be added.
As the NWXC module currently supports both automatic differentiation as well as symbolic algebra generated implementations of the functionals there are two parallel sets of routines that invoke the actual functional evaluation. The routines nwxc_eval_df_doit, nwxc_eval_df2_doit, and nwxc_eval_df3_doit invoke the automatic differentiation implementations. The routines nwxcm_eval_df, nwxcm_eval_df2, and nwxcm_eval_df3 invoke the Maxima generated implementations. The appropriate subroutine calls need to be added in these places.
Comments:
One way to generate the code for a new functional to add is shown in workflow schematic NWXC code generation workflow
The step involved can be summarized as:
E. Apra, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam, D. Wang, T. L. Windus, J. Hammond, J. Autschbach, K. Bhaskaran-Nair, J. Brabec, K. Lopata, S. A. Fischer, S. Krishnamoorthy, W. Ma, M. Klemm, O. Villa, Y. Chen, V. Anisimov, F. Aquino, S. Hirata, M. T. Hackler, T. Risthaus, M. Malagoli, A. Marenich, A. Otero-de-la-Roza, J. Mullin, P. Nichols, R. Peverati, J. Pittner, Y. Zhao, P.-D. Fan, A. Fonari, M. Williamson, R. J. Harrison, J. R. Rehr, M. Dupuis, D. Silverstein, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, B. E. Van Kuiken, A. Vazquez-Mayagoitia, L. Jensen, M. Swart, Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, L. D. Crosby, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. A. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. E. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. J. O. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. C. Hess, J. Jaffe, B. G. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, K. Glaesemann, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. H. van Lenthe, A. T. Wong, Z. Zhang.
"},{"location":"Download.html","title":"How to download and install NWChem","text":""},{"location":"Download.html#source-download","title":"Source Download","text":"The NWChem source is available for download from https://github.com/nwchemgit/nwchem/releases
Compilation instructions can be found at this link
"},{"location":"Download.html#nwchem-availability-in-linux-distributions","title":"NWChem availability in Linux distributions","text":"Debian: https://packages.debian.org/search?keywords=nwchem
Ubuntu: https://launchpad.net/ubuntu/+source/nwchem
Fedora and EPEL: https://admin.fedoraproject.org/updates/search/nwchem
Good search engine for NWChem Linux packages: https://pkgs.org/search/?q=nwchem
"},{"location":"Download.html#example-of-nwchem-installation-on-debianubuntu","title":"Example of NWChem installation on Debian/Ubuntu","text":"sudo apt-get install nwchem\n
"},{"location":"Download.html#example-of-nwchem-rpm-installation-under-redhat-6-x86_64","title":"Example of NWChem RPM installation under RedHat 6 x86_64","text":"sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm\nsudo yum update\nsudo yum install nwchem nwchem-openmpi environment-modules\n
In order to run NWChem, you must type
module load openmpi-x86_64\n
The name of the NWChem executable is
nwchem_openmpi\n
"},{"location":"Download.html#example-of-nwchem-rpm-installation-under-centos-7-x86_64","title":"Example of NWChem RPM installation under Centos 7 x86_64","text":"sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm\nsudo yum update\nsudo yum install nwchem nwchem-openmpi Lmod\n
In order to run NWChem, you must type
module load mpi/openmpi-x86_64\n
The name of the NWChem executable is
nwchem_openmpi\n
Serial runs, using a single process, (on a input file named n2.nw
in the following example) can be performed with the command
nwchem_openmpi n2.nw\n
Parallel runs (using more than one process) can be performed with the command
mpirun -np 2 nwchem_openmpi n2.nw\n
"},{"location":"Download.html#nwchem-availability-on-macos","title":"NWChem availability on macOS","text":"NWChem can be installed from Homebrew, by executing the following commands
bin/bash -c \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)\"\n\nbrew install nwchem\n
"},{"location":"Download.html#nwchem-installation-on-conda","title":"NWChem installation on Conda","text":"NWChem can be installed on Linux or MacOS from the conda-forge channel of Conda with the commands
conda install -c conda-forge micromamba\nmicromamba install -c conda-forge nwchem\n
More details at https://github.com/conda-forge/nwchem-feedstock
"},{"location":"ECCE_PRINT.html","title":"ECCE PRINT","text":""},{"location":"ECCE_PRINT.html#ecce_print","title":"ECCE_PRINT","text":"The ECCE_PRINT directive allows the user to print out a file, usually called ecce.out, that will allow the calculation and its results to be imported into Ecce (see http://ecce.pnl.gov).
ECCE_PRINT
The entry for variable is the name of the file that will contain the Ecce import information and should include the full path to the directory where you want that file. For example
ecce_print\u00a0/home/user/job/ecce.out
If the full path is not given and only the file name is given, the file will be located in whatever directory the job is started in. For example, if the line
ecce_print\u00a0ecce.out
is in the input file, the file could end up in the scratch directory if the user is using a batch script that copies the input file to a local scratch directory and then launches NWChem from there. If the system then automatically removes files in the scratch space at the end of the job, the ecce.out file will be lost. So, the best practice is to include the full path name for the file.
"},{"location":"ECHO.html","title":"ECHO","text":""},{"location":"ECHO.html#echo","title":"ECHO","text":"This start-up directive is provided as a convenient way to include a listing of the input file in the output of a calculation. It causes the entire input file to be printed to Fortran unit six (standard output). It has no keywords, arguments, or options, and consists of the single line:
ECHO
The ECHO directive is processed only once, by Process 0 when the input file is read.
"},{"location":"ECP.html","title":"Effective Core Potentials","text":""},{"location":"ECP.html#overview","title":"Overview","text":"Effective core potentials (ECPs) are a useful means of replacing the core electrons in a calculation with an effective potential, thereby eliminating the need for the core basis functions, which usually require a large set of Gaussians to describe them. In addition to replacing the core, they may be used to represent relativistic effects, which are largely confined to the core. In this context, both the scalar (spin-free) relativistic effects and spin-orbit (spin-dependent) relativistic effects may be included in effective potentials. NWChem has the facility to use both, and these are described in the next two sections.
A brief recapitulation of the development of RECPs is given here, following L.F. Pacios and P.A. Christiansen, J. Chem. Phys. 82, 2664 (1985). The process can be viewed as starting from an atomic Dirac-Hartree-Fock calculation, done in jj coupling, and producing relativistic effective potentials (REPs) for each and value, which for example contains the Coulomb potential of the core electrons balanced by the part of the nuclear attraction which cancels the core electron charge. The residue is expressed in a semi-local form,
where is one larger than the maximum angular momentum in the atom. The scalar potential is obtained by averaging the REPs for each for a given to give an averaged relativistic effective potential, or AREP
These are summed into the full potential
The spin-orbit potential is obtained from the difference between the REPs for the two values for a given , and may be represented in terms of an effective spin-orbit operator,
where
The relavistic potential is the sum of and .
The spin-orbit integrals generated by NWChem are the integrals over the sum, including the factor of as an effective spin-orbit operator without further factors introduced.
The effective potentials, both scalar and spin-orbit, are fitted to Gaussians with the form
where is the contraction coefficient, is the exponent of the term (r-exponent), and is the Gaussian exponent. The exponent is shifted by 2, in accordance with most of the ECP literature and implementations, i.e., implies . The current implementation allows values of only 0, 1, or 2.
"},{"location":"ECP.html#scalar-ecps","title":"Scalar ECPs","text":"The optional directive ECP
allows the user to describe an effective core potential (ECP) in terms of contracted Gaussian functions as given above. Potentials using these functions must be specified explicitly by user input in the ECP
directive. This directive has essentially the same form and properties as the standard BASIS
directive, except for essential differences required for ECPs. Because of this, the ECP is treated internally as a basis set. The form of the input for the ECP
directive is as follows:
ECP [<string name default \"ecp basis\">] \\ \n [print || noprint default print] \n <string tag> library [<string tag_in_lib>] \\ \n <string standard_set> [file <filename>] \\ \n [except<string tag list>] \n <string tag> [nelec] <integer number_of_electrons_replaced> \n ... \n <string tag> <string shell_type> \n <real r-exponent> <real Gaussian-exponent> <real list_of_coefficients> \n ... \n END\n
ECPs are automatically segmented, even if general contractions are input. The projection operators defined in an ECP are spherical by default, so there is no need to include the CARTESIAN
or SPHERICAL
keyword as there is for a standard basis set. ECPs are associated with centers in geometries through tags or names of centers. These tags must match in the same manner as for basis sets the tags in a GEOMETRY and ECP directives, and are limited to sixteen (16) characters. Each center with the same tag will have the same ECP. By default, the input module prints each ECP that it encounters. The NOPRINT
option can be used to disable printing. There can be only one active ECP, even though several may exist in the input deck. The ECP modules load ecp basis
inputs along with any ao basis
inputs present. ECPs may be used in both energy and gradient calculations.
ECPs are named in the same fashion as geometries or regular basis sets, with the default name being \u201cecp basis\u201d. It should be clear from the above discussion on geometries and database entries how indirection is supported. All directives that are in common with the standard Gaussian basis set input have the same function and syntax.
As for regular basis sets, ECPs may be obtained from the standard library. For a complete list of basis sets and associated ECPs in the NWChem library see the available basis sets or the Basis Set Exchange for naming conventions and their specifications.
The keyword nelec
allows the user to specify the number of core electrons replaced by the ECP. Additional input lines define the specific coefficients and exponents. The variable <shell_type>
is used to specify the components of the ECP. The keyword ul
entered for <shell_type>
denotes the local part of the ECP. This is equivalent to the highest angular momentum functions specified in the literature for most ECPs. The standard entries (s, p, d, etc.) for shell_type
specify the angular momentum projector onto the local function. The shell type label of s indicates the ul-s projector input, p indicates the ul-p, etc.
For example, the Christiansen, Ross and Ermler ARECPs are available in the standard basis set library named crenbl_ecp
. To perform a calculation on uranyl UO22+ with all-electron oxygen (aug-cc-pvdz basis), and uranium with an ARECP and using the corresponding basis the following input can be used
geometry\n U 0 0 0\n O 0 0 1.65\n O 0 0 -1.65\n end\n basis \n U library crenbl_ecp\n O library aug-cc-pvdz\n end\n ecp\n U library crenbl_ecp\n end\n
The following is an example of explicit input of an ECP for H2CO. It defines an ECP for the carbon and oxygen atoms in the molecule.
ecp\n C nelec 2 # ecp replaces 2 electrons on C\n C ul # d\n 1 80.0000000 -1.60000000\n 1 30.0000000 -0.40000000\n 2 0.5498205 -0.03990210\n C s # s - d \n 0 0.7374760 0.63810832\n 0 135.2354832 11.00916230\n 2 8.5605569 20.13797020\n C p # p - d\n 2 10.6863587 -3.24684280\n 2 23.4979897 0.78505765\n O nelec 2 # ecp replaces 2 electrons on O\n O ul # d \n 1 80.0000000 -1.60000000\n 1 30.0000000 -0.40000000\n 2 1.0953760 -0.06623814\n O s # s - d\n 0 0.9212952 0.39552179\n 0 28.6481971 2.51654843\n 2 9.3033500 17.04478500\n O p # p - s \n 2 52.3427019 27.97790770\n 2 30.7220233 -16.49630500\n end\n
Various ECPs without a local function are available, including those of the Stuttgart group. For those, no ul
part needs to be defined. To define the absence of the local potential, simply specify one contraction with a zero coefficient:
<string tag> ul\n 2 1.00000 0.00000\n
"},{"location":"ECP.html#spin-orbit-ecps","title":"Spin-orbit ECPs","text":"The Spin-orbit ECPs can be used with the Density Functional Approach, but one has to run the calculations without symmetry. Note: when a Hartree-Fock method is specified the spin-orbit input will be ignored.
Spin-orbit ECPs are fitted in precisely the same functional form as the scalar RECPs and have the same properties, with the exception that there is no local potential ul, no s potential and no effective charge has to be defined. Spin-orbit potentials are specified in the same way as ECPs except that the directive SO is used instead of ECP. Note that there currently are no spin-orbit ECPs defined in the standard NWChem library. The SO directive is as follows:
SO [<string name default \"so basis\">] \\ \n [print || noprint default print] \n <string tag> library [<string tag_in_lib>] \\\n <string standard_set> [file <filename>] \n [except `<string tag list>] \n ... \n <string tag> <string shell_type> \n <real r-exponent> <real Gaussian-exponent> <real list_of_coefficients> \n ... \n END\n
Note: in the literature the coefficients of the spin-orbit potentials are NOT always defined in the same manner. The NWChem code assumes that the spin-orbit potential defined in the input is of the form:
For example, in the literature (most of) the Stuttgart potentials are defined as and, hence, have to be multiplied by (Note: On the Stuttgart/K\u00f6ln web pages https://www.tc.uni-koeln.de/PP/clickpse.en.html, spin-orbit potentials have already been corrected by the appropriate scaling factor and can be used as is). On the other hand, the CRENBL potentials in the published papers are defined as have been corrected with the factor, so make sure the appropriate scaling is applied).
For example, to use the Stuttgart/K\u00f6ln ECP and SO-ECP for Hg (ECP60MDF) in NWChem. The following URL will display bot the the ECP and SO parts. http://www.tc.uni-koeln.de/cgi-bin/pp.pl?language=en,format=molpro,element=Hg,job=getecp,ecp=ECP60MDF The highlighted section (last four lines) below is the SO part. The un-highlighted part (first five lines) is the ECP.
\n! Q=20., MEFIT, MCDHF+Breit, Ref 37. \nECP,Hg,60,5,4; \n1; 2,1.000000,0.000000; \n2; 2,12.413071,275.774797; 2,6.897913,49.267898; \n4; 2,11.310320,80.506984; 2,10.210773,161.034824; 2,5.939804,9.083416; 2,5.019755,18.367773; \n4; 2,8.407895,51.137256; 2,8.214086,76.707459; 2,4.012612,6.561821; 2,3.795398,9.818070; \n2; 2,3.273106,9.429001; 2,3.208321,12.494856; \n2; 2,4.485296,-6.338414; 2,4.513200,-8.099863; \n4; 2,11.310320,-161.013967;2,10.210773,161.034824;2,5.939804,-18.166832;2,5.019755,18.367773; \n4; 2,8.407895,-51.137256; 2,8.214086,51.138306; 2,4.012612,-6.561821; 2,3.795398,6.545380; \n2; 2,3.273106,-6.286001; 2,3.208321,6.247428; \n2; 2,4.485296,3.169207; 2,4.513200,-3.239945;\n! References: \n! [37] D. Figgen, G. Rauhut, M. Dolg, H. Stoll, Chem. Phys. 311, 227 (2005). \n
The corresponding NWChem input is
ecp \nHg nelec 60\nHg ul\n2 1.0000000 0.0000000\nHg S\n2 12.4130710 275.7747970\n2 6.8979130 49.2678980\nHg P\n2 11.3103200 80.5069840\n2 10.2107730 161.0348240\n2 5.9398040 9.0834160\n2 5.0197550 18.3677730\nHg D\n2 8.4078950 51.1372560\n2 8.2140860 76.7074590\n2 4.0126120 6.5618210\n2 3.7953980 9.8180700\nHg F\n2 3.2731060 9.4290010\n2 3.2083210 12.4948560\nHg G\n2 4.4852960 -6.3384140\n2 4.5132000 -8.0998630\nend\n\nso\nHg P\n2 11.310320 161.013967\n2 10.210773 161.034824\n2 5.939804 -18.166832\n2 5.019755 18.367773\nHg D \n2 8.407895 -51.137256\n2 8.214086 51.138306\n2 4.012612 -6.561821\n2 3.795398 6.545380\nHg F \n2 3.273106 -6.286001\n2 3.208321 6.247428\nHg G \n2 4.485296 3.169207\n2 4.513200 -3.239945\nend\n
"},{"location":"ECP.html#websites-with-spin-orbits-ecps","title":"Websites with Spin-Orbits ECPs","text":"We would like thank the DOD SERDP program and the DOE OS OBER EMSL project for providing support that helped with the initial development of EMSL Arrows.
\u2018 EMSL Arrows API\u2018
Tutorial on YouTube (mobile devices)
> Click here to try out Arrows by sending it an email
Are you just learning NWChem and would like to have an easy way to generate input decks, check your output decks against a large database of calculations, perform simple thermochemistry calculations, calculate the NMR and IR spectra of modest size molecule, or just try out NWChem before installing it? EMSL Arrows scientific service can help. A Web API to EMSL Arrows is now available for Alpha testing. Click on this link.
For more information contact Eric Bylaska (eric.bylaska@pnnl.gov)
\u2018 EMSL Arrows API\u2018
The difficulty of simulating the thermodynamic and kinetic properties of new materials is convoluted by the sensitivity of the processes at the macroscopic scale to the atomic scale; the unusual and unexpected bonding behaviors of the materials; the complex extreme temperature and pressure environments likely to be encountered; and the requirements that simulations be as parameter free as possible and extremely reliable. The tools of quantum chemistry and statistical mechanics combined with advanced parallel packages such as NWChem have proved to be very effective and productive. Not surprisingly, programs that implement these types of tools make up a large fraction of DOE OS supercomputer cycles. Despite these hugely successful theoretical developments, reliable calculations of this type require considerable computational effort and often the use of codes with difficult input decks.
The NWChem molecular modeling software implements a robust and diverse set of molecular theories that can estimate the thermodynamics and kinetics of molecules and materials. It arguably has the most capabilities of any molecular modeling code today. The problem with NWChem and other molecular modeling codes is that:
The goal of this project is to provide EMSL users and DOE scientists and engineers with an open-source computational chemistry and materials tool called EMSL Arrows. EMSL Arrows is a software package that combines NWChem, SQL and NOSQL databases, and email (in the future also social networks, e.g. Twitter, Tumblr) that simplifies molecular and materials modeling and makes these modeling capabilities easier to use and more accessible to many scientists and engineers.
EMSL Arrows is very simple to use. The user just emails chemical reactions to arrows@emsl.pnnl.gov and then an email is sent back with thermodynamic, reaction pathway (kinetic), spectroscopy, and other results.
EMSL Arrows parses the email and then searches the database for the compounds in the reactions. If a compound isn\u2019t there, an NWChem calculation is setup and submitted to calculate it. Once the calculation is finished the results are entered into the database and then results are emailed back. This whole process is completely automated. To enter different calculation types (e.g. use pspw theory, or pbe0 exchange correlation functional) the SMILES is appended with keyword{options} tags. An example email is as follows:
To:\u00a0arrows@emsl.pnnl.gov\u2028 \nSubject:\u00a0Calculate\u00a0isodesmic\u00a0reactions \n\nArrows::\u00a0 \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0:Reaction \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0~\u00a0theory{pspw}\u00a0:Reaction \nReaction:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C(Cl)(Cl)(Cl)S\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CS\u00a0:Reaction \nReaction:\u00a0\u00a0\u00a0C(Cl)(Cl)(Cl)S\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CS\u00a0~\u00a0theory{pm3}\u00a0:Reaction \nReaction:\u00a0TNT\u00a0+\u00a03\u00a0benzene\u00a0-->\u00a0toluene\u00a0+\u00a03\u00a0nitrobenzene\u00a0~\u00a0xc{pbe}\u00a0:Reaction \n::Arrows\n
The results returned by EMSL Arrows are a combination of text and graphical output.
Currently EMSL Arrows is designed to calculate the following for all NWChem theories: - Reaction thermodynamics for molecular systems - Reaction paths for molecular systems - UV-vis, IR, Raman spectra for molecular systems, phonon \u2028spectra for materials systems - NMR spectra for molecular and materials systems - EXAFS spectra for molecular and materials systems - Energetics, structures, and band structures of crystals using the \u2028Crystal Open Database (COD ) numbers - A variety of datafiles can be returned including XYZ files, CIF \u2028files, NWChem output files We envision that as Arrows evolves it will be part of future closed cycles of chemical and materials discovery that requires integrated computational and experimental tools combined with materials synthesis. ### Try out EMSL Arrows by sending the following simple emails to arrows@emsl.pnnl.gov
Returns b3lyp/6-311++G(2d,2p) results for the cinnamon flavored molecule. Click here to run this example.
----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nmolecule:\u00a0Cinnamaldehyde\u00a0:molecule \n\n::Arrows\n
Using MP2 to calculate the reaction energy of a hydrolysis reaction for TNT. Click here to run this example.
----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\u00a0 \nReaction:\u00a0cid=8376\u00a0+\u00a0hydroxide\u00a0-->\u00a0O=N(=O)c1cc(O)c(c(c1)N(=O)=O)C\u00a0+\u00a0nitrite\u00a0~\u00a0theory{mp2}\u00a0:Reaction \n\n::Arrows\n
Examples of [isodesmic reaction](Plane-Wave-Density-Functional-Theory.md#nwpw-tutorial-3-using-isodesmic-reaction-energies-to-estimate-gas-phase-thermodynamics) Click here to to run this example. ----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nReaction:\u00a0TNT\u00a0+\u00a03\u00a0benzene\u00a0-->\u00a0toluene\u00a0+\u00a03\u00a0nitrobenzene\u00a0\u00a0~\u00a0theory{mp2}\u00a0:Reaction\u00a0 \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0:Reaction \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0~\u00a0xc{pbe}\u00a0:Reaction \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0~\u00a0theory{pspw}\u00a0:Reaction \n\n::Arrows\n
Examples of reaction prediction capabilities in Arrows. Click here to to run this example. ----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nPredict:\u00a02\u00a0methane\u00a0\u00a0\u00a0:Predict \n\n::Arrows\n
Click here to to run this example. ----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nPredict:\u00a0TNT\u00a0+\u00a0hydroxide\u00a0\u00a0\u00a0:Predict \n\n::Arrows\n
Fetch an NWChem output deck from Arrows. Click here to to run this example. ----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nnwoutput:\u00a0caffeine\u00a0:nwoutput \n\n::Arrows\n
## Try out the following web API links (Now Available for Alpha Testing) [EMSL Arrows API v1.0](http://arrows.emsl.pnnl.gov/api/) ## Introduction to ESMILES - How to Change Calculation Theories The combined string, \"Molecule\\_Input keyword1{option1} keyword2{option2} keywordN{optionN}\", is called an \"extended smiles\" or \"esmiles\" for short. The Molecule\\_Input can be specified using a variety of formats including a SMILES string, common names, iupac, kegg numbers, cas, pubchem ids, chemspider ids, and InChI strings. The keyword{option} tags are used to enter different calculation types for a molecule, e.g. use pspw theory, ccsd(t), or pbe0 exchange correlation functional. The following are examples of esmiles strings: Plane-Wave DFT calculation using LDA and a cutoff energy=30.0 Ry c1ccccc1\u00a0theory{pspw}\u00a0xc{lda}\u00a0basis{30.0\u00a0Ry}\n
MP2 calculation using 6-31G\\* basis set CCO\u00a0theory{mp2}\u00a0basis{6-31G*}\n
CCSD(T) calculation of ethanol CCO\u00a0theory{ccsd(t)}\u00a0basis{6-31G*}\n
Mopac PM3 calculation of caffeine Caffeine\u00a0theory{pm3}\n
Aperiodic plane-wave DFT calculation of triplet cabon tetrachloride C(Cl)(Cl)(Cl)Cl\u00a0mult{3}\u00a0theory{pspw4} \n
Gas-phase M06-2x/6-31+G\\* calculation of benzene benzene\u00a0theory{dft}\u00a0xc{m06-2x}\u00a0solvation_type{none}\n
Equivalent ESMILES for CCSD(T)/6-31G\\* calculation of methanol methyl\u00a0alcohol\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \nkegg=D02309\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \ncas=67-56-1\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \ncid=887\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \ncsid=864\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \nInChI=1S/CH4O/c1-2/h2H,1H3\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \n
The available keywords in and esmiles string are: theory, theory\\_property, theory\\_base, basis, basis\\_property, basis\\_base, xc, xc\\_property, xc\\_base, solvation\\_type, charge, mult, xyzdata, geometry\\_generation, and calculation\\_type. ### ESMILES Options - theory{}, theory\\_property{} and theory\\_base{} The default theory used is theory{dft}. The following theories are available: -\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0dft\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0NWChem\u00a0Gaussian\u00a0DFT \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pspw\u00a0\u00a0\u00a0--\u00a0NWChem\u00a0Plane-Wave\u00a0DFT\u00a0(periodic\u00a0boundary\u00a0conditions,\u00a0\u0393\u00a0point) \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pspw4\u00a0--\u00a0NWChem\u00a0Plane-Wave\u00a0DFT\u00a0(aperiodic\u00a0boundary\u00a0conditions) \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0mp2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0NWChem\u00a0MP2\u00a0program \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0ccsd(t)\u00a0\u00a0--\u00a0NWChem\u00a0CCSD(T) \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pm3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0Mopac7\u00a0PM3 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0am1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0Mopac7\u00a0AM1 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0mindo\u00a0\u00a0\u00a0--\u00a0Mopac7\u00a0MINDO \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0mindo3\u00a0--\u00a0Mopac7\u00a0MINDO3\n
The theory\\_property{} is an optional keyword used to specify the theory used in an nmr calculation, and theory\\_base{} is an optional keyword used to specify the theory of the base calculation for an MP2 or CCSD(T) calculation. By default the theory\\_property and theory\\_base are defined to be the same as theory{}. ### ESMILES Options - basis{}, basis\\_property{} and basis\\_base{} The default basis used is 6-311++G(2d,2p) for the Gaussian DFT, MP2 and CCSD(T) programs. For plane-wave DFT the default basis or cutoff energy is defined to by 50.0 Hartrees or 100.0 Ry. For Gaussian basis sets any basis set recognized by NWChem can be used, e.g. CCO\u00a0basis{6-31G*}\n
Other common basis sets can be used such as cc-pvdz, 6-311G, 3-21G, 6-31+G\\*. For plane-wave basis sets the cutoff energy can changed by just entering the number in Hartrees or Rydbergs CCO\u00a0theory{pspw]\u00a0basis{50.0}\u00a0\nCCO\u00a0theory{pspw}\u00a0basis{100\u00a0Ry} \n
The basis\\_property{} is an optional keyword used to specify the basis set used in an nmr calculation, and basis\\_base{} is an optional keyword used to specify the basis set of the base calculation for an MP2 or CCSD(T) calculation. By default the basis\\_property and basis\\_base are defined to be the same as basis{}. ### ESMILES Options - xc{}, xc\\_property{} and xc\\_base{} Only the Gaussian and plane-wave DFT programs utilize the xc{} keyword. The default exchange correlation functional used is xc{b3lyp}. The following exchange correlation functions are available with the Gaussian DFT and plane-wave DFT programs. -\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0lda\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0\u00a0local\u00a0density\u00a0approximation\u00a0(LDA)\u00a0of\u00a0S.J.\u00a0Vosko,\u00a0L.\u00a0Wilk\u00a0and\u00a0M.\u00a0Nusair,\u00a0Can.\u00a0J.\u00a0Phys.\u00a058,\u00a01200\u00a0(1980) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pbe\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0The\u00a0gradient\u00a0corrected\u00a0exchange\u00a0correlation\u00a0function\u00a0of\u00a0J.P.\u00a0Perdew,\u00a0K.\u00a0Burke\u00a0and\u00a0M.\u00a0Ernzerhof,\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Phys.\u00a0Rev.\u00a0Lett.\u00a077,\u00a03865\u00a0(1996);\u00a078\u00a0,\u00a01396\u00a0(1997) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0blyp\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0The\u00a0gradient\u00a0corrected\u00a0exchange\u00a0correlation\u00a0function\u00a0A.D.\u00a0Becke,\u00a0Phys.\u00a0Rev.\u00a0A\u00a088,\u00a03098\u00a0(1988)\u00a0and\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C.\u00a0Lee,\u00a0W.\u00a0Yang\u00a0and\u00a0R.\u00a0G.\u00a0Parr,\u00a0Phys.\u00a0Rev.\u00a0B\u00a037,\u00a0785\u00a0(1988) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0b3lyp\u00a0\u00a0\u00a0--\u00a0the\u00a0hybrid\u00a0exchange\u00a0correlation\u00a0function\u00a0of\u00a0A.D.\u00a0Becke,\u00a0J.\u00a0Chem.\u00a0Phys.\u00a098,\u00a05648\u00a0(1993)\u00a0\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0and\u00a0C.\u00a0Lee,\u00a0W.\u00a0Yang\u00a0and\u00a0R.\u00a0G.\u00a0Parr,\u00a0Phys.\u00a0Rev.\u00a0B\u00a037,\u00a0785\u00a0(1988) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pbe0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0the\u00a0hybrid\u00a0exchange\u00a0correlation\u00a0function\u00a0of\u00a0C.Adamo\u00a0and\u00a0V.Barone,\u00a0J.\u00a0Chem.\u00a0Phys.\u00a0110,\u00a06158\u00a0(1999) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0m06-2x\u00a0--\u00a0the\u00a0hybrid\u00a0meta\u00a0exchange\u00a0correlation\u00a0function\u00a0of\u00a0Y.\u00a0Zhao,\u00a0D.\u00a0G.\u00a0Truhlar,\u00a0J.\u00a0Chem.\u00a0Phys.\u00a0125,\u00a0194101\u00a0(2006).\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Only\u00a0available\u00a0in\u00a0Gaussian\u00a0DFT\u00a0program\n
The xc\\_property{} is an optional keyword used to specify the exchange correlation potential used in an nmr calculation, and xc\\_base{} is an optional keyword used to specify the exchange correlation potential of the base calculation for an MP2 or CCSD(T) calculation. By default the xc\\_property and xc\\_base are defined to be the same as xc{}. ### ESMILES Options - solvation\\_type{} The default solvation type is solvation\\_type{COSMO}. The following solvation types are available with the Gaussian DFT, MP2 and CCSD(T) programs. -\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0COSMO\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0The\u00a0COSMO\u00a0solvation\u00a0model\u00a0of\u00a0Klampt\u00a0and\u00a0Shuurman (solvent=water)\n\n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0COSMO-SMD\u00a0\u00a0 \u00a0 --\u00a0The\u00a0extended\u00a0Minnesota\u00a0COSMO\u00a0solvation\u00a0model\u00a0of\u00a0Cramer\u00a0et\u00a0al. (solvent=water)\n\n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0COSMO-SMD:solvent\u00a0\u00a0\u00a0--\u00a0where the solvent keyword is from Table of SMD solvent names below\n\n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0None\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0Gas-phase\u00a0calculation,\u00a0no\u00a0solvation\u00a0model\u00a0included\u00a0in\u00a0the\u00a0calculations\n
The available SMD `solvent` keywords are given below: | Keyword | Name | | ----------- | ------------------------------- | | h2o | water (default) | | water | water (default) | | acetacid | acetic acid | | acetone | acetone | | acetntrl | acetonitrile | | acetphen | acetophenone | | aniline | aniline | | anisole | anisole | | benzaldh | benzaldehyde | | benzene | benzene | | benzntrl | benzonitrile | | benzylcl | benzyl chloride | | brisobut | 1-bromo-2-methylpropane | | brbenzen | bromobenzene | | brethane | bromoethane | | bromform | bromoform | | broctane | 1-bromooctane | | brpentan | 1-bromopentane | | brpropa2 | 2-bromopropane | | brpropan | 1-bromopropane | | butanal | butanal | | butacid | butanoic acid | | butanol | 1-butanol | | butanol2 | 2-butanol | | butanone | butanone | | butantrl | butanonitrile | | butile | butyl acetate | | nba | butylamine | | nbutbenz | n-butylbenzene | | sbutbenz | sec-butylbenzene | | tbutbenz | tert-butylbenzene | | cs2 | carbon disulfide | | carbntet | carbon tetrachloride | | clbenzen | chlorobenzene | | secbutcl | sec-butyl chloride | | chcl3 | chloroform | | clhexane | 1-chlorohexane | | clpentan | 1-chloropentane | | clpropan | 1-chloropropane | | ocltolue | o-chlorotoluene | | m-cresol | m-cresol | | o-cresol | o-cresol | | cychexan | cyclohexane | | cychexon | cyclohexanone | | cycpentn | cyclopentane | | cycpntol | cyclopentanol | | cycpnton | cyclopentanone | | declncis | cis-decalin | | declntra | trans-decalin | | declnmix | decalin (cis/trans mixture) | | decane | n-decane | | decanol | 1-decanol | | edb12 | 1,2-dibromoethane | | dibrmetn | dibromomethane | | butyleth | dibutyl ether | | odiclbnz | o-dichlorobenzene | | edc12 | 1,2-dichloroethane | | c12dce | cis-dichloroethylene | | t12dce | trans-dichloroethylene | | dcm | dichloromethane | | ether | diethyl ether | | et2s | diethyl sulfide | | dietamin | diethylamine | | mi | diiodomethane | | dipe | diisopropyl ether | | dmds | dimethyl disulfide | | dmso | dimethyl sulfoxide | | dma | N,N-dimethylacetamide | | cisdmchx | cis-1,2-dimethylcyclohexane | | dmf | N,N-dimethylformamide | | dmepen24 | 2,4-dimethylpentane | | dmepyr24 | 2,4-dimethylpyridine | | dmepyr26 | 2,6-dimethylpyridine | | dioxane | 1,4-dioxane | | phoph | diphenyl ether | | dproamin | dipropylamine | | dodecan | n-dodecane | | meg | 1,2-ethanediol | | etsh | ethanethiol | | ethanol | ethanol | | etoac | ethyl acetate | | etome | ethyl formate | | eb | ethylbenzene | | phenetol | ethyl phenyl ether | | c6h5f | fluorobenzene | | foctane | 1-fluorooctane | | formamid | formamide | | formacid | formic acid | | heptane | n-heptane | | heptanol | 1-heptanol | | heptnon2 | 2-heptanone | | heptnon4 | 4-heptanone | | hexadecn | n-hexadecane | | hexane | n-hexane | | hexnacid | hexanoic acid | | hexanol | 1-hexanol | | hexanon2 | 2-hexanone | | hexene | 1-hexene | | hexyne | 1-hexyne | | c6h5i | iodobenzene | | iobutane | 1-iodobutane | | c2h5i | iodoethane | | iohexdec | 1-iodohexadecane | | ch3i | iodomethane | | iopentan | 1-iodopentane | | iopropan | 1-iodopropane | | cumene | isopropylbenzene | | p-cymene | p-isopropyltoluene | | mesityln | mesitylene | | methanol | methanol | | egme | 2-methoxyethanol | | meacetat | methyl acetate | | mebnzate | methyl benzoate | | mebutate | methyl butanoate | | meformat | methyl formate | | mibk | 4-methyl-2-pentanone | | mepropyl | methyl propanoate | | isobutol | 2-methyl-1-propanol | | terbutol | 2-methyl-2-propanol | | nmeaniln | N-methylaniline | | mecychex | methylcyclohexane | | nmfmixtr | N-methylformamide (E/Z mixture) | | isohexan | 2-methylpentane | | mepyrid2 | 2-methylpyridine | | mepyrid3 | 3-methylpyridine | | mepyrid4 | 4-methylpyridine | | c6h5no2 | nitrobenzene | | c2h5no2 | nitroethane | | ch3no2 | nitromethane | | ntrprop1 | 1-nitropropane | | ntrprop2 | 2-nitropropane | | ontrtolu | o-nitrotoluene | | nonane | n-nonane | | nonanol | 1-nonanol | | nonanone | 5-nonanone | | octane | n-octane | | octanol | 1-octanol | | octanon2 | 2-octanone | | pentdecn | n-pentadecane | | pentanal | pentanal | | npentane | n-pentane | | pentacid | pentanoic acid | | pentanol | 1-pentanol | | pentnon2 | 2-pentanone | | pentnon3 | 3-pentanone | | pentene | 1-pentene | | e2penten | E-2-pentene | | pentacet | pentyl acetate | | pentamin | pentylamine | | pfb | perfluorobenzene | | benzalcl | phenylmethanol | | propanal | propanal | | propacid | propanoic acid | | propanol | 1-propanol | | propnol2 | 2-propanol | | propntrl | propanonitrile | | propenol | 2-propen-1-ol | | propacet | propyl acetate | | propamin | propylamine | | pyridine | pyridine | | c2cl4 | tetrachloroethene | | thf | tetrahydrofuran | | sulfolan | tetrahydrothiophene-S,S-dioxide | | tetralin | tetralin | | thiophen | thiophene | | phsh | thiophenol | | toluene | toluene | | tbp | tributyl phosphate | | tca111 | 1,1,1-trichloroethane | | tca112 | 1,1,2-trichloroethane | | tce | trichloroethene | | et3n | triethylamine | | tfe222 | 2,2,2-trifluoroethanol | | tmben124 | 1,2,4-trimethylbenzene | | isoctane | 2,2,4-trimethylpentane | | undecane | n-undecane | | m-xylene | m-xylene | | o-xylene | o-xylene | | p-xylene | p-xylene | | xylenemx | xylene (mixture) | When a solvent is specified by name, the descriptors for the solvent are based on the Minnesota Solvent Descriptor Database: Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. University of Minnesota: Minneapolis, MN, 2010. ## ESMILES Reactions - How to Calculate Reaction Energies The basic input is a chemical reaction where the molecules are specified using smiles strings or esmiles strings (vida infra), e.g. \u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\n
Note that the reaction: :reaction keywords have only one \":\", whereas the Arrows keywords use two colons. The results contain both gas phase and solution phase reaction energies. The default level of theory used in these calculations is b3lyp/6-311++G(2d,2p) and the default solvation model is COSMO. The returned email will contain the following output. Reaction\u00a01:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a01.00\u00a0(Id=6833)\u00a0+\u00a01.00\u00a0(Id=11824)\u00a0-->\u00a01.00\u00a0(Id=6832)\u00a0+\u00a01.00\u00a0(Id=11215)\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a01.00\u00a0trichloromethanol\u00a0+\u00a01.00\u00a0methane\u00a0-->\u00a01.00\u00a0chloroform\u00a0+\u00a01.00\u00a0methanol\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a01.00\u00a0C1Cl3H1O1\u00a0+\u00a01.00\u00a0C1H4\u00a0-->\u00a01.00\u00a0C1Cl3H1\u00a0+\u00a01.00\u00a0C1H4O1\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a01.00\u00a0OC(Cl)(Cl)Cl\u00a0theory{dft}\u00a0basis{6-311++G(2d,2p)}\u00a0xc{b3lyp}\u00a0solvation_type{COSMO}\u00a0^{0}\u00a0mult{1}\u00a0nf{?}\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0+\u00a01.00\u00a0C\u00a0theory{dft}\u00a0basis{6-311++G(2d,2p)}\u00a0xc{b3lyp}\u00a0solvation_type{COSMO}\u00a0^{0}\u00a0mult{1}\u00a0nf{0}\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0-->\u00a01.00\u00a0C(Cl)(Cl)Cl\u00a0theory{dft}\u00a0basis{6-311++G(2d,2p)}\u00a0xc{b3lyp}\u00a0solvation_type{COSMO}\u00a0^{0}\u00a0mult{1}\u00a0nf{?}\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0+\u00a01.00\u00a0CO\u00a0theory{dft}\u00a0basis{6-311++G(2d,2p)}\u00a0xc{b3lyp}\u00a0solvation_type{COSMO}\u00a0^{0}\u00a0mult{1}\u00a0nf{0}\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Erxn(gas)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Hrxn(gas)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Grxn(gas)\u00a0Delta_Solvation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Grxn(aq)\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a08.035\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a09.580\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a08.809\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.991\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.818\u00a0\u00a0--\u00a0in\u00a0kcal/mol\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a033.618\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a040.084\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a036.857\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-8.332\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a028.525\u00a0\u00a0--\u00a0in\u00a0kj/mol\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.012804\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.015267\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.014038\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.003173\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.010865\u00a0\u00a0--\u00a0in\u00a0Hartrees\n
The reaction output for the chemical reaction contains the gas phase reaction energy, gas-phase reaction enthalpy, gas-phase reaction free energy, change in solvation energy, and the solution phase reaction free energy. The energy values are given in kcal/mol, kj/mol, and Hartrees.. Besides the energies the output also provides several rows of information about the calculation: -\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0first\u00a0row:\u00a0the\u00a0reaction\u00a0input\u00a0parsed \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0second\u00a0row:\u00a0the\u00a0arrows\u00a0ids\u00a0used\u00a0for\u00a0the\u00a0compounds\u00a0in\u00a0the\u00a0reaction \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0third\u00a0row:\u00a0the\u00a0iupac\u00a0names\u00a0of\u00a0the\u00a0compounds\u00a0if\u00a0available.\u00a0\u00a0If\u00a0not\u00a0available\u00a0the\u00a0systems\u00a0will\u00a0default\u00a0to\u00a0using\u00a0smiles\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0strings \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0fourth-\u00a0rows:\u00a0the\u00a0chemical\u00a0reaction\u00a0is\u00a0written\u00a0using\u00a0the\u00a0esmiles\u00a0notation.\u00a0\u00a0\n
The esmiles notation contains all the information about the calculations of the compounds. In this example, theory used was dft, basis was 6-311++G(2d,2p), the exchange correlation, the solvation type was cosmo. The charge and multiplicity of the molecules are also given. The value in the nf{} tag contains the number of imaginary frequencies in the vibrational calculation for the molecule. A variety of other inputs to describe the chemical structure besides smiles can be used, including common names, iupac, kegg numbers, cas, pubchem ids, chemspider ids, and InChI strings. The common names, iupac and InChI strings are entered as replacements to the smiles strings, and the kegg, cas, pubchem, and csid inputs are entered as kegg=value, cas=value, cid=value, csid=value where value is the id. The chemical structure input types can be mixed and matched in the reaction input. The following reaction inputs are all equivalent. \ntrichloromethanol\u00a0+\u00a0methane\u00a0-->\u00a0chloroform\u00a0+\u00a0methyl\u00a0alcohol\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0kegg=D02309\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0cas=67-56-1\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0cid=887\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0csid=864\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0InChI=1S/CH4O/c1-2/h2H,1H3\n\n
To calculate atomization energies the following input can be used. C(Cl)(Cl)(Cl)O\u00a0\u00a0-->\u00a0[C]\u00a0\u00a0mult{3}\u00a0+\u00a03\u00a0[Cl]\u00a0mult{2}\u00a0+\u00a0[O]\u00a0mult{3}\n
## MAP Function for Adding Options to Reactions To calculate a reaction energy using non-default options the following format could be used, e.g. Arrows:: \n\nreaction:\u00a0 \ntrichloromethanol\u00a0theory{pspw}\u00a0xc{lda}\u00a0+\u00a0methane\u00a0theory{pspw}\u00a0xc{lda}\u00a0 \n-->\u00a0chloroform\u00a0theory{pspw}\u00a0xc{lda}\u00a0+\u00a0methyl\u00a0alcohol\u00a0theory{pspw}\u00a0xc{lda}\u00a0 \n:reaction \n\n::Arrows\n
in the body of an Arrows email, or just the following single line input in the Web API entry box \u00a0trichloromethanol\u00a0theory{pspw}\u00a0xc{lda}\u00a0+\u00a0methane\u00a0theory{pspw}\u00a0xc{lda}\u00a0\u00a0 \n\u00a0-->\u00a0chloroform\u00a0theory{pspw}\u00a0xc{lda}\u00a0+\u00a0methyl\u00a0alcohol\u00a0theory{pspw}\u00a0xc{lda}\n
Entering ESMILES in this way for reactions is tedius and prone to typos. To simplify this type of input a map function has been added to the reaction input, where the format for the mapping function is to append the reaction with the tilde, \"\\~\", symbol followed by the esmiles options. trichloromethanol\u00a0+\u00a0methane\u00a0-->\u00a0chloroform\u00a0+\u00a0methyl\u00a0alcohol\u00a0~\u00a0theory{pspw}\u00a0xc{lda}\n
The map function essentially appends every compound in the reaction by the esmiles options string.This is preferred way to use the map function. However, an alternative format for entering the map function has also been added to the reaction: :reaction block. The format of the block is reaction\\[esmiles options\\]: reaction :reaction. Arrows:: \n\nreaction[theory{pspw}\u00a0xc{lda}]:\u00a0 \ntrichloromethanol\u00a0+\u00a0methane\u00a0-->\u00a0chloroform\u00a0+\u00a0methyl\u00a0alcohol\u00a0\u00a0 \n:reaction \n\n::Arrows\n
## How to Define the Chemical Structure with XYZ Input The xyzinput: :xyzinput block is used to enter a chemical structure using xyz coordinates. The label: :label subblock is used to label the xyz structure so that it can be referenced in reaction: :reaction, molecule: :molecule, and nmr: :nmr blocks. The xyz geometry is entered inside the xyzdata: :xyzdata block. The coordinates are assumed to be in Angstroms. The xyz geometry can either contain the number of atoms at the start of the input, e.g. Arrows:: \n\nxyzinput: \nlabel:\u00a0amolecule\u00a0:label \n\u00a0\u00a0\u00a0xyzdata: \n20 \n\nC\u00a0\u00a0\u00a00.810772\u00a01.260891\u00a00.224768 \nC\u00a0\u00a0\u00a0-0.445319\u00a00.626551\u00a00.148559 \nC\u00a0\u00a0\u00a0-0.550132\u00a0-0.747571\u00a0-0.024182 \nC\u00a0\u00a0\u00a00.598317\u00a0-1.510887\u00a0-0.051277 \nC\u00a0\u00a0\u00a01.856720\u00a0-0.927387\u00a00.081993 \nC\u00a0\u00a0\u00a01.951003\u00a00.440481\u00a00.208335 \nH\u00a0\u00a0\u00a02.736961\u00a0-1.550133\u00a00.062422 \nH\u00a0\u00a0\u00a02.912395\u00a00.927722\u00a00.273890 \nO\u00a0\u00a0\u00a01.062201\u00a02.575051\u00a00.296009 \nC\u00a0\u00a0\u00a00.213380\u00a03.557631\u00a0-0.323370 \nH\u00a0\u00a0\u00a0-1.520657\u00a0-1.209783\u00a0-0.105115 \nN\u00a0\u00a0\u00a0-1.712300\u00a01.341956\u00a00.351481 \nN\u00a0\u00a0\u00a00.485785\u00a0-2.966232\u00a0-0.210786 \nO\u00a0\u00a0\u00a0-0.636770\u00a0-3.441145\u00a0-0.327238 \nO\u00a0\u00a0\u00a01.526277\u00a0-3.613525\u00a0-0.218259 \nO\u00a0\u00a0\u00a0-2.671572\u00a01.004073\u00a0-0.327713 \nO\u00a0\u00a0\u00a0-1.733900\u00a02.198527\u00a01.228109 \nH\u00a0\u00a0\u00a00.882435\u00a04.349335\u00a0-0.647148 \nH\u00a0\u00a0\u00a0-0.510291\u00a03.940088\u00a00.389177 \nH\u00a0\u00a0\u00a0-0.297779\u00a03.136834\u00a0-1.188838 \n\u00a0\u00a0:xyzdata \n:xyzinput \n\nmolecule:\u00a0label=amolecule\u00a0xc{m06-2x}\u00a0:molecule \n\n::Arrows \n\nr it can be left out, e.g.\n\nArrows:: \n\nxyzinput: \nlabel:\u00a0amolecule\u00a0:label \n\u00a0\u00a0\u00a0xyzdata: \nC\u00a0\u00a0\u00a00.810772\u00a01.260891\u00a00.224768 \nC\u00a0\u00a0\u00a0-0.445319\u00a00.626551\u00a00.148559 \nC\u00a0\u00a0\u00a0-0.550132\u00a0-0.747571\u00a0-0.024182 \nC\u00a0\u00a0\u00a00.598317\u00a0-1.510887\u00a0-0.051277 \nC\u00a0\u00a0\u00a01.856720\u00a0-0.927387\u00a00.081993 \nC\u00a0\u00a0\u00a01.951003\u00a00.440481\u00a00.208335 \nH\u00a0\u00a0\u00a02.736961\u00a0-1.550133\u00a00.062422 \nH\u00a0\u00a0\u00a02.912395\u00a00.927722\u00a00.273890 \nO\u00a0\u00a0\u00a01.062201\u00a02.575051\u00a00.296009 \nC\u00a0\u00a0\u00a00.213380\u00a03.557631\u00a0-0.323370 \nH\u00a0\u00a0\u00a0-1.520657\u00a0-1.209783\u00a0-0.105115 \nN\u00a0\u00a0\u00a0-1.712300\u00a01.341956\u00a00.351481 \nN\u00a0\u00a0\u00a00.485785\u00a0-2.966232\u00a0-0.210786 \nO\u00a0\u00a0\u00a0-0.636770\u00a0-3.441145\u00a0-0.327238 \nO\u00a0\u00a0\u00a01.526277\u00a0-3.613525\u00a0-0.218259 \nO\u00a0\u00a0\u00a0-2.671572\u00a01.004073\u00a0-0.327713 \nO\u00a0\u00a0\u00a0-1.733900\u00a02.198527\u00a01.228109 \nH\u00a0\u00a0\u00a00.882435\u00a04.349335\u00a0-0.647148 \nH\u00a0\u00a0\u00a0-0.510291\u00a03.940088\u00a00.389177 \nH\u00a0\u00a0\u00a0-0.297779\u00a03.136834\u00a0-1.188838 \n\u00a0\u00a0:xyzdata \n:xyzinput \n\nmolecule:\u00a0label=amolecule\u00a0xc{m06-2x}\u00a0:molecule\n\n::Arrows\n
## How to Calculate NMR Spectra The nmr: :nmr block is used to energy an NMR calculation Arrows:: \nnmr:\u00a0c1ccccc1\u00a0basis{6-31G*}\u00a0solvation_type{None}\u00a0:nmr\n::Arrows\n
For single line input the esmiles is preceded by the words \"nmr for\", e.g. nmr\u00a0for\u00a0c1ccccc1\u00a0basis{6-31G*}\u00a0solvation_type{None}\n
## How to Generate a Table of Reactions The reactionenumerate: :reactionenumerate block is used to generate a table of reactions in CSV format, which can be copy and pasted into spreadsheets. Arrows:: \n\nreactionenumerate: \n\u00a0\u00a0energytype:\u00a0grxn(aq)\u00a0kcal/mol\u00a0:energytype \n\u00a0\u00a0tablereactions: \n\u00a0\u00a0\u00a0\u00a0\u00a0reaction:\u00a0TNT\u00a0+\u00a0hydroxide\u00a0-->\u00a0TNT-2-OH\u00a0+\u00a0nitrite\u00a0:reaction \n\u00a0\u00a0\u00a0\u00a0\u00a0reaction:\u00a0DNAN\u00a0+\u00a0hydroxide\u00a0-->\u00a0DNAN-2-OH\u00a0+\u00a0nitrite\u00a0:reaction \n\u00a0\u00a0:tablereactions \n\u00a0\u00a0tablemethods: \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method:\u00a0xc{pbe}\u00a0:method \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method:\u00a0xc{b3lyp}\u00a0:method \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method:\u00a0xc{m06-2x}\u00a0:method \n\u00a0\u00a0:tablemethods \n:reactionenumerate \n\n::Arrows\n
## How to Fetch NWChem Output The NWChem output can be fetched using the nwoutput: :nwoutput and printnwout: :printnwout blocks. The input for the nwoutput: :nwoutput block is an ESMILES strings, e.g. Arrows::\nnwoutput:\u00a0TNT\u00a0theory{pspw}\u00a0:nwoutput\n::Arrows\n
For single line input the esmiles is preceded by the words \"nwoutput for\", e.g. nwoutput\u00a0for\u00a0aspirin\u00a0theory{pspw}\n
The input for the printnwout: :printnwout block is an Arrows id, e.g. Arrows:: \nprintnwout:\u00a013212\u00a0:printnwout\n::Arrows\n
## Generate NWChem Input The Web API can be used to generate an NWChem input deck. For single line input the esmiles is preceded by the words \"input deck for\", e.g. input\u00a0deck\u00a0for\u00a0aspirin\n
## How to Fetch XYZ Geometry An XYZ geometry can be fetched using the xyzfile: :xyzfile and printxyz: :printxyz blocks. The input for the xyzfile: :xyzfile block is an ESMILES strings, e.g. Arrows:: \nxyzfile:\u00a0TNT\u00a0theory{pspw}\u00a0:xyzfile\n::Arrows\n
The input for the printxyz: :printxyz block is an Arrows id, e.g. Arrows:: \nprintxyz:\u00a013212\u00a0:printxyz\n::Arrows\n
For single line input the esmiles is preceded by the words \"xyz for\", e.g. xyz\u00a0for\u00a0TNT\u00a0theory{pspw}\n
"},{"location":"EPR-pNMR.html","title":"EPR pNMR","text":""},{"location":"EPR-pNMR.html#epr-and-paramagnetic-nmr-nwchem-tutorial","title":"EPR and Paramagnetic NMR NWChem Tutorial","text":"This tutorial involves tensor/matrix operations, which can be readily done with Octave, a GNU license MATLAB-like program, freely available in any Linux or Cygwin (Windows) distribution. Octave will be used to demonstrate tensor manipulation and calculation of g-tensor, A-tensor, and paramagnetic NMR parameters obtained from an example NWChem output.
Example input:
echo\nstart ch3radical_rot\ntitle ch3radical_rot\ngeometry noautoz units angstrom nocenter\n symmetry c1\n c +0.00000000 +0.00000000 +0.00000000\n h -0.21385373 +0.98738914 +0.39826283\n h -0.78597592 -0.69448290 +0.28059107\n h +0.09050298 +0.04455726 -1.08102723\nend\nBASIS \"ao basis\" \n* library 6-311G\nEND\nrelativistic\n zora on\n zora:cutoff_NMR 1d-8\n zora:cutoff 1d-30\nend\ndft\n mult 2\n xc b3lyp\nend\ntask dft\nproperty\n gshift\n hyperfine\n shielding\nend\ntask dft property\n
First, the following constants and values are needed:
ge = 2.002319304; Be = 9.27400915e-24; k = 1.3806504e-23; u0 = 4*pi*(10^7);\nh = 6.62606896e-34; BN = 5.05078317e-27; gnC = 1.4044;\n
gnC is the nuclear g-factor for a 13C nucleus; it is calculated from the measured gyromagnetic ratio (in 106 rad s-1 T-1) for 13C:
gammaC = 67.262;\ngnC = gammaC*(h/(2*pi))/BN*(10^6);\n
Note that the example system CH3 ground state is a doublet.
S = 0.5;\n
Since paramagnetic NMR is temperature-dependent, specify a temperature in Kelvin:
T = 305.15;\n
Reconciling the g-tensor from NWChem calculation: Note that the tensor from a g-shift (\u0394g) calculation from NWChem is in ppt (parts-per-thousand). Enter the total \u0394g (g-shift) tensor into Octave:
GShiftTens = [0.1740 0.2216 -0.2640; 0.2216 0.6888 0.0981; ...\n-0.2640 0.0981 0.6542];\n
Transform \u0394g tensor to g tensor:
GTens = 0.001*GShiftTens + (ge*eye(3))\n
returns
2.0025e+00 2.2160e-04 -2.6400e-04\n2.2160e-04 2.0030e+00 9.8100e-05\n-2.6400e-04 9.8100e-05 2.0030e+00\n
Note that eye(3)
stands for the 3x3 identity matrix (diagonal 1\u2019s and off-diagonal 0\u2019s). To obtain gxx, gyy, and gzz from the g tensor matrix, find the eigenvalues of ggT and take the square root of the eigenvalues:
sqrt(eig(GTens*transpose(GTens)))\n
returns
ans =\n2.0023\n2.0031\n2.0031\n
To obtain giso , take the trace of g and divide by 3:
trace(GTens)/3\n
returns
2.0028\n
Reconciling the A-tensor from NWChem calculation: Enter the total A tensor (for convenience use the tensor that is in MHz) for the first carbon atom listed:
ATensC = [428.6293 -58.2145 69.3689;-58.2145 293.3841 -25.7459; ...\n69.3689 -25.7459 302.4571];\n
Correct this matrix by rotating it into the reference frame of the g-tensor (obtained in the last section):
ATensC_Corr = (ATensC/ge)*GTens\n
returns
428.651 -58.184 69.332\n-58.184 293.477 -25.732\n69.332 -25.732 302.546\n
To find Axx, Ayy, Azz, find the eigenvalues of AAT and take the square root of the eigenvalues:
sqrt(eig(ATensC_Corr*transpose(ATensC_Corr)))\n
returns
ans =\n271.88\n271.88\n480.91\n
To calculate Aiso , take the trace of the corrected A tensor and divide by 3:
trace(ATensC_Corr)/3\n
returns
341.56\n
Reconciling the pNMR parameters from NWChem calculation: Calculate the dipolar form of the corrected A tensor for the carbon atom:
ATensC_Corr_Dip = ATensC_Corr \u2013 (trace(ATensC_Corr)/3)*eye(3)\n
returns
87.093 -58.184 69.332\n-58.184 -48.081 -25.732\n69.332 -25.732 -39.012\n
For convenience, convert the hyperfine tensors units from MHz to J:
ATensC_Energy = (10^6)*h*ATensC\n
returns
2.8401e-25 -3.8573e-26 4.5964e-26\n-3.8573e-26 1.9440e-25 -1.7059e-26\n4.5964e-26 -1.7059e-26 2.0041e-25\n
ATensC_Corr_Energy = (10^6)*h*ATensC_Corr\n
returns
2.8403e-25 -3.8553e-26 4.5940e-26\n-3.8553e-26 1.9446e-25 -1.7050e-26\n4.5940e-26 -1.7050e-26 2.0047e-25\n
ATensC_Corr_Dip_Energy =(10^6)*h*ATensC_Corr_Dip\n
returns
5.7708e-26 -3.8553e-26 4.5940e-26\n-3.8553e-26 -3.1859e-26 -1.7050e-26\n4.5940e-26 -1.7050e-26 -2.5850e-26\n
To calculate the Fermi contact shift:
FCShiftC = ...\n(10^6)*trace(GTens)/3*Be/(gnC*BN)*(S*(S+1))/(3*k*T)*trace(ATensC_Energy)/3\n
returns
FCShiftC = 3.5159e+04\n
To calculate the pseudocontact shift (in ppm):
PCShiftC = ...\n(10^6)*(S*(S+1))/(9*k*T)*Be/(gnC*BN)*trace(ATensC_Corr_Dip_Energy*GTens)\n
returns
PCShiftC = -1.9008\n
From the shielding calculation in NWChem,
OrbShldC = 83.7136\n
Putting it all together, the total chemical shielding in ppm is:
TotShldC = OrbShldC \u2013 FCShiftC \u2013 PCShiftC\n
returns
TotShldC = -3.5074e+04\n
Subtract this value from the appropriate reference to obtain the chemical shift. We can repeat these steps for the hydrogen atom. The proton nuclear g-factor is:
gnH = 5.5856947\n
The hyperfine A tensor for the hydrogen atom from the NWChem output is:
ATensH = [-39.8498 -17.0675 5.2453; -17.0675 0.9102 23.3706; ...\n5.2453 23.3706 -46.3284];\n
Correct this tensor by transforming it into the reference frame of the g-tensor:
ATensH_Corr = (ATensH/ge)*GTens\n
returns
-39.85584 -17.07752 5.25143\n-17.07196 0.90977 23.38053\n5.25445 23.37695 -46.34308\n
Calculate the dipolar form of the corrected A tensor for the H atom:
ATensH_Corr_Dip = ATensH_Corr - (trace(ATensH_Corr))/3*eye(3)\n
returns
-11.4261 -17.0775 5.2514\n-17.0720 29.3395 23.3805\n5.2545 23.3770 -17.9134\n
Convert the hyperfine tensors units from MHz to J:
ATensH_Energy = (10^6)*h*ATensH\n
returns
-2.6405e-26 -1.1309e-26 3.4756e-27\n-1.1309e-26 6.0310e-28 1.5486e-26\n3.4756e-27 1.5486e-26 -3.0698e-26\n
ATensH_Corr_Energy = (10^6)*h*ATensH_Corr\n
returns
-2.6409e-26 -1.1316e-26 3.4796e-27\n-1.1312e-26 6.0282e-28 1.5492e-26\n3.4816e-27 1.5490e-26 -3.0707e-26\n
ATensH_Corr_Dip_Energy =(10^6)*h*ATensH_Corr_Dip\n
returns
-7.5710e-27 -1.1316e-26 3.4796e-27\n-1.1312e-26 1.9441e-26 1.5492e-26\n3.4816e-27 1.5490e-26 -1.1870e-26\n
Calculate the Fermi Contact Shift:
FCShiftH = ...\n(10^6)*trace(GTens)/3*Be/(gnH*BN)*(S*(S+1))/(3*k*T)*trace(ATensH_Energy)/3\n
returns
FCShiftH = -735.76\n
Calculate the pseudocontact shift:
PCShiftH = ...\n(10^6)*(S*(S+1))/(9*k*T)*Be/(gnH*BN)*trace(ATensH_Corr_Dip_Energy*GTens)\n
returns
PCShiftH = 0.0032218\n
From the NWChem output, the orbital shielding is:
OrbShldH = 28.1923\n
Putting it all together, the total chemical shielding in ppm is:
TotShldH = OrbShldH - FCShiftH \u2013 PCShiftH\n
returns
TotShldH = 763.95\n
```
"},{"location":"ESP.html","title":"Electrostatic potentials","text":""},{"location":"ESP.html#overview","title":"Overview","text":"The NWChem Electrostatic Potential (ESP) module derives partial atomic charges that fit the quantum mechanical electrostatic potential on selected grid points.
The ESP module is specified by the NWChem task directive
task esp\n
The input for the module is taken from the ESP input block
ESP \n ... \nEND\n
"},{"location":"ESP.html#grid-specification","title":"Grid specification","text":"The grid points for which the quantum mechanical electrostatic potential is evaluated and used in the fitting procedure of the partial atomic charges all lie outside the van der Waals radius of the atoms and within a cutoff distance from the atomic centers. The following input parameters determine the selection of grid points.
recalculate \n
is given, the grid and the electrostatic potential is recalculated.
range
keyword range <real rcut> \n
where rcut
is the maximum distance in nm between a grid point and any of the atomic centers. When omitted, a default value for rcut of 0.3 nm is used.
spacing
keyword spacing <real spac> \n
where spac
is the grid spacing in nm for the regularly spaced grid points. If not specified, a default spacing of 0.05 nm is used.
radius
of an element can be specified by radius <integer iatnum> <real atrad> \n
where iatnum is the atomic number for which a van der Waals radius of atrad in nm will be used in the grid point determination. Default values will be used for atoms not specified.
probe
radius in nm determining the envelope around the molecule is specified by probe <real probe default 0.07>\n
factor
specified by factor <real factor default 1.0>\n
All grid points are discarded that lie within a distance factor*(radius(i)+probe)
from any atom i.
screen [<real scrtol default 1.0D-5>]\n
"},{"location":"ESP.html#constraints","title":"Constraints","text":"Additional constraints to the partial atomic charges can be imposed during the fitting procedure.
constrain <real charge {<integer iatom>}\n
where charge
is the net charge of the set of atoms {iatom}
. A negative atom number iatom can be used to specify that the partial charge of that atom is substracted in the sum for the set.
constrain <real charge> <integer iatom> through <integer jatom> \n
where charge is the net charge of the set of atoms {[iatom:jatom]}
.
constrain equal {<integer iatom>}\n
constrain group <integer iatom> <integer jatom> to <integer katom> <integer latom>\n
resulting in the same charge for atoms iatom and katom, for atoms iatom+1 and k atom+1, \u2026 for atoms jatom and latom.
constrain xhn <integer iatom> {<integer jatom>}\n
can be used to constrain the set {iatom,{jatom}}
to zero charge, and constrain all atoms in {jatom}
to have the same charge. This can be used, for example, to restrain a methyl group to zero charge, and have all hydrogen carrying identical charges.
Restraints can be applied to each partial charge using the RESP charge fitting procedure.
restrain [hfree] (harmonic [<real scale>] | \\ \n hyperbolic [<real scale> [<real tight>]] \\ \n [maxiter <integer maxit>] [tolerance <real toler>])\n
Here hfree
can be specified to exclude hydrogen atoms from the restraining procedure. Variable scale
is the strength of the restraint potential, with a default of 0.005 au for the harmonic
restraint and a default value of 0.001 au for the hyperbolic
restraint. For the hyperbolic restraints the tightness tight
can be specified to change the default value of 0.1 e. The iteration count that needs to be carried out for the hyperbolic restraint is determined by the maximum number of allowed iterations maxiter
, with a default value of 25, and the tolerance
in the convergence of the partial charges toler
, with a default of 0.001 e.
The NWChem electron transfer (ET) module calculates the electronic coupling energy (also called the electron transfer matrix element) between ET reactant and product states. The electronic coupling (VRP), and nuclear reorganization energy (\u03bb) are all components of the electron transfer rate defined by Marcus\u2019 theory, which also depends on the temperature (see Reference 1 below):
The ET module utilizes the method of Corresponding Orbital Transformation to calculate VRP. The only input required are the names of the files containing the open-shell (UHF) MO vectors for the ET reactant and product states (R and P).
The basis set used in the calculation of VRP must be the same as the basis set used to calculate the MO vectors of R and P. The magnitude of VRP depends on the amount of overlap between R and P, which is important to consider when choosing the basis set. Diffuse functions may be necessary to fill in the overlap, particularly when the ET distance is long.
The MO\u2019s of R and P must correspond to localized states. for instance, in the reaction A- + B \u2192 A + B- the transferring electron is localized on A in the reactant state and is localized on B in the product state. To verify the localization of the electron in the calculation of the vectors, carefully examine the Mulliken population analysis. In order to determine which orbitals are involved in the electron transfer, use the print keyword \u201cmulliken ao\u201d which prints the Mulliken population of each basis function.
An effective core potential (ECP) basis can be used to replace core electrons. However, there is one caveat: the orbitals involved in electron transfer must not be replaced with ECP\u2019s. Since the ET orbitals are valence orbitals, this is not usually a problem, but the user should use ECP\u2019s with care.
Suggested references are listed below. The first two references gives a good description of Marcus\u2019 two-state ET model, and the appendix of the third reference details the method used in the ET module.
VECTORS [reactants] <string reactants_filename> \n VECTORS [products ] <string products_filename>\n
In the VECTORS directive the user specifies the source of the molecular orbital vectors for the ET reactant and product states. This is required input, as no default filename will be set by the program. In fact, this is the only required input in the ET module, although there are other optional keywords described below.
"},{"location":"Electron-Transfer.html#focknofock-method-for-calculating-the-two-electron-contribution-to-vrp","title":"FOCK/NOFOCK: method for calculating the two-electron contribution to VRP","text":" <string (FOCK||NOFOCK) default FOCK>\n
This directive enables/disables the use of the NWChem\u2019s Fock matrix routine in the calculation of the two-electron portion of the ET Hamiltonian. Since the Fock matrix routine has been optimized for speed, accuracy and parallel performance, it is the most efficient choice.
Alternatively, the user can calculate the two-electron contribution to the ET Hamiltonian with another subroutine which may be more accurate for systems with a small number of basis functions, although it is slower.
"},{"location":"Electron-Transfer.html#tol2e-integral-screening-threshold","title":"TOL2E: integral screening threshold","text":" TOL2E <real tol2e default max(10e-12,min(10e-7, S(RP)*10e-7 )>\n
The variable tol2e is used in determining the integral screening threshold for the evaluation of the two-electron contribution to the Hamiltonian between the electron transfer reactant and product states. As a default, tol2e is set depending on the magnitude of the overlap between the ET reactant and product states (SRP), and is not less than 1.0d-12 or greater than 1.0d-7.
The input to specify the threshold explicitly within the ET directive is, for example:
tol2e 1e-9\n
"},{"location":"Electron-Transfer.html#example","title":"Example","text":"The following example is for a simple electron transfer reaction, He \u2192 He+. The ET calculation is easy to execute, but it is crucial that ET reactant and product wavefunctions reflect localized states. This can be accomplished using either a fragment guess, or a charged atomic density guess. For self-exchange ET reactions such as this one, you can use the REORDER keyword to move the electron from the first helium to the second.
Example input :
basis \"ao basis\" \n * library aug-cc-pvtz\nend\n\ngeometry\n He 0 0 0\nend\n\ncharge 1\n\nscf\n tol2e 1d-9\n uhf\n doublet\n vectors output HeP.movecs\nend\ntask scf\n\ncharge 0\n\nscf\n uhf\n singlet\n vectors output He.movecs\nend\ntask scf\n\ngeometry noautosym noautoz\n He 0.0 0.0 0.0\n He 5.0 0.0 0.0\nend\n\ncharge 1\n#ET reactants:\nscf\n doublet; uhf; vectors input fragment HeP.movecs He.movecs output HeA.movecs\nend\ntask scf\n\n#ET products:\nscf\n doublet; uhf; vectors input HeA.movecs reorder 2 1 output HeB.movecs\nend\ntask scf\n\net\n vectors reactants HeA.movecs\n vectors products HeB.movecs\nend\ntask scf et\n
Here is what the output looks like for this example:
Electron Transfer Calculation\n -----------------------------\n\n MO vectors for reactants: HeA.movecs\n MO vectors for products : HeB.movecs\n\n Electronic energy of reactants H(RR) -5.2836825646\n Electronic energy of products H(PP) -5.2836825646\n\n Reactants/Products overlap S(RP) : -4.20D-04\n\n Reactants/Products interaction energy: \n ------------------------------------- \n One-electron contribution H1(RP) 0.0027017960\n\n Beginning calculation of 2e contribution\n Two-electron integral screening (tol2e) : 4.20D-11\n\n Two-electron contribution H2(RP) -0.0004625156\n Total interaction energy H(RP) 0.0022392804\n\n Electron Transfer Coupling Energy |V(RP)| 0.0000220152\n 4.832 cm-1\n 0.000599 eV\n 0.014 kcal/mol\n
The overlap between the ET reactant and product states (SRP) is small, so the magnitude of the coupling between the states is also small. If the fragment guess or charged atomic density guess were not used, the Mulliken spin population would be 0.5 on both He atoms, the overlap between the ET reactant and product states would be 100% and an infinite VRP would result.
"},{"location":"Electronic-Structure-Analysis.html","title":"Electronic Structure Analysis","text":"NWChem supports a spectrum of single excitation theories for vertical excitation energy calculations, namely, configuration interaction singles (CIS)1, time-dependent Hartree-Fock (TDHF or also known as random-phase approximation RPA), time-dependent density functional theory (TDDFT)2, and Tamm-Dancoff approximation3 to TDDFT. These methods are implemented in a single framework that invokes Davidson\u2019s trial vector algorithm (or its modification for a non-Hermitian eigenvalue problem). The capabilities of the module are summarized as follows:
These are very effective way to rectify the shortcomings of TDDFT when applied to Rydberg excited states (see below).
"},{"location":"Excited-State-Calculations.html#performance-of-cis-tdhf-and-tddft-methods","title":"Performance of CIS, TDHF, and TDDFT methods","text":"The accuracy of CIS and TDHF for excitation energies of closed-shell systems are comparable to each other, and are normally considered a zeroth-order description of the excitation process. These methods are particularly well balanced in describing Rydberg excited states, in contrast to TDDFT. However, for open-shell systems, the errors in the CIS and TDHF excitation energies are often excessive, primarily due to the multi-determinantal character of the ground and excited state wave functions of open-shell systems in a HF reference. The scaling of the computational cost of a CIS or TDHF calculation per state with respect to the system size is the same as that for a HF calculation for the ground state, since the critical step of the both methods are the Fock build, namely, the contraction of two-electron integrals with density matrices. It is usually necessary to include two sets of diffuse exponents in the basis set to properly account for the diffuse Rydberg excited states of neutral species.
The accuracy of TDDFT may vary depending on the exchange-correlation functional. In general, the exchange-correlation functionals that are widely used today and are implemented in NWChem work well for low-lying valence excited states. However, for high-lying diffuse excited states and Rydberg excited states in particular, TDDFT employing these conventional functionals breaks down and the excitation energies are substantially underestimated. This is because of the fact that the exchange-correlation potentials generated from these functionals decay too rapidly (exponentially) as opposed to the slow -1/r asymptotic decay of the true potential. A rough but useful index is the negative of the highest occupied KS orbital energy; when the calculated excitation energies become close to this threshold, these numbers are most likely underestimated relative to experimental results. It appears that TDDFT provides a better-balanced description of radical excited states. This may be traced to the fact that, in DFT, the ground state wave function is represented well as a single KS determinant, with less multi-determinantal character and less spin contamination, and hence the excitation thereof is described well as a simple one electron transition. The computational cost per state of TDDFT calculations scales as the same as the ground state DFT calculations, although the prefactor of the scaling may be much greater in the former.
A very simple and effecive way to rectify the TDDFT\u2019s failure for Rydberg excited states has been proposed by Tozer and Handy7 and by Casida and Salahub5. They proposed to splice a -1/r asymptotic tail to an exchange-correlation potential that does not have the correct asymptotic behavior. Because the approximate exchange-correlation potentials are too shallow everywhere, a negative constant must be added to them before they can be spliced to the -1/r tail seamlessly in a region that is not sensitive to chemical effects or to the long-range behavior. The negative constant or the shift is usually taken to be the difference of the HOMO energy from the true ionization potential, which can be obtained either from experiment or from a \u0394SCF calculation. Recently, we proposed a new, expedient, and self-contained asymptotic correction that does not require an ionization potential (or shift) as an external parameter from a separate calculation. In this scheme, the shift is computed by a semi-empirical formula proposed by Zhan, Nichols, and Dixon6. Both Casida-Salahub scheme and this new asymptotic correction scheme give considerably improved (Koopmans type) ionization potentials and Rydberg excitation energies. The latter, however, supply the shift by itself unlike to former.
"},{"location":"Excited-State-Calculations.html#input-syntax","title":"Input syntax","text":"The module is called TDDFT
as time-dependent density functional theory employing a hybrid HF-DFT functional encompasses all of the above-mentioned methods implemented. To use this module, one needs to specify TDDFT
on the task directive, e.g.,
TASK TDDFT ENERGY\n
for a single-point excitation energy calculation, and
TASK TDDFT OPTIMIZE\n
for an excited-state geometry optimization (and perhaps an adiabatic excitation energy calculation), and
TASK TDDFT FREQUENCIES\n
for an excited-state vibrational frequency calculation. The TDDFT module first invokes DFT module for a ground-state calculation (regardless of whether the calculations uses a HF reference as in CIS or TDHF or a DFT functional), and hence there is no need to perform a separate ground-state DFT calculation prior to calling a TDDFT
task. When no second argument of the task directive is given, a single-point excitation energy calculation will be assumed. For geometry optimizations, it is usually necessary to specify the target excited state and its irreducible representation it belongs to. See the subsections TARGET
and TARGETSYM
for more detail.
Individual parameters and keywords may be supplied in the TDDFT
input block. The syntax is:
TDDFT\n [(CIS||RPA) default RPA] \n [NROOTS <integer nroots default 1>] \n [MAXVECS <integer maxvecs default 1000>] \n [(SINGLET||NOSINGLET) default SINGLET] \n [(TRIPLET||NOTRIPLET) default TRIPLET] \n [THRESH <double thresh default 1e-4>] \n [MAXITER <integer maxiter default 100>] \n [TARGET <integer target default 1>] \n [TARGETSYM <character targetsym default 'none'>] \n [SYMMETRY] \n [ECUT] <-cutoff energy> \n [EWIN] <-lower cutoff energy> <-higher cutoff energy> \n [ALPHA] <integer lower orbital> <integer upper orbital> \n [BETA] <integer lower orbital> <integer upper orbital> \n [CIVECS] \n [GRAD, END] \n [CDSPECTRUM] \n [GIAO]\n [VELOCITY]\n [SIMPLESO]\n [ALGORITHM <integer algorithm default 0>] \n [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\ \n [virtual <integer nfzv default 0>]] \n [PRINT (none||low||medium||high||debug) \n <string list_of_names ...>]\n END\n
The user can also specify the reference wave function in the DFT input block (even when CIS and TDHF calculations are requested). See the section of Sample input and output for more details.
Since each keyword has a default value, a minimal input file will be
GEOMETRY\n Be 0.0 0.0 0.0 \n END \n BASIS \n Be library 6-31G** \n END \n TASK TDDFT ENERGY\n
Note that the keyword for the asymptotic correction must be given in the DFT input block, since all the effects of the correction (and also changes in the computer program) occur in the SCF calculation stage. See DFT (keywords CS00
and LB94
) for details.
These keywords toggle the Tamm-Dancoff approximation. CIS
means that the Tamm-Dancoff approximation is used and the CIS or Tamm-Dancoff TDDFT calculation is requested. RPA
, which is the default, requests TDHF (RPA) or TDDFT calculation.
The performance of CIS (Tamm-Dancoff TDDFT) and RPA (TDDFT) are comparable in accuracy. However, the computational cost is slightly greater in the latter due to the fact that the latter involves a non-Hermitian eigenvalue problem and requires left and right eigenvectors while the former needs just one set of eigenvectors of a Hermitian eigenvalue problem. The latter has much greater chance of aborting the calculation due to triplet near instability or other instability problems.
"},{"location":"Excited-State-Calculations.html#nroots-the-number-of-excited-states","title":"NROOTS: the number of excited states","text":"One can specify the number of excited state roots to be determined. The default value for NROOTS
is 1. It is advised that the users request several more roots than actually needed, since owing to the nature of the trial vector algorithm, some low-lying roots can be missed when they do not have sufficient overlap with the initial guess vectors.
The MAXVECS
keyword limits the subspace size of Davidson\u2019s algorithm; in other words, it is the maximum number of trial vectors that the calculation is allowed to hold. Typically, 10 to 20 trial vectors are needed for each excited state root to be converged. However, it need not exceed the product of the number of occupied orbitals and the number of virtual orbitals. The default value is 1000.
SINGLET || NOSINGLET
requests (suppresses) the calculation of singlet excited states when the reference wave function is closed shell. The default is SINGLET
.
TRIPLET || NOTRIPLET
requests (suppresses) the calculation of triplet excited states when the reference wave function is closed shell. The default is TRIPLET
.
The THRESH
keyword specifies the convergence threshold of Davidson\u2019s iterative algorithm to solve a matrix eigenvalue problem. The threshold refers to the norm of residual, namely, the difference between the left-hand side and right-hand side of the matrix eigenvalue equation with the current solution vector. With the default value of 1e-4, the excitation energies are usually converged to 1e-5 hartree.
It typically takes 10-30 iterations for the Davidson algorithm to get converged results. The default value for MAXITER
is 100.
At the moment, excited-state first geometry derivatives can be calculated analytically for a set of functionals, while excited-state second geometry derivatives are obtained by numerical differentiation. These keywords may be used to specify which excited state root is being used for the geometrical derivative calculation. For instance, when TARGET 3
and TARGETSYM a1g
are included in the input block, the total energy (ground state energy plus excitation energy) of the third lowest excited state root (excluding the ground state) transforming as the irreducible representation a1g will be passed to the module which performs the derivative calculations. The default values for TARGET
and TARGETSYM
are 1
and none
, respectively.
The keyword TARGETSYM
is essential in excited state geometry optimization, since it is very common that the order of excited states changes due to the geometry changes in the course of optimization. Without specifying the TARGETSYM
, the optimizer could (and would likely) be optimizing the geometry of an excited state that is different from the one the user had intended to optimize at the starting geometry. On the other hand, in the frequency calculations, TARGETSYM
must be none
, since the finite displacements given in the course of frequency calculations will lift the spatial symmetry of the equilibrium geometry. When these finite displacements can alter the order of excited states including the target state, the frequency calculation is not be feasible.
By adding the SYMMETRY
keyword to the input block, the user can request the module to generate the initial guess vectors transforming as the same irreducible representation as TARGETSYM
. This causes the final excited state roots be (exclusively) dominated by those with the specified irreducible representation. This may be useful, when the user is interested in just the optically allowed transitions, or in the geometry optimization of an excited state root with a particular irreducible representation. By default, this option is not set. TARGETSYM
must be specified when SYMMETRY
is invoked.
The ECUT
keyword enables restricted excitation window TDDFT (REW-TDDFT)8. This is an approach best suited for core excitations. By specifying this keyword only excitations from occupied states below the energy cutoff will be considered.
The EWIN
keyword enables a restricted energy window between a lower energy cutoff and a higher energy cutoff. For example, ewin -20.0 -10.0
will only consider excitations from occupied orbitals within the specified energy window
Orbital windows can be specified using the following keywords:
alpha 1 4\n beta 2 5\n
Here alpha excitations will be considered from orbitals 1 through 4 depending on the number of roots requested and beta excitations will be considered from orbitals 2 through 5 depending on the number of roots requested.
"},{"location":"Excited-State-Calculations.html#civecs-ci-vectors","title":"CIVECS: CI vectors","text":"The CIVECS
keyword will result in the CI vectors being written out. By default this is off. Please note this can be a very large file, so avoid turning on this keyword if you are calculating a very large number of roots. CI vectors are needed for excited-state gradient and transition density calculations.
Analytical TDDFT gradients can be calculated by specifying a grad
block within the main TDDFT
block
For example, the following will perform a TDDFT optimization on the first singlet excited state (S1). Note that the civecs
keyword must be specified. To perform a single TDDFT gradient, replace the optimize
keyword with gradient
in the task line. A complete TDDFT optimization input example is given the Sample Inputs section. A TDDFT gradients calculation can be used to calculate the density of a specific excited state. The excited stated density is written to a file with the .dmat
suffix.
tddft\n nroots 2\n algorithm 1\n notriplet\n target 1\n targetsym a\n civecs\n grad\n root 1\n end\nend\ntask tddft optimize\n
At the moment the following exchange-correlation functionals are supported with TDDFT gradients
LDA, BP86, PBE, BLYP, B3LYP, PBE0, BHLYP, CAM-B3LYP, LC-PBE, LC-PBE0, BNL, LC-wPBE, LC-wPBEh, LC-BLYP\n
"},{"location":"Excited-State-Calculations.html#cdspectrum-optical-rotation-calculations","title":"CDSpectrum: optical rotation calculations","text":"Perform optical rotation calculations. We recommend to use the GIAO
keyword
Perform CD spectrum calculations with the velocity gauge.
"},{"location":"Excited-State-Calculations.html#simpleso-simplified-spin-orbit-coupling","title":"SIMPLESO: simplified Spin-Orbit coupling","text":"Perform excited states calculations with a simplied Spin-Orbit coupling that uses eigenvalues from a spin-orbit calculation, instead of a standard dft calculation. Here is a snippet of an input example (please notice the use of molecular orbitals).
start au2\n geometry\n au 0 0 1\n au 0 0 -1\n symmetry d2h\nend\n#basis sets, ecp and so-ecp skipped for simplicity\n...\ndft\n odft\n vectors output au2_noso.mos\nend\ntask dft\ndft\n vectors input au2_noso.mos output au2_so.mos\nend\ntask sodft\ndft\n odft\n vectors input u2_noso.mos\nend\n\ntddft\n simpleso au2.evals\n nroots 1\n notriplet\nend\n\ntask tddft\n
"},{"location":"Excited-State-Calculations.html#algorithm-algorithms-for-tensor-contractions","title":"ALGORITHM: algorithms for tensor contractions","text":"There are four distinct algorithms to choose from, and the default value of 0 (optimal) means that the program makes an optimal choice from the four algorithms on the basis of available memory. In the order of decreasing memory requirement, the four algorithms are:
The incore algorithm stores all the trial and product vectors in memory across different nodes with the GA, and often decreases the MAXITER
value to accommodate them. The disk-based algorithm stores the vectors on disks across different nodes with the DRA, and retrieves each vector one at a time when it is needed. The multiple and single tensor contraction refers to whether just one or more than one trial vectors are contracted with integrals. The multiple tensor contraction algorithm is particularly effective (in terms of speed) for CIS and TDHF, since the number of the direct evaluations of two-electron integrals is diminished substantially.
Some of the lowest-lying core orbitals and/or some of the highest-lying virtual orbitals may be excluded in the CIS, TDHF, and TDDFT calculations by the FREEZE
keyword (this does not affect the ground state HF or DFT calculation). No orbitals are frozen by default. To exclude the atom-like core regions altogether, one may request
FREEZE atomic\n
To specify the number of lowest-lying occupied orbitals be excluded, one may use
FREEZE 10\n
which causes 10 lowest-lying occupied orbitals excluded. This is equivalent to writing
FREEZE core 10\n
To freeze the highest virtual orbitals, use the virtual
keyword. For instance, to freeze the top 5 virtuals
FREEZE virtual 5\n
"},{"location":"Excited-State-Calculations.html#trials-restart","title":"TRIALS: restart","text":"Setting the keyword trials
restart the calculation from the trials vector of a previous run.
trials \n
"},{"location":"Excited-State-Calculations.html#print-output-verbosity","title":"PRINT: output verbosity","text":"The PRINT
keyword changes the level of output verbosity. One may also request some particular items in the table below.
Printable items in the TDDFT modules and their default print levels.
"},{"location":"Excited-State-Calculations.html#sample-input","title":"Sample input","text":"The following is a sample input for a spin-restricted TDDFT calculation of singlet excitation energies for the water molecule at the B3LYP/6-31G*.
START h2o \nTITLE \"B3LYP/6-31G* H2O\" \nGEOMETRY \n O 0.00000000 0.00000000 0.12982363 \n H 0.75933475 0.00000000 -0.46621158 \n H -0.75933475 0.00000000 -0.46621158 \nEND \nBASIS \n * library 6-31G* \nEND \nDFT \n XC B3LYP \nEND \nTDDFT \n RPA \n NROOTS 20 \nEND \nTASK TDDFT ENERGY\n
To perform a spin-unrestricted TDHF/aug-cc-pVDZ calculation for the CO+ radical,
START co \ntitle \"TDHF/aug-cc-pVDZ CO+\" \ncharge 1 \ngeometry \n c 0.0 0.0 0.0 \n o 0.0 0.0 1.5\n symmetry c2v # enforcing abelian symmetry\nend \nbasis \n * library aug-cc-pvdz \nend \ndft \n xc hfexch \n mult 2 \nend\ntask dft optimize\ntddft \n rpa \n nroots 5 \nend \ntask tddft energy\n
A geometry optimization followed by a frequency calculation for an excited state is carried out for BF at the CIS/6-31G* level in the following sample input.
start bf \ntitle \"CIS/6-31G* BF optimization frequencies\" \ngeometry \n b 0.0 0.0 0.0 \n f 0.0 0.0 1.2\n symmetry c2v # enforcing abelian symmetry\nend \nbasis \n * library 6-31g* \nend \ndft \n xc hfexch \nend \ntddft \n cis \n nroots 3 \n notriplet \n target 1 \n civecs \n grad \n root 1 \n end \nend \ntask tddft optimize \ntask tddft frequencies\n
TDDFT with an asymptotically corrected SVWN exchange-correlation potential. Casida-Salahub scheme has been used with the shift value of 0.1837 a.u. supplied as an input parameter.
START tddft_ac_co \nGEOMETRY \n O 0.0 0.0 0.0000 \n C 0.0 0.0 1.1283 \n symmetry c2v # enforcing abelian symmetry\nEND \nBASIS SPHERICAL \n C library aug-cc-pVDZ \n O library aug-cc-pVDZ \nEND \nDFT \n XC Slater VWN_5 \n CS00 0.1837 \nEND \nTDDFT \n NROOTS 12 \nEND \nTASK TDDFT ENERGY\n
TDDFT with an asymptotically corrected B3LYP exchange-correlation potential. Hirata-Zhan-Apra-Windus-Dixon scheme has been used (this is only meaningful with B3LYP functional).
START tddft_ac_co \nGEOMETRY \n O 0.0 0.0 0.0000 \n C 0.0 0.0 1.1283 \n symmetry c2v # enforcing abelian symmetry\nEND \nBASIS SPHERICAL \n C library aug-cc-pVDZ \n O library aug-cc-pVDZ \nEND \nDFT \n XC B3LYP \n CS00 \nEND \nTDDFT \n NROOTS 12 \nEND \nTASK TDDFT ENERGY\n
TDDFT for core states. The following example illustrates the usage of an energy cutoff and energy and orbital windows.8
echo \nstart h2o_core \nmemory 1000 mb \ngeometry units au noautosym noautoz \n O 0.00000000 0.00000000 0.22170860 \n H 0.00000000 1.43758081 -0.88575430 \n H 0.00000000 -1.43758081 -0.88575430 \nend \nbasis \n O library 6-31g* \n H library 6-31g* \nend \ndft \n xc beckehandh \n print \"final vector analysis\" \nend \ntask dft \ntddft \n ecut -10 \n nroots 5 \n notriplet \n thresh 1d-03 \nend \ntask tddft \ntddft \n ewin -20.0 -10.0 \n cis \n nroots 5 \n notriplet \n thresh 1d-03 \nend \ntask tddft \ndft \n odft \n mult 1 \n xc beckehandh \n print \"final vector analysis\" \nend \ntask dft \ntddft \n alpha 1 1 \n beta 1 1 \n cis \n nroots 10 \n notriplet \n thresh 1d-03 \nend \ntask tddft\n
TDDFT optimization with LDA of Pyridine with the 6-31G basis9
echo \nstart tddftgrad_pyridine_opt \ntitle \"TDDFT/LDA geometry optimization of Pyridine with 6-31G\" \ngeometry nocenter \n N 0.00000000 0.00000000 1.41599295 \n C 0.00000000 -1.15372936 0.72067272 \n C 0.00000000 1.15372936 0.72067272 \n C 0.00000000 -1.20168790 -0.67391011 \n C 0.00000000 1.20168790 -0.67391011 \n C 0.00000000 0.00000000 -1.38406147 \n H 0.00000000 -2.07614628 1.31521089 \n H 0.00000000 2.07614628 1.31521089 \n H 0.00000000 2.16719803 -1.19243296 \n H 0.00000000 -2.16719803 -1.19243296 \n H 0.00000000 0.00000000 -2.48042299 \n symmetry c1 \nend \nbasis spherical \n* library \"6-31G\" \nend \ndriver \n clear \n maxiter 100 \nend \ndft \n iterations 500 \n grid xfine \nend \ntddft \n nroots 2 \n algorithm 1 \n notriplet \n target 1 \n targetsym a \n civecs \n grad \n root 1 \n end \nend \ntask tddft optimize\n
TDDFT calculation followed by a calculation of the transition density for a specific excited state using the DPLOT block
echo \nstart h2o-td \ntitle h2o-td \n\ncharge 0 \ngeometry units au\nsymmetry group c1 \n O 0.00000000000000 0.00000000000000 0.00000000000000 \n H 0.47043554760291 1.35028113274600 1.06035416576826 \n H -1.74335410533480 -0.23369304784300 0.27360785442967 \nend \nbasis \"ao basis\"\n* library \"Ahlrichs pVDZ\"\nend \ndft \n xc bhlyp \n grid fine \n direct \n convergence energy 1d-5 \nend \ntddft \n rpa \n nroots 5 \n thresh 1d-5 \n singlet \n notriplet \n civecs \nend \ntask tddft energy \ndplot \n civecs h2o-td.civecs_singlet \n root 2 \n LimitXYZ \n -3.74335 2.47044 50 \n -2.23369 3.35028 50 \n -2 3.06035 50 \n gaussian \n output root-2.cube \nend \ntask dplot\n
TDDFT protocol for calculating the valence-to-core (1s) X-ray emission spectrum 10
A Python script is available for parsing NWChem output for TDDFT/vspec excitation energies, and optionally Lorentzian broadenening the spectra . The nw_spectrum.py file can be found at https://raw.githubusercontent.com/nwchemgit/nwchem/master/contrib/parsers/nw_spectrum.py
Usage: nw_spectrum.py [options]\n\nReads NWChem output from stdin, parses for the linear response TDDFT or DFT\nvspec excitations, and prints the absorption spectrum to stdout. It will\noptionally broaden peaks using a Lorentzian with FWHM of at least two\nenergy/wavelength spacings. By default, it will automatically determine data\nformat (tddft or vspec) and generate a broadened spectrum in eV.\n\nExample:\n\n nw_spectrum -b0.3 -p5000 -wnm < water.nwo > spectrum.dat\n\nCreate absorption spectrum in nm named \"spectrum.dat\" from the NWChem output\nfile \"water.nwo\" named spectrum.dat with peaks broadened by 0.3 eV and 5000\npoints in the spectrum.\n\n\nOptions:\n -h, --help show this help message and exit\n -f FMT, --format=FMT data file format: auto (default), tddft, vspec, dos\n -b WID, --broad=WID broaden peaks (FWHM) by WID eV (default 0.1 eV)\n -n NUM, --nbin=NUM number of eigenvalue bins for DOS calc (default 20)\n -p NUM, --points=NUM create a spectrum with NUM points (default 2000)\n -w UNT, --units=UNT units for frequency: eV (default), au, nm\n -d STR, --delim=STR use STR as output separator (four spaces default)\n -x, --extract extract unbroadened roots; do not make spectrum\n -C, --clean clean output; data only, no header or comments\n -c CHA, --comment=CHA\n comment character for output ('#' default)\n -v, --verbose echo warnings and progress to stderr\n
"},{"location":"Excited-State-Calculations.html#references","title":"References","text":"J. B. Foreman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992), DOI:10.1021/j100180a030 \u21a9
C. Jamorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys. 104, 5134 (1996), DOI:10.1063/1.471140; R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996), DOI:10.1016/0009-2614(96)00440-X; R. Bauernschmitt, M. H\u00e4ser, O. Treutler, and R. Ahlrichs, Chem. Phys. Lett. 264, 573 (1997), DOI:10.1016/S0009-2614(96)01343-7.\u00a0\u21a9
S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999). DOI:10.1016/S0009-2614(99)01149-5 \u21a9
R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994), DOI:10.1103/PhysRevA.49.2421 \u21a9
M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998), DOI:10.1063/1.475855 \u21a9\u21a9
S. Hirata, C.-G. Zhan, E. Apr\u00e0, T. L. Windus, and D. A. Dixon, J. Phys. Chem. A 107, 10154 (2003). DOI:10.1021/jp035667x \u21a9\u21a9
D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180 (1998), DOI:10.1063/1.477711 \u21a9
K. Lopata, B. E. Van Kuiken, M. Khalil, N. Govind, \u201cLinear-Response and Real-Time Time-Dependent Density Functional Theory Studies of Core-Level Near-Edge X-Ray Absorption\u201d, J. Chem. Theory Comput., 2012, 8 (9), pp 3284\u20133292, DOI:10.1021/ct3005613 \u21a9\u21a9
D. W. Silverstein, N. Govind, H. J. J. van Dam, L. Jensen, \u201cSimulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory\u201d J. Chem. Theory Comput., 2013, 9 (12), pp 5490\u20135503, DOI:10.1021/ct4007772 \u21a9
Y. Zhang, S. Mukamel, M. Khalil, N. Govind, \u201cSimulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal\u201d, J. Chem. Theory Comput., 2015, 11 (12), pp 5804\u20135809, DOI:10.1021/acs.jctc.5b00763 \u21a9
group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0219\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F-43c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a089\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a090\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a091\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"F-43m.html","title":"F 43m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0216\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F-43m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"F222.html","title":"F222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a022\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"F23.html","title":"F23","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0196\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F23\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"F432.html","title":"F432","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0209\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F432\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"F4_132.html","title":"F4 132","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0210\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0F4_132\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a089\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a090\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a091\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a092\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25 \n
"},{"location":"FAQ.html","title":"General information about NWChem","text":""},{"location":"FAQ.html#where-is-the-users-manual","title":"Where is the User\u2019s Manual?","text":"The NWChem User\u2019s Manual is now at https://nwchemgit.github.io/Home.html
"},{"location":"FAQ.html#where-do-i-go-for-help-with-a-global-arrays-problem","title":"Where do I go for help with a Global Arrays problem?","text":"If you have problems with compiling the tools directory, please visit the Global Arrays Google group at http://groups.google.com/g/hpctools/ or visit the Global Arrays website at http://hpc.pnl.gov/globalarrays/
"},{"location":"FAQ.html#where-do-i-go-for-help-with-nwchem-problems","title":"Where do I go for help with NWChem problems?","text":"Please post your NWChem issue to the NWChem forum hosted on Google Groups at https://groups.google.com/g/nwchem-forum
"},{"location":"FAQ.html#where-do-i-find-the-installation-instructions","title":"Where do I find the installation instructions?","text":"For updated instructions for compiling NWChem please visit the following URL https://nwchemgit.github.io/Compiling-NWChem.html
"},{"location":"FAQ.html#installation-problem-for-the-tools-directory","title":"Installation Problem for the tools directory","text":"When compiling the tools directory, you might see the compilation stopping with the message
configure: error: could not compile simple C MPI program\n
This is most likely due to incorrect settings for the MPI_LIB
, MPI_INCLUDE
and LIBMPI
environment variables. The suggested course of action is to unset all of the three variables above and point your PATH
env. variable to the location of mpif90
. If bash is your shell choice, this can be accomplished by typing
unset MPI_LIB\nunset MPI_INCLUDE\nunset LIBMPI\nexport PATH=\"directory where mpif90 is located\":$PATH\n
"},{"location":"FAQ.html#what-are-armci-and-armci_network","title":"What are ARMCI and ARMCI_NETWORK?","text":"ARMCI is a library used by Global Arrays (both ARMCI and GA source code is located in NWChem\u2019s tools directory). More information can be found at the following URL http://hpc.pnl.gov/armci If your installation uses a fast network and you are aiming to get optimal communication performance, you might want to assign a non-default value to ARMCI_NETWORK
. The following links contained useful information about ARMCI_NETWORK
:
You might encounter the following error message:
! warning: processed input with no task\n
Have you used emacs to create your input file? Emacs usually does not put and an end-of-line as a last character of the file, therefore the NWChem input parser ignores the last line of your input (the one containing the task directive). To fix the problem, add one more blank line after the task line and your task directive will be executed.
"},{"location":"FAQ.html#input-problem-autoz-fails-to-generate-valid-internal-coordinates","title":"Input problem: AUTOZ fails to generate valid internal coordinates","text":"If AUTOZ fails, NWChem will default to using Cartesian coordinates (and ignore any zcoord data) so you don\u2019t have to do anything unless you really need to use internal coordinates. An exception are certain cases where we have a molecule that contains a linear chain of 4 or more atoms, in which case the code will fail (see item 2. for work arounds). For small systems you can easily construct a Z-matrix, but for larger systems this can be quite hard.
First check your input. Are you using the correct units? The default is Angstroms. If you input atomic units but did not tell NWChem, then it\u2019s no wonder things are breaking. Also, is the geometry physically sensible? If atoms are too close to each other you\u2019ll get many unphysical bonds, whereas if they are too far apart AUTOZ will not be able to figure out how to connect things.
Once the obvious has been checked, there are several possible modes of failure, some of which may be worked around in the input.
Strictly linear molecules with 3 or more atoms. AUTOZ does not generate linear bend coordinates, but, just as in a real Z-matrix, you can specify a dummy center that is not co-linear. There are two relevant tips:
constrain the dummy center to be not co-linear otherwise the center could become co-linear. Also, the inevitable small forces on the dummy center can confuse the optimizer.
E.g., this input for acetylene will not use internals
geometry\n h 0 0 0\n c 0 0 1\n c 0 0 2.2\n h 0 0 3.2\n end\n\n but this one will\n\n geometry\n zcoord\n bond 2 3 3.0 cx constant\n angle 1 2 3 90.0 hcx constant\n end\n h 0 0 0\n c 0 0 1\n x 3 0 1\n c 0 0 2.2\n h 0 0 3.2\n end\n
Larger molecules that contain a strictly linear chain of four or more atoms (that ends in a free atom). For these molecules the autoz will fail and the code can currently not recover by using cartesians. One has to explicitly define noautoz in the geometry input to make it work. If internal coordinates are required one can fix it in the same manner as described above. However, you can also force a connection to a real nearby atom.
Very highly connected systems generate too many internal coordinates which can make optimization in redundant internals less efficient than in Cartesians. For systems such as clusters of atoms or small molecules, try using a smaller value of the scaling factor for covalent radii
zcoord; cvr_scaling 0.9; end\n
In addition to this you can also try specifying a minimal set of bonds to connect the fragments.
If these together don\u2019t work, then you\u2019re out of luck. Use Cartesians or construct a Z-matrix.
"},{"location":"FAQ.html#how-do-i-restart-a-geometry-optimization","title":"How do I restart a geometry optimization?","text":"If you have saved the restart information that is kept in the permanent directory, then you can restart a calculation, as long as it did not crash while writing to the data base.
Following are two input files. The first starts a geometry optimization for ammonia. If this stops for nearly any reason such as it was interrupted, ran out of time or disk space, or exceeded the maximum number of iterations, then it may be restarted with the second job.
The key points are
Job 1.
start ammonia\n permanent_dir /u/myfiles\n\n geometry\n zmatrix\n n\n h 1 nh\n h 1 nh 2 hnh\n h 1 nh 2 hnh 3 hnh -1\n variables\n nh 1.\n hnh 115.\n end\n end\n\n basis\n n library 3-21g; h library 3-21g\n end\n\n task scf optimize\n
Job 2.
restart ammonia\n permanent_dir /u/myfiles\n\n task scf optimize\n
"},{"location":"FAQ.html#execution-problem-how-do-i-set-the-value-of-armci_default_shmmax","title":"Execution Problem: How do I set the value of ARMCI_DEFAULT_SHMMAX?","text":"Some ARMCI_NETWORK values (e.g. OPENIB) depend on the ARMCI_DEFAULT_SHMMAX
value for large allocations of Global memory. We recommend a value of \u2013 at least \u2013 2048, e.g. in bash shell parlance
export ARMCI_DEFAULT_SHMMAX=2048\n
A value of 2048 for ARMCI_DEFAULT_SHMMAX corresponds to 2048 GBytes, equal to 204810241024=2147483648 bytes. For ARMCI_DEFAULT_SHMMAX=2048 to work, it is necessary that kernel parameter kernel.shmmax
to be greater than 2147483648. You can check the current value of kernel.shmmax
on your system by typing
sysctl kernel.shmmax\n
More detail about kernel.shmmax can be found at this link
"},{"location":"FAQ.html#wsl-execution-problems","title":"WSL execution problems","text":"NWChem runs on Windows Subsystem for Linux (WSL) can crash with the error message
--------------------------------------------------------------------------\nWARNING: Linux kernel CMA support was requested via the\nbtl_vader_single_copy_mechanism MCA variable, but CMA support is\nnot available due to restrictive ptrace settings.\n\nThe vader shared memory BTL will fall back on another single-copy\nmechanism if one is available. This may result in lower performance.\n\n Local host: hostabc\n--------------------------------------------------------------------------\n[hostabc:16805] 1 more process has sent help message help-btl-vader.txt / cma-permission-denied\n[hostabc:16805] Set MCA parameter \"orte_base_help_aggregate\" to 0 to see all help / error messages\n
The error can be fixed with the following command
echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope\n
More details at
The only way to increase the number of digits of the AO overlap matrix printout is by modify the source code of the ga_print()
function.
For example, in the cagse NWChem 7.0.2, you can do this by editing the C source code in $NWCHEM_TOP/src/tools/ga-5.7.2/global/src/global.util.c by increaseing the number of digits from 5 to 7
--- global.util.c.org 1969-07-20 15:50:45.000000000 -0700\n+++ global.util.c 1969-07-20 15:51:19.000000000 -0700\n@@ -122,22 +122,22 @@\n case C_DBL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj++)\n- fprintf(file,\" %11.5f\",dbuf[jj]);\n+ fprintf(file,\" %11.7f\",dbuf[jj]);\n break;\n case C_DCPL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj+=2)\n- fprintf(file,\" %11.5f,%11.5f\",dbuf[jj], dbuf[jj+1]);\n+ fprintf(file,\" %11.7f,%11.7f\",dbuf[jj], dbuf[jj+1]);\n break;\n case C_SCPL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj+=2)\n- fprintf(file,\" %11.5f,%11.5f\",dbuf[jj], dbuf[jj+1]);\n+ fprintf(file,\" %11.7f,%11.7f\",dbuf[jj], dbuf[jj+1]);\n break;\n case C_FLOAT:\n pnga_get(g_a, lo, hi, fbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj++)\n- fprintf(file,\" %11.5f\",fbuf[jj]);\n+ fprintf(file,\" %11.7f\",fbuf[jj]);\n break; \n case C_LONG:\n pnga_get(g_a, lo, hi, lbuf, &ld);\n@@ -229,22 +229,22 @@\n case C_DBL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj++)\n- fprintf(file,\" %11.5f\",dbuf[jj]);\n+ fprintf(file,\" %11.7f\",dbuf[jj]);\n break;\n case C_FLOAT:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj++)\n- fprintf(file,\" %11.5f\",fbuf[jj]);\n+ fprintf(file,\" %11.7f\",fbuf[jj]);\n break; \n case C_DCPL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj+=2)\n- fprintf(file,\" %11.5f,%11.5f\",dbuf[jj], dbuf[jj+1]);\n+ fprintf(file,\" %11.7f,%11.7f\",dbuf[jj], dbuf[jj+1]);\n break;\n case C_SCPL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj+=2)\n- fprintf(file,\" %11.5f,%11.5f\",dbuf[jj], dbuf[jj+1]);\n+ fprintf(file,\" %11.7f,%11.7f\",dbuf[jj], dbuf[jj+1]);\n break;\n default: pnga_error(\"ga_print: wrong type\",0);\n }\n@@ -761,28 +761,28 @@\n if(ndim > 1)\n for(j=0; j<(hip[1]-lop[1]+1); j++)\n if((double)dbuf_2d[j*bufsize+i]<100000.0)\n- fprintf(file,\" %11.5f\",\n+ fprintf(file,\" %11.7f\",\n dbuf_2d[j*bufsize+i]);\n else\n fprintf(file,\" %.5e\",\n dbuf_2d[j*bufsize+i]);\n else\n if((double)dbuf_2d[i]<100000.0)\n- fprintf(file,\" %11.5f\",dbuf_2d[i]);\n+ fprintf(file,\" %11.7f\",dbuf_2d[i]);\n else\n fprintf(file,\" %.5e\",dbuf_2d[i]);\n break;\n case C_FLOAT:\n if(ndim > 1)\n for(j=0; j<(hip[1]-lop[1]+1); j++)\n- fprintf(file,\" %11.5f\", fbuf_2d[j*bufsize+i]);\n- else fprintf(file,\" %11.5f\", fbuf_2d[i]);\n+ fprintf(file,\" %11.7f\", fbuf_2d[j*bufsize+i]);\n+ else fprintf(file,\" %11.7f\", fbuf_2d[i]);\n break; \n case C_DCPL:\n if(ndim > 1)\n for(j=0; j<(hip[1]-lop[1]+1); j++)\n if(((double)dcbuf_2d[(j*bufsize+i)*2]<100000.0)&&((double)dcbuf_2d[(j*bufsize+i)*2+1]<100000.0))\n- fprintf(file,\" %11.5f,%11.5f\",\n+ fprintf(file,\" %11.7f,%11.7f\",\n dcbuf_2d[(j*bufsize+i)*2],\n dcbuf_2d[(j*bufsize+i)*2+1]);\n else\n@@ -792,7 +792,7 @@\n else\n if(((double)dcbuf_2d[i*2]<100000.0) &&\n ((double)dcbuf_2d[i*2+1]<100000.0))\n- fprintf(file,\" %11.5f,%11.5f\",\n+ fprintf(file,\" %11.7f,%11.7f\",\n dcbuf_2d[i*2], dcbuf_2d[i*2+1]);\n else\n fprintf(file,\" %.5e,%.5e\",\n@@ -802,7 +802,7 @@\n if(ndim > 1)\n for(j=0; j<(hip[1]-lop[1]+1); j++)\n if(((float)fcbuf_2d[(j*bufsize+i)*2]<100000.0)&&((float)fcbuf_2d[(j*bufsize+i)*2+1]<100000.0))\n- fprintf(file,\" %11.5f,%11.5f\",\n+ fprintf(file,\" %11.7f,%11.7f\",\n fcbuf_2d[(j*bufsize+i)*2],\n fcbuf_2d[(j*bufsize+i)*2+1]);\n else\n@@ -812,7 +812,7 @@\n else\n if(((float)fcbuf_2d[i*2]<100000.0) &&\n ((float)fcbuf_2d[i*2+1]<100000.0))\n- fprintf(file,\" %11.5f,%11.5f\",\n+ fprintf(file,\" %11.7f,%11.7f\",\n fcbuf_2d[i*2], fcbuf_2d[i*2+1]);\n else\n fprintf(file,\" %.5e,%.5e\",\n
https://nwchemgit.github.io/Special_AWCforum/sp/id3358.html
"},{"location":"FAQ.html#linear-dependencies","title":"Linear Dependencies","text":"Two or more basis functions can be consider linearly dependent when they span the same region of space. This can result in SCF converge problems. Analysis of the eigenvectors of the S-1/2 matrix (where S is the overlap matrix) is used to detect linear dependencies: if there are eigenvalues close to zero, the basis set goes through the process of canonical orthogonalization (as described in Section 3.4.5 of Szabo & Ostlund \u201cModern Quantum Chemistry\u201d book). This has net effect of a reduction of number of basis function used, compared to the original number set by input. By setting
set lindep:n_dep 0\n
this orthogonalization process is skipped.
"},{"location":"FAQ.html#discrepancy-on-the-number-of-basis-functions-spherical-vs-cartesian-functions","title":"Discrepancy on the number of basis functions: spherical vs cartesian functions","text":"If you are comparing NWChem results with the ones obtained from other codes and you believe there is a discrepancy in the number of basis functions, keep in mind that NWChem uses cartesian functions by default, while other codes could be using spherical functions, instead. If you need to use spherical functions, the beginning of the basis input field needs to be
basis spherical\n
More details in the documentation at the link https://nwchemgit.github.io/Basis.html#spherical-or-cartesian.
See also the following forum entries.
"},{"location":"FAQ.html#starting-nwchem-with-mpirun-np-1-crashes","title":"Starting NWChem withmpirun -np 1
crashes","text":"This is most likely due to the fact that NWChem was compiled with the setting ARMCI_NETWORK=MPI-PR
. This is the expected behavior, since ARMCI_NETWORK=MPI-PR
requires asking for for n+1 processes. In other words, a serial run (with a single computing process) is triggered by executing mpirun -np 2
. If you would prefer mpirun -np 1
to work, other choice of ARMCI_NETWORK
are possible as described in the ARMCI documentation.
If you get the following error
{1} nb_wait_for_handle Error: all user-level nonblocking handles have been exhausted\napplication called MPI_Abort(comm=0x84000002, -1)\n
you can fix it by executing the following command
export COMEX_MAX_NB_OUTSTANDING=16\n
"},{"location":"FAQ.html#memory-errors","title":"Memory errors","text":"If you get the following error
[0] Received an Error in Communication: (-1) 0: ptsalloc: increase memory in input line:\n
you can fix it by either increasing the memory line in the input file using the syntax described in the Memory section (e.g. memory total 1000 mb
), or by recompiling the NWChem binary with the getmem.nwchem
script as described in the section avaible at this link
The FCIDUMP module write the 1-electron and 2-electron integrals to disk folllowing the format specified in the paper P.J. Knowles, N.C. Handy, Computer Physics Communications 54, 75-83 (1989). DOI:10.1016/0010-4655(89)90033-7
The module is used when following NWChem task directive is specified
task dft fcidump\n
The input for the module is taken from the FCIDUMP input block
FCIDUMP\n ... \nEND\n
The resulting file will be named \u201cfile_prefix.fcidump\u201d
"},{"location":"FCIDUMP.html#orbitals-orbitals-specifications","title":"ORBITALS - Orbitals specifications","text":"ORBITALS [(molecular || atomic) default molecular]\n
The ORBITALS
keyword can have the value molecular
(default) or atomic
. When the default keyword molecular
is used, the integrals are transformed using the molecular orbitals. When the keyword atomic
is specified, the integrals are evaluated using the atomic orbitals (option not implemented yet)
When using molecular orbitals, orbitals can be frozen as described in the MP2 section
"},{"location":"FCIDUMP.html#examples","title":"Examples","text":"...\ndft\n xc hfexch\nend\n\ntask dft\n\nfcidump\n orbitals molecular\n freeze atomic\nend\n\ntask dft fcidump\n
"},{"location":"Fd-3.html","title":"Fd 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0203\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fd-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a038\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a039\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a040\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a062\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a063\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a064\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a066\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a068\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a086\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a087\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a088\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a089\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a090\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a091\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a092\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25 \n
"},{"location":"Fd-3c.html","title":"Fd 3c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0228\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fd-3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n+x,+y,+z\n-x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z\n+x+1/2,-y,-z+1/2\n+z,+x,+y\n+z+1/2,-x,-y+1/2\n-z,-x+1/2,+y+1/2\n-z+1/2,+x+1/2,-y\n+y,+z,+x\n-y+1/2,+z+1/2,-x\n+y+1/2,-z,-x+1/2\n-y,-z+1/2,+x+1/2\n+y+3/4,+x+1/4,-z+3/4\n-y+1/4,-x+1/4,-z+1/4\n+y+1/4,-x+3/4,+z+3/4\n-y+3/4,+x+3/4,+z+1/4\n+x+3/4,+z+1/4,-y+3/4\n-x+3/4,+z+3/4,+y+1/4\n-x+1/4,-z+1/4,-y+1/4\n+x+1/4,-z+3/4,+y+3/4\n+z+3/4,+y+1/4,-x+3/4\n+z+1/4,-y+3/4,+x+3/4\n-z+3/4,+y+3/4,+x+1/4\n-z+1/4,-y+1/4,-x+1/4\n-x+3/4,-y+3/4,-z+3/4\n+x+3/4,+y+1/4,-z+1/4\n+x+1/4,-y+1/4,+z+3/4\n-x+1/4,+y+3/4,+z+1/4\n-z+3/4,-x+3/4,-y+3/4\n-z+1/4,+x+3/4,+y+1/4\n+z+3/4,+x+1/4,-y+1/4\n+z+1/4,-x+1/4,+y+3/4\n-y+3/4,-z+3/4,-x+3/4\n+y+1/4,-z+1/4,+x+3/4\n-y+1/4,+z+3/4,+x+1/4\n+y+3/4,+z+1/4,-x+1/4\n-y,-x+1/2,+z\n+y+1/2,+x+1/2,+z+1/2\n-y+1/2,+x,-z\n+y,-x,-z+1/2\n-x,-z+1/2,+y\n+x,-z,-y+1/2\n+x+1/2,+z+1/2,+y+1/2\n-x+1/2,+z,-y\n-z,-y+1/2,+x\n-z+1/2,+y,-x\n+z,-y,-x+1/2\n+z+1/2,+y+1/2,+x+1/2\n+x,+y+1/2,+z+1/2\n-x,-y+1,+z+1\n-x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1/2,-z+1\n+z,+x+1/2,+y+1/2\n+z+1/2,-x+1/2,-y+1\n-z,-x+1,+y+1\n-z+1/2,+x+1,-y+1/2\n+y,+z+1/2,+x+1/2\n-y+1/2,+z+1,-x+1/2\n+y+1/2,-z+1/2,-x+1\n-y,-z+1,+x+1\n+y+3/4,+x+3/4,-z+5/4\n-y+1/4,-x+3/4,-z+3/4\n+y+1/4,-x+5/4,+z+5/4\n-y+3/4,+x+5/4,+z+3/4\n+x+3/4,+z+3/4,-y+5/4\n-x+3/4,+z+5/4,+y+3/4\n-x+1/4,-z+3/4,-y+3/4\n+x+1/4,-z+5/4,+y+5/4\n+z+3/4,+y+3/4,-x+5/4\n+z+1/4,-y+5/4,+x+5/4\n-z+3/4,+y+5/4,+x+3/4\n-z+1/4,-y+3/4,-x+3/4\n-x+3/4,-y+5/4,-z+5/4\n+x+3/4,+y+3/4,-z+3/4\n+x+1/4,-y+3/4,+z+5/4\n-x+1/4,+y+5/4,+z+3/4\n-z+3/4,-x+5/4,-y+5/4\n-z+1/4,+x+5/4,+y+3/4\n+z+3/4,+x+3/4,-y+3/4\n+z+1/4,-x+3/4,+y+5/4\n-y+3/4,-z+5/4,-x+5/4\n+y+1/4,-z+3/4,+x+5/4\n-y+1/4,+z+5/4,+x+3/4\n+y+3/4,+z+3/4,-x+3/4\n-y,-x+1,+z+1/2\n+y+1/2,+x+1,+z+1\n-y+1/2,+x+1/2,-z+1/2\n+y,-x+1/2,-z+1\n-x,-z+1,+y+1/2\n+x,-z+1/2,-y+1\n+x+1/2,+z+1,+y+1\n-x+1/2,+z+1/2,-y+1/2\n-z,-y+1,+x+1/2\n-z+1/2,+y+1/2,-x+1/2\n+z,-y+1/2,-x+1\n+z+1/2,+y+1,+x+1\n+x+1/2,+y,+z+1/2\n-x+1/2,-y+1/2,+z+1\n-x+1,+y+1/2,-z+1/2\n+x+1,-y,-z+1\n+z+1/2,+x,+y+1/2\n+z+1,-x,-y+1\n-z+1/2,-x+1/2,+y+1\n-z+1,+x+1/2,-y+1/2\n+y+1/2,+z,+x+1/2\n-y+1,+z+1/2,-x+1/2\n+y+1,-z,-x+1\n-y+1/2,-z+1/2,+x+1\n+y+5/4,+x+1/4,-z+5/4\n-y+3/4,-x+1/4,-z+3/4\n+y+3/4,-x+3/4,+z+5/4\n-y+5/4,+x+3/4,+z+3/4\n+x+5/4,+z+1/4,-y+5/4\n-x+5/4,+z+3/4,+y+3/4\n-x+3/4,-z+1/4,-y+3/4\n+x+3/4,-z+3/4,+y+5/4\n+z+5/4,+y+1/4,-x+5/4\n+z+3/4,-y+3/4,+x+5/4\n-z+5/4,+y+3/4,+x+3/4\n-z+3/4,-y+1/4,-x+3/4\n-x+5/4,-y+3/4,-z+5/4\n+x+5/4,+y+1/4,-z+3/4\n+x+3/4,-y+1/4,+z+5/4\n-x+3/4,+y+3/4,+z+3/4\n-z+5/4,-x+3/4,-y+5/4\n-z+3/4,+x+3/4,+y+3/4\n+z+5/4,+x+1/4,-y+3/4\n+z+3/4,-x+1/4,+y+5/4\n-y+5/4,-z+3/4,-x+5/4\n+y+3/4,-z+1/4,+x+5/4\n-y+3/4,+z+3/4,+x+3/4\n+y+5/4,+z+1/4,-x+3/4\n-y+1/2,-x+1/2,+z+1/2\n+y+1,+x+1/2,+z+1\n-y+1,+x,-z+1/2\n+y+1/2,-x,-z+1\n-x+1/2,-z+1/2,+y+1/2\n+x+1/2,-z,-y+1\n+x+1,+z+1/2,+y+1\n-x+1,+z,-y+1/2\n-z+1/2,-y+1/2,+x+1/2\n-z+1,+y,-x+1/2\n+z+1/2,-y,-x+1\n+z+1,+y+1/2,+x+1\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1,+z+1/2\n-x+1,+y+1,-z\n+x+1,-y+1/2,-z+1/2\n+z+1/2,+x+1/2,+y\n+z+1,-x+1/2,-y+1/2\n-z+1/2,-x+1,+y+1/2\n-z+1,+x+1,-y\n+y+1/2,+z+1/2,+x\n-y+1,+z+1,-x\n+y+1,-z+1/2,-x+1/2\n-y+1/2,-z+1,+x+1/2\n+y+5/4,+x+3/4,-z+3/4\n-y+3/4,-x+3/4,-z+1/4\n+y+3/4,-x+5/4,+z+3/4\n-y+5/4,+x+5/4,+z+1/4\n+x+5/4,+z+3/4,-y+3/4\n-x+5/4,+z+5/4,+y+1/4\n-x+3/4,-z+3/4,-y+1/4\n+x+3/4,-z+5/4,+y+3/4\n+z+5/4,+y+3/4,-x+3/4\n+z+3/4,-y+5/4,+x+3/4\n-z+5/4,+y+5/4,+x+1/4\n-z+3/4,-y+3/4,-x+1/4\n-x+5/4,-y+5/4,-z+3/4\n+x+5/4,+y+3/4,-z+1/4\n+x+3/4,-y+3/4,+z+3/4\n-x+3/4,+y+5/4,+z+1/4\n-z+5/4,-x+5/4,-y+3/4\n-z+3/4,+x+5/4,+y+1/4\n+z+5/4,+x+3/4,-y+1/4\n+z+3/4,-x+3/4,+y+3/4\n-y+5/4,-z+5/4,-x+3/4\n+y+3/4,-z+3/4,+x+3/4\n-y+3/4,+z+5/4,+x+1/4\n+y+5/4,+z+3/4,-x+1/4\n-y+1/2,-x+1,+z\n+y+1,+x+1,+z+1/2\n-y+1,+x+1/2,-z\n+y+1/2,-x+1/2,-z+1/2\n-x+1/2,-z+1,+y\n+x+1/2,-z+1/2,-y+1/2\n+x+1,+z+1,+y+1/2\n-x+1,+z+1/2,-y\n-z+1/2,-y+1,+x\n-z+1,+y+1/2,-x\n+z+1/2,-y+1/2,-x+1/2\n+z+1,+y+1,+x+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Fd-3m.html","title":"Fd 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0227\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fd-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n+x,+y,+z\n-x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z\n+x+1/2,-y,-z+1/2\n+z,+x,+y\n+z+1/2,-x,-y+1/2\n-z,-x+1/2,+y+1/2\n-z+1/2,+x+1/2,-y\n+y,+z,+x\n-y+1/2,+z+1/2,-x\n+y+1/2,-z,-x+1/2\n-y,-z+1/2,+x+1/2\n+y+3/4,+x+1/4,-z+3/4\n-y+1/4,-x+1/4,-z+1/4\n+y+1/4,-x+3/4,+z+3/4\n-y+3/4,+x+3/4,+z+1/4\n+x+3/4,+z+1/4,-y+3/4\n-x+3/4,+z+3/4,+y+1/4\n-x+1/4,-z+1/4,-y+1/4\n+x+1/4,-z+3/4,+y+3/4\n+z+3/4,+y+1/4,-x+3/4\n+z+1/4,-y+3/4,+x+3/4\n-z+3/4,+y+3/4,+x+1/4\n-z+1/4,-y+1/4,-x+1/4\n-x+1/4,-y+1/4,-z+1/4\n+x+1/4,+y+3/4,-z+3/4\n+x+3/4,-y+3/4,+z+1/4\n-x+3/4,+y+1/4,+z+3/4\n-z+1/4,-x+1/4,-y+1/4\n-z+3/4,+x+1/4,+y+3/4\n+z+1/4,+x+3/4,-y+3/4\n+z+3/4,-x+3/4,+y+1/4\n-y+1/4,-z+1/4,-x+1/4\n+y+3/4,-z+3/4,+x+1/4\n-y+3/4,+z+1/4,+x+3/4\n+y+1/4,+z+3/4,-x+3/4\n-y+1/2,-x,+z+1/2\n+y,+x,+z\n-y,+x+1/2,-z+1/2\n+y+1/2,-x+1/2,-z\n-x+1/2,-z,+y+1/2\n+x+1/2,-z+1/2,-y\n+x,+z,+y\n-x,+z+1/2,-y+1/2\n-z+1/2,-y,+x+1/2\n-z,+y+1/2,-x+1/2\n+z+1/2,-y+1/2,-x\n+z,+y,+x\n+x,+y+1/2,+z+1/2\n-x,-y+1,+z+1\n-x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1/2,-z+1\n+z,+x+1/2,+y+1/2\n+z+1/2,-x+1/2,-y+1\n-z,-x+1,+y+1\n-z+1/2,+x+1,-y+1/2\n+y,+z+1/2,+x+1/2\n-y+1/2,+z+1,-x+1/2\n+y+1/2,-z+1/2,-x+1\n-y,-z+1,+x+1\n+y+3/4,+x+3/4,-z+5/4\n-y+1/4,-x+3/4,-z+3/4\n+y+1/4,-x+5/4,+z+5/4\n-y+3/4,+x+5/4,+z+3/4\n+x+3/4,+z+3/4,-y+5/4\n-x+3/4,+z+5/4,+y+3/4\n-x+1/4,-z+3/4,-y+3/4\n+x+1/4,-z+5/4,+y+5/4\n+z+3/4,+y+3/4,-x+5/4\n+z+1/4,-y+5/4,+x+5/4\n-z+3/4,+y+5/4,+x+3/4\n-z+1/4,-y+3/4,-x+3/4\n-x+1/4,-y+3/4,-z+3/4\n+x+1/4,+y+5/4,-z+5/4\n+x+3/4,-y+5/4,+z+3/4\n-x+3/4,+y+3/4,+z+5/4\n-z+1/4,-x+3/4,-y+3/4\n-z+3/4,+x+3/4,+y+5/4\n+z+1/4,+x+5/4,-y+5/4\n+z+3/4,-x+5/4,+y+3/4\n-y+1/4,-z+3/4,-x+3/4\n+y+3/4,-z+5/4,+x+3/4\n-y+3/4,+z+3/4,+x+5/4\n+y+1/4,+z+5/4,-x+5/4\n-y+1/2,-x+1/2,+z+1\n+y,+x+1/2,+z+1/2\n-y,+x+1,-z+1\n+y+1/2,-x+1,-z+1/2\n-x+1/2,-z+1/2,+y+1\n+x+1/2,-z+1,-y+1/2\n+x,+z+1/2,+y+1/2\n-x,+z+1,-y+1\n-z+1/2,-y+1/2,+x+1\n-z,+y+1,-x+1\n+z+1/2,-y+1,-x+1/2\n+z,+y+1/2,+x+1/2\n+x+1/2,+y,+z+1/2\n-x+1/2,-y+1/2,+z+1\n-x+1,+y+1/2,-z+1/2\n+x+1,-y,-z+1\n+z+1/2,+x,+y+1/2\n+z+1,-x,-y+1\n-z+1/2,-x+1/2,+y+1\n-z+1,+x+1/2,-y+1/2\n+y+1/2,+z,+x+1/2\n-y+1,+z+1/2,-x+1/2\n+y+1,-z,-x+1\n-y+1/2,-z+1/2,+x+1\n+y+5/4,+x+1/4,-z+5/4\n-y+3/4,-x+1/4,-z+3/4\n+y+3/4,-x+3/4,+z+5/4\n-y+5/4,+x+3/4,+z+3/4\n+x+5/4,+z+1/4,-y+5/4\n-x+5/4,+z+3/4,+y+3/4\n-x+3/4,-z+1/4,-y+3/4\n+x+3/4,-z+3/4,+y+5/4\n+z+5/4,+y+1/4,-x+5/4\n+z+3/4,-y+3/4,+x+5/4\n-z+5/4,+y+3/4,+x+3/4\n-z+3/4,-y+1/4,-x+3/4\n-x+3/4,-y+1/4,-z+3/4\n+x+3/4,+y+3/4,-z+5/4\n+x+5/4,-y+3/4,+z+3/4\n-x+5/4,+y+1/4,+z+5/4\n-z+3/4,-x+1/4,-y+3/4\n-z+5/4,+x+1/4,+y+5/4\n+z+3/4,+x+3/4,-y+5/4\n+z+5/4,-x+3/4,+y+3/4\n-y+3/4,-z+1/4,-x+3/4\n+y+5/4,-z+3/4,+x+3/4\n-y+5/4,+z+1/4,+x+5/4\n+y+3/4,+z+3/4,-x+5/4\n-y+1,-x,+z+1\n+y+1/2,+x,+z+1/2\n-y+1/2,+x+1/2,-z+1\n+y+1,-x+1/2,-z+1/2\n-x+1,-z,+y+1\n+x+1,-z+1/2,-y+1/2\n+x+1/2,+z,+y+1/2\n-x+1/2,+z+1/2,-y+1\n-z+1,-y,+x+1\n-z+1/2,+y+1/2,-x+1\n+z+1,-y+1/2,-x+1/2\n+z+1/2,+y,+x+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1,+z+1/2\n-x+1,+y+1,-z\n+x+1,-y+1/2,-z+1/2\n+z+1/2,+x+1/2,+y\n+z+1,-x+1/2,-y+1/2\n-z+1/2,-x+1,+y+1/2\n-z+1,+x+1,-y\n+y+1/2,+z+1/2,+x\n-y+1,+z+1,-x\n+y+1,-z+1/2,-x+1/2\n-y+1/2,-z+1,+x+1/2\n+y+5/4,+x+3/4,-z+3/4\n-y+3/4,-x+3/4,-z+1/4\n+y+3/4,-x+5/4,+z+3/4\n-y+5/4,+x+5/4,+z+1/4\n+x+5/4,+z+3/4,-y+3/4\n-x+5/4,+z+5/4,+y+1/4\n-x+3/4,-z+3/4,-y+1/4\n+x+3/4,-z+5/4,+y+3/4\n+z+5/4,+y+3/4,-x+3/4\n+z+3/4,-y+5/4,+x+3/4\n-z+5/4,+y+5/4,+x+1/4\n-z+3/4,-y+3/4,-x+1/4\n-x+3/4,-y+3/4,-z+1/4\n+x+3/4,+y+5/4,-z+3/4\n+x+5/4,-y+5/4,+z+1/4\n-x+5/4,+y+3/4,+z+3/4\n-z+3/4,-x+3/4,-y+1/4\n-z+5/4,+x+3/4,+y+3/4\n+z+3/4,+x+5/4,-y+3/4\n+z+5/4,-x+5/4,+y+1/4\n-y+3/4,-z+3/4,-x+1/4\n+y+5/4,-z+5/4,+x+1/4\n-y+5/4,+z+3/4,+x+3/4\n+y+3/4,+z+5/4,-x+3/4\n-y+1,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z\n-y+1/2,+x+1,-z+1/2\n+y+1,-x+1,-z\n-x+1,-z+1/2,+y+1/2\n+x+1,-z+1,-y\n+x+1/2,+z+1/2,+y\n-x+1/2,+z+1,-y+1/2\n-z+1,-y+1/2,+x+1/2\n-z+1/2,+y+1,-x+1/2\n+z+1,-y+1,-x\n+z+1/2,+y+1/2,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0227\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fd-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n+x,+y,+z\n-x+3/4,-y+1/4,+z+1/2\n-x+1/4,+y+1/2,-z+3/4\n+x+1/2,-y+3/4,-z+1/4\n+z,+x,+y\n+z+1/2,-x+3/4,-y+1/4\n-z+3/4,-x+1/4,+y+1/2\n-z+1/4,+x+1/2,-y+3/4\n+y,+z,+x\n-y+1/4,+z+1/2,-x+3/4\n+y+1/2,-z+3/4,-x+1/4\n-y+3/4,-z+1/4,+x+1/2\n+y+3/4,+x+1/4,-z+1/2\n-y,-x,-z\n+y+1/4,-x+1/2,+z+3/4\n-y+1/2,+x+3/4,+z+1/4\n+x+3/4,+z+1/4,-y+1/2\n-x+1/2,+z+3/4,+y+1/4\n-x,-z,-y\n+x+1/4,-z+1/2,+y+3/4\n+z+3/4,+y+1/4,-x+1/2\n+z+1/4,-y+1/2,+x+3/4\n-z+1/2,+y+3/4,+x+1/4\n-z,-y,-x\n-x,-y,-z\n+x+1/4,+y+3/4,-z+1/2\n+x+3/4,-y+1/2,+z+1/4\n-x+1/2,+y+1/4,+z+3/4\n-z,-x,-y\n-z+1/2,+x+1/4,+y+3/4\n+z+1/4,+x+3/4,-y+1/2\n+z+3/4,-x+1/2,+y+1/4\n-y,-z,-x\n+y+3/4,-z+1/2,+x+1/4\n-y+1/2,+z+1/4,+x+3/4\n+y+1/4,+z+3/4,-x+1/2\n-y+1/4,-x+3/4,+z+1/2\n+y,+x,+z\n-y+3/4,+x+1/2,-z+1/4\n+y+1/2,-x+1/4,-z+3/4\n-x+1/4,-z+3/4,+y+1/2\n+x+1/2,-z+1/4,-y+3/4\n+x,+z,+y\n-x+3/4,+z+1/2,-y+1/4\n-z+1/4,-y+3/4,+x+1/2\n-z+3/4,+y+1/2,-x+1/4\n+z+1/2,-y+1/4,-x+3/4\n+z,+y,+x\n+x,+y+1/2,+z+1/2\n-x+3/4,-y+3/4,+z+1\n-x+1/4,+y+1,-z+5/4\n+x+1/2,-y+5/4,-z+3/4\n+z,+x+1/2,+y+1/2\n+z+1/2,-x+5/4,-y+3/4\n-z+3/4,-x+3/4,+y+1\n-z+1/4,+x+1,-y+5/4\n+y,+z+1/2,+x+1/2\n-y+1/4,+z+1,-x+5/4\n+y+1/2,-z+5/4,-x+3/4\n-y+3/4,-z+3/4,+x+1\n+y+3/4,+x+3/4,-z+1\n-y,-x+1/2,-z+1/2\n+y+1/4,-x+1,+z+5/4\n-y+1/2,+x+5/4,+z+3/4\n+x+3/4,+z+3/4,-y+1\n-x+1/2,+z+5/4,+y+3/4\n-x,-z+1/2,-y+1/2\n+x+1/4,-z+1,+y+5/4\n+z+3/4,+y+3/4,-x+1\n+z+1/4,-y+1,+x+5/4\n-z+1/2,+y+5/4,+x+3/4\n-z,-y+1/2,-x+1/2\n-x,-y+1/2,-z+1/2\n+x+1/4,+y+5/4,-z+1\n+x+3/4,-y+1,+z+3/4\n-x+1/2,+y+3/4,+z+5/4\n-z,-x+1/2,-y+1/2\n-z+1/2,+x+3/4,+y+5/4\n+z+1/4,+x+5/4,-y+1\n+z+3/4,-x+1,+y+3/4\n-y,-z+1/2,-x+1/2\n+y+3/4,-z+1,+x+3/4\n-y+1/2,+z+3/4,+x+5/4\n+y+1/4,+z+5/4,-x+1\n-y+1/4,-x+5/4,+z+1\n+y,+x+1/2,+z+1/2\n-y+3/4,+x+1,-z+3/4\n+y+1/2,-x+3/4,-z+5/4\n-x+1/4,-z+5/4,+y+1\n+x+1/2,-z+3/4,-y+5/4\n+x,+z+1/2,+y+1/2\n-x+3/4,+z+1,-y+3/4\n-z+1/4,-y+5/4,+x+1\n-z+3/4,+y+1,-x+3/4\n+z+1/2,-y+3/4,-x+5/4\n+z,+y+1/2,+x+1/2\n+x+1/2,+y,+z+1/2\n-x+5/4,-y+1/4,+z+1\n-x+3/4,+y+1/2,-z+5/4\n+x+1,-y+3/4,-z+3/4\n+z+1/2,+x,+y+1/2\n+z+1,-x+3/4,-y+3/4\n-z+5/4,-x+1/4,+y+1\n-z+3/4,+x+1/2,-y+5/4\n+y+1/2,+z,+x+1/2\n-y+3/4,+z+1/2,-x+5/4\n+y+1,-z+3/4,-x+3/4\n-y+5/4,-z+1/4,+x+1\n+y+5/4,+x+1/4,-z+1\n-y+1/2,-x,-z+1/2\n+y+3/4,-x+1/2,+z+5/4\n-y+1,+x+3/4,+z+3/4\n+x+5/4,+z+1/4,-y+1\n-x+1,+z+3/4,+y+3/4\n-x+1/2,-z,-y+1/2\n+x+3/4,-z+1/2,+y+5/4\n+z+5/4,+y+1/4,-x+1\n+z+3/4,-y+1/2,+x+5/4\n-z+1,+y+3/4,+x+3/4\n-z+1/2,-y,-x+1/2\n-x+1/2,-y,-z+1/2\n+x+3/4,+y+3/4,-z+1\n+x+5/4,-y+1/2,+z+3/4\n-x+1,+y+1/4,+z+5/4\n-z+1/2,-x,-y+1/2\n-z+1,+x+1/4,+y+5/4\n+z+3/4,+x+3/4,-y+1\n+z+5/4,-x+1/2,+y+3/4\n-y+1/2,-z,-x+1/2\n+y+5/4,-z+1/2,+x+3/4\n-y+1,+z+1/4,+x+5/4\n+y+3/4,+z+3/4,-x+1\n-y+3/4,-x+3/4,+z+1\n+y+1/2,+x,+z+1/2\n-y+5/4,+x+1/2,-z+3/4\n+y+1,-x+1/4,-z+5/4\n-x+3/4,-z+3/4,+y+1\n+x+1,-z+1/4,-y+5/4\n+x+1/2,+z,+y+1/2\n-x+5/4,+z+1/2,-y+3/4\n-z+3/4,-y+3/4,+x+1\n-z+5/4,+y+1/2,-x+3/4\n+z+1,-y+1/4,-x+5/4\n+z+1/2,+y,+x+1/2\n+x+1/2,+y+1/2,+z\n-x+5/4,-y+3/4,+z+1/2\n-x+3/4,+y+1,-z+3/4\n+x+1,-y+5/4,-z+1/4\n+z+1/2,+x+1/2,+y\n+z+1,-x+5/4,-y+1/4\n-z+5/4,-x+3/4,+y+1/2\n-z+3/4,+x+1,-y+3/4\n+y+1/2,+z+1/2,+x\n-y+3/4,+z+1,-x+3/4\n+y+1,-z+5/4,-x+1/4\n-y+5/4,-z+3/4,+x+1/2\n+y+5/4,+x+3/4,-z+1/2\n-y+1/2,-x+1/2,-z\n+y+3/4,-x+1,+z+3/4\n-y+1,+x+5/4,+z+1/4\n+x+5/4,+z+3/4,-y+1/2\n-x+1,+z+5/4,+y+1/4\n-x+1/2,-z+1/2,-y\n+x+3/4,-z+1,+y+3/4\n+z+5/4,+y+3/4,-x+1/2\n+z+3/4,-y+1,+x+3/4\n-z+1,+y+5/4,+x+1/4\n-z+1/2,-y+1/2,-x\n-x+1/2,-y+1/2,-z\n+x+3/4,+y+5/4,-z+1/2\n+x+5/4,-y+1,+z+1/4\n-x+1,+y+3/4,+z+3/4\n-z+1/2,-x+1/2,-y\n-z+1,+x+3/4,+y+3/4\n+z+3/4,+x+5/4,-y+1/2\n+z+5/4,-x+1,+y+1/4\n-y+1/2,-z+1/2,-x\n+y+5/4,-z+1,+x+1/4\n-y+1,+z+3/4,+x+3/4\n+y+3/4,+z+5/4,-x+1/2\n-y+3/4,-x+5/4,+z+1/2\n+y+1/2,+x+1/2,+z\n-y+5/4,+x+1,-z+1/4\n+y+1,-x+3/4,-z+3/4\n-x+3/4,-z+5/4,+y+1/2\n+x+1,-z+3/4,-y+3/4\n+x+1/2,+z+1/2,+y\n-x+5/4,+z+1,-y+1/4\n-z+3/4,-y+5/4,+x+1/2\n-z+5/4,+y+1,-x+1/4\n+z+1,-y+3/4,-x+3/4\n+z+1/2,+y+1/2,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Fdd2.html","title":"Fdd2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a043\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fdd2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+x+1/4,-y+1/4,+z+1/4\n-x+1/4,+y+1/4,+z+1/4\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x+1/4,-y+3/4,+z+3/4\n-x+1/4,+y+3/4,+z+3/4\n+x+1/2,+y,+z+1/2\n-x+1/2,-y,+z+1/2\n+x+3/4,-y+1/4,+z+3/4\n-x+3/4,+y+1/4,+z+3/4\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n+x+3/4,-y+3/4,+z+1/4\n-x+3/4,+y+3/4,+z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25 \n
"},{"location":"Fddd.html","title":"Fddd","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a070\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fddd\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a032\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x+1/4,-y+1/4,-z+1/4\n+x+1/4,+y+1/4,-z+1/4\n+x+1/4,-y+1/4,+z+1/4\n-x+1/4,+y+1/4,+z+1/4\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n-x,+y+1/2,-z+1/2\n+x,-y+1/2,-z+1/2\n-x+1/4,-y+3/4,-z+3/4\n+x+1/4,+y+3/4,-z+3/4\n+x+1/4,-y+3/4,+z+3/4\n-x+1/4,+y+3/4,+z+3/4\n+x+1/2,+y,+z+1/2\n-x+1/2,-y,+z+1/2\n-x+1/2,+y,-z+1/2\n+x+1/2,-y,-z+1/2\n-x+3/4,-y+1/4,-z+3/4\n+x+3/4,+y+1/4,-z+3/4\n+x+3/4,-y+1/4,+z+3/4\n-x+3/4,+y+1/4,+z+3/4\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x+3/4,-y+3/4,-z+1/4\n+x+3/4,+y+3/4,-z+1/4\n+x+3/4,-y+3/4,+z+1/4\n-x+3/4,+y+3/4,+z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a024\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a030\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a031\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a032\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a070\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fddd\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a032\n\n+x,+y,+z\n-x+3/4,-y+3/4,+z\n-x+3/4,+y,-z+3/4\n+x,-y+3/4,-z+3/4\n-x,-y,-z\n+x+1/4,+y+1/4,-z\n+x+1/4,-y,+z+1/4\n-x,+y+1/4,+z+1/4\n+x,+y+1/2,+z+1/2\n-x+3/4,-y+5/4,+z+1/2\n-x+3/4,+y+1/2,-z+5/4\n+x,-y+5/4,-z+5/4\n-x,-y+1/2,-z+1/2\n+x+1/4,+y+3/4,-z+1/2\n+x+1/4,-y+1/2,+z+3/4\n-x,+y+3/4,+z+3/4\n+x+1/2,+y,+z+1/2\n-x+5/4,-y+3/4,+z+1/2\n-x+5/4,+y,-z+5/4\n+x+1/2,-y+3/4,-z+5/4\n-x+1/2,-y,-z+1/2\n+x+3/4,+y+1/4,-z+1/2\n+x+3/4,-y,+z+3/4\n-x+1/2,+y+1/4,+z+3/4\n+x+1/2,+y+1/2,+z\n-x+5/4,-y+5/4,+z\n-x+5/4,+y+1/2,-z+3/4\n+x+1/2,-y+5/4,-z+3/4\n-x+1/2,-y+1/2,-z\n+x+3/4,+y+3/4,-z\n+x+3/4,-y+1/2,+z+1/4\n-x+1/2,+y+3/4,+z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a021\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a024\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a029\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a032\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25 \n
"},{"location":"Fm-3.html","title":"Fm 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0202\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fm-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Fm-3c.html","title":"Fm 3c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0226\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fm-3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Fm-3m.html","title":"Fm 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0225\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fm-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Fmm2.html","title":"Fmm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a042\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fmm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z\n-x,+y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n+x+1/2,+y,+z+1/2\n-x+1/2,-y,+z+1/2\n+x+1/2,-y,+z+1/2\n-x+1/2,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Fmmm.html","title":"Fmmm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a069\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fmmm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a032\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n-x,+y+1/2,-z+1/2\n+x,-y+1/2,-z+1/2\n-x,-y+1/2,-z+1/2\n+x,+y+1/2,-z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n+x+1/2,+y,+z+1/2\n-x+1/2,-y,+z+1/2\n-x+1/2,+y,-z+1/2\n+x+1/2,-y,-z+1/2\n-x+1/2,-y,-z+1/2\n+x+1/2,+y,-z+1/2\n+x+1/2,-y,+z+1/2\n-x+1/2,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Format_of_MD_Files.html","title":"Format of MD files","text":""},{"location":"Format_of_MD_Files.html#format-of-fragment-file","title":"Format of fragment file","text":"Card Format Description I-1-1 a1 $ or # comments to describe fragment I-2-1 i5 number of atoms in the fragment I-2-2 i5 number of parameter sets I-2-3 i5 default parameter set I-2-4 i5 number of z-matrix definition For each parameter set one card I-3 I-3-1 a residue name for parameter set For each atom one deck II II-1-1 i5 atom sequence number II-1-2 a6 atom name II-1-3 a5 atom type II-1-4 a1 dynamics type blank : normal D : dummy atom S: solute interactions only Q : quantum atom other : intramolecular solute interactions only II-1-5 i5 link number 0: no link 1: first atom in chain 2: second atom in chain 3 and up: other links II-1-6 i5 environment type 0: no special identifier 1: planar, using improper torsion 2: tetrahedral, using improper torsion 3: tetrahedral, using improper torsion 4: atom in aromatic ring II-1-7 i5 II-1-8 i5 charge group II-1-9 i5 polarization group II-1-10 f12.6 atomic partial charge II-1-11 f12.6 atomic polarizability For each additional parameter set on card II-2 II-2-1 11x,a6 atom type II-2-2 a1 dynamics type blank : normal D : dummy atom S : solute interactions only Q : quantum atom other : intramolecular solute interactions only II-2-7 25x,f12.6 atomic partial charge II-2-8 f12.6 atomic polarizability Any number of cards in deck III to specify complete connectivity III-1-1 16i5 connectivity, duplication allowed One blank card to signal the end of the connectivity list For each z-matrix definition one card IV IV-1-1 i5 atom i IV-1-2 i5 atom j IV-1-3 i5 atom k IV-1-4 i5 atom l IV-1-5 f12.6 bond length i-j IV-1-6 f12.6 angle i-j-k IV-1-7 f12.6 torson i-j-k-l"},{"location":"Format_of_MD_Files.html#format-of-segment-file-1-of-7","title":"Format of segment file (1 of 7)","text":"Card Format Description I-0-1 # lines at top are comments I-1-1 a1 $ to identify the start of a segment I-1-2 a10 name of the segment, the tenth character N: identifies beginning of a chain C: identifies end of a chain blank: identifies chain fragment M: identifies an integral molecule I-2-1 f12.6 version number I-3-1 i5 number of atoms in the segment I-3-2 i5 number of bonds in the segment I-3-3 i5 number of angles in the segment I-3-4 i5 number of proper dihedrals in the segment I-3-5 i5 number of improper dihedrals in the segment I-3-6 i5 number of z-matrix definitions I-3-7 i5 number of parameter sets 1-3-8 i5 default parameter set For each parameter set one card I-4 I-4-1 f12.6 dipole correction energy"},{"location":"Format_of_MD_Files.html#format-of-segment-file-2-of-7","title":"Format of segment file (2 of 7)","text":"Card Format Description For each atom one deck II II-1-1 i5 atom sequence number II-1-2 a6 atom name II-1-3 i5 link number II-1-4 i5 environment type 0: no special identifier 1: planar, using improper torsion 2: tetrahedral, using improper torsion 3: tetrahedral, using improper torsion 4: atom in aromatic ring II-1-5 i5 II-1-6 i5 charge group II-1-7 i5 polarization group For each parameter set one card II-2 II-2-1 5x,a5 atom type II-2-2 a1 dynamics type blank : normal D : dummy atom S : solute interactions only Q : quantum atom other : intramolecular solute interactions only II-2-3 f12.6 atomic partial charge in e II-2-4 f12.6 atomic polarizability (4 \u03c0 \u03b5o in nm3)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-3-of-7","title":"Format of segment file (3 of 7)","text":"Card Format Description For each bond a deck III III-1-1 i5 bond sequence number III-1-2 i5 bond atom i III-1-3 i5 bond atom j III-1-4 i5 bond type 0: harmonic 1: constrained bond III-1-5 i5 bond parameter origin 0: from database, next card ignored 1: from next card For each parameter set one card III-2 III-2-1 f12.6 bond length in nm III-2-2 e12.5 bond force constant in (kJ nm2 mol-1)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-4-of-7","title":"Format of segment file (4 of 7)","text":"Card Format Description For each angle a deck IV IV-1-1 i5 angle sequence number IV-1-2 i5 angle atom i IV-1-3 i5 angle atom j IV-1-4 i5 angle atom k IV-1-5 i5 angle type 0: harmonic IV-1-6 i5 angle parameter origin 0: from database, next card ignored 1: from next card For each parameter set one card IV-2 IV-2-1 f10.6 angle in radians IV-2-2 e12.5 angle force constant in (kJ mol-1)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-5-of-7","title":"Format of segment file (5 of 7)","text":"Card Format Description For each proper dihedral a deck V V-1-1 i5 proper dihedral sequence number V-1-2 i5 proper dihedral atom i V-1-3 i5 proper dihedral atom j V-1-4 i5 proper dihedral atom k V-1-5 i5 proper dihedral atom l V-1-6 i5 proper dihedral type 0: (Ccos(m\u03c6-\u03b4) V-1-7 i5 proper dihedral parameter origin 0: from database, next card ignored 1: from next card For each parameter set one card V-2 V-2-1 i3 multiplicity V-2-2 f10.6 proper dihedral in radians V-2-3 e12.5 proper dihedral force constant in (kJ mol-1)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-6-of-7","title":"Format of segment file (6 of 7)","text":"Card Format Description For each improper dihedral a deck VI VI-1-1 i5 improper dihedral sequence number VI-1-2 i5 improper dihedral atom i VI-1-3 i5 improper dihedral atom j VI-1-4 i5 improper dihedral atom k VI-1-5 i5 improper dihedral atom l VI-1-6 i5 improper dihedral type 0: harmonic VI-1-7 i5 improper dihedral parameter origin 0: from database, next card ignored 1: from next card For each parameter set one card VI-2 VI-2-1 3x,f10.6 improper dihedral in radians VI-2-2 e12.5 improper dihedral force constant in (kJ mol-1)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-7-of-7","title":"Format of segment file (7 of 7)","text":"
Card Format Description For each z-matrix definition one card VII VII-1-1 i5 atom i VII-1-2 i5 atom j VII-1-3 i5 atom k VII-1-4 i5 atom l VII-1-5 f12.6 bond length i-j VII-1-6 f12.6 angle i-j-k VII-1-7 f12.6 torson i-j-k-l"},{"location":"Format_of_MD_Files.html#format-of-sequence-file","title":"Format of sequence file","text":"Card Format Description I-1-1 a1 $ to identify the start of a sequence I-1-2 a10 name of the sequence Any number of cards 1 and 2 in deck II to specify the system II-1-1 i5 segment number II-1-2 a10 segment name, last character will be determined from chain II-2-1 a break to identify a break in the molecule chain II-2-1 a molecule to identify the end of a solute molecule II-2-1 a fraction to identify the end of a solute fraction II-2-1 a5 link to specify a link II-2-2 i5 segment number of first link atom II-2-3 a4 name of first link atom II-2-4 i5 segment number of second link atom II-2-5 a4 name of second link atom II-2-1 a solvent to identify solvent definition on next card II-2-1 a stop to identify the end of the sequence II-2-1 a6 repeat to repeat next ncard cards ncount times II-2-2 i5 number of cards to repeat (ncards) II-2-3 i5 number of times to repeat cards (ncount) Any number of cards in deck II to specify the system"},{"location":"Format_of_MD_Files.html#format-of-trajectory-file","title":"Format of trajectory file","text":"Card Format Description I-1-1 a6 keyword header I-2-1 i10 number of atoms per solvent molecule I-2-2 i10 number of solute atoms I-2-3 i10 number of solute bonds I-2-4 i10 number of solvent bonds I-2-5 i10 number of solvent molecules I-2-6 i10 precision of the coordinates. 0=standard, 1=high For each atom per solvent molecule one card I-3 I-3-1 a5 solvent name I-3-2 a5 atom name For each solute atom one card I-4 I-4-1 a5 segment name I-4-2 a5 atom name I-4-3 i6 segment number I-4-4 i10 solute atom counter I-4-5 i5 integer 1 For each solvent bond one card I-5 I-5-1 i8 atom index i for bond between i and j I-5-2 i8 atom index j for bond between i and j For each solute bond one card I-6 I-6-1 i8 atom index i for bond between i and j I-6-2 i8 atom index j for bond between i and j For each frame one deck II II-1-1 a5 keyword frame II-2-1 f12.6 time of frame in ps II-2-2 12.6 temperature of frame in K II-2-3 e12.5 pressure of frame in Pa II-2-4 a10 date II-2-5 a10 time II-3-1 f12.6 box dimension x II-3-2 12x,f12.6 box dimension y II-3-3 24x,f12.6 box dimension z II-4-1 l1 logical lxw for solvent coordinates II-4-2 l1 logical lvw for solvent velocities II-4-3 l1 logical lfw for solvent forces I-4-4 l1 II-4-5 l1 logical lxs for solute coordinates II-4-6 l1 logical lvs for solute velocities II-4-7 l1 logical lfs for solute forces II-4-8 l1 logical lps for solute induced dipoles II-4-5 i10 number of solvent molecules II-4-6 i10 number of solvent atoms II-4-7 i10 number of solute atoms For each solvent molecule one card II-5 for each atom, if standard precision II-5-1 3f8.3 solvent atom coordinates, if lxw or lvw II-5-4 3f8.3 solvent atom velocities, if lvw II-5-7 3f8.1 solvent atom forces, if lfw For each solute atom one card II-6 for each atom, if standard precision II-6-1 3f8.3 solute atom coordinates, if lxs or lvs II-6-4 3f8.3 solute atom velocities, if lvs II-6-7 3f8.1 solute atom forces, if lfs For each solvent molecule one card II-5 for each atom, if high precision II-5-1 3e12.6 solvent atom coordinates, if lxw or lvw II-5-4 3e12.6 solvent atom velocities, if lvw II-5-7 3e12.6 solvent atom forces, if lfw (on new card if both lxw and lvw) For each solute atom one card II-6 for each atom, if high precision II-6-1 3e12.6 solute atom coordinates, if lxs or lvs II-6-4 3e12.6 solute atom velocities, if lvs II-6-7 3e12.6 solute atom forces, if lfs (on new card if both lxs and lvs)"},{"location":"Format_of_MD_Files.html#format-of-free-energy-file","title":"Format of free energy file","text":"Card Format Description For each step in \u03bb one deck I I-1-1 i7 number nderiv of data summed in derivative decomposition array deriv I-1-2 i7 length ndata of total derivative array drf I-1-3 f12.6 current value of \u03bb I-1-4 f12.6 step size of \u03bb I-2-1 4e12.12 derivative decomposition array deriv(1:24) I-3-1 4e12.12 total derivative array dfr(1:nda) I-4-1 i10 size of ensemble at current \u03bb I-4-2 e20.12 average temperature at current \u03bb I-4-3 e20.12 average exponent reverse perturbation energy at current \u03bb I-4-4 e20.12 average exponent forward perturbation energy at current \u03bb"},{"location":"Format_of_MD_Files.html#format-of-root-mean-square-deviation-file","title":"Format of root mean square deviation file","text":"Card Format Description For each analyzed time step one card I-1 I-1-1 f12.6 time in ps I-1-2 f12.6 total rms deviation of the selected atoms before superimposition I-1-3 f12.6 total rms deviation of the selected atoms after superimposition II-1-1 a8 keyword analysis For each solute atom one card II-2 II-2-1 a5 segment name II-2-2 a5 atom name II-2-3 i6 segment number II-2-4 i10 atom number II-2-5 i5 selected if 1 II-2-6 f12.6 average atom rms deviation after superimposition III-1-1 a8 keyword analysis For each solute segment one card III-2 III-2-1 a5 segment name III-2-2 i6 segment number III-2-3 f12.6 average segment rms deviation after superimposition"},{"location":"Format_of_MD_Files.html#format-of-property-file","title":"Format of property file","text":"Card Format Description 1 i7 number nprop of recorded properties I-1-2 1x,2a10 date and time For each of the nprop properties one card I-2 I-2-1 a50 description of recorded property For each recorded step one deck II II-1-1 4(1pe12.5) value of property"},{"location":"Forum.html","title":"Forum","text":"
We use google groups for the users\u2019 forum.
The group is open to registered members.
Please do mention your real name as display name during the registration process.
The group can be accessed from the following link https://groups.google.com/g/nwchem-forum
If you have trouble registering to this group, please send an email to nwchemgit@gmail.com
You can use the form below to search the entries of the forum
"},{"location":"Forum_search.html","title":"Archived Forum Google Search","text":""},{"location":"Forum_search2.html","title":"Archive Forum Google Search 2nd","text":"Search"},{"location":"GW.html","title":"GW","text":""},{"location":"GW.html#overview","title":"Overview","text":"Electron attachment and detachment energies can be accurately described by many-body perturbation theory (MBPT) methods. In particular, the GW approximation (GWA) to the self-energy is a MBPT method that has seen recent interest in its application to molecules due to a promising cost/accuracy ratio.
The GW module implemented in NWChem takes a DFT mean-field approximation to the Green\u2019s function, G0, in order to solve the quasiparticle equation at the one-shot G0W0 or at various levels of the eigenvalue self-consistent GW approach (evGW). Since the mean-field orbitals are kept fixed in all these approaches, the results depend on the actual starting point G0 (hence, they depend on the exchange-correlation functional chosen for the underlying DFT calculation). For example, it has been known that a large fraction of exact exchange is needed for the accurate prediction of core-level binding energies at the one-shot G0W0 level.
For further theoretical insights and details about the actual implementation in NWChem, please refer to the paper by Mejia-Rodriguez et al1.
GW input is provided using the compound directive
GW\n ...\nEND\n
The actual GW calculation will be performed when the input module encounters the TASK directive.
TASK DFT GW\n
Note that DFT
must be specified as the underlying QM theory before GW
. The charge, geometry, and DFT options are all specified as normal.
In addition to an atomic orbital basis set, the GW module requires an auxiliary basis set to be provided in order to fit the four-center electron repulsion integrals. The auxliary basis set can have either the cd basis
or ri basis
names (see also DFT). Three combinations can be obtained:
ri basis
is given without a cd basis
, the ground-state DFT will be performed without density fitting, and the GW task will use the ri basis
to fit the integrals.cd basis
is given without a ri basis
, both DFT and GW tasks will be performed using the cd basis
to fit the integrals.cd basis
and ri basis
are present, the cd basis
will be used for the DFT task, while the ri basis
will be used for the GW task.There are sub-directives which allow for customized GW calculations. The most general GW input block directive will look like:
GW\n RPA \n CORE\n EVGW [<integer eviter default 4>]\n EVGW0 [<integer eviter default 4>]\n FIRST <integer first_orbital default 1>\n METHOD [ [analytic] || [cdgw <integer grid_points default 200>] ]\n ETA <real infinitesimal default 0.001> \n SOLVER [ [newton <integer maxiter default 10> ] || [graph] ]\n STATES [ [ alpha || beta ] [occ <integer number default 1>] [vir <integer default 0>] ]\n CONVERGENCE <real threshold default 0.005> [<string units default ev>]\nEND\n
The following sections describe these keywords.
"},{"location":"GW.html#rpa","title":"RPA","text":"The keyword RPA
triggers the computation of the RPA correlation energy. This adds a little overhead to the CD-GW approach.
The CORE
keyword forces to start counting the STATES
from the FIRST
molecular orbital upwards.
The FIRST
keyword has no meaning without CORE
specified.
The EVGW
keyword trigger the partial self-consistnet evGW approach, where both the Green\u2019s function G and the screened Coulomb W are updated by using the quasiparticle energies from the previous step in their construction.
Similarly, the EVGW0
triggers the evGW0 approach, where only the Green\u2019s function G is updated with the quasiparticle energies of the previous iterations. W0 is kept fixed.
Both partial self-consistent cycles run for eviter
number of cycles.
The use of EVGW
or EVGW0
will trigger the use of a scissor-shift operator for all states not updated in the evGW cycle.
Two different techniques to obtain the diagonal self-energy matrix elements are implemented in NWChem.
The analytic
method builds and diagonalizes the full Casida RPA matrix in order to obtain the screened Coulomb matrix elements. The Casida RPA matrix grows very rapidly in size (Nocc \u00d7 Nvir) and ultimately yields a N6 scaling due to the diagonalization step. It is therefore recommended to link the ELPA and turn on its use by setting
SET dft:scaleig e\n
The cdgw
method uses the Contour-Deformation technique in order to avoid the N6 diagonalization step. The diagonal self-energy matrix elements \u01a9nn are obtained via a numerical integration on the imaginary axis and the integrals over closed contours on the first and third quadrants of the complex plane. The grid_points
value controls the density of the modified Gauss-Legendre grid used in the numerical integration over the imaginary axis.
Both analytic
and cdgw
methods are suitable for core and valence calculations.
The magnitude of the imaginary infinitesimal can be controlled using the keyword ETA
. The default value of 0.001
should work rather well for valence calculations, but CORE
calculations might need a larger value, sometimes between 0.005
or even 0.01
.
Two methods to solver the quasiparticle equations are implemented in NWChem.
The newton
method uses a modified Newton approach to find the fixed-point of the quasiparticle equations. The Newton method tries to bracket the solution and switches to a golden section method whenever the Newton step goes beyond the bracketing values.
The graph
method uses a frequency grid in order to bracket the solution between two consecutive grid points. The number of grid points is controlled heuristically depending on the METHOD
and on the presence, or not, of nearby states in a cluster of energy (see below).
Regardless of the solver, the energies of the states are always classified in clusters with a maximum extension of 1.5 eV
. For a given cluster of energies, the newton
method will start with the state closer to the Fermi level and use its solution as guess for the rest of the states in the cluster. The graph
method will look for the solution of all the states in a given cluster at once with a frequency grid with range large enough to encompass all the cluster \u00b1 0.2 eV
.
The keyword STATES
controls for which particular state the GW quasiparticle equations are to be solved. The keyword might appear twice, one for the alpha spin channel and one for the beta channel. The beta channel keyword is meaningless for restricted closed-shell DFT calculations (MULT 1
without ODFT
in the DFT
input block).
The number of occupied states will be counted starting from the state closest to the Fermi level (HOMO) unless the keyword CORE
is present. The virtual states will always be counted from the state closest to the Fermi level upwards.
A -1 following either occ
or vir
stands for all states in the respective space.
The converegnce threshold of the quasiparticle equations can be controlled with the keyword CONVERGENCE
and might be given either in eV
or Hartree au
.
title \"CDGW C6F6 core\"\nstart\necho\n\nmemory 2000 mb\n\ngeometry\n C -0.21589696 1.38358991 0.00000000\n C -1.30618181 0.50480033 0.00000000\n C -1.09023026 -0.87871037 0.00000000\n C 0.21590562 -1.38360671 0.00000000\n C 1.30610372 -0.50476737 0.00000000\n C 1.09020243 0.87883094 0.00000000\n F -0.42025331 2.69273557 0.00000000\n F -2.54211642 0.98238922 0.00000000\n F -2.12174279 -1.71033945 0.00000000\n F 0.42026196 -2.69275237 0.00000000\n F 2.54203111 -0.98237286 0.00000000\n F 2.12188428 1.71024875 0.00000000\nend\n\nbasis \"ao basis\" spherical\n * library cc-pvdz\nend\n\nbasis \"cd basis\" spherical\n * library cc-pvdz-ri\nend\n\ndft\n xc xpbe96 0.55 hfexch 0.45 cpbe96 1.0\n direct\nend\n\ngw\n core\n eta 0.01\n method cdgw\n solver newton 15\n states alpha occ 12\nend\n\ntask dft gw\n
start\n\ngeometry\nO -0.000545 1.517541 0.000000\nH 0.094538 0.553640 0.000000\nH 0.901237 1.847958 0.000000\nend\n\nbasis \"ao basis\" spherical\n h library def2-svp\n o library def2-svp\nend\n\nbasis \"cd basis\" spherical\n h library def2-universal-jkfit\n o library def2-universal-jkfit\nend\n\ndft\n mult 1\n xc pbe96\n grid fine\n direct\nend\n\ngw\n states alpha occ 1 vir 1\nend\n\ntask dft gw\n
start\n\ngeometry\nO -0.000545 1.517541 0.000000\nH 0.094538 0.553640 0.000000\nH 0.901237 1.847958 0.000000\nend\n\nbasis \"ao basis\" spherical\n h library def2-svp\n o library def2-svp\nend\n\nbasis \"cd basis\" spherical\n h library def2-universal-jkfit\n o library def2-universal-jkfit\nend\n\ndft\n mult 1\n xc pbe96\n grid fine\n direct\nend\n\ngw\n evgw0 10\n states alpha occ -1 vir 10\nend\n\ntask dft gw\n
"},{"location":"GW.html#references","title":"References","text":"Mejia-Rodriguez, D.; Kunitsa, A.; Apr\u00e0, E.; Govind, N. Scalable Molecular GW Calculations: Valence and Core Spectra. Journal of Chemical Theory and Computation 2021, 17 (12), 7504\u20137517. https://doi.org/10.1021/acs.jctc.1c00738.\u00a0\u21a9
This module performs adiabatic ab initio molecular dynamics on finite systems. The nuclei are integrated using the velocity-Verlet algorithm, and the electronic potential can be provided by any of the Gaussian basis set based methods in NWChem, e.g. DFT, TDDFT, TCE, MP2, SCF, MCSCF, etc. If analytic gradients are not available for the selected level of theory, numerical gradients will automatically be used. Initial velocities are randomly selected from the Maxwell-Boltzmann distribution at the specified temperature, unless a restart file (.qmdrst
) is present. If a restart file is present, the trajectory information will be read from that file and the trajectory will resume from that point.
For computational details and a case study using the module, please refer to the 2016 paper by Fischer1.
QMD\n [dt_nucl <double default 10.0>] \n [nstep_nucl <integer default 1000>] \n [targ_temp <double default 298.15>] \n [thermostat <string default none> <thermostat parameters>] \n [rand_seed <integer default new one generated for each run>] \n [com_step <integer default 100>] \n [print_xyz <integer default 1>] \n [linear] \n [property <integer default 1>] \n [tddft <integer default 1>]\n [namd ]\nEND\n
The module is called as:
task <level of theory> qmd\n
where is any Gaussian basis set method in NWChem"},{"location":"Gaussian-Basis-AIMD.html#qmd-keywords","title":"QMD Keywords","text":""},{"location":"Gaussian-Basis-AIMD.html#dt_nucl-nuclear-time-step","title":"DT_NUCL: Nuclear time step","text":"
This specifies the nuclear time step in atomic units (1 a.u. = 0.02419 fs). Default: 10.0 a.u.
"},{"location":"Gaussian-Basis-AIMD.html#nstep_nucl-simulation-steps","title":"NSTEP_NUCL: Simulation steps","text":"This specifies the number of steps to take in the nuclear dynamics. Default: 1000
"},{"location":"Gaussian-Basis-AIMD.html#targ_temp-temperature-of-the-system","title":"TARG_TEMP: Temperature of the system","text":"This specifies the temperature to use with the thermostat. Also it is used in generating initial velocities from the Maxwell-Boltzmann distribution. Default: 298.15 K
"},{"location":"Gaussian-Basis-AIMD.html#thermostat-thermostat-for-controling-temperature-of-the-simulation","title":"THERMOSTAT: Thermostat for controling temperature of the simulation","text":"This specifies the thermostat to use for regulating the temperature of the nuclei. Possible options are:
none
No thermostat is used, i.e. an NVE ensemble is simulated. Default
svr
<double default 1000.0>
Stochastic velocity rescaling thermostat of Bussi, Donadio, and Parrinello2. Number sets the relaxation parameter of the thermostat
langevin
<double default 0.1>
Langevin dynamics, implementation according to Bussi and Parrinello3. The optional input parameter sets the value of the friction
berendsen
<double default 1000.0>
Berendsen thermostat, the optional input parameter sets the relaxation parameter of the thermostat
rescale
Velocity rescaling, i.e. isokinetic ensemble
nose-hoover
<integer default 3>
Nos\u00e9\u2013Hoover thermostat (only available in release 7.2.0 and later). The optional input parameter defines the number of oscillators.
"},{"location":"Gaussian-Basis-AIMD.html#rand_seed-seed-for-the-random-number-generator","title":"RAND_SEED: Seed for the random number generator","text":"rand_seed
specifies the seed for initializing the random number generator. If not given, a unique random seed will be generated. Even without a thermostat, this will influence the initial velocities.
com_step
specifies that center-of-mass translations and rotations will be removed every com_step
steps. Default 10 COM translations and rotations are removed on startup (either randomized initial velocities or those read from the restart file).
print_xyz
specifies how often the trajectory information (coordinates, velocities, total energy, step number, dipole (if available)) is written to the xyz file. The units for the coordinates and velocities in the xyz file are Angstrom and Angstrom/fs, respectively. For example, print_xyz 5
will write the xyz trajectory file every 5 steps. Default: 1
If the linear
keyword is present, the code assumes the molecule is linear.
If the property
keyword present, the code will look for the property block and calculate the requested properties. For example, property 5
will calculate properties on the current geometry every 5 steps. Default: 0 (e.g properties are not computed)
If the tddft
keyword is present, the code will look for the tddft block and calculate the absorption spectrum. For example, tddft 5
will perform tddft calculations on the current geometry every 5 steps. Default: 0 (e.g tddft is not run)
The following is a sample input for a ground state MD simulation. The simulation is 200 steps long with a 10 a.u. time step, using the stochastic velocity rescaling thermostat with a relaxation parameter of 100 a.u. and a target temperature of 200 K. Center-of-mass rotations and translations will be removed every 10 steps and trajectory information will be output to the xyz file every 5 steps.
start qmd_dft_h2o_svr \necho \nprint low \ngeometry noautosym noautoz \n O 0.00000000 -0.01681748 0.11334792 \n H 0.00000000 0.81325914 -0.34310308 \n H 0.00000000 -0.67863597 -0.56441201 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc pbe0 \nend \nqmd \n nstep_nucl 200 \n dt_nucl 10.0 \n targ_temp 200.0 \n com_step 10 \n thermostat svr 100.0 \n print_xyz 5 \nend \ntask dft qmd\n
"},{"location":"Gaussian-Basis-AIMD.html#excited-state-molecular-dynamics","title":"Excited state Molecular Dynamics","text":"The following is a sample input for an excited state MD simulation on the first excited state. The simulation is 200 steps long with a 10 a.u. time step, run in the microcanonical ensemble. Center-of-mass rotations and translations will be removed every 10 steps and trajectory information will be output to the xyz file every 5 steps.
start qmd_tddft_h2o_svr \necho \nprint low \ngeometry noautosym noautoz \n O 0.00000000 -0.01681748 0.11334792 \n H 0.00000000 0.81325914 -0.34310308 \n H 0.00000000 -0.67863597 -0.56441201 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc pbe0 \nend \ntddft \n nroots 5 \n notriplet \n target 1 \n civecs \n grad \n root 1 \n end \nend \nqmd \n nstep_nucl 200 \n dt_nucl 10.0 \n com_step 10 \n thermostat none \n print_xyz 5 \nend \ntask tddft qmd\n
"},{"location":"Gaussian-Basis-AIMD.html#property-calculation-in-a-molecular-dynamics-simulation","title":"Property calculation in a Molecular Dynamics simulation","text":"Thefollowing is a sample input for an MD simulation that compute polarizability by means of the SOS method at each time step.
start qmd_prop_h2o_svr \necho \nprint low \ngeometry noautosym noautoz \n O 0.00000000 -0.01681748 0.11334792 \n H 0.00000000 0.81325914 -0.34310308 \n H 0.00000000 -0.67863597 -0.56441201 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc pbe0 \nend \n\nqmd \n nstep_nucl 200 \n dt_nucl 10.0 \n com_step 10 \n thermostat none \n print_xyz 5\n property 1\nend \n\nproperty\n polfromsos\nend\ntask tddft qmd\n
Additional sample inputs can be found in $NWCHEM_TOP/QA/tests/qmd_* (e.g. https://github.com/nwchemgit/nwchem/tree/master/QA/tests/qmd_dft_h2o_berendsen_props)
"},{"location":"Gaussian-Basis-AIMD.html#processing-the-output-of-a-qmd-run","title":"Processing the output of a QMD run","text":"The xyz file produced by the QMD module contains the velocities (given in Angstrom/fs), in addition to the coordinates (given in Angstrom). The comment lines also contain the time step, total energy (atomic units), and dipole moment (atomic units). In the directory $NWCHEM_TOP/contrib/qmd_tools, the code qmd_analysis.f90 will used the xyz trajectory as input to calculate the IR spectrum and vibrational density of states from Fourier transforms of the dipole and atomic momenta autocorrelation functions, respectively. The code needs to be linked to a LAPACK library when compiled; the Makefile in the directory will compile the code with the LAPACK routines included with the NWChem source.
Here we compute the IR spectrum and the element-wise breakdown of the vibrational density of states for silicon tetrachloride (SiCl4). The following input file was used.
start SiCl4 \necho \nprint low \ngeometry noautosym noautoz \n Si -0.00007905 0.00044148 0.00000001 \n Cl 0.71289590 1.00767685 1.74385011 \n Cl -2.13658008 -0.00149375 -0.00000001 \n Cl 0.71086735 -2.01430142 -0.00000001 \n Cl 0.71289588 1.00767684 -1.74385011 \nend \nbasis \n * library 6-31G \nend \ndft \n xc hfexch 1.0 \nend \nqmd \n nstep_nucl 20000 \n dt_nucl 10.0 \n targ_temp 20.0 \n com_step 10 \n rand_seed 12345 \n thermostat none \nend \ntask dft qmd\n
The IR spectrum and vibrational density of states were generated from the qmd_analysis code with the following command.
./qmd_analysis -xyz SiCl4.xyz -steps 15000 -skip 5000 -ts 10.0 -temp 20.0 -smax 800 -width 10.0\n
where we have skipped the first 5000 steps from the simulation and only used the data from the last 15000 steps to compute the spectra. The time step is given as 10 a.u. since that was the time step in the simulation and we output the trajectory information every step. The temperature was set to 20 K (for analysis, this is only used in the calculation of the quantum correction factor for the autocorrelation function of the dipole moment). The option smax sets the maximum of the spectral window that is output to 800 wave numbers. The width option sets the full-width at half-maximum of the peaks in the resulting spectra.
The computed IR spectrum and vibrational density of states are shown here.
"},{"location":"Gaussian-Basis-AIMD.html#namd-non-adiabatic-excited-stated-molecular-dynamics","title":"NAMD: Non-adiabatic Excited Stated Molecular Dynamics","text":"
For details of the NAMD implementation, please refer to the 2020 paper by Song4.
[namd]\n [init_state <integer default 2>]\n [nstates <integer default 2>]\n [dt_elec <double default 0.01>]\n [deco <logical default .false.]\n [tdks <integer default 1>]\n[end] \n
In the namd
sub-block within the qmd
block, please note:
mod(dt_nucl,dt_elec)=0
).The deco
flag applies the EDC electronic decoherence correction described in the papey bt Granucci and Persico5. The default value is .false.
, i.e. no decoherence correction is applied.
The keyword dt_elec
sets the electronic time step in atomic units.
The keyword nstates
sets the number of electronic states to include in the calculation, i.e. the number of states for use with Eq. 5 of the 2020 Song paper.
The keyword init_state
sets the initial electronic state to be occupied; the numbering for this keyword and the output that reports the currently occupied state runs from 0 (ground state) to nstates-1
. So if you want to start a calculation in the first excited state, you would set init_state
to 1.
The keyword tdks
will use Time-Dependent Kohn-Sham instead of the default Tamm-Dancoff approximation. The keyword requires the keyword odft
in the dft
input block to work. It can have two values:
1
(default) selects the alpha spin channel2
selects the beta spin channelExample input for fewest-switches surface-hopping (FSSH) approach.
geometry noautosym nocenter\nO 0.0000 0.0000 0.1197\nH 0.0000 0.7615 -0.4790\nH 0.0000 -0.7615 -0.4790\nend\nbasis\n* library 6-31G*\nend\n\ndft\n xc b3lyp\nend\n\ntddft\n nroots 10\n notriplet\n cis\n civecs\n grad\n root 1\n end\nend\n\nqmd\n nstep_nucl 50\n dt_nucl 0.5\n targ_temp 300.0\n thermostat svr 500\n namd \n nstates 5\n init_state 3\n dt_elec 0.1\n deco .true.\n end\nend\ntask tddft qmd\n
"},{"location":"Gaussian-Basis-AIMD.html#references","title":"References","text":"Fischer, S. A.; Ueltschi, T. W.; El-Khoury, P. Z.; Mifflin, A. L.; Hess, W. P.; Wang, H.-F.; Cramer, C. J.; Govind, N. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study. The Journal of Physical Chemistry B 2015, 120 (8), 1429\u20131436. https://doi.org/10.1021/acs.jpcb.5b03323.\u00a0\u21a9
Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling Through Velocity Rescaling. The Journal of Chemical Physics 2007, 126 (1), 014101. https://doi.org/10.1063/1.2408420.\u00a0\u21a9
Bussi, G.; Parrinello, M. Accurate Sampling Using Langevin Dynamics. Physical Review E 2007, 75 (5), 056707. https://doi.org/10.1103/PhysRevE.75.056707.\u00a0\u21a9
Song, H.; Fischer, S. A.; Zhang, Y.; Cramer, C. J.; Mukamel, S.; Govind, N.; Tretiak, S. First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem. Journal of Chemical Theory and Computation 2020, 16 (10), 6418\u20136427. https://doi.org/10.1021/acs.jctc.0c00295.\u00a0\u21a9
Granucci, G.; Persico, M. Critical Appraisal of the Fewest Switches Algorithm for Surface Hopping. The Journal of Chemical Physics 2007, 126 (13), 134114. https://doi.org/10.1063/1.2715585.\u00a0\u21a9
The DRIVER module is one of two drivers (also see documentation on STEPPER) to perform a geometry optimization function on the molecule defined by input using the GEOMETRY directive. Geometry optimization is either an energy minimization or a transition state optimization. The algorithm programmed in DRIVER is a quasi-newton optimization with line searches and approximate energy Hessian updates.
DRIVER is selected by default out of the two available modules to perform geometry optimization. In order to force use of DRIVER (e.g., because a previous optimization used STEPPER) provide a DRIVER input block (below) \u2013 even an empty block will force use of DRIVER.
Optional input for this module is specified within the compound directive,
DRIVER \n (LOOSE || DEFAULT || TIGHT) \n GMAX <real value> \n GRMS <real value> \n XMAX <real value> \n XRMS <real value> \n EPREC <real eprec default 1e-7> \n TRUST <real trust default 0.3> \n SADSTP <real sadstp default 0.1> \n CLEAR \n REDOAUTOZ \n INHESS <integer inhess default 0> \n (MODDIR || VARDIR) <integer dir default 0> \n (FIRSTNEG || NOFIRSTNEG) \n MAXITER <integer maxiter default 20> \n BSCALE <real BSCALE default 1.0>` \n ASCALE <real ASCALE default 0.25> \n TSCALE <real TSCALE default 0.1> \n HSCALE <real HSCALE default 1.0> \n PRINT ... \n XYZ <string xyz default *file_prefix*>] \n NOXYZ \n SOCKET (UNIX || IPI_CLIENT) <string socketname default (see input description)> \n END\n
On each optimization step a line search is performed. To speed up calculations (up to two times), it may be beneficial to turn off the line search using following directive:
set driver:linopt 0\n
"},{"location":"Geometry-Optimization.html#convergence-criteria","title":"Convergence criteria","text":" (LOOSE || DEFAULT || TIGHT) \n GMAX <real value> \n GRMS <real value> \n XMAX <real value> \n XRMS <real value>\n
The defaults may be used, or the directives LOOSE, DEFAULT, or TIGHT specified to use standard sets of values, or the individual criteria adjusted. All criteria are in atomic units. GMAX and GRMS control the maximum and root mean square gradient in the coordinates being used (Z-matrix, redundant internals, or Cartesian). XMAX and XRMS control the maximum and root mean square of the Cartesian step.
LOOSE DEFAULT TIGHT GMAX 0.00450 0.00045 0.000015 GRMS 0.00300 0.00030 0.00001 XMAX 0.01800 0.00180 0.00006 XRMS 0.01200 0.00120 0.00004Note that GMAX and GRMS used for convergence of geometry may significantly vary in different coordinate systems such as Z-matrix, redundant internals, or Cartesian. The coordinate system is defined in the input file (default is Z-matrix). Therefore the choice of coordinate system may slightly affect converged energy. Although in most cases XMAX and XRMS are last to converge which are always done in Cartesian coordinates, which insures convergence to the same geometry in different coordinate systems.
The old criterion may be recovered with the input
gmax 0.0008; grms 1; xrms 1; xmax 1\n
"},{"location":"Geometry-Optimization.html#available-precision","title":"Available precision","text":" EPREC <real eprec default 1e-7>\n
In performing a line search the optimizer must know the precision of the energy (this has nothing to do with convergence criteria). The default value of 1e-7 should be adjusted if less, or more, precision is available. Note that the default EPREC for DFT calculations is 5e-6 instead of 1e-7.
"},{"location":"Geometry-Optimization.html#controlling-the-step-length","title":"Controlling the step length","text":" TRUST <real trust default 0.3>\n SADSTP <real sadstp default 0.1>\n
A fixed trust radius (trust) is used to control the step during minimizations, and is also used for modes being minimized during saddle-point searches. It defaults to 0.3 for minimizations and 0.1 for saddle-point searches. The parameter sadstp is the trust radius used for the mode being maximized during a saddle-point search and defaults to 0.1.
"},{"location":"Geometry-Optimization.html#maximum-number-of-steps","title":"Maximum number of steps","text":" MAXITER <integer maxiter default 20>\n
By default at most 20 geometry optimization steps will be taken, but this may be modified with this directive.
"},{"location":"Geometry-Optimization.html#discard-restart-information","title":"Discard restart information","text":" CLEAR\n
By default Driver reuses Hessian information from a previous optimization, and, to facilitate a restart also stores which mode is being followed for a saddle-point search. This option deletes all restart data.
"},{"location":"Geometry-Optimization.html#regenerate-internal-coordinates","title":"Regenerate internal coordinates","text":" REDOAUTOZ\n
Deletes Hessian data and regenerates internal coordinates at the current geometry. Useful if there has been a large change in the geometry that has rendered the current set of coordinates invalid or non-optimal.
"},{"location":"Geometry-Optimization.html#initial-hessian","title":"Initial Hessian","text":" INHESS <integer inhess default 0>\n
In addition, the diagonal elements of the initial Hessian for internal coordinates may be scaled using separate factors for bonds, angles and torsions with the following
BSCALE <real bscale default 1.0> \n ASCALE <real ascale default 0.25> \n TSCALE <real tscale default 0.1>\n
These values typically give a two-fold speedup over unit values, based on about 100 test cases up to 15 atoms using 3-21g and 6-31g* SCF. However, if doing many optimizations on physically similar systems it may be worth fine tuning these parameters.
Finally, the entire Hessian from any source may be scaled by a factor using the directive
HSCALE <real hscale default 1.0>\n
It might be of utility, for instance, when computing an initial Hessian using SCF to start a large MP2 optimization. The SCF vibrational modes are expected to be stiffer than the MP2, so scaling the initial Hessian by a number less than one might be beneficial.
"},{"location":"Geometry-Optimization.html#mode-or-variable-to-follow-to-saddle-point","title":"Mode or variable to follow to saddle point","text":" (MODDIR || VARDIR) <integer dir default 0> \n (FIRSTNEG || NOFIRSTNEG)\n
When searching for a transition state the program, by default, will take an initial step uphill and then do mode following using a fuzzy maximum overlap (the lowest eigen-mode with an overlap with the previous search direction of 0.7 times the maximum overlap is selected). Once a negative eigen-value is found, that mode is followed regardless of overlap.
The initial uphill step is appropriate if the gradient points roughly in the direction of the saddle point, such as might be the case if a constrained optimization was performed at the starting geometry. Alternatively, the initial search direction may be chosen to be along a specific internal variable (using the directive VARDIR) or along a specific eigen-mode (using MODDIR). Following a variable might be valuable if the initial gradient is either very small or very large. Note that the eigen-modes in the optimizer have next-to-nothing to do with the output from a frequency calculation. You can examine the eigen-modes used by the optimizer with
driver; print hvecs; end\n
The selection of the first negative mode is usually a good choice if the search is started in the vicinity of the transition state and the initial search direction is satisfactory. However, sometimes the first negative mode might not be the one of interest (e.g., transverse to the reaction direction). If NOFIRSTNEG is specified, the code will not take the first negative direction and will continue doing mode-following until that mode goes negative.
"},{"location":"Geometry-Optimization.html#optimization-history-as-xyz-files","title":"Optimization history as XYZ files","text":" XYZ [<string xyz default $fileprefix>] \n NOXYZ\n
The XYZ directive causes the geometry at each step (but not intermediate points of a line search) to be output into separate files in the permanent directory in XYZ format. The optional string will prefix the filename. The NOXYZ directive turns this off.
For example, the input
driver; xyz test; end\n
will cause files test-000.xyz, test-001.xyz, \u2026 to be created in the permanent directory.
The script rasmolmovie in the NWChem contrib directory can be used to turn these into an animated GIF movie.
"},{"location":"Geometry-Optimization.html#i-pi-socket-communication","title":"i-PI Socket communication","text":" SOCKET (UNIX || IPI_CLIENT) <string socketname default (see input description)> \n
The SOCKET directive enables NWChem to communicate with other software packages \u2013 such as i-PI or ASE \u2013 via the i-PI socket protocol.
Communication is done either over Unix sockets (SOCKET UNIX
) or IP sockets (SOCKET IPI_CLIENT
):
/tmp/ipi_<socketname>
. If not specified, <socketname>
will default to nwchem
.<socketname>
. If not specified, <socketname>
will default to 127.0.0.1:31415
.The SOCKET
directive is only useful when used in conjunction with other software packages that support communication via the i-PI socket protocol. For more information, see the i-PI documentation.
The UNIX command \u201cegrep \u2018^@\u2019 \\< output\u201d will extract a pretty table summarizing the optimization.
If you specify the NWChem input
scf; print none; end \n driver; print low; end \n task scf optimize\n
you\u2019ll obtain a pleasantly terse output.
For more control, these options for the standard print directive are recognized
and these specific print options
The STEPPER module performs a search for critical points on the potential energy surface of the molecule defined by input using the GEOMETRY directive. Since STEPPER is not the primary geometry optimization module in NWChem the compound directive is required; the DRIVER module is the default. Input for this module is specified within the compound directive,
STEPPER \n ... \n END\n
The presence of the STEPPER compound directive automatically turns off the default geometry optimization tool DRIVER. Input specified for the STEPPER module must appear in the input file after the GEOMETRY directive, since it must know the number of atoms that are to be used in the geometry optimization. In the current version of NWChem, STEPPER can be used only with geometries that are defined in Cartesian coordinates. STEPPER removes translational and rotational components before determining the step direction (5 components for linear systems and 6 for others) using a standard Eckart algorithm. The default initial guess nuclear Hessian is the identity matrix.
The default in STEPPER is to minimize the energy as a function of the geometry with a maximum of 20 geometry optimization iterations. When this is the desired calculation, no input is required other than the STEPPER compound directive. However, the user also has the option of defining different tasks for the STEPPER module, and can vary the number of iterations and the convergence criteria from the default values. The input for these options is described in the following sections.
"},{"location":"Geometry-Optimization.html#min-and-ts-minimum-or-transition-state-search","title":"MIN and TS: Minimum or transition state search","text":"The default is for STEPPER to minimize the energy with respect to the geometry of the system. This default behavior may be forced with the directive
MIN\n
STEPPER can also be used to find the transition state by following the lowest eigenvector of the nuclear Hessian. This is usually invoked by using the saddle keyword on the TASK directive, but it may also be selected by specifying the directive
TS\n
in the STEPPER input.
"},{"location":"Geometry-Optimization.html#track-mode-selection","title":"TRACK: Mode selection","text":"STEPPER has the ability to ``track\u2019\u2018 a specific mode during an optimization for a transition state search, the user can also have the module track the eigenvector corresponding to a specific mode. This is done by specifying the directive
TRACK [nmode <integer nmode default 1>]\n
The keyword TRACK tells STEPPER to track the eigenvector corresponding to the integer value of during a transition state walk. (Note: this input is invalid for a minimization walk since following a specific eigenvector will not necessarily give the desired local minimum.) The step is constructed to go up in energy along the nmode eigenvector and down in all other degrees of freedom."},{"location":"Geometry-Optimization.html#maxiter-maximum-number-of-steps","title":"MAXITER: Maximum number of steps","text":"
In most applications, 20 stepper iterations will be sufficient to obtain the energy minimization. However, the user has the option of specifying the maximum number of iterations allowed, using the input line,
MAXITER <integer maxiter default 20>\n
The value specified for the integer defines the maximum number of geometry optimization steps. The geometry optimization will restart automatically."},{"location":"Geometry-Optimization.html#trust-trust-radius","title":"TRUST: Trust radius","text":"
The size of steps that can be taken in STEPPER is controlled by the trust radius which has a default value of 0.1. Steps are constrained to be no larger than the trust radius. The user has the option of overriding this default using the keyword TRUST, with the following input line,
TRUST <real radius default 0.1>\n
The larger the value specified for the variable radius, the larger the steps that can be taken by STEPPER. Experience has shown that for larger systems (i.e., those with 20 or more atoms), a value of 0.5, or greater, usually should be entered for ."},{"location":"Geometry-Optimization.html#convggm-convgg-and-convge-convergence-criteria","title":"CONVGGM, CONVGG and CONVGE: Convergence criteria","text":"
Three convergence criteria can be specified explicitly for the STEPPER calculations. The keyword CONVGGM allows the user to specify the convergence tolerance for the largest component of the gradient. This is the primary convergence criterion, as per the default settings, although all three criteria are in effect. this default setting is consistent with the other optimizer module DRIVER. The input line for CONVGGM has the following form,
CONVGGM <real convggm default 8.0d-04>\n
The keyword CONVGG allows the user to specify the convergence tolerance for the gradient norm for all degrees of freedom. The input line is of the following form,
CONVGG <real convgg default 1.0d-02>\n
The entry for the real variable should be approximately equal to the square root of the energy convergence tolerance.
The energy convergence tolerance is the convergence criterion for the energy difference in the geometry optimization in STEPPER. It can be specified by input using a line of the following form,
CONVGE <real convge default 1.0d-04>\n
"},{"location":"Geometry-Optimization.html#backstepping-in-stepper","title":"Backstepping in STEPPER","text":"If a step taken during the optimization is too large (e.g., the step causes the energy to go up for a minimization or down for a transition state search), the STEPPER optimizer will automatically \u201cbackstep\u201d and correct the step based on information prior to the faulty step. If you have an optimization that \u201cbacksteps\u201d frequently then the initial trust radius should most likely be decreased.
"},{"location":"Geometry-Optimization.html#initial-nuclear-hessian-options","title":"Initial Nuclear Hessian Options","text":"Stepper uses a modified Fletcher-Powell algorithm to find the transition state or energy minimum on the potential energy hypersurface. There are two files left in the user\u2019s permanent directory that are used to provide an initial hessian to the critical point search algorithm. If these files do not exist then the default is to use a unit matrix as the initial hessian. Once Stepper executes it generates a binary dump file by the name of name.stpr41
which will be used on all subsequent stepper runs and modified with the current updated hessian. The default file prefix is the \u201cname\u201d that is used (see START). It also stores the information for the last valid step in case the algorithm must take a \u201cbackstep\u201d. This file is the working data store for all stepper-based optimizations. This file is never deleted by default and is the first source of an initial hessian. The second source of an initial hessian is an ASCII file that contains the lower triangular values of the initial hessian. This is stored in file name.hess
, where \u201cname\u201d is again the default file prefix. This is the second source of an initial hessian and is the method used to incorporate an initial hessian from any other source (e.g., another ab initio code, a molecular mechanics code, etc.,). To get a decent starting hessian at a given point you can use the task specification task scf hessian, with a smaller basis set, which will by default generate the name.hess
file. Then you may define your basis set of choice and proceed with the optimization you desire.
Below are examples of the use of the SYMMETRY directive in the compound GEOMETRY directive. The z axis is always the primary rotation axis. When in doubt about which axes and planes are used for the group elements, the keyword print
may be added to the SYMMETRY
directive to obtain this information.
The \u03c3h plane is the xy plane.
\u00a0geometry units angstroms\n C 0.11931097 -0.66334875 0.00000000\n H 1.20599017 -0.87824237 0.00000000\n H -0.32267592 -1.15740001 0.89812652\n O -0.01716588 0.78143468 0.00000000\n H -1.04379735 0.88169812 0.00000000\n symmetry cs\n end\n
"},{"location":"Geometry-examples.html#c2v-water","title":"C2v \u00a0 water","text":"The z axis is the C2 axis and the \u03c3v may be either the xz or the yz planes.
geometry units au\n O 0.00000000 0.00000000 0.00000000\n H 0.00000000 1.43042809 -1.10715266\n symmetry group c2v\n end\n
"},{"location":"Geometry-examples.html#d2h-acetylene","title":"D2h \u00a0 acetylene","text":"Although acetylene has symmetry D\u221eh the subgroup D2h includes all operations that interchange equivalent atoms which is what determines how much speedup you gain from using symmetry in building a Fock matrix.
The C2 axes are the x, y, and z axes. The \u03c3 planes are the xy, xz and yz planes. Generally, the unique atoms are placed to use the z as the primary rotational axis and use the xz or yz planes as the \u03c3 plane.
geometry units au\n symmetry group d2h\n C 0.000000000 0.000000000 -1.115108538\n H 0.000000000 0.000000000 -3.106737425\n end\n
"},{"location":"Geometry-examples.html#d2h-ethylene","title":"D2h \u00a0 ethylene","text":"The C2 axes are the x, y, and z axes. The \u03c3 planes are the xy, xz and yz planes. Generally, the unique atoms are placed to use the z as the primary rotational axis and use the xz or yz planes as the \u03c3 plane.
geometry units angstroms\n C 0 0 0.659250 \n H 0 0.916366 1.224352 \n symmetry d2h\n end\n
"},{"location":"Geometry-examples.html#td-methane","title":"Td \u00a0 methane","text":"For ease of use, the primary C3 axis should be the x=y=z axis. The 3 C2 axes are the x, y, and z.
geometry units au\n c 0.0000000 0.0000000 0.0000000\n h 1.1828637 1.1828637 1.1828637\n symmetry group Td\n end\n
"},{"location":"Geometry-examples.html#ih-buckminsterfullerene","title":"Ih \u00a0 buckminsterfullerene","text":"One of the C5 axes is the z axis and the point of inversion is the origin.
geometry units angstroms # Bonds = 1.4445, 1.3945\n symmetry group Ih\n c -1.2287651 0.0 3.3143121\n end\n
"},{"location":"Geometry-examples.html#s4-porphyrin","title":"S4 \u00a0 porphyrin","text":"The S4 and C2 rotation axis is the z axis. The reflection plane for the S4 operation is the xy plane.
geometry units angstroms\n symmetry group s4\n\n fe 0.000 0.000 0.000 \n h 2.242 6.496 -3.320 \n h 1.542 4.304 -2.811\n c 1.947 6.284 -2.433\n c 1.568 4.987 -2.084\n h 2.252 8.213 -1.695\n c 1.993 7.278 -1.458\n h 5.474 -1.041 -1.143\n c 1.234 4.676 -0.765\n h 7.738 -1.714 -0.606\n c 0.857 3.276 -0.417\n h 1.380 -4.889 -0.413\n c 1.875 2.341 -0.234\n h 3.629 3.659 -0.234\n c 0.493 -2.964 -0.229\n c 1.551 -3.933 -0.221\n c 5.678 -1.273 -0.198\n c 1.656 6.974 -0.144\n c 3.261 2.696 -0.100\n n 1.702 0.990 -0.035\n end\n
"},{"location":"Geometry-examples.html#d3h-iron-penta-carbonyl","title":"D3h \u00a0 iron penta-carbonyl","text":"The C3 axis is the z axis. The \u03c3h plane is the xy plane. One of the perpendicular C2 axes is the x=y axis. One of the \u03c3v planes is the plane containing the x=y axis and the z axis. (The other axes and planes are generated by the C3 operation.)
geometry units au\n symmetry group d3h\n\n fe 0.0 0.0 0.0\n\n c 0.0 0.0 3.414358\n o 0.0 0.0 5.591323\n\n c 2.4417087 2.4417087 0.0\n o 3.9810552 3.9810552 0.0\n end\n
"},{"location":"Geometry-examples.html#d3d-sodium-crown-ether","title":"D3d \u00a0 sodium crown ether","text":"The C3 axis is the z axis. The point of inversion is the origin. One of the perpendicular C2 axes is the x=y axis. One of the \u03c3d planes is the plane containing the -x=y axis and the z axis.
Note that the oxygen atom is rotated in the x-y plane 15 degrees away from the y-axis so that it lies in a mirror plane. There is a total of six atoms generated from the unique oxygen, in contrast to twelve from each of the carbon and hydrogen atoms.
geometry units au\n symmetry D3d\n\n NA .0000000000 .0000000000 .0000000000\n O 1.3384771885 4.9952647969 .1544089284\n H 6.7342048019 -0.6723850379 2.6581562148\n C 6.7599180056 -0.4844977035 .6136583870\n H 8.6497577017 0.0709194071 .0345361934\n\n end\n
"},{"location":"Geometry-examples.html#c3v-ammonia","title":"C3v \u00a0 ammonia","text":"The C3 axis is the z axis. One of the \u03c3v planes is the plane containing the x=y axis and the z axis.
geometry units angstroms\n N 0 0 -0.055 \n H 0.665 0.665 -0.481 \n symmetry c3v\n end\n
"},{"location":"Geometry-examples.html#d6h-benzene","title":"D6h benzene","text":"The C6 axis is the z axis. The point of inversion is the origin. One of the 6 perpendicular C2\u2018 axes is the x=y axis. (-x=y works as a C2\u2018\u2019 axis.) The \u03c3h plane is the xy plane. The \u03c3d planes contain the C2\u2018\u2019 axis and the z axis. The \u03c3v planes contain the C2\u2018 axis and the z axis.
geometry units au\n C 1.855 1.855 0 \n H 3.289 3.289 0 \n symmetry D6h\n end\n
"},{"location":"Geometry-examples.html#c3h-h3bo3","title":"C3h \u00a0 H3BO3","text":"The C3 axis is the z axis. The \u03c3h plane is the xy plane.
geometry units au\n b 0 0 0 \n o 2.27238285 1.19464491 0.00000000 \n h 2.10895420 2.97347707 0.00000000 \n symmetry C3h\n end\n
"},{"location":"Geometry-examples.html#d5d-ferrocene","title":"D5d \u00a0 ferrocene","text":"The C5 axis is the z axis. The center of inversion is the origin. One of the perpendicular C2 axes is the x axis. One of the \u03c3d planes is the yz plane.
geometry units angstroms\n symmetry d5d\n\n fe 0 0 0 \n c 0 1.194 1.789 \n h 0 2.256 1.789 \n end\n
"},{"location":"Geometry-examples.html#c4v-sf5cl","title":"C4v \u00a0 SF5Cl","text":"The C4 axis is the z axis. The \u03c3v planes are the yz and the xz planes. The \u03c3d planes are: 1) the plane containing the x=y axis and the z axis and 2) the plane containing the -x=y axis and the z axis.
geometry units au\n S 0.00000000 0.00000000 -0.14917600 \n Cl 0.00000000 0.00000000 4.03279700 \n F 3.13694200 0.00000000 -0.15321800 \n F 0.00000000 0.00000000 -3.27074500 \n\n symmetry C4v\n end\n
"},{"location":"Geometry-examples.html#c2h-trans-dichloroethylene","title":"C2h \u00a0 trans-dichloroethylene","text":"The C2 axis is the z axis. The origin is the inversion center. The \u03c3h plane is the xy plane.
geometry units angstroms\n C 0.65051239 -0.08305064 0 \n Cl 1.75249381 1.30491767 0 \n H 1.14820954 -1.04789741 0 \n symmetry C2h\n end\n
"},{"location":"Geometry-examples.html#d2d-ch2cch2","title":"D2d \u00a0 CH2CCH2","text":"The C2 axis is the z axis (z is also the S4 axis). The x and y axes are the perpendicular C2\u2018s. The \u03c3d planes are: 1) the plane containing the x=y axis and the z axis and 2) the plane containing the -x=y axis and the z axis.
geometry units angstroms\n symmetry d2d\n c 0 0 0 \n c 0 0 1.300 \n h 0.656 0.656 1.857 \n end\n
"},{"location":"Geometry-examples.html#d5h-cyclopentadiene-anion","title":"D5h \u00a0 cyclopentadiene anion","text":"The C5 axis is the z axis (z is also the S5 axis). The y axis is one of the perpendicular C2 axes. The \u03c3h plane is the xy plane and one of the \u03c3d planes is the yz plane.
charge -1\n geometry units angstroms\n symmetry d5h\n c 0 1.1853 0 \n h 0 2.2654 0 \n end\n
"},{"location":"Geometry-examples.html#d4h-gold-tetrachloride","title":"D4h \u00a0 gold tetrachloride","text":"The C4 axis is the z axis (z is also the S4 axis). The C2\u2018 axes are the x and y axes and the C2\u2018\u2019 axes are the x=y axis and the x=-y axis. The inversion center is the origin. The \u03c3h plane is the xy plane. The \u03c3v planes are the xz and yz planes and the \u03c3d planes are 1) the plane containing the x=-y axis and the z axis and 2) the plane containing the x=y axis and the z axis.
geometry units au\n Au 0 0 0 \n Cl 0 4.033 0\n symmetry D4h\n end\n
"},{"location":"Geometry-load.html","title":"Geometry load","text":""},{"location":"Geometry-load.html#load","title":"LOAD","text":"\u00a0\u00a0\u00a0[\u00a0LOAD\u00a0[format\u00a0xyz||pdb]\u00a0\u00a0[frame\u00a0<int frame>]\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[select\u00a0[not]\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[name\u00a0<string atomname>]\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[rname\u00a0<string residue-name>] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[id\u00a0\u00a0<int atom-id>|<int range atom-id1:atom-id2>\u00a0...\u00a0] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[resi\u00a0<int residue-id>|<int range residue-id1:residue-id2>\u00a0...\u00a0] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0] \n\u00a0\u00a0 \n\u00a0\u00a0\u00a0<string filename>\u00a0]\n
The LOAD directive allows users to load Cartesian coordinates from external pdb or xyz files with the name . This directive works in addition to the explicit Cartesian coordinate declaration and can be repeated and mixed with the latter. This allows for complex coordinate assemblies where some coordinates are loaded from external files and some specified explicitly in the input file. The ordering of coordinates in the final geometry will follow the order in which LOAD statements and explicit coordinates are specified.
\u00a0select\u00a0id\u00a02\u00a04:6\u00a09\n
will result in the selection of atom id\u2019s 2 4 5 6 9.
Multiple selection criteria are always combined as AND selections. For example
\u00a0\u00a0select\u00a0name\u00a0O\u00a0\u00a0id\u00a02:4\n
will select atoms that are named O and whose id/index is between 2 and 4. Each selection criteria can be inverted by prepending not keyword. For example
\u00a0\u00a0select\u00a0not\u00a0name\u00a0O\u00a0\u00a0id\u00a02:4\n
will select all atoms that are not named O and whose id/index is between 2 and 4.
"},{"location":"Geometry.html","title":"Geometries","text":""},{"location":"Geometry.html#overview","title":"Overview","text":"The GEOMETRY directive is a compound directive that allows the user to define the geometry to be used for a given calculation. The directive allows the user to specify the geometry with a relatively small amount of input, but there are a large number of optional keywords and additional subordinate directives that the user can specify, if needed. The directive therefore appears to be rather long and complicated when presented in its general form, as follows:
GEOMETRY [<string name default geometry>] \\ \n [units <string units default angstroms>] \\ \n [(angstrom_to_au || ang2au) \\ \n <real angstrom_to_au default 1.8897265>] \\ \n [print [xyz] || noprint] \\ \n [center || nocenter] \\ \n [bqbq] \\ \n [autosym [real tol default 1d-2] || noautosym] \\ \n [autoz || noautoz] \\ \n [adjust] \\ \n [(nuc || nucl || nucleus) <string nucmodel>] \n [SYMMETRY [group] <string group_name> [print] \\ \n [tol <real tol default 1d-2>]] \n [ [LOAD] [format xyz||pdb] [frame <int frame>] \\ \n [select [not] \\ \n [name <string atomname>] \\ \n [rname <string residue-name>] \n [id <int atom-id>|<int range atom-id1:atom-id2> ... ] \n [resi <int residue-id>|<int range residue-id1:residue-id2> ... ] \n ] \n <string filename> ] \n\n <string tag> <real x y z> [vx vy vz] [charge <real charge>] \\ \n [mass <real mass>] \\ \n [(nuc || nucl || nucleus) <string nucmodel>] \n ... ] \n [ZMATRIX || ZMT || ZMAT \n <string tagn> <list_of_zmatrix_variables> \n ... \n [VARIABLES \n <string symbol> <real value> \n ... ] \n [CONSTANTS \n <string symbol> <real value> \n ... ] \n (END || ZEND)] \n [ZCOORD \n CVR_SCALING <real value> \n BOND <integer i> <integer j> \\ \n [<real value>] [<string name>] [constant] \n ANGLE <integer i> <integer j> \\ \n [<real value>] [<string name>] [constant] \n TORSION <integer i> <integer j> <integer k> <integer l> \\ \n [<real value>] [<string name>] [constant] \n END] \n\n [SYSTEM surface <molecule polymer surface crystal default molecule> \n lat_a <real lat_a> lat_b <real lat_b> lat_c <real lat_c> \n alpha <real alpha> beta <real beta> gamma <real gamma> \n END] \n END\n
The three main parts of the GEOMETRY directive are:
The following sections present the input for this compound directive in detail, describing the options available and the usages of the various keywords in each of the three main parts.
Keywords of the GEOMETRY directive
SYMMETRY: Symmetry Group Input
Names of 3-dimensional space groups
Cartesian coordinate input
ZMATRIX: Z-matrix input
ZCOORD: Forcing internal coordinates
SYSTEM: Lattice parameters for periodic systems
LOAD: Load geometry from XYZ file
This section provides an overview of NWChem input and program architecture, and the syntax used to describe the input. See Simple Input File and Water Molecule Input for examples of NWChem input files with detailed explanation.
NWChem consists of independent modules that perform the various functions of the code. Examples of modules include the input parser, SCF energy, SCF analytic gradient, DFT energy, etc.. Data is passed between modules and saved for restart using a disk-resident database or dumpfile (see NWChem Architecture).
The input to NWChem is composed of commands, called directives, which define data (such as basis sets, geometries, and filenames) and the actions to be performed on that data. Directives are processed in the order presented in the input file, with the exception of certain start-up directives (see Input File Structure) which provide critical job control information, and are processed before all other input. Most directives are specific to a particular module and define data that is used by that module only. A few directives (see Top-level Directives) potentially affect all modules, for instance by specifying the total electric charge on the system.
There are two types of directives. Simple directives consist of one line of input, which may contain multiple fields. Compound directives group together multiple simple directives that are in some way related and are terminated with an END directive. See the sample inputs (Simple Input File and Water Molecule Input) and the input syntax specification (Input Format and Syntax for Directives).
All input is free format and case is ignored except for actual data (e.g., names/tags of centers, titles). Directives or blocks of module-specific directives (i.e., compound directives) can appear in any order, with the exception of the TASK directive (see Input File Structure and Tasks) which is used to invoke an NWChem module. All input for a given task must precede the TASK directive. This input specification rule allows the concatenation of multiple tasks in a single NWChem input file.
To make the input as short and simple as possible, most options have default values. The user needs to supply input only for those items that have no defaults, or for items that must be different from the defaults for the particular application. In the discussion of each directive, the defaults are noted, where applicable.
The input file structure is described in the following sections, and illustrated with two examples. The input format and syntax for directives is also described in detail.
"},{"location":"Getting-Started.html#nwchemrc-for-environment-variables-and-libraries","title":".nwchemrc for environment variables and libraries","text":"Each user should have a .nwchemrc
file to point to default data files, such as basis sets, pseudopotentials, and MD potentials.
Contents of the default.nwchemrc file based on the above information should be:
nwchem_basis_library <location of NWChem installation>/src/basis/libraries/ \n nwchem_nwpw_library <location of NWChem installation>/src/nwpw/libraryps/ \n ffield amber \n amber_1 <location of NWChem installation>/src/data/amber_s/ \n amber_2 <location of NWChem installation>/src/data/amber_q/ \n amber_3 <location of NWChem installation>/src/data/amber_x/ \n amber_4 <location of NWChem installation>/src/data/amber_u/ \n spce <location of NWChem installation>/src/data/solvents/spce.rst \n charmm_s <location of NWChem installation>/src/data/charmm_s/ \n charmm_x <location of NWChem installation>/src/data/charmm_x/\n
It is can also be useful to use the NWCHEM_BASIS_LIBRARY environment variable when testing a new libraries in your own directory. This will allow you to overwrite the value of nwchem_basis_library in your .nwchemrc file and point to the new basis library. For example:
% setenv NWCHEM_BASIS_LIBRARY \"$NWCHEM/data-5.0/libraries/\"\n
Do not forget the trailing \"/\"
.
The structure of an input file reflects the internal structure of NWChem. At the beginning of a calculation, NWChem needs to determine how much memory to use, the name of the database, whether it is a new or restarted job, where to put scratch/permanent files, etc.. It is not necessary to put this information at the top of the input file, however. NWChem will read through the entire input file looking for the start-up directives. In this first pass, all other directives are ignored.
The start-up directives are
START \nRESTART \nSCRATCH_DIR \nPERMANENT_DIR \nMEMORY \nECHO\n
After the input file has been scanned for the start-up directives, it is rewound and read sequentially. Input is processed either by the top-level parser (for the directives listed in Top-level Directives, such as TITLE, SET, \u2026) or by the parsers for specific computational modules (e.g., SCF, DFT, \u2026). Any directives that have already been processed (e.g., MEMORY) are ignored. Input is read until a TASK directive (see Tasks) is encountered. A TASK directive requests that a calculation be performed and specifies the level of theory and the operation to be performed. Input processing then stops and the specified task is executed. The position of the TASK directive in effect marks the end of the input for that task. Processing of the input resumes upon the successful completion of the task, and the results of that task are available to subsequent tasks in the same input file.
The name of the input file is usually provided as an argument to the execute command for NWChem. That is, the execute command looks something like the following
nwchem input_file\n
The default name for the input file is nwchem.nw
. If an input file name input_file
is specified without an extension, the code assumes .nw as a default extension, and the input filename becomes input_file.nw
. If the code cannot locate a file named either input_file
or input_file.nw
(or nwchem.nw if no file name is provided), an error is reported and execution terminates. The following section presents two input files to illustrate the directive syntax and input file format for NWChem applications.
A simple example of an NWChem input file is an SCF geometry optimization of the nitrogen molecule, using a Dunning cc-pvdz basis set. This input file contains the bare minimum of information the user must specify to run this type of problem \u2013 fewer than ten lines of input, as follows:
title \"Nitrogen cc-pvdz SCF geometry optimization\" \n geometry \n n 0 0 0 \n n 0 0 1.08 \n end \n basis \n n library cc-pvdz \n end \n task scf optimize\n
Examining the input line by line, it can be seen that it contains only four directives; TITLE, GEOMETRY, BASIS, and TASK. The TITLE directive is optional, and is provided as a means for the user to more easily identify outputs from different jobs. An initial geometry is specified in Cartesian coordinates and Angstr\u00f8ms by means of the GEOMETRY directive. The Dunning cc-pvdz basis is obtained from the NWChem basis library, as specified by the BASIS directive input. The TASK directive requests an SCF geometry optimization.
The GEOMETRY directive defaults to Cartesian coordinates and Angstr\u00f8ms (options include atomic units and Z-matrix format). The input blocks for the BASIS and GEOMETRY directives are structured in similar fashion, i.e., name, keyword, \u2026, end (In this simple example, there are no keywords). The BASIS input block must contain basis set information for every atom type in the geometry with which it will be used. Refer to Basis for a description of available basis sets and a discussion of how to define new ones.
The last line of this sample input file (task scf optimize) tells the program to optimize the molecular geometry by minimizing the SCF energy. (For a description of possible tasks and the format of the TASK directive, refer to Tasks)
If the input is stored in the file n2.nw
, the command to run this job on a typical UNIX workstation is as follows:
nwchem n2\n
NWChem output is to UNIX standard output, and error messages are sent to both standard output and standard error.
"},{"location":"Getting-Started.html#water-molecule-sample-input-file","title":"Water Molecule Sample Input File","text":"A more complex sample problem is the optimization of a positively charged water molecule using second-order M\u00f8ller-Plesset perturbation theory (MP2), followed by a computation of frequencies at the optimized geometry. A preliminary SCF geometry optimization is performed using a computationally inexpensive basis set (STO-3G). This yields a good starting guess for the optimal geometry, and any Hessian information generated will be used in the next optimization step. Then the optimization is finished using MP2 and a basis set with polarization functions. The final task is to calculate the MP2 vibrational frequencies. The input file to accomplish these three tasks is as follows:
start h2o_freq \ncharge 1 \ngeometry units angstroms \n O 0.0 0.0 0.0 \n H 0.0 0.0 1.0 \n H 0.0 1.0 0.0 \nend \nbasis \n H library sto-3g \n O library sto-3g \nend \nscf \n uhf; doublet \n print low \nend \ntitle \"H2O+ : STO-3G UHF geometry optimization\" \ntask scf optimize \nbasis \n H library 6-31g** \n O library 6-31g** \nend \ntitle \"H2O+ : 6-31g** UMP2 geometry optimization\" \ntask mp2 optimize \nmp2; print none; end \nscf; print none; end \ntitle \"H2O+ : 6-31g** UMP2 frequencies\" \ntask mp2 freq\n
The START directive (START/RESTART tells NWChem that this run is to be started from the beginning. This directive need not be at the beginning of the input file, but it is commonly placed there. Existing database or vector files are to be ignored or overwritten. The entry h2o_freq on the START line is the prefix to be used for all files created by the calculation. This convention allows different jobs to run in the same directory or to share the same scratch directory SCRATCH_DIR/PERMANENT_DIR, as long as they use different prefix names in this field.
As in the first sample problem, the geometry is given in Cartesian coordinates. In this case, the units are specified as Angstr\u00f8ms. (Since this is the default, explicit specification of the units is not actually necessary, however.) The CHARGE directive defines the total charge of the system. This calculation is to be done on an ion with charge +1.
A small basis set (STO-3G) is specified for the intial geometry optimization. Next, the multiple lines of the first SCF directive in the scf \u2026end block specify details about the SCF calculation to be performed. Unrestricted Hartree-Fock is chosen here (by specifying the keyword uhf), rather than the default, restricted open-shell high-spin Hartree-Fock (ROHF). This is necessary for the subsequent MP2 calculation, because only UMP2 is currently available for open-shell systems (see Section 4). For open-shell systems, the spin multiplicity has to be specified (using doublet in this case), or it defaults to singlet. The print level is set to low to avoid verbose output for the starting basis calculations.
All input up to this point affects only the settings in the runtime database. The program takes its information from this database, so the sequence of directives up to the first TASK directive is irrelevant. An exchange of order of the different blocks or directives would not affect the result. The TASK directive, however, must be specified after all relevant input for a given problem. The TASK directive causes the code to perform the specified calculation using the parameters set in the preceding directives. In this case, the first task is an SCF calculation with geometry optimization, specified with the input scf and optimize. (See Tasks for a list of available tasks and operations.)
After the completion of any task, settings in the database are used in subsequent tasks without change, unless they are overridden by new input directives. In this example, before the second task (task mp2 optimize), a better basis set (6-31G**) is defined and the title is changed. The second TASK directive invokes an MP2 geometry optimization.
Once the MP2 optimization is completed, the geometry obtained in the calculation is used to perform a frequency calculation. This task is invoked by the keyword freq in the final TASK directive, task mp2 freq. The second derivatives of the energy are calculated as numerical derivatives of analytical gradients. The intermediate energies and gradients are not of interest in this case, so output from the SCF and MP2 modules is disabled with the PRINT directives.
"},{"location":"Getting-Started.html#input-format-and-syntax-for-directives","title":"Input Format and Syntax for Directives","text":"This section describes the input format and the syntax used in the rest of this documentation to describe the format of directives. The input format for the directives used in NWChem is similar to that of UNIX shells, which is also used in other chemistry packages, most notably GAMESS-UK. An input line is parsed into whitespace (blanks or tabs) separating tokens or fields. Any token that contains whitespace must be enclosed in double quotes in order to be processed correctly. For example, the basis set with the descriptive name modified Dunning DZ must appear in a directive as \u201cmodified Dunning DZ\u201d, since the name consists of three separate words.
"},{"location":"Getting-Started.html#input-format","title":"Input Format","text":"A (physical) line in the input file is terminated with a newline character (also known as a `return\u2019 or `enter\u2019 character). A semicolon (;) can be also used to indicate the end of an input line, allowing a single physical line of input to contain multiple logical lines of input. For example, five lines of input for the GEOMETRY directive can be entered as follows;
geometry \n O 0 0 0 \n H 0 1.430 1.107 \n H 0 -1.430 1.107 \n end\n
These same five lines could be entered on a single line, as
geometry; O 0 0 0; H 0 1.430 1.107; H 0 -1.430 1.107; end\n
This one physical input line comprises five logical input lines. Each logical or physical input line must be no longer than 1023 characters.
In the input file:
\\
(backslash) at the end of a line concatenates it with the next line. Note that a space character is automatically inserted at this point so that it is not possible to split tokens across lines. A backslash is also used to quote special characters such as whitespace, semi-colons, and hash symbols so as to avoid their special meaning (NOTE: these special symbols must be quoted with the backslash even when enclosed within double quotes).;
(semicolon) is used to mark the end of a logical input line within a physical line of input.#
(the hash or pound symbol) is the comment character. All characters following #
(up to the end of the physical line) are ignored.Directives consist of a directive name, keywords, and optional input, and may contain one line or many. Simple directives consist of a single line of input with one or more fields. Compound directives can have multiple input lines, and can also include other optional simple and compound directives. A compound directive is terminated with an END directive. The directives START (see START/RESTART) and ECHO (see ECHO) are examples of simple directives. The directive GEOMETRY (see Geometry) is an example of a compound directive.
Some limited checking of the input for self-consistency is performed by the input module, but most defaults are imposed by the application modules at runtime. It is therefore usually impossible to determine beforehand whether or not all selected options are consistent with each other.
In the rest of this document, the following notation and syntax conventions are used in the generic descriptions of the NWChem input.
<input_filename>
, <basisname>
, <tag>
).$variable$
is used to indicate the substitution of the value of a variable.()
is used to group items (the parentheses and other special symbols should not appear in the input).||
separate exclusive options, parameters, or formats.[ ]
enclose optional entries that have a default value.< >
enclose a type, a name of a value to be specified, or a default value, if any.\\
is used to concatenate lines in a description....
is used to indicate indefinite continuation of a list.An input parameter is identified in the description of the directive by prefacing the name of the item with the type of data expected, i.e.,
If an input item is not prefaced by one of these type names, it is assumed to be of type ``string\u2019\u2018.
In addition, integer lists may be specified using Fortran triplet notation, which interprets lo:hi:inc as lo, lo+inc, lo+2*inc, \u2026, hi. For example, where a list of integers is expected in the input, the following two lines are equivalent
7 10 21:27:2 1:3 99 \n 7 10 21 23 25 27 1 2 3 99\n
(In Fortran triplet notation, the increment, if unstated, is 1; e.g., 1:3 = 1:3:1.)
The directive VECTORS is presented here as an example of an NWChem input directive. The general form of the directive is as follows:
VECTORS [input (<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>)] \\ \n [swap [(alpha||beta)] <integer vec1 vec2> ...] \\ \n [output <string output_movecs default $file_prefix$.movecs>]\n
This directive contains three optional keywords, as indicated by the three main sets of square brackets enclosing the keywords input, swap, and output. The keyword input allows the user to specify the source of the molecular orbital vectors. There are two mutually exclusive options for specifying the vectors, as indicated by the || symbol separating the option descriptions;
(<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>) \\\n
The first option, <string input_movecs default atomic>
, can be used to specify an ASCII character string for the parameter input_movecs
. If no entry is specified, the code uses the default atomic
(i.e., atomic guess). The second option, project <string basisname> <string filename>
, contains the keyword project
, which takes two string arguments. When this keyword is used, the vectors in file <filename>
will be projected from the (smaller) basis <basisname>
into the current atomic orbital (AO) basis.
The second keyword, swap
, can be used to re-order the starting vectors, specifying the pairs of vectors to be swapped. As many pairs as the user wishes to have swapped can be listed for . The optional keywords alpha and beta allow the user to swap the alpha or beta spin orbitals.
The third keyword, output
, allows the user to tell the code where to store the vectors, by specifying an ASCII string for the parameter output_movecs
. If no entry is specified for this parameter, the default is to write the vectors back into either the user- specified MO vectors input file or, if this is not available, the file $file_prefix$.movecs
.
A particular example of the VECTORS directive is shown below. It specifies both the input and output keywords, but does not use the swap option.
vectors input project \"small basis\" small_basis.movecs \\\n output large_basis.movecs\n
This directive tells the code to generate input vectors by projecting from vectors in a smaller basis named \u201csmall basis\u201d, which is stored in the file small_basis.movecs
. The output vectors will be stored in the file large_basis.movecs
.
The order of keyed optional entries within a directive should not matter, unless noted otherwise in the specific instructions for a particular directive.
"},{"location":"Guidelines-for-Authors.html","title":"TO BE REVISED. MOST OF THE CONTENT HERE IS OBSOLETE","text":"The current wiki has been created to provide documentation related to NWChem. This includes the user manual, tutorials and common practices, as well as programmer references, as well as other useful information. In order to make this wiki as useful as possible to the NWChem community a certain level of consistency of style is useful. To asist with this and beause of the nature of the subject matter of this specific wiki a number of tools and extensions have been selected to help document relevant aspects. These tools and suggestions for their use will be discussed here as well. Obviously for general information on these tools external references will be used.
"},{"location":"Guidelines-for-Authors.html#tools","title":"Tools","text":"This wiki has a number of extensions installed to facilitate the documentation process for which it is intended. The configuration of the wiki installation can found at Special:Version. For the purpose of this wiki there are a number of aspects that are relevant. These include Links, Picturs.
"},{"location":"Guidelines-for-Authors.html#links","title":"Links","text":""},{"location":"Guidelines-for-Authors.html#intra-wiki-links-to-other-pages","title":"Intra wiki links to other pages","text":""},{"location":"Guidelines-for-Authors.html#pictures","title":"Pictures","text":"There are a variety of situations where the best way to show something is to provide a picture. In order to do this the image file has to be uploaded (see the Upload page) to the wiki server. Next a link on the wiki page to the image file has be included. In order to avoid trampling over previously uploaded image files it is recommended to check the list of previously uploaded files at the ListFiles page.
As an example the (old) NWChem logo image is used. First the picture was included on with wiki page using
[[file:Nwchem_logo_dark.png|NWChem\u00a0logo]]
to give
NWChem`` ``logo
Alternatively the construct
[[media:Nwchem_logo_dark.png]]
gives
media:Nwchem_logo_dark.png
The effort to add movies to the Wiki pages is under development.
Media:Eric.mpg
Eric.mpg
"},{"location":"Guidelines-for-Authors.html#counters","title":"Counters","text":"Below is a list of files and the number of times they have been downloaded.
All Releases Downloads
Latest Release Downloads
Total Pre-Releases Downloads
v6.8-beta.3 Downloads
v6.8 Downloads
"},{"location":"Guidelines-for-Authors.html#references","title":"References","text":""},{"location":"Hartree-Fock-Theory-for-Molecules.html","title":"Hartree-Fock","text":""},{"location":"Hartree-Fock-Theory-for-Molecules.html#overview","title":"Overview","text":"The NWChem self-consistent field (SCF) module computes closed-shell restricted Hartree-Fock (RHF) wavefunctions, restricted high-spin open-shell Hartree-Fock (ROHF) wavefunctions, and spin-unrestricted Hartree-Fock (UHF) wavefunctions. The Hartree-Fock equations are solved using a conjugate-gradient method with an orbital Hessian based preconditioner1. The module supports both replicated data and distributed data Fock builders2.
The SCF directive provides input to the SCF module and is a compound directive that encloses additional directives specific to the SCF module:
SCF\n ... \n END\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#wavefunction-type","title":"Wavefunction type","text":"A spin-restricted, closed shell RHF calculation is performed by default. An error results if the number of electrons is inconsistent with this assumption. The number of electrons is inferred from the total charge on the system and the sum of the effective nuclear charges of all centers (atoms and dummy atoms, see GEOMETRY). The total charge on the system is zero by default, unless specified at some value by input on the CHARGE directive Total system charge.
The options available to define the SCF wavefunction and multiplicity are as follows:
SINGLET \n DOUBLET \n TRIPLET \n QUARTET \n QUINTET \n SEXTET\n SEPTET\n OCTET\n NOPEN <integer nopen default 0>\n RHF\n ROHF\n UHF\n
The optional keywords SINGLET, DOUBLET, \u2026, OCTET and NOPEN allow the user to specify the number of singly occupied orbitals for a particular calculation. SINGLET is the default, and specifies a closed shell; DOUBLET specifies one singly occupied orbital; TRIPLET specifies two singly occupied orbitals; and so forth. If there are more than seven singly occupied orbitals, the keyword NOPEN must be used, with the integer nopen defining the number of singly occupied orbitals (sometimes referred to as open shells).
If the multiplicity is any value other than SINGLET, the default calculation will be a spin-restricted, high-spin, open-shell SCF calculation (keyword ROHF). The open-shell orbitals must be the highest occupied orbitals. If necessary, any starting vectors may be rearranged through the use of the SWAP keyword on the VECTORS directive to accomplish this.
A spin-unrestricted solution can also be performed by specifying the keyword UHF. In UHF calculations, it is assumed that the number of singly occupied orbitals corresponds to the difference between the number of alpha-spin and beta-spin orbitals. For example, a UHF calculation with 2 more alpha-spin orbitals than beta-spin orbitals can be obtained by specifying
scf \n triplet ; uhf # (Note: two logical lines of input) \n ... \n end\n
The user should be aware that, by default, molecular orbitals are symmetry adapted in NWChem. This may not be desirable for fully unrestricted wavefunctions. In such cases, the user has the option of defeating the defaults by specifying the keywords ADAPT OFF and SYM OFF .
The keywords RHF and ROHF are provided in the code for completeness. It may be necessary to specify these in order to modify the behavior of a previous calculation (see NWChem Architecture for restart behavior).
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#sym-use-of-symmetry","title":"SYM: use of symmetry","text":" SYM <string (ON||OFF) default ON>\n
This directive enables/disables the use of symmetry to speed up Fock matrix construction (via the petite-list or skeleton algorithm) in the SCF, if symmetry was used in the specification of the geometry. Symmetry adaptation of the molecular orbitals is not affected by this option. The default is to use symmetry if it is specified in the geometry directive.
For example, to disable use of symmetry in Fock matrix construction:
sym off\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#adapt-symmetry-adaptation-of-mos","title":"ADAPT: symmetry adaptation of MOs","text":" ADAPT <string (ON||OFF) default ON>\n
The default in the SCF module calculation is to force symmetry adaption of the molecular orbitals. This does not affect the speed of the calculation, but without explicit adaption the resulting orbitals may be symmetry contaminated for some problems. This is especially likely if the calculation is started using orbitals from a distorted geometry.
The underlying assumption in the use of symmetry in Fock matrix construction is that the density is totally symmetric. If the orbitals are symmetry contaminated, this assumption may not be valid \u2013 which could result in incorrect energies and poor convergence of the calculation. It is thus advisable when specifying ADAPT OFF
to also specify SYM OFF
(Use of Symmetry).
TOL2E <real tol2e default min(10e-7 , 0.01*thresh)>\n
The variable tol2e is used in determining the integral screening threshold for the evaluation of the energy and related Fock-like matrices. The Schwarz inequality is used to screen the product of integrals and density matrices in a manner that results in an accuracy in the energy and Fock matrices that approximates the value specified for tol2e
.
It is generally not necessary to set this parameter directly. Specify instead the required precision in the wavefunction, using the THRESH
directive (Convergence threshold). The default threshold is the minimum of 10-7 and 0.01 times the requested convergence threshold for the SCF calculation (Convergence threshold).
The input to specify the threshold explicitly within the SCF directive is, for example:
tol2e 1e-9\n
For very diffuse basis sets, or for high-accuracy calculations it might be necessary to set this parameter. A value of 10-12 is sufficient for nearly all such purposes.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-inputoutput-of-mo-vectors","title":"VECTORS: input/output of MO vectors","text":" VECTORS [[input] (<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>) || \\ \n (fragment <string file1> [<string file2> ...])] \\ \n [swap [alpha||beta] <integer vec1 vec2> ...] \\ \n [reorder <integer atom1 atom2> ...] \\ \n [output <string output_filename default input_movecs>] \\ \n [lock] \n [rotate <string input_geometry> <string input_movecs>]\n
The VECTORS directive allows the user to specify the source and destination of the molecular orbital vectors. In a startup calculation (see START), the default source for guess vectors is a diagonalized Fock matrix constructed from a superposition of the atomic density matrices for the particular problem. This is usually a very good guess. For a restarted calculation, the default is to use the previous MO vectors.
The optional keyword INPUT allows the user to specify the source of the input molecular orbital vectors as any of the following:
ATOMIC
\u2013 eigenvectors of a Fock-like matrix formed from a superposition of the atomic densities (the default guess). See Atomic guess and Accuracy of initial guess.HCORE
\u2013 eigenvectors of the bare-nucleus Hamiltonian or the one-electron Hamiltonian.PROJECT basisname filename
\u2013 projects the existing MO vectors in the file filename from the smaller basis with name basisname into the current basis. The definition of the basis basisname must be available in the current database, and the basis must be smaller than the current basis. In addition, the geometry used for the previous calculations must have the atoms in the same order and in the same orientation as the current geometry.FRAGMENT file1 ...
\u2013 assembles starting MO vectors from previously performed calculations on fragments of the system and is described in more detail in Superposition of fragment molecular orbitals. Even though there are some significant restrictions in the use of the initial implementation of this method, this is the most powerful initial guess option within the code. It is very effective for open shell metallic systems.ROTATE input_geometry input_movecs
\u2013 rotates MO vectors generated at a previous geometry to the current active geometry.The molecular orbitals are saved every iteration if more than 600 seconds have elapsed, and also at the end of the calculation. At completion (converged or not), the SCF module always canonically transforms the molecular orbitals by separately diagonalizing the closed-closed, open-open, and virtual-virtual blocks of the Fock matrix.
The name of the file used to store the MO vectors is determined as follows:
OUTPUT
keyword was specified on the VECTORS
directive, then the filename that follows this keyword is used, orThe name of this file is stored in the database so that a subsequent SCF calculation will automatically restart from these MO vectors.
Applications of this directive are illustrated in the following examples.
Example 1:
vectors output h2o.movecs\n
Assuming a start-up calculation, this directive will result in use of the default atomic density guess, and will output the vectors to the file h2o.movecs.
Example 2:
vectors input initial.movecs output final.movecs\n
This directive will result in the initial vectors being read from the file \u201cinitial.movecs\u201d. The results will be written to the file final.movecs. The contents of \u201cinitial.movecs\u201d will not be changed.
Example 3:
vectors input project \"small basis\" small.movecs\n
This directive will cause the calculation to start from vectors in the file \u201csmall.movecs\u201d which are in a basis named \u201csmall basis\u201d. The output vectors will be written to the default file \u201c\u201c."},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-swap-keyword","title":"VECTORS SWAP keyword","text":"
Once starting vectors have been obtained using any of the possible options, they may be reordered through use of the SWAP keyword. This optional keyword requires a list of orbital pairs that will be swapped. For UHF calculations, separate SWAP keywords may be provided for the alpha and beta orbitals, as necessary.
An example of use of the SWAP directive:
vectors input try1.movecs swap 173 175 174 176 output try2.movecs\n
This directive will cause the initial orbitals to be read from the file \u201ctry1.movecs\u201d. The vectors for the orbitals within the pairs 173-175 will be swapped with those within 174-176, so the resulting order is 175, 176, 173, 174. The final orbitals obtained in the calculation will be written to the file \u201ctry2.movecs\u201d.
The swapping of orbitals occurs as a sequential process in the order (left to right) input by the user. Thus, regarding each pair as an elementary transposition it is possible to construct arbitrary permutations of the orbitals. For instance, to apply the permutation (6 7 8 9)
we note that this permutation is equal to (6 7)(7 8)(8 9)
, and thus may be specified as
vectors swap 8 9 7 8 6 7\n
Another example, now illustrating this feature for a UHF calculation, is the directive
vectors swap beta 4 5 swap alpha 5 6\n
This input will result in the swapping of the 5-6 alpha orbital pair and the 4-5 beta orbital pair. (All other items in the input use the default values.)
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-lock-keyword","title":"VECTORS LOCK keyword","text":"The LOCK keyword allows the user to specify that the ordering of orbitals will be locked to that of the initial vectors, insofar as possible. The default is to order by ascending orbital energies within each orbital space. One application where locking might be desirable is a calculation where it is necessary to preserve the ordering of a previous geometry, despite flipping of the orbital energies. For such a case, the LOCK directive can be used to prevent the SCF calculation from changing the ordering, even if the orbital energies change.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-reorder-keyword","title":"VECTORS REORDER keyword","text":"The mapping of the MO\u2019s to the nuclei can be changed using the REORDER keyword. Once starting vectors have been obtained using any of the possible options, the REORDER keyword moves the MO coefficients between atoms listed in the integer list. This keyword is particularly useful for calculating localized electron and hole states.
This optional keyword requires a list containing the new atom ordering. It is not necessary to provide separate lists for alpha and beta orbitals.
An example of use of the REORDER keyword:
vectors input try1.movecs reorder 2 1 output try2.movecs\n
This directive will cause the initial orbitals to be read from the file \u201ctry1.movecs\u201d. The MO coefficients for the basis functions on atom 2 will be swapped with those on atom 1. The final orbitals obtained in the calculation will be written to the file \u201ctry2.movecs\u201d.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-rotate-keyword","title":"VECTORS ROTATE keyword","text":"The following example shows how the ROTATE keyword can be used to rotate MO vectors calculated at geometry geom1
to geometry geom2
, which has a different rotational orientation:
set geometry geom1\ndft\n vectors input atomic output geom1.mo\nend\ntask dft\nset geometry geom2\ndft\n vectors input rotate geom1 geom1.mo output geom2.mo\nend\ntask dft\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-fragment-superposition-of-fragment-molecular-orbitals","title":"VECTORS FRAGMENT: Superposition of fragment molecular orbitals","text":"The fragment initial guess is particularly useful in the following instances:
VECTORS [input] fragment <string file1> [<string file2> ...]\n
The molecular orbitals are formed by superimposing the previously generated orbitals of fragments of the molecule being studied. These fragment molecular orbitals must be in the same basis as the current calculation. The input specifies the files containing the fragment molecular orbitals. For instance, in a calculation on the water dimer, one might specify
vectors fragment h2o1.movecs h2o2.movecs\n
where h2o1.movecs contains the orbitals for the first fragment, and h2o2.movecs contains the orbitals for the second fragment.
A complete example of the input for a calculation on the water dimer using the fragment guess is as follows:
start dimer\ntitle \"Water dimer SCF using fragment initial guess\"\ngeometry dimer\n O -0.595 1.165 -0.048\n H 0.110 1.812 -0.170\n H -1.452 1.598 -0.154\n O 0.724 -1.284 0.034\n H 0.175 -2.013 0.348\n H 0.177 -0.480 0.010\nend\ngeometry h2o1\n O -0.595 1.165 -0.048\n H 0.110 1.812 -0.170\n H -1.452 1.598 -0.154\nend\ngeometry h2o2\n O 0.724 -1.284 0.034\n H 0.175 -2.013 0.348\n H 0.177 -0.480 0.010\nend\nbasis\n o library 3-21g\n h library 3-21g\nend\nset geometry h2o1\nscf; vectors input atomic output h2o1.movecs; end\ntask scf\nset geometry h2o2\nscf; vectors input atomic output h2o2.movecs; end\ntask scf\nset geometry dimer\nscf\nvectors input fragment h2o1.movecs h2o2.movecs \\\n output dimer.movecs\nend\ntask scf\n
First, the geometry of the dimer and the two monomers are specified and given names. Then, after the basis specification, calculations are performed on the fragments by setting the geometry to the appropriate fragment (SET) and redirecting the output molecular orbitals to an appropriately named file. Note also that use of the atomic initial guess is forced, since the default initial guess is to use any existing MOs which would not be appropriate for the second fragment calculation. Finally, the dimer calculation is performed by specifying the dimer geometry, indicating use of the fragment guess, and redirecting the output MOs.
The following points are important in using the fragment initial guess:
VECTORS
directive.VECTORS
directive, it is usually much better to do a separate calculation for each fragment.A more involved example is now presented. We wish to model the sextet state of Fe(III) complexed with water, imidazole and a heme with a net unit positive charge. The default atomic guess does not give the correct d5 occupation for the metal and also gives an incorrect state for the double anion of the heme. The following performs calculations on all of the fragments. Things to note are:
start heme6a1\ntitle \"heme-H2O (6A1) from M.Dupuis\"\n############################################################\n# Define the geometry of the full system and the fragments #\n############################################################\ngeometry full-system\n symmetry cs\n H 0.438 -0.002 4.549\n C 0.443 -0.001 3.457\n C 0.451 -1.251 2.828\n C 0.452 1.250 2.828\n H 0.455 2.652 4.586\n H 0.461 -2.649 4.586\n N1 0.455 -1.461 1.441\n N1 0.458 1.458 1.443\n C 0.460 2.530 3.505\n C 0.462 -2.530 3.506\n C 0.478 2.844 1.249\n C 0.478 3.510 2.534\n C 0.478 -2.848 1.248\n C 0.480 -3.513 2.536\n C 0.484 3.480 0.000\n C 0.485 -3.484 0.000\n H 0.489 4.590 2.664\n H 0.496 -4.592 2.669\n H 0.498 4.573 0.000\n H 0.503 -4.577 0.000\n H -4.925 1.235 0.000\n H -4.729 -1.338 0.000\n C -3.987 0.685 0.000\n N -3.930 -0.703 0.000\n C -2.678 1.111 0.000\n C -2.622 -1.076 0.000\n H -2.284 2.126 0.000\n H -2.277 -2.108 0.000\n N -1.838 0.007 0.000\n Fe 0.307 0.000 0.000\n O 2.673 -0.009 0.000\n H 3.238 -0.804 0.000\n H 3.254 0.777 0.000\nend\ngeometry ring-only\n symmetry cs\n H 0.438 -0.002 4.549\n C 0.443 -0.001 3.457\n C 0.451 -1.251 2.828\n C 0.452 1.250 2.828\n H 0.455 2.652 4.586\n H 0.461 -2.649 4.586\n N1 0.455 -1.461 1.441\n N1 0.458 1.458 1.443\n C 0.460 2.530 3.505\n C 0.462 -2.530 3.506\n C 0.478 2.844 1.249\n C 0.478 3.510 2.534\n C 0.478 -2.848 1.248\n C 0.480 -3.513 2.536\n C 0.484 3.480 0.000\n C 0.485 -3.484 0.000\n H 0.489 4.590 2.664\n H 0.496 -4.592 2.669\n Bq 0.307 0.0 0.0 charge 2 # simulate the iron\nend\ngeometry imid-only\n symmetry cs\n H 0.498 4.573 0.000\n H 0.503 -4.577 0.000\n H -4.925 1.235 0.000\n H -4.729 -1.338 0.000\n C -3.987 0.685 0.000\n N -3.930 -0.703 0.000\n C -2.678 1.111 0.000\n C -2.622 -1.076 0.000\n H -2.284 2.126 0.000\n H -2.277 -2.108 0.000\n N -1.838 0.007 0.000\nend\ngeometry fe-only\n symmetry cs\n Fe .307 0.000 0.000\nend\ngeometry water-only\n symmetry cs\n O 2.673 -0.009 0.000\n H 3.238 -0.804 0.000\n H 3.254 0.777 0.000\nend\n############################\n# Basis set for everything #\n############################\nbasis nosegment\n O library 6-31g*\n N library 6-31g*\n C library 6-31g*\n H library 6-31g*\n Fe library \"Ahlrichs pVDZ\"\nend\n##########################################################\n# SCF on the fragments for initial guess for full system #\n##########################################################\nscf; thresh 1e-2; end\nset geometry ring-only\nscf; vectors atomic swap 80 81 output ring.mo; end\ntask scf\nset geometry water-only\nscf; vectors atomic output water.mo; end\ntask scf\nset geometry imid-only\nscf; vectors atomic output imid.mo; end\ntask scf\ncharge 3\nset geometry fe-only\nscf; sextet; vectors atomic output fe.mo; end\ntask scf\n##########################\n# SCF on the full system #\n##########################\nunset scf:* # This restores the defaults\ncharge 1\nset geometry full-system\nscf\n sextet\n vectors fragment ring.mo imid.mo fe.mo water.mo\n maxiter 50\nend\ntask scf\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#example-of-projecting-smaller-basis-into-larger-basis","title":"Example of projecting smaller basis into larger basis","text":"Key ingredient needed: definition of both the smaller and the larger basis set, plus mention of the small basis set in the \u201cinput project
\u201d line.
start he\n\n geometry\n he 0 0 0\n symmetry oh\n end\n\n basis small\n * library sto-3g\n end\n basis large\n * library 3-21g\n end\n\n set \"ao basis\" small\n scf\n vectors input atomic output small.mos\n end\n task scf \n\n set \"ao basis\" large\n scf\n vectors input project small small.mos output large.mos\n end\n task scf\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#atomic-guess-orbitals-with-charged-atoms","title":"Atomic guess orbitals with charged atoms","text":"As noted above, the default guess vectors are based on superimposing the density matrices of the neutral atoms. If some atoms are significantly charged, this default guess may be improved upon by modifying the atomic densities. This is done by setting parameters that add fractional charges to the occupation of the valence atomic orbitals. Since the atomic SCF program does not have its own input block, the SET directive (SET) must be used to set these parameters.
The input specifies a list of tags (i.e., names of atoms in a geometry, see GEOMETRY) and the charges to be added to those centers. Two parameters must be set as follows:
set atomscf:tags_z <string list_of_tags> \n set atomscf:z <real list_of_charges>\n
The array of strings atomscf:tags_z should be set to the list of tags, and the array atomscf:z should be set to the list of charges which must be real numbers (not integers). All atoms that have a tag specified in the list of tags will be assigned the corresponding charge from the list of charges.
For example, the following specifies that all oxygen atoms with tag O be assigned a charge of -1 and all iron atoms with tag Fe be assigned a charge of +2
set atomscf:z -1 2.0 \n set atomscf:tags_z O Fe\n
There are some limitations to this feature. It is not possible to add electrons to closed shell atoms, nor is it possible to remove all electrons from a given atom. Attempts to do so will cause the code to report an error, and it will not report further errors in the input for modifying the charge even when they are detected.
Finally, recall that the database is persistent (Data persistence) and that the modified settings will be used in subsequent atomic guess calculations unless the data is deleted from the database with the UNSET directive (UNSET).
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#accuracy-of-initial-guess","title":"Accuracy of initial guess","text":"For SCF, the initial Fock-matrix construction from the atomic guess is performed to a default precision of 1e-7. However, other wavefunctions, notably DFT, use a lower precision. In charged, or diffuse basis sets, this precision may not be sufficient and could result in incorrect ordering of the initial orbitals. The accuracy may be increased with the following directive which should be inserted in the top-level of input (i.e., outside of the SCF input block) and before the TASK directive.
set tolguess 1e-7\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#thresh-convergence-threshold","title":"THRESH \u2013 convergence threshold","text":" THRESH <real thresh default 1.0e-4>\n
This directive specifies the convergence threshold for the calculation. The convergence threshold is the norm of the orbital gradient, and has a default value in the code of 10-4.
The norm of the orbital gradient corresponds roughly to the precision available in the wavefunction, and the energy should be converged to approximately the square of this number. It should be noted, however, that the precision in the energy will not exceed that of the integral screening tolerance. This tolerance (Integral screening threshold) is automatically set from the convergence threshold, so that sufficient precision is usually available by default.
The default convergence threshold suffices for most SCF energy and geometry optimization calculations, providing about 6-8 decimal places in the energy, and about four significant figures in the density and energy derivative with respect to nuclear coordinates. However, greater precision may be required for calculations involving weakly interacting systems, floppy molecules, finite-difference of gradients to compute the Hessian, and for post-Hartree-Fock calculations. A threshold of 10-6 is adequate for most such purposes, and a threshold of 10-8 might be necessary for very high accuracy or very weak interactions. A threshold of 10-8 should be regarded as the best that can be attained in most circumstances.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#maxiter-iteration-limit","title":"MAXITER \u2013 iteration limit","text":" MAXITER <integer maxiter default 8>\n
The maximum number of iterations for the SCF calculation defaults to 20 for both ROHF/RHF and UHF calculations. For most molecules, this number of iterations is more than sufficient for the quadratically convergent SCF algorithm to obtain a solution converged to the default threshold (see Convergence threshold above). If the SCF program detects that the quadratically convergent algorithm is not efficient, then it will resort to a linearly convergent algorithm and increase the maximum number of iterations by 10.
Convergence may not be reached in the maximum number of iterations for many reasons, including input error (e.g., an incorrect geometry or a linearly dependent basis), a very low convergence threshold, a poor initial guess, or the fact that the system is intrinsically hard to converge due to the presence of many states with similar energies.
The following sets the maximum number of SCF iterations to 50:
maxiter 50\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#profile-performance-profile","title":"PROFILE \u2013 performance profile","text":"This directive allows the user to obtain timing and parallel execution information about the SCF module. It is specified by the simple keyword
PROFILE\n
This option can be helpful in understanding the computational performance of an SCF calculation. However, it can introduce a significant overhead on machines that have expensive timing routines, such as the SUN.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#diis-diis-convergence","title":"DIIS \u2013 DIIS convergence","text":"This directive allows the user to specify DIIS convergence rather than second-order convergence for the SCF calculation. The form of the directive is as follows:
DIIS\n
The implementation of this option is currently fairly rudimentary. It does not have level-shifting and damping, and does not support open shells or UHF. It is provided on an \u201cas is\u201d basis, and should be used with caution.
When the DIIS directive is specified in the input, the user has the additional option of specifying the size of the subspace for the DIIS extrapolation. This is accomplished with the DIISBAS directive, which is of the form:
DIISBAS <integer diisbas default 5>\n
The default of 5 should be adequate for most applications, but may be increased if convergence is poor. On large systems, it may be necessary to specify a lower value for diisbas, to conserve memory.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#direct-and-semidirect-recomputation-of-integrals","title":"DIRECT and SEMIDIRECT: recomputation of integrals","text":"In the context of SCF calculations direct means that all integrals are recomputed as required and none are stored. The other extreme are disk- or memory-resident (sometimes termed conventional) calculations in which all integrals are computed once and stored. Semi-direct calculations are between these two extremes with some integrals being precomputed and stored, and all other integrals being recomputed as necessary.
The default behavior of the SCF module is
The integral file is deleted at the end of a calculation, so it is not possible to restart a semidirect calculation when the integrals are cached in memory or on disk. Many modern computer systems clear the fast scratch space at the end of each job, adding a further complication to the problem of restarting a parallel semidirect calculation.
A fully direct calculation (with recomputation of the integrals at each iteration) is forced by specifying the directive
DIRECT\n
Alternatively, the SEMIDIRECT directive can be used to control the default semidirect calculation by defining the amount of disk space and the cache memory size. The form of this directive is as follows:
SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$]\n
The keyword FILESIZE allows the user to specify the amount of disk space to be used per process for storing the integrals in 64-bit words. Similarly, the keyword MEMSIZE allows the user to specify the number of 64-bit words to be used per process for caching integrals in memory. (Note: If the amount of storage space specified by the entry for memsize is not available, the code cuts the value in half and checks again for available space. This process is repeated until the request is satisfied.)
By default, the integral files are placed into the scratch directory (see File directories). Specifying the keyword FILENAME overrides this default. The user-specified name entered in the string filename has the process number appended to it, so that each process has a distinct file but with a common base-name and directory. Therefore, it is not possible to use this keyword to specify different disks for different processes. The SCRATCH_DIR
directive (see File directories) can be used for this purpose.
For example, to force full recomputation of all integrals:
direct\n
Exactly the same result could be obtained by entering the directive:
semidirect filesize 0 memsize 0\n
To disable the use of memory for caching integrals and limit disk usage by each process to 100 megawords (MW):
semidirect memsize 0 filesize 100000000\n
The integral records are typically 32769 words long and any non-zero value for filesize or memsize should be enough to hold at least one record.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#integral-file-size-and-format-for-the-scf-module","title":"Integral File Size and Format for the SCF Module","text":"The file format is rather complex, since it accommodates a variety of packing and compression options and the distribution of data. This section presents some information that may help the user understand the output, and illustrates how to use the output information to estimate file sizes.
If integrals are stored with a threshold of greater than 10-10, then the integrals are stored in a 32-bit fixed-point format (with appropriate treatment for large values to retain precision). If integrals are stored with a threshold less than 10-10, however, the values are stored in 64-bit floating-point format. If a replicated-data calculation is being run, then 8 bits are used for each basis function label, unless there are more than 256 functions, in which case 16 bits are used. If distributed data is being used, then the labels are always packed to 8 bits (the distributed blocks always being less than 256; labels are relative to the start of the block).
Thus, the number (W) of 64-bit words required to store N integrals, may be computed as
no. 64-bit words labels values N 8-bit 32-bit 1.5N 16-bit 32-bit 1.5N 8-bit 64-bit 2N 16-bit 64-bitTable 1: number (W) of 64-bit words required to store N integrals
The actual number of words required can exceed this computed value by up to one percent, due to bookkeeping overhead, and because the file itself is organized into fixed-size records.
With at least the default print level, all semidirect (not direct) calculations will print out information about the integral file and the number of integrals computed. The form of this output is as follows:
Integral file = ./c6h6.aoints.0\nRecord size in doubles = 32769 No. of integs per rec = 32768\nMax. records in memory = 3 Max. records in file = 5\nNo. of bits per label = 8 No. of bits per value = 32\n#quartets = 2.0D+04 #integrals = 7.9D+05 direct = 63.6% cached = 36.4%\n
The file information above relates only to process 0. The line of information about the number of quartets, integrals, etc., is a sum over all processes.
When the integral file is closed, additional information of the following form is printed:
------------------------------------------------------------\nEAF file 0: \"./c6h6.aoints.0\" size=262152 bytes\n------------------------------------------------------------\n write read awrite aread wait\n ----- ---- ------ ----- ----\n calls: 6 12 0 0 0\n data(b): 1.57e+06 3.15e+06 0.00e+00 0.00e+00\n time(s): 1.09e-01 3.12e-02 0.00e+00\nrate(mb/s): 1.44e+01 1.01e+02\n------------------------------------------------------------\n Parallel integral file used 4 records with 0 large values\n
Again, the detailed file information relates just to process 0, but the final line indicates the total number of integral records stored by all processes.
This information may be used to optimize subsequent calculations, for instance by assigning more memory or disk space.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#scf-convergence-control-options","title":"SCF Convergence Control Options","text":"Note to users: It is desired that the SCF program converge reliably with the default options for a wide variety of molecules. In addition, it should be guaranteed to converge for any system, with sufficient iterations.
The SCF program uses a preconditioned conjugate gradient (PCG) method that is unconditionally convergent. Basically, a search direction is generated by multiplying the orbital gradient (the derivative of the energy with respect to the orbital rotations) by an approximation to the inverse of the level-shifted orbital Hessian. In the initial iterations (see Controlling the Newton-Raphson), an inexpensive one-electron approximation to the inverse orbital Hessian is used. Closer to convergence, the full orbital Hessian is used, which should provide quadratic convergence. For both the full or one-electron orbital Hessians, the inverse-Hessian matrix-vector product is formed iteratively. Subsequently, an approximate line search is performed along the new search direction. If the exact Hessian is being employed, then the line search should require a single step (of unity). Preconditioning with approximate Hessians may require additional steps, especially in the initial iterations. It is the (approximate) line search that provides the convergence guarantee. The iterations required to solve the linear equations are referred to as micro-iterations. A macro-iteration comprises both the iterative solution and a line search.
Level-shifting plays the same role in this algorithm as it does in the conventional iterative solution of the SCF equations. The approximate Hessian used for preconditioning should be positive definite. If this is not the case, then level-shifting by a positive constant (\u0394) serves to make the preconditioning matrix positive definite, by adding \u0394 to all of its eigenvalues. The level-shifts employed for the RHF orbital Hessian should be approximately four times (only twice for UHF) the value that one would employ in a conventional SCF. Level-shifting is automatically enabled in the early iterations, and the default options suffice for most test cases.
So why do things go wrong and what can be done to fix convergence problems? Most problems encountered so far arise either poor initial guesses or from small or negative eigenvalues of the orbital Hessian. The atomic orbital guess is usually very good. However, in calculations on charged systems, especially with open shells, incorrect initial occupations may result. The SCF might then converge very slowly since very large orbital rotations might be required to achieve the correct occupation or move charge large distances in the molecule. Possible actions are
Small or negative Hessian eigenvalues can occur even though the calculation seem to be close to convergence (as measured by the gradient norm, or the off-diagonal Fock matrix elements). Small eigenvalues will cause the iterative linear equation solver to converge slowly, resulting in an excessive number of micro-iterations. This makes the SCF expensive in terms of computation time, and it is possible to exceed the maximum number of iterations without achieving the accuracy required for quadratic convergence \u2013 which causes more macro-iterations to be performed.
Two main options are available when a problem will not converge: Newton-Raphson can be disabled temporarily or permanently (see Controlling the Newton-Raphson), and level-shifting can be applied to the matrix (see Level-shifting). In some cases, both options may be necessary to achieve final convergence.
If there is reason to suspect a negative eigenvalue, the first course is to disable the Newton-Raphson iteration until the solution is closer to convergence. It may be necessary to disable it completely. At some point close to convergence, the Hessian will be positive definite, so disabling Newton-Raphson should yield a solution with approximately the same convergence rate as DIIS.
If temporarily disabling Newton-Raphson is not sufficient to achieve convergence, it may be necessary to disable it entirely and apply a small level-shift to the approximate Hessian. This should improve the convergence rate of the micro-iterations and stabilize the macro-iterations. The level-shifting will destroy exact quadratic convergence, but the optimization process is automatically adjusted to reflect this by enforcing conjugacy and reducing the accuracy to which the linear equations are solved. The net result of this is that the solution will do more macro-iterations, but each one should take less time than it would with the unshifted Hessian.
The following sections describe the directives needed to disable the Newton-Raphson iteration and specify level-shifting.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#nr-controlling-the-newton-raphson","title":"NR: controlling the Newton-Raphson","text":" NR <real nr_switch default 0.1>\n
The exact orbital Hessian is adopted as the preconditioner when the maximum element of the orbital gradient is below the value specified for nr_switch. The default value is 0.1, which means that Newton-Raphson will be disabled until the maximum value of the orbital gradient (twice the largest off-diagonal Fock matrix element) is less than 0.1. To disable the Newton-Raphson entirely, the value of nr_switch must be set to zero. The directive to accomplish this is as follows:
nr 0\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#level-level-shifting-the-orbital-hessian","title":"LEVEL: level-shifting the orbital Hessian","text":"This directive allows the user to specify level-shifting to obtain a positive-definite preconditioning matrix for the SCF solution procedure. Separate level shifts can be set for the first-order convergent one-electron approximation to the Hessian used with the preconditioned conjugate gradient (PCG) method, and for the full Hessian used with the Newton-Raphson (NR) approach. It is also possible to change the level-shift automatically as the solution attains some specified accuracy. The form of the directive is as follows:
LEVEL [pcg <real initial default 20.0> \\\n [<real tol default 0.5> <real final default 0.0>]] \\\n [nr <real initial default 0.0> \\\n [<real tol default 0.0> <real final default 0.0>]]\n
This directive contains only two keywords: one for the PCG method and the other for the exact Hessian (Newton Raphson, or NR). Use of PCG or NR is determined by the input specified for nr_switch on the NR directive, Controlling the Newton-Raphson above.
Specifying the keyword pcg on the LEVEL directive allows the user to define the level shifting for the approximate (i.e., PCG) method. Specifying the keyword nr allows the user to define the level shifting for the exact Hessians. In both options, the initial level shift is defined by the value specified for the variable initial. Optionally, tol can be specified independently with each keyword to define the level of accuracy that must be attained in the solution before the level shifting is changed to the value specified by input in the real variable final. Level shifts and gradient thresholds are specified in atomic units.
For the PCG method (as specified using the keyword pcg
), the defaults for this input are 20.0 for initial, 0.5 for tol, and 0.0 for final. This means that the approximate Hessian will be shifted by 20.0 until the maximum element of the gradient falls below 0.5, at which point the shift will be set to zero.
For the exact Hessian (as specified using the keyword nr
), the defaults are all zero. The exact Hessian is usually not shifted since this destroys quadratic convergence. An example of an input directive that applies a shift of 0.2 to the exact Hessian is as follows:
level nr 0.2\n
To apply this shift to the exact Hessian only until the maximum element of the gradient falls below 0.005, the required input directive is as follows:
level nr 0.2 0.005 0\n
Note that in both of these examples, the parameters for the PCG method are at the default values. To obtain values different from the defaults, the keyword pcg must also be specified. For example, to specify the level shifting in the above example for the exact Hessian and non-default shifting for the PCG method, the directive would be something like the following:
level pcg 20 0.3 0.0 nr 0.2 0.005 0.0\n
This input will cause the PCG method to be level-shifted by 20.0 until the maximum element of the gradient falls below 0.3, then the shift will be zero. For the exact Hessian, the level shifting is initially 0.2, until the maximum element falls below 0.005, after which the shift is zero.
The default options correspond to
level pcg 20 0.5 0 nr 0 0 0\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#orbital-localization","title":"Orbital Localization","text":"The SCF module includes an experimental implementation of orbital localization, including Foster-Boys and Pipek-Mezey which only works for closed-shell (RHF) wavefunctions. There is currently no input in the SCF block to control this so the SET directive (SET) must be used.
The directive
set scf:localize t\n
will separately localize the core, valence, and virtual orbital spaces using the Pipek-Mezey algorithm. If the additional directive
set scf:loctype FB\n
is included, then the Foster-boys algorithm is used. The partitioning of core-orbitals is performed using the atomic information described in the section describing how to freeze the orbitals .
In the next release, this functionality will be extended to included all wavefunctions using molecular orbitals.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#printing-information-from-the-scf-module","title":"Printing Information from the SCF Module","text":"All output from the SCF module is controlled using the PRINT directive described in Print control. The following list describes the items from SCF that are currently under direct print control, along with the print level for each one.
Name Print Level Description \u201catomic guess density\u201d debug guess density matrix \u201catomic scf\u201d debug details of atomic SCF \u201cmo guess\u201d default brief info from mo guess \u201cinformation\u201d low results \u201cinitial vectors\u201d debug \u201cintermediate vectors\u201d debug \u201cfinal vectors\u201d debug \u201cfinal vectors analysis\u201d default \u201cinitial vectors analysis\u201d never \u201cintermediate evals\u201d debug \u201cfinal evals\u201d default \u201cschwarz\u201d high integral screening info stats at completion \u201cscreening statistics\u201d debug display stats after every Fock build \u201cgeometry\u201d high \u201csymmetry\u201d debug detailed symmetry info \u201cbasis\u201d high \u201cgeombas\u201d debug detailed basis map info \u201cvectors i/o\u201d default report vectors I/O \u201cparameters\u201d default convergence parameters \u201cconvergence\u201d default info each iteration \u201cmulliken ao\u201d never Mulliken population of basis functionsTable 2: SCF Print Control Specifications
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#hartree-fock-or-scf-mcscf-and-mp2-gradients","title":"Hartree-Fock or SCF, MCSCF and MP2 Gradients","text":"The input for this directive allows the user to adjust the print control for the SCF, UHF, ROHF, MCSCF and MP2 gradients. The form of the directive is as follows:
GRADIENTS \n [print || noprint] ... \n END\n
The complementary keyword pair print and noprint allows the user some additional control on the information that can be included in the print output from the SCF calculation. Currently, only a few items can be explicitly invoked via print control. These are as follows:
Name Print Level Description \u201cinformation\u201d low calculation info \u201cgeometry\u201d high geometry information \u201cbasis\u201d high basis set(s) used \u201cforces\u201d low details of force components \u201ctiming\u201d default timing for each phaseTable 3: Gradient Print Control Specifications
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#references","title":"References","text":"Wong, A. T. and Harrison, R. J. (1995) \u201cApproaches to large-scale parallel self-consistent field calculation\u201d, J. Comp. Chem. 16, 1291-1300, DOI: 10.1002/jcc.540161010 \u21a9
Foster, I. T.; Tilson, J. L.; Wagner, A. F.; Shepard, R. L.; Harrison, R. J.; Kendall, R. A. and Littlefield, R. J. (1996) \u201cToward high-performance computational chemistry: I. Scalable Fock matrix construction algorithms\u201d, J. Comp. Chem. 17, 109-123, DOI: 10.1002/(SICI)1096-987X(19960115)17:1<109::AID-JCC9>3.0.CO;2-V \u21a9
This section relates to the computation of analytic hessians which are available for open and closed shell SCF, except ROHF and for closed shell and unrestricted open shell DFT [1]. Analytic hessians are not currently available for SCF or DFT calculations relativistic all-electron methodologies or for charge fitting with DFT. The current algorithm is fully in-core and does not use symmetry.
There is no required input for the Hessian module. This module only impacts the hessian calculation. For options for calculating the frequencies, please see the Vibrational module.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#hessian-module-input","title":"Hessian Module Input","text":"All input for the Hessian Module is optional since the default definitions are usually correct for most purposes. The generic module input begins with hessian and has the form:
hessian \n thresh <real tol default 1d-6>\n print ... \n profile \n end\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#defining-the-wavefunction-threshold","title":"Defining the wavefunction threshold","text":"You may modify the default threshold for the wavefunction. This keyword is identical to THRESH in the SCF, and the CONVERGENCE gradient in the DFT. The usual defaults for the convergence of the wavefunction for single point and gradient calculations is generally not tight enough for analytic hessians. Therefore, the hessian, by default, tightens these up to 1d-6 and runs an additional energy point if needed. If, during an analytic hessian calculation, you encounter an error:
cphf_solve:the available MOs do not satisfy the SCF equations\n
the convergence criteria of the wavefunction generally needs to be tightened.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#profile","title":"Profile","text":"The PROFILE keyword provides additional information concerning the computation times of different sections of the hessian code. Summary information is given about the maximum, minimum and average times that a particular section of the code took to complete. This is normally only useful for developers.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#print-control","title":"Print Control","text":"Known controllable print options are shown in the table below:
Name Print Level Description \u201chess_follow\u201d high more information about where the calculation is \u201ccphf_cont\u201d debug detailed CPHF information \u201cnucdd_cont\u201d debug detailed nuclear contribution information \u201conedd_cont\u201d debug detailed one electron contribution information \u201ctwodd_cont\u201d debug detailed two electron contribution information \u201cfock_xc\u201d debug detailed XC information during the fock builds
Hessian Print Control Specifications
"},{"location":"Hessians-and-Vibrational-Frequencies.html#vibrational-frequencies","title":"Vibrational frequencies","text":"The nuclear hessian which is used to compute the vibrational frequencies can be computed by finite difference for any ab initio wave-function that has analytic gradients or by analytic methods for SCF and DFT (see Hessians for details). The appropriate nuclear hessian generation algorithm is chosen based on the user input when TASK frequencies is the task directive.
The vibrational package was integrated from the Utah Messkit and can use any nuclear hessian generated from the driver routines, finite difference routines or any analytic hessian modules. There is no required input for the \u201cVIB\u201d package. VIB computes the Infra Red frequencies and intensities for the computed nuclear hessian and the \u201cprojected\u201d nuclear hessian. The VIB module projects out the translations and rotations of the nuclear hessian using the standard Eckart projection algorithm. It also computes the zero point energy for the molecular system based on the frequencies obtained from the projected hessian.
The default mass of each atom is used unless an alternative mass is provided via the geometry input or redefined using the vibrational module input. The default mass is the mass of the most abundant isotope of each element. If the abundance was roughly equal, the mass of the isotope with the longest half life was used.
In addition, the vibrational analysis is given at the default standard temperature of 298.15 degrees.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#vibrational-module-input","title":"Vibrational Module Input","text":"All input for the Vibrational Module is optional since the default definitions will compute the frequencies and IR intensities. The generic module input can begin with vib, freq, frequency and has the form:
{freq || vib || frequency}` \n [reuse [<string hessian_filename>]] \n [mass <integer lexical_index> <real new_mass>] \n [mass <string tag_identifier> <real new_mass>] \n [{temp || temperature} <integer number_of_temperatures>\\ \n <real temperature1 temperature2 ...>] \n [animate [<real step_size_for_animation>]] \n [fd_delta [<real step_size_for_fd_hessian>]] \n [filename <string file_set_name> [overwrite]] \n end\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#hessian-file-reuse","title":"Hessian File Reuse","text":"By default the task frequencies directive will recompute the hessian. To reuse the previously computed hessian you need only specify reuse in the module input block. If you have stored the hessian in an alternate place you may redirect the reuse directive to that file by specifying the path to that file.
reuse /path_to_hessian_file\n
This will reuse your saved Hessian data but one caveat is that the geometry specification at the point where the hessian is computed must be the default \u201cgeometry\u201d on the current run-time-data-base for the projection to work properly.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#redefining-masses-of-elements","title":"Redefining Masses of Elements","text":"You may also modify the mass of a specific center or a group of centers via the input.
To modify the mass of a specific center you can simply use:
mass 3 4.00260324\n
which will set the mass of center 3 to 4.00260324 AMUs. The lexical index of centers is determined by the geometry object.
To modify all Hydrogen atoms in a molecule you may use the tag based mechanism:
mass hydrogen 2.014101779\n
The mass redefinitions always start with the default masses and change the masses in the order given in the input. Care must be taken to change the masses properly. For example, if you want all hydrogens to have the mass of Deuterium and the third hydrogen (which is the 6th atomic center) to have the mass of Tritium you must set the Deuterium masses first with the tag based mechanism and then set the 6th center\u2019s mass to that of Tritium using the lexical center index mechanism.
The mass redefinitions are not fully persistent on the run-time-data-base. Each input block that redefines masses will invalidate the mass definitions of the previous input block. For example,
freq\n reuse\n mass hydrogen 2.014101779\nend\ntask scf frequencies\nfreq\n reuse\n mass oxygen 17.9991603\nend\ntask scf frequencies\n
will use the new mass for all hydrogens in the first frequency analysis. The mass of the oxygen atoms will be redefined in the second frequency analysis but the hydrogen atoms will use the default mass. To get a modified oxygen and hydrogen analysis you would have to use:
freq\n reuse\n mass hydrogen 2.014101779\nend\ntask scf frequencies\nfreq\n reuse\n mass hydrogen 2.014101779\n mass oxygen 17.9991603\nend\ntask scf frequencies\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#temp-or-temperature","title":"Temp or Temperature","text":"The \u201cVIB\u201d module can generate the vibrational analysis at various temperatures other than at standard room temperature. Either temp or temperature can be used to initiate this command.
To modify the temperature of the computation you can simply use:
temp 4 298.15 300.0 350.0 400.0\n
At this point, the temperatures are persistant and so the user must \u201creset\u201d the temperature if the standard behavior is required after setting the temperatures in a previous \u201cVIB\u201d command, i.e.
temp 1 298.15\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#animation","title":"Animation","text":"The \u201cVIB\u201d module also can generate mode animation input files in the standard xyz file format for graphics packages like RasMol or XMol There are scripts to automate this for RasMol in $NWCHEM_TOP/contrib/rasmolmovie
. Each mode will have 20 xyz files generated that cycle from the equilibrium geometry to 5 steps in the positive direction of the mode vector, back to 5 steps in the negative direction of the mode vector, and finally back to the equilibrium geometry. By default these files are not generated. To activate this mechanism simply use the following input directive
animate\n
anywhere in the frequency/vib input block.
Given an ordered list of files containing molecular coordinates in XYZ format, the rasmolmovie shell script generates an animated gif for each of the six possible views down a Cartesian axis.
It uses the free utilities
It should be easy to modify the script to other file formats or animation tools.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#controlling-the-step-size-along-the-mode-vector","title":"Controlling the Step Size Along the Mode Vector","text":"By default, the step size used is 0.15 a.u. which will give reliable animations for most systems. This can be changed via the animate input directive, e.g.
vib\n animate 0.20\nend\n
where is the real number that is the magnitude of each step along the eigenvector of each nuclear hessian mode in atomic units."},{"location":"Hessians-and-Vibrational-Frequencies.html#specifying-filenames-for-animated-normal-modes","title":"Specifying filenames for animated normal modes","text":"
By default, normal modes will be stored in files that start with \u201cfreq.m-\u201c. This is inconvenient if more than vibrational analysis is run in a single input file. To specify different filename for a particular vibrational analysis use the directive
filename <file_set_name> [overwrite]\n
where is the name that will be prepended to the usual filenames. In addition the code by default requires all files to be new files. When the option \u201coverwrite\u201d is provided any pre-existing files will simply be overwritten."},{"location":"Hessians-and-Vibrational-Frequencies.html#controlling-the-step-size-of-the-finite-difference-hessian","title":"Controlling the Step Size of the Finite difference Hessian","text":"
By default, the step size used for calculating the finite difference Hessian is 0.010 a.u. for DFT and NWPW modules, and 0.001 a.u. otherwise This can be changed via the fd_delta input directive, e.g.
vib\n fd_delta 0.005\nend\n
where is the real number that is the magnitude of each displacement in atomic units for the calculation of the finite difference Hessian. For older versions of NWChem without the fd_delta option just set the \u201cstpr_gen:delta\u201d value on the runtime database, e.g.
set stpr_gen:delta 0.005\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#an-example-input-deck","title":"An Example Input Deck","text":"This example input deck will optimize the geometry for the given basis set, compute the frequencies for H2O, H2O at different temperatures, D2O, HDO, and TDO.
start h2o\ntitle Water \ngeometry units au autosym\n O 0.00000000 0.00000000 0.00000000\n H 0.00000000 1.93042809 -1.10715266\n H 0.00000000 -1.93042809 -1.10715266\nend\nbasis noprint\n H library sto-3g \n O library sto-3g\nend\nscf; thresh 1e-6; end\ndriver; tight; end\ntask scf optimize\n\nscf; thresh 1e-8; print none; end\ntask scf freq \n\nfreq\n reuse; temp 4 298.15 300.0 350.0 400.0\nend\ntask scf freq\n\nfreq \n reuse; mass H 2.014101779\n temp 1 298.15\nend\ntask scf freq\n\nfreq\n reuse; mass 2 2.014101779\nend\ntask scf freq\n\nfreq\n reuse; mass 2 2.014101779 ; mass 3 3.01604927\nend\ntask scf freq\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#references","title":"References","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a082\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I-42d.html","title":"I 42d","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0122\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-42d\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x+1/2,+y,-z+3/4\n+x+1/2,-y,-z+3/4\n-y+1/2,-x,+z+3/4\n+y+1/2,+x,+z+3/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n-x+1,+y+1/2,-z+5/4\n+x+1,-y+1/2,-z+5/4\n-y+1,-x+1/2,+z+5/4\n+y+1,+x+1/2,+z+5/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25 \n
"},{"location":"I-42m.html","title":"I 42m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0121\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-42m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x,+y,-z\n+x,-y,-z\n-y,-x,+z\n+y,+x,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"I-43d.html","title":"I 43d","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0220\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-43d\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25 \n
"},{"location":"I-43m.html","title":"I 43m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0217\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-43m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"I-4c2.html","title":"I 4c2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0120\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-4c2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n+y,+x,-z+1/2\n-y,-x,-z+1/2\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1\n-x+1/2,+y+1/2,+z+1\n+y+1/2,+x+1/2,-z+1\n-y+1/2,-x+1/2,-z+1\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0 \n
"},{"location":"I-4m2.html","title":"I 4m2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0119\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-4m2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x,-y,+z\n-x,+y,+z\n+y,+x,-z\n-y,-x,-z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n+y+1/2,+x+1/2,-z+1/2\n-y+1/2,-x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I222.html","title":"I222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a023\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I23.html","title":"I23","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0197\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I23\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"I2_12_12_1.html","title":"I2 12 12 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a024\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0I2_12_12_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I2_13.html","title":"I2 13","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0199\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I2_13\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0 \n
"},{"location":"I4.html","title":"I4","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a079\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"I422.html","title":"I422","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a097\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I422\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n-x,+y,-z\n+x,-y,-z\n+y,+x,-z\n-y,-x,-z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n+y+1/2,+x+1/2,-z+1/2\n-y+1/2,-x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I432.html","title":"I432","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0211\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I432\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"I4Sm.html","title":"I4Sm","text":" group number = 87\n group name = I4/m\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x+1/2,+y+1/2,+z+1/2\n -x+1/2,-y+1/2,+z+1/2\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 10 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 11 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 12 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 13 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 14 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 15 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 16 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n
"},{"location":"I4Smcm.html","title":"I4Smcm","text":" group number = 140\n group name = I4/mcm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 32\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z+1/2\n +x,-y,-z+1/2\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y,-x,+z+1/2\n +y,+x,+z+1/2\n +x+1/2,+y+1/2,+z+1/2\n -x+1/2,-y+1/2,+z+1/2\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z+1\n +x+1/2,-y+1/2,-z+1\n +y+1/2,+x+1/2,-z+1\n -y+1/2,-x+1/2,-z+1\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,-y+1/2,+z+1\n -x+1/2,+y+1/2,+z+1\n -y+1/2,-x+1/2,+z+1\n +y+1/2,+x+1/2,+z+1\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 17 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 18 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 19 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 20 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 21 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 22 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 23 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 24 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 25 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 26 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 27 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 28 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 29 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n\n = operator 30 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n\n = operator 31 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n\n = operator 32 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n
"},{"location":"I4Smmm.html","title":"I4Smmm","text":" group number = 139\n group name = I4/mmm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 32\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z\n -y,-x,-z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z\n -x,+y,+z\n -y,-x,+z\n +y,+x,+z\n +x+1/2,+y+1/2,+z+1/2\n -x+1/2,-y+1/2,+z+1/2\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y+1/2,+x+1/2,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 17 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 18 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 19 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 20 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 21 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 22 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 23 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 24 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 25 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 26 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 27 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 28 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 29 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 30 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 31 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 32 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"I4_1.html","title":"I4 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a080\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I4_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-y,+x+1/2,+z+1/4\n+y+1/2,-x,+z+3/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1,+z+1\n-y+1/2,+x+1,+z+3/4\n+y+1,-x+1/2,+z+5/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25 \n
"},{"location":"I4_122.html","title":"I4 122","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a098\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0I4_122\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-y,+x+1/2,+z+1/4\n+y+1/2,-x,+z+3/4\n-x+1/2,+y,-z+3/4\n+x,-y+1/2,-z+1/4\n+y+1/2,+x+1/2,-z+1/2\n-y,-x,-z\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1,+z+1\n-y+1/2,+x+1,+z+3/4\n+y+1,-x+1/2,+z+5/4\n-x+1,+y+1/2,-z+5/4\n+x+1/2,-y+1,-z+3/4\n+y+1,+x+1,-z+1\n-y+1/2,-x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I4_132.html","title":"I4 132","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0214\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0I4_132\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25 \n
"},{"location":"I4_1Sa.html","title":"I4 1Sa","text":" group number = 88\n group name = I4_1/a\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z+1/2\n -y,+x+1/2,+z+1/4\n +y+1/2,-x,+z+3/4\n -x,-y+1/2,-z+1/4\n +x+1/2,+y,-z+3/4\n +y,-x,-z\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,+y+1/2,+z+1/2\n -x+1,-y+1,+z+1\n -y+1/2,+x+1,+z+3/4\n +y+1,-x+1/2,+z+5/4\n -x+1/2,-y+1,-z+3/4\n +x+1,+y+1/2,-z+5/4\n +y+1/2,-x+1/2,-z+1/2\n -y+1,+x+1,-z+1\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.25\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.75\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.25\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.75\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 10 =\n -1.0 0.0 0.0 1.0\n 0.0 -1.0 0.0 1.0\n 0.0 0.0 1.0 1.0\n\n = operator 11 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 1.0\n 0.0 0.0 1.0 0.75\n\n = operator 12 =\n 0.0 1.0 0.0 1.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 1.25\n\n = operator 13 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 1.0\n 0.0 0.0 -1.0 0.75\n\n = operator 14 =\n 1.0 0.0 0.0 1.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 1.25\n\n = operator 15 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 16 =\n 0.0 -1.0 0.0 1.0\n 1.0 0.0 0.0 1.0\n 0.0 0.0 -1.0 1.0\n\n group number = 88\n group name = I4_1/a\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y,+z+1/2\n -y+3/4,+x+1/4,+z+1/4\n +y+3/4,-x+3/4,+z+3/4\n -x,-y,-z\n +x+1/2,+y,-z+1/2\n +y+1/4,-x+3/4,-z+3/4\n -y+1/4,+x+1/4,-z+1/4\n +x+1/2,+y+1/2,+z+1/2\n -x+1,-y+1/2,+z+1\n -y+5/4,+x+3/4,+z+3/4\n +y+5/4,-x+5/4,+z+5/4\n -x+1/2,-y+1/2,-z+1/2\n +x+1,+y+1/2,-z+1\n +y+3/4,-x+5/4,-z+5/4\n -y+3/4,+x+3/4,-z+3/4\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 3 =\n 0.0 -1.0 0.0 0.75\n 1.0 0.0 0.0 0.25\n 0.0 0.0 1.0 0.25\n\n = operator 4 =\n 0.0 1.0 0.0 0.75\n -1.0 0.0 0.0 0.75\n 0.0 0.0 1.0 0.75\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.25\n -1.0 0.0 0.0 0.75\n 0.0 0.0 -1.0 0.75\n\n = operator 8 =\n 0.0 -1.0 0.0 0.25\n 1.0 0.0 0.0 0.25\n 0.0 0.0 -1.0 0.25\n\n = operator 9 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 10 =\n -1.0 0.0 0.0 1.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n\n = operator 11 =\n 0.0 -1.0 0.0 1.25\n 1.0 0.0 0.0 0.75\n 0.0 0.0 1.0 0.75\n\n = operator 12 =\n 0.0 1.0 0.0 1.25\n -1.0 0.0 0.0 1.25\n 0.0 0.0 1.0 1.25\n\n = operator 13 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 14 =\n 1.0 0.0 0.0 1.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 15 =\n 0.0 1.0 0.0 0.75\n -1.0 0.0 0.0 1.25\n 0.0 0.0 -1.0 1.25\n\n = operator 16 =\n 0.0 -1.0 0.0 0.75\n 1.0 0.0 0.0 0.75\n 0.0 0.0 -1.0 0.75\n
"},{"location":"I4_1Sacd.html","title":"I4 1Sacd","text":"group number = 142 group name = I4_1/acd crystal system = Tetragonal setting number = 1 number of symmetry operators = 32
+x,+y,+z -x+1/2,-y+1/2,+z+1/2 -y,+x+1/2,+z+1/4 +y+1/2,-x,+z+3/4 -x+1/2,+y,-z+1/4 +x,-y+1/2,-z+3/4 +y+1/2,+x+1/2,-z -y,-x,-z+1/2 -x,-y+1/2,-z+1/4 +x+1/2,+y,-z+3/4 +y,-x,-z -y+1/2,+x+1/2,-z+1/2 +x+1/2,-y+1/2,+z -x,+y,+z+1/2 -y+1/2,-x,+z+1/4 +y,+x+1/2,+z+3/4 +x+1/2,+y+1/2,+z+1/2 -x+1,-y+1,+z+1 -y+1/2,+x+1,+z+3/4 +y+1,-x+1/2,+z+5/4 -x+1,+y+1/2,-z+3/4 +x+1/2,-y+1,-z+5/4 +y+1,+x+1,-z+1/2 -y+1/2,-x+1/2,-z+1 -x+1/2,-y+1,-z+3/4 +x+1,+y+1/2,-z+5/4 +y+1/2,-x+1/2,-z+1/2 -y+1,+x+1,-z+1 +x+1,-y+1,+z+1/2 -x+1/2,+y+1/2,+z+1 -y+1,-x+1/2,+z+3/4 +y+1/2,+x+1,+z+5/4
= operator 1 = 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0
= operator 2 = -1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.5 0.0 0.0 1.0 0.5
= operator 3 = 0.0 -1.0 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 1.0 0.25
= operator 4 = 0.0 1.0 0.0 0.5 -1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.75
= operator 5 = -1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 0.25
= operator 6 = 1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.5 0.0 0.0 -1.0 0.75
= operator 7 = 0.0 1.0 0.0 0.5 1.0 0.0 0.0 0.5 0.0 0.0 -1.0 0.0
= operator 8 = 0.0 -1.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.5
= operator 9 = -1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.5 0.0 0.0 -1.0 0.25
= operator 10 = 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 0.75
= operator 11 = 0.0 1.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0
= operator 12 = 0.0 -1.0 0.0 0.5 1.0 0.0 0.0 0.5 0.0 0.0 -1.0 0.5
= operator 13 = 1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.5 0.0 0.0 1.0 0.0
= operator 14 = -1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.5
= operator 15 = 0.0 -1.0 0.0 0.5 -1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.25
= operator 16 = 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 1.0 0.75
= operator 17 = 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.0 1.0 0.5
= operator 18 = -1.0 0.0 0.0 1.0 0.0 -1.0 0.0 1.0 0.0 0.0 1.0 1.0
= operator 19 = 0.0 -1.0 0.0 0.5 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.75
= operator 20 = 0.0 1.0 0.0 1.0 -1.0 0.0 0.0 0.5 0.0 0.0 1.0 1.25
= operator 21 = -1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.0 -1.0 0.75
= operator 22 = 1.0 0.0 0.0 0.5 0.0 -1.0 0.0 1.0 0.0 0.0 -1.0 1.25
= operator 23 = 0.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 -1.0 0.5
= operator 24 = 0.0 -1.0 0.0 0.5 -1.0 0.0 0.0 0.5 0.0 0.0 -1.0 1.0
= operator 25 = -1.0 0.0 0.0 0.5 0.0 -1.0 0.0 1.0 0.0 0.0 -1.0 0.75
= operator 26 = 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.0 -1.0 1.25
= operator 27 = 0.0 1.0 0.0 0.5 -1.0 0.0 0.0 0.5 0.0 0.0 -1.0 0.5
= operator 28 = 0.0 -1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 -1.0 1.0
= operator 29 = 1.0 0.0 0.0 1.0 0.0 -1.0 0.0 1.0 0.0 0.0 1.0 0.5
= operator 30 = -1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.0 1.0 1.0
= operator 31 = 0.0 -1.0 0.0 1.0 -1.0 0.0 0.0 0.5 0.0 0.0 1.0 0.75
= operator 32 = 0.0 1.0 0.0 0.5 1.0 0.0 0.0 1.0 0.0 0.0 1.0 1.25
group number = 142 group name = I4_1/acd crystal system = Tetragonal setting number = 2 number of symmetry operators = 32
+x,+y,+z -x+1/2,-y,+z+1/2 -y+1/4,+x+3/4,+z+1/4 +y+1/4,-x+1/4,+z+3/4 -x+1/2,+y,-z +x,-y,-z+1/2 +y+1/4,+x+3/4,-z+3/4 -y+1/4,-x+1/4,-z+1/4 -x,-y,-z +x+1/2,+y,-z+1/2 +y+3/4,-x+1/4,-z+3/4 -y+3/4,+x+3/4,-z+1/4 +x+1/2,-y,+z -x,+y,+z+1/2 -y+3/4,-x+1/4,+z+1/4 +y+3/4,+x+3/4,+z+3/4 +x+1/2,+y+1/2,+z+1/2 -x+1,-y+1/2,+z+1 -y+3/4,+x+5/4,+z+3/4 +y+3/4,-x+3/4,+z+5/4 -x+1,+y+1/2,-z+1/2 +x+1/2,-y+1/2,-z+1 +y+3/4,+x+5/4,-z+5/4 -y+3/4,-x+3/4,-z+3/4 -x+1/2,-y+1/2,-z+1/2 +x+1,+y+1/2,-z+1 +y+5/4,-x+3/4,-z+5/4 -y+5/4,+x+5/4,-z+3/4 +x+1,-y+1/2,+z+1/2 -x+1/2,+y+1/2,+z+1 -y+5/4,-x+3/4,+z+3/4 +y+5/4,+x+5/4,+z+5/4
= operator 1 = 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0
= operator 2 = -1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.0 0.0 0.0 1.0 0.5
= operator 3 = 0.0 -1.0 0.0 0.25 1.0 0.0 0.0 0.75 0.0 0.0 1.0 0.25
= operator 4 = 0.0 1.0 0.0 0.25 -1.0 0.0 0.0 0.25 0.0 0.0 1.0 0.75
= operator 5 = -1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 0.0
= operator 6 = 1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 -1.0 0.5
= operator 7 = 0.0 1.0 0.0 0.25 1.0 0.0 0.0 0.75 0.0 0.0 -1.0 0.75
= operator 8 = 0.0 -1.0 0.0 0.25 -1.0 0.0 0.0 0.25 0.0 0.0 -1.0 0.25
= operator 9 = -1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 -1.0 0.0
= operator 10 = 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 0.5
= operator 11 = 0.0 1.0 0.0 0.75 -1.0 0.0 0.0 0.25 0.0 0.0 -1.0 0.75
= operator 12 = 0.0 -1.0 0.0 0.75 1.0 0.0 0.0 0.75 0.0 0.0 -1.0 0.25
= operator 13 = 1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.0 0.0 0.0 1.0 0.0
= operator 14 = -1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.5
= operator 15 = 0.0 -1.0 0.0 0.75 -1.0 0.0 0.0 0.25 0.0 0.0 1.0 0.25
= operator 16 = 0.0 1.0 0.0 0.75 1.0 0.0 0.0 0.75 0.0 0.0 1.0 0.75
= operator 17 = 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.0 1.0 0.5
= operator 18 = -1.0 0.0 0.0 1.0 0.0 -1.0 0.0 0.5 0.0 0.0 1.0 1.0
= operator 19 = 0.0 -1.0 0.0 0.75 1.0 0.0 0.0 1.25 0.0 0.0 1.0 0.75
= operator 20 = 0.0 1.0 0.0 0.75 -1.0 0.0 0.0 0.75 0.0 0.0 1.0 1.25
= operator 21 = -1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.0 -1.0 0.5
= operator 22 = 1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.5 0.0 0.0 -1.0 1.0
= operator 23 = 0.0 1.0 0.0 0.75 1.0 0.0 0.0 1.25 0.0 0.0 -1.0 1.25
= operator 24 = 0.0 -1.0 0.0 0.75 -1.0 0.0 0.0 0.75 0.0 0.0 -1.0 0.75
= operator 25 = -1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.5 0.0 0.0 -1.0 0.5
= operator 26 = 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.0 -1.0 1.0
= operator 27 = 0.0 1.0 0.0 1.25 -1.0 0.0 0.0 0.75 0.0 0.0 -1.0 1.25
= operator 28 = 0.0 -1.0 0.0 1.25 1.0 0.0 0.0 1.25 0.0 0.0 -1.0 0.75
= operator 29 = 1.0 0.0 0.0 1.0 0.0 -1.0 0.0 0.5 0.0 0.0 1.0 0.5
= operator 30 = -1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.0 1.0 1.0
= operator 31 = 0.0 -1.0 0.0 1.25 -1.0 0.0 0.0 0.75 0.0 0.0 1.0 0.75
= operator 32 = 0.0 1.0 0.0 1.25 1.0 0.0 0.0 1.25 0.0 0.0 1.0 1.25 ```
"},{"location":"I4_1cd.html","title":"I4 1cd","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0110\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0I4_1cd\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-y,+x+1/2,+z+1/4\n+y+1/2,-x,+z+3/4\n+x,-y,+z+1/2\n-x+1/2,+y+1/2,+z\n-y,-x+1/2,+z+3/4\n+y+1/2,+x,+z+1/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1,+z+1\n-y+1/2,+x+1,+z+3/4\n+y+1,-x+1/2,+z+5/4\n+x+1/2,-y+1/2,+z+1\n-x+1,+y+1,+z+1/2\n-y+1/2,-x+1,+z+5/4\n+y+1,+x+1/2,+z+3/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75 \n
"},{"location":"I4_1md.html","title":"I4 1md","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0109\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0I4_1md\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-y,+x+1/2,+z+1/4\n+y+1/2,-x,+z+3/4\n+x,-y,+z\n-x+1/2,+y+1/2,+z+1/2\n-y,-x+1/2,+z+1/4\n+y+1/2,+x,+z+3/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1,+z+1\n-y+1/2,+x+1,+z+3/4\n+y+1,-x+1/2,+z+5/4\n+x+1/2,-y+1/2,+z+1/2\n-x+1,+y+1,+z+1\n-y+1/2,-x+1,+z+3/4\n+y+1,+x+1/2,+z+5/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25 \n
"},{"location":"I4cm.html","title":"I4cm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0108\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I4cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n-y,-x,+z+1/2\n+y,+x,+z+1/2\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1\n-x+1/2,+y+1/2,+z+1\n-y+1/2,-x+1/2,+z+1\n+y+1/2,+x+1/2,+z+1\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0 \n
"},{"location":"I4mm.html","title":"I4mm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0107\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I4mm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x,-y,+z\n-x,+y,+z\n-y,-x,+z\n+y,+x,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ia-3.html","title":"Ia 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0206\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ia-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0 \n
"},{"location":"Ia-3d.html","title":"Ia 3d","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0230\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ia-3d\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z\n+z,+x,+y\n+z+1/2,-x+1/2,-y\n-z+1/2,-x,+y+1/2\n-z,+x+1/2,-y+1/2\n+y,+z,+x\n-y,+z+1/2,-x+1/2\n+y+1/2,-z+1/2,-x\n-y+1/2,-z,+x+1/2\n+y+3/4,+x+1/4,-z+1/4\n-y+3/4,-x+3/4,-z+3/4\n+y+1/4,-x+1/4,+z+3/4\n-y+1/4,+x+3/4,+z+1/4\n+x+3/4,+z+1/4,-y+1/4\n-x+1/4,+z+3/4,+y+1/4\n-x+3/4,-z+3/4,-y+3/4\n+x+1/4,-z+1/4,+y+3/4\n+z+3/4,+y+1/4,-x+1/4\n+z+1/4,-y+1/4,+x+3/4\n-z+1/4,+y+3/4,+x+1/4\n-z+3/4,-y+3/4,-x+3/4\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z\n-z,-x,-y\n-z+1/2,+x+1/2,+y\n+z+1/2,+x,-y+1/2\n+z,-x+1/2,+y+1/2\n-y,-z,-x\n+y,-z+1/2,+x+1/2\n-y+1/2,+z+1/2,+x\n+y+1/2,+z,-x+1/2\n-y+1/4,-x+3/4,+z+3/4\n+y+1/4,+x+1/4,+z+1/4\n-y+3/4,+x+3/4,-z+1/4\n+y+3/4,-x+1/4,-z+3/4\n-x+1/4,-z+3/4,+y+3/4\n+x+3/4,-z+1/4,-y+3/4\n+x+1/4,+z+1/4,+y+1/4\n-x+3/4,+z+3/4,-y+1/4\n-z+1/4,-y+3/4,+x+3/4\n-z+3/4,+y+3/4,-x+1/4\n+z+3/4,-y+1/4,-x+3/4\n+z+1/4,+y+1/4,+x+1/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1/2,+z+1\n-x+1/2,+y+1,-z+1\n+x+1,-y+1,-z+1/2\n+z+1/2,+x+1/2,+y+1/2\n+z+1,-x+1,-y+1/2\n-z+1,-x+1/2,+y+1\n-z+1/2,+x+1,-y+1\n+y+1/2,+z+1/2,+x+1/2\n-y+1/2,+z+1,-x+1\n+y+1,-z+1,-x+1/2\n-y+1,-z+1/2,+x+1\n+y+5/4,+x+3/4,-z+3/4\n-y+5/4,-x+5/4,-z+5/4\n+y+3/4,-x+3/4,+z+5/4\n-y+3/4,+x+5/4,+z+3/4\n+x+5/4,+z+3/4,-y+3/4\n-x+3/4,+z+5/4,+y+3/4\n-x+5/4,-z+5/4,-y+5/4\n+x+3/4,-z+3/4,+y+5/4\n+z+5/4,+y+3/4,-x+3/4\n+z+3/4,-y+3/4,+x+5/4\n-z+3/4,+y+5/4,+x+3/4\n-z+5/4,-y+5/4,-x+5/4\n-x+1/2,-y+1/2,-z+1/2\n+x+1,+y+1/2,-z+1\n+x+1/2,-y+1,+z+1\n-x+1,+y+1,+z+1/2\n-z+1/2,-x+1/2,-y+1/2\n-z+1,+x+1,+y+1/2\n+z+1,+x+1/2,-y+1\n+z+1/2,-x+1,+y+1\n-y+1/2,-z+1/2,-x+1/2\n+y+1/2,-z+1,+x+1\n-y+1,+z+1,+x+1/2\n+y+1,+z+1/2,-x+1\n-y+3/4,-x+5/4,+z+5/4\n+y+3/4,+x+3/4,+z+3/4\n-y+5/4,+x+5/4,-z+3/4\n+y+5/4,-x+3/4,-z+5/4\n-x+3/4,-z+5/4,+y+5/4\n+x+5/4,-z+3/4,-y+5/4\n+x+3/4,+z+3/4,+y+3/4\n-x+5/4,+z+5/4,-y+3/4\n-z+3/4,-y+5/4,+x+5/4\n-z+5/4,+y+5/4,-x+3/4\n+z+5/4,-y+3/4,-x+5/4\n+z+3/4,+y+3/4,+x+3/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75 \n
"},{"location":"Iba2.html","title":"Iba2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a045\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Iba2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+x+1,-y+1,+z+1/2\n-x+1,+y+1,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ibam.html","title":"Ibam","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a072\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ibam\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x,+y,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-x+1,+y+1,-z+1/2\n+x+1,-y+1,-z+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1/2,-z+1/2\n+x+1,-y+1,+z+1/2\n-x+1,+y+1,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ibca.html","title":"Ibca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a073\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ibca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1/2,+z+1\n-x+1/2,+y+1,-z+1\n+x+1,-y+1,-z+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1,+y+1/2,-z+1\n+x+1/2,-y+1,+z+1\n-x+1,+y+1,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Im-3.html","title":"Im 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0204\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Im-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Im-3m.html","title":"Im 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0229\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Im-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n+z,+x,+y\n+z,-x,-y\n-z,-x,+y\n-z,+x,-y\n+y,+z,+x\n-y,+z,-x\n+y,-z,-x\n-y,-z,+x\n+y,+x,-z\n-y,-x,-z\n+y,-x,+z\n-y,+x,+z\n+x,+z,-y\n-x,+z,+y\n-x,-z,-y\n+x,-z,+y\n+z,+y,-x\n+z,-y,+x\n-z,+y,+x\n-z,-y,-x\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n-z,-x,-y\n-z,+x,+y\n+z,+x,-y\n+z,-x,+y\n-y,-z,-x\n+y,-z,+x\n-y,+z,+x\n+y,+z,-x\n-y,-x,+z\n+y,+x,+z\n-y,+x,-z\n+y,-x,-z\n-x,-z,+y\n+x,-z,-y\n+x,+z,+y\n-x,+z,-y\n-z,-y,+x\n-z,+y,-x\n+z,-y,-x\n+z,+y,+x\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n+z+1/2,+x+1/2,+y+1/2\n+z+1/2,-x+1/2,-y+1/2\n-z+1/2,-x+1/2,+y+1/2\n-z+1/2,+x+1/2,-y+1/2\n+y+1/2,+z+1/2,+x+1/2\n-y+1/2,+z+1/2,-x+1/2\n+y+1/2,-z+1/2,-x+1/2\n-y+1/2,-z+1/2,+x+1/2\n+y+1/2,+x+1/2,-z+1/2\n-y+1/2,-x+1/2,-z+1/2\n+y+1/2,-x+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+x+1/2,+z+1/2,-y+1/2\n-x+1/2,+z+1/2,+y+1/2\n-x+1/2,-z+1/2,-y+1/2\n+x+1/2,-z+1/2,+y+1/2\n+z+1/2,+y+1/2,-x+1/2\n+z+1/2,-y+1/2,+x+1/2\n-z+1/2,+y+1/2,+x+1/2\n-z+1/2,-y+1/2,-x+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n-z+1/2,-x+1/2,-y+1/2\n-z+1/2,+x+1/2,+y+1/2\n+z+1/2,+x+1/2,-y+1/2\n+z+1/2,-x+1/2,+y+1/2\n-y+1/2,-z+1/2,-x+1/2\n+y+1/2,-z+1/2,+x+1/2\n-y+1/2,+z+1/2,+x+1/2\n+y+1/2,+z+1/2,-x+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n-y+1/2,+x+1/2,-z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-x+1/2,-z+1/2,+y+1/2\n+x+1/2,-z+1/2,-y+1/2\n+x+1/2,+z+1/2,+y+1/2\n-x+1/2,+z+1/2,-y+1/2\n-z+1/2,-y+1/2,+x+1/2\n-z+1/2,+y+1/2,-x+1/2\n+z+1/2,-y+1/2,-x+1/2\n+z+1/2,+y+1/2,+x+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Ima2.html","title":"Ima2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a046\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ima2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Imm2.html","title":"Imm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a044\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Imm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Imma.html","title":"Imma","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a074\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Imma\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y+1/2,+z\n-x,+y+1/2,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y+1/2,-z\n+x,-y+1/2,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1,+z+1/2\n-x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Immm.html","title":"Immm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a071\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Immm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Interface.html","title":"Interfaces to Other Programs","text":"NWChem has interfaces to several different packages which are listed below. In general, the NWChem authors work with the authors of the other packages to make sure that the interface works. However, any problems with the interface should be reported through the github issue page https://github.com/nwchemgit/nwchem/issues
"},{"location":"Interface.html#dirdyvtst-direct-dynamics-for-variational-transition-state-theory","title":"DIRDYVTST \u2013 DIRect Dynamics for Variational Transition State Theory","text":"by Bruce C. Garrett, Environmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, Richland, Washington
Yao-Yuan Chuang and Donald G. Truhlar, Department of Chemistry and Super Computer Institute, University of Minnesota, MN 55455-0431
and interfaced to NWChem by
Ricky A. Kendall, Scalable Computing Laboratory, Ames Laboratory and Iowa State University, Ames, IA 50011
Theresa L. Windus, Environmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, Richland, Washington
If you use the DIRDYVTST portion of NWChem, please use following citation in addition to the usual NWChem citation:
DIRDYVTST, Yao-Yuan Chuang and Donald G. Truhlar, Department of Chemistry and Super Computer Institute, \n University of Minnesota; Ricky A. Kendall,Scalable Computing Laboratory, Ames Laboratory and Iowa State \n University; Bruce C. Garrett and Theresa L. Windus, Environmental Molecular Sciences Laboratory, \n Pacific Northwest Laboratory. `\n
"},{"location":"Interface.html#introduction","title":"Introduction","text":"By using DIRDYVTST, a user can carry out electronic structure calculations with NWChem and use the resulting energies, gradients, and Hessians for direct dynamics calculations with POLYRATE. This program prepares the file30 input for POLYRATE from NWChem electronic structure calculations of energies, gradients and Hessians at the reactant, product, and saddle point geometries and along the minimum energy path. Cartesian geometries for the reactants, products, and saddle points need to be input to this program; optimization of geometries is not performed in this program. Note that DIRDYVTST is based on the DIRDYGAUSS program and is similar to two other programs: DDUTILITIES and GAUSSRATE. Users of this module are encouraged to read the POLYRATE manual since they will need to create the file fu5 input to run calculations with POLYRATE.
Notes about the code:
Input. The code has been written to parallel, as much as possible, the POLYRATE code.
Output. There is one default output file for each DIRDYVTST run - .file30.
Integrators for following the reaction path. Currently the Euler and three Page-McIver (PM) methods are implemented. The PM methods are the local quadratic approximation (LQA), the corrected LQA (CLQA), and the cubic (CUBE) algorithm. The PM methods are implemented so that the Hessian can be reused at intermediate steps at which only the gradient is updated.
"},{"location":"Interface.html#files","title":"Files","text":"Test runs are located in directories in $NWCHEM_TOP/QA/tests. Test runs are available for two systems: H + H2 and OH + H2.
The H + H2 test uses the Euler integration method at the SCF/3-21G level of theory to calculate points along the reaction path. This test is located in the $NWCHEM_TOP/QA/tests/h3tr1 directory.
The OH + H2 test uses the Page-McIver CUBE algorithm to calculate points on the SCF/3-21G surface and does additional single point calculations at the SCF/6-31G* level of theory. This test is located in the $NWCHEM_TOP/QA/tests/oh3tr3 directory.
Note: These tests are set up with SCF, however, other levels of theory can be used. The initial hessian calculations at the reactants, products and saddle point can cause some problems when numerical hessians are required (especially when there is symmetry breaking in the wavefunction).
"},{"location":"Interface.html#detailed-description-of-the-input","title":"Detailed description of the input","text":"The input consists of keywords for NWChem and keywords related to POLYRATE input. The first set of inputs are for NWChem with the general input block of the form:
DIRDYVTST [autosym [real tol default 1d-2] | noautosym] \n [THEORY <string theory> [basis <string basis default \"ao basis\">] \\ \n [ecp <string ecp>] [input <string input>]] \n [SPTHEORY <string theory> [basis <string basis default \"ao basis\">] \n [ecp <string ecp>] [input <string input>`]] \n ...\n END\n
"},{"location":"Interface.html#use-of-symmetry","title":"Use of symmetry","text":"The use of symmetry in the calculation is controlled by the keyword autosym | noautosym
which is used as described in the geometry directive. Autosym
is on by default. A couple words of warning here. The tolerance related to autosym
can cause problems when taking the initial step off of the transition state. If the tolerance is too large and the initial step relatively small, the resulting geometry will be close to a higher symmetry than is really wanted and the molecule will be symmetrized into the higher symmetry. To check this, the code prints out the symmetry at each geometry along the path. It is up to the user to check the symmetry and make sure that it is the required one. In perverse cases, the user may need to turn autosym off (noautosym) if changing the tolerance doesn\u2019t produce the desired results. In the case that autosym is used, the user does not need to worry about the different alignment of the molecule between NWChem and POLYRATE, this is taken care of internally in the DIRDYVTST module.
The basis name on the theory or sptheory directive is that specified on a basis set directive and not the name of a standard basis in the library. If not specified, the basis set for the sptheory defaults to the theory basis which defaults to \u201cao basis\u201d.
"},{"location":"Interface.html#effective-core-potentials","title":"Effective core potentials","text":"If an effective core potential is specified in the usual fashion outside of the DIRDYVTST input then this will be used in all calculations. If an alternative ECP name (the name specified on the ECP directive in the same manner as done for basis sets) is specified on one of the theory directives, then this ECP will be used in preference for that level of theory.
"},{"location":"Interface.html#general-input-strings","title":"General input strings","text":"For many purposes, the ability to specify the theory, basis and effective core potential is adequate. All of the options for each theory are determined from their independent input blocks. However, if the same theory (e.g., DFT) is to be used with different options for theory and sptheory, then the general input strings must be used. These strings are processed as NWChem input each time the theoretical calculation is invoked. The strings may contain any NWChem input, except for options pertaining to DIRDYVTST and the task directive. The intent is that the strings be used just to control the options pertaining to the theory being used.
A word of caution. Be sure to check that the options are producing the desired results. Since the NWChem database is persistent, the input strings should fully define the calculation you wish to have happen.
For instance, if the theory model is DFT/LDA/3-21g and the sptheory model is DFT/B3LYP/6-311g**, the DIRDYVTST input might look like this
dirdyvtst \n theory dft basis 3-21g input \"dft\\; xc\\; end\" \n sptheory dft basis 6-311g** input \"dft\\; xc b3lyp\\; end\" \n .... \n end\n
The empty XC directive restores the default LDA exchange-correlation functional. Note that semi-colons and other quotation marks inside the input string must be preceded by a backslash to avoid special interpretation.
"},{"location":"Interface.html#polyrate-related-options","title":"POLYRATE related options","text":"These keyword options are simlar to the POLYRATE input format, except there are no ENERGETICS, OPTIMIZATION, SECOND, TUNNELING, and RATE sections.
"},{"location":"Interface.html#general-section","title":"GENERAL section","text":"The GENERAL section has the following format:
* GENERAL\n\n [TITLE <string title>] \n ATOMS \n <integer num> <string tag> [<real mass>] \n ... \n END \n [SINGLEPOINT] \n [SAVEFILE (vecs || hess || spc)\n
Descriptions
TITLE is a keyword that allows the user to input a description of the calculation. In this version, the user can only have a single-line description.
For example:
TITLE Calculation of D + HCl reaction
ATOMS is a list keyword that is used to input a list of the atoms. It is similar to POLYRATE in that the order of the atom and the atomic symbol are required in a single line. If isotope of the element is considered then the atomic mass is required in units of amu.
For example:
ATOMS \n 1 H 2.014 \n 2 H \n 3 Cl \n END`\n
SINGLEPOINT is a keyword that specifies that a single point calculation is to be performed at the reactants, products and saddle point geometries. The type of single point calculation is specified in the sptheory line.
SAVEFILE is a keyword that specifies that NWChem files are to be saved. Allowed values of variable input to SAVEFILE are vecs, hess, and spc for saving the files base theory movecs, base theory hessian and singlepoint calculation movecs.
"},{"location":"Interface.html#react1-react2-prod1-prod2-and-start-sections","title":"REACT1, REACT2, PROD1, PROD2, and START sections","text":"These sections have the following format:
*(REACT1 || REACT2 || PROD1 || PROD2 || START) \n GEOM \n <integer num> <real x y z> \n ... \n END \n SPECIES (ATOMIC || LINRP || NONLINRP || LINTS || NONLINTS default NONLINRP)\n
REACT1 and REACT2 are input for each of the reactants and PROD1 and PROD2 are input for each of the products. REACT1 and PROD1 are required. START is the input for the transition state if one exists, or starting point to follow downhill the MEP.
Descriptions
GEOM is a list keyword that indicates the geometry of the molecule in Cartesian coordinates with atomic unit.
For example:
GEOM \n 1 0.0 0.0 0.0 \n 2 0.0 0.0 1.5 \n END\n
SPECIES is a variable keyword that indicates the type of the molecule. Options are: ATOMIC (atomic reactant or product), LINRP (linear reactant or product), NONLINRP (nonlinear reactant or product), LINTS (linear transition state), and NONLINTS (nonlinear transition state).
For example:
SPECIES atomic
The Path section has the format:
*PATH \n [SCALEMASS <real scalemass default 1.0>] \n [SSTEP <real sstep default 0.01>] \n [SSAVE <real ssave default 0.1>] \n [SHESS <real shess default SSAVE>] \n [SLP <real slp default 1.0>] \n [SLM <real slm default -1.0>] \n [SIGN (REACTANT || PRODUCT default REACTANT)] \n [INTEGRA (EULER || LQA || CLQA || CUBE default EULER)] \n [PRINTFREQ (on || off default off)]\n
Descriptions
SCALEMASS is a variable keyword that indicates the arbitrary mass (in amu) used for mass-scaled Cartesian coordinates. This is the variable called mu in published papers. Normally, this is taken as either 1.0 amu or, for bimolecular reactions, as the reduced mass of relative translation of the reactants.
SSTEP is a variable keyword that indicates the numerical step size (in bohrs) for the gradient grid. This is the step size for following the minimum energy path.
SSAVE is a variable keyword that indicates the numerical step size (in bohrs) for saving the Hessian grid. At each save point the potential and its first and second derivatives are recalculated and written to the .file30 file. For example, if SSTEP=0.01 and SSAVE=0.1, then the potential information is written to .file30 every 10 steps along the gradient grid.
SHESS is a variable keyword that indicates the numerical step size (in bohrs) for recomputing the Hessian when using a Page-McIver integrator (e.g., LQA, CLQA, or CUBE). For Euler integration SHESS = SSAVE. For intermediate points along the gradient grid, the Hessian matrix from the last Hessian calculation is reused. For example, if SSTEP=0.01 and SHESS=0.05, then the Hessian matrix is recomputed every 5 steps along the gradient grid.
SLP is a variable keyword that indicates the positive limit of the reaction coordinate (in bohrs).
SLM is a variable keyword that indicates the negative limit of the reaction coordinate (in bohrs).
SIGN is a variable keyword used to ensure the conventional definition of the sign of s, s \\< 0 for the reactant side and s > 0 for the product side, is followed. PRODUCT should be used if the eigenvector at the saddle point points toward the product side and REACTANT if the eigenvector points toward the reactant side.
INTEGRA is a variable keyword that indicates the integration method used to follow the reaction path. Options are: EULER, LQA, CLQA, and CUBE.
PRINTFREQ is a variable keyword that indicates that projected frequencies and eigenvectors will be printed along the MEP.
"},{"location":"Interface.html#restart","title":"Restart","text":"DIRDYVTST calculations should be restarted through the normal NWChem mechanism. The user needs to change the start directive to a restart directive and get rid of any information that will overwrite important information in the RTDB. The file.db and file.file30 need to be available for the calculation to restart properly.
"},{"location":"Interface.html#example","title":"Example","text":"This is an example that creates the file30 file for POLYRATE for H + H2. Note that the multiplicity is that of the entire supermolecule, a doublet. In this example, the initial energies, gradients, and Hessians are calculated at the UHF/3-21G level of theory and the singlepoint calculations are calculated at the MP2/cc-pVDZ level of theory with a tighter convergence threshold than the first SCF.
start h3test \n\nbasis \n h library 3-21G \nend \n\nbasis singlepoint \n h library cc-pVDZ \nend \n\nscf \n uhf \n doublet \n thresh 1.0e-6 \nend \n\ndirdyvtst autosym 0.001 \n theory scf input \"scf\\; uhf\\; doublet\\; thresh 1.0e-06\\; end\" \n sptheory mp2 basis singlepoint input \\ \n \"scf\\; uhf\\; doublet\\; thresh 1.0e-07\\; end\" \n*GENERAL \n TITLE \n Test run: H+H2 reaction, Page-McIver CLQA algorithm, no restart \n\n ATOMS \n 1 H \n 2 H \n 3 H \n END \n\n SINGLEPOINT \n\n*REACT1 \n GEOM \n 1 0.0 0.0 0.0 \n 2 0.0 0.0 1.3886144 \n END \n\n SPECIES LINRP \n\n*REACT2 \n GEOM \n 3 0.0 0.0 190.3612132 \n END \n\n SPECIES ATOMIC \n\n*PROD2 \n GEOM \n 1 0.0 0.0 190.3612132 \n END \n\n SPECIES ATOMIC \n\n*PROD1 \n\n GEOM \n 2 0.0 0.0 1.3886144 \n 3 0.0 0.0 0.0 \n END \n\n SPECIES LINRP \n\n*START \n\n GEOM \n 1 0.0 0.0 -1.76531973 \n 2 0.0 0.0 0.0 \n 3 0.0 0.0 1.76531973 \n END \n\n SPECIES LINTS \n\n*PATH \n SSTEP 0.05 \n SSAVE 0.05 \n SLP 0.50 \n SLM -0.50 \n SCALEMASS 0.6718993 \n INTEGRA CLQA \nend \n\ntask dirdyvtst\n
"},{"location":"Interfaces-with-External-Software.html","title":"Interfaces with External Software","text":""},{"location":"Interfaces-with-External-Software.html#overview","title":"Overview","text":"NWChem can be interfaced with external software packages by following the instructions below.
The interface can be set either using a pre-exisiting software package or by downloading and compiling the software from the NWChem makefile infrastructure.
"},{"location":"Interfaces-with-External-Software.html#simint-integrals-library","title":"Simint integrals library","text":"To generate the Simint library and enable the NWChem interface (only for energy and first derivative code), you need to define the following environment variables at compile time:
USE_SIMINT=y
(mandatory)SIMINT_MAXAM=
\u201cMaximum angular momentum\u201d (optional, default is 3, therefore up to f orbitals)The following set directives are required in the input file to trigger use of Simint
set int:cando_txs f\nset int:cando_nw f\n
"},{"location":"Interfaces-with-External-Software.html#openblas","title":"OpenBLAS","text":"To build NWChem with the optimized BLAS and Lapack OpenBLAS library, you need to define the following environment variables at compile time:
BUILD_OPENBLAS=1\nBLAS_SIZE=8\n
This procedure requires an internet connection to dowload the OpenBLAS source. Instead, to use a pre-compiled OpenBLAS library, the BLASOPT
, LAPACK_LIB
and BLAS_SIZE
environment variable need to be set.
To build NWChem with the ScaLAPACK library, you need to define the following environment variables at compile time:
BUILD_SCALAPACK=1\nSCALAPACK_SIZE=8\n
This procedure requires an internet connection to dowload the OpenBLAS source. Instead, to use a pre-compiled ScaLAPACK library, the SCALAPACK_LIB
and SCALAPACK_SIZE
environment variable need to be set.
To build NWChem with the ELPA eigensolver library, you need first to set the ScaLAPACK settings as described in the previous section and then you need to define the following environment variables at compile time:
BUILD_ELPA=1\n
This procedure requires an internet connection to dowload the OpenBLAS source. Instead, to use a pre-compiled ELPA library, the ELPA
and ELPA_SIZE
environment variable need to be set.
The BUILD_PLUMED
environment variable installs Plumed and interfaces it with the qmd module. This procedure requires an internet connection to dowload the Plumed source.
Instead, if you wish to use an existing Plumed installation, the following environment variables must be set (after having unset BUILD_PLUMED
):
USE_PLUMED=1\n
Requirements: * The environment variable PATH
should to point to the location of the plumed
command and LD_LIBRARY_PATH
should point to the location of the plumed libraries. * BLAS_SIZE
and SCALAPACK_SIZE
must be equal to 4 (this is not a requirement when using BUILD_PLUMED
)
Building NWChem with the libxc DFT library requires setting the environment variable USE_LIBXC=1
.
This procedure requires an internet connection to dowload the Libxc source.
Instead, if you wish to use an existing libxc library, the following environment variables must be set, after having unset USE_LIBXC
:
LIBXC_INCLUDE
location of the libxc C header filesLIBXC_MODDIR
location of the libxc fortran90 module filesLIBXC_LIB
location of the libxc libraries filesFor example, for Debian/Ubuntu systems, the following is needed after having installed the libxc-dev
package
unset USE_LIBXC\n export LIBXC_LIB=/usr/lib/x86_64-linux-gnu\n export LIBXC_INCLUDE=/usr/include\n
For example, for Fedora systems, the following is needed after having installed the libxc-devel
package
unset USE_LIBXC\n export LIBXC_LIB=/usr/lib64\n export LIBXC_INCLUDE=/usr/include \n export LIBXC_MODDIR=/usr/lib64/gfortran/modules\n
"},{"location":"Interfaces-with-External-Software.html#xtb","title":"XTB","text":"Building NWChem with the Light-weight tight-binding framework tblite requires
USE_TBLITE=1
xtb
to list of NWCHEM_MODULES
Example:
make nwchem_config NWCHEM_MODULES='tinyqmpw xtb'\nexport USE_TBLITE=1\nmake\n
"},{"location":"Introduction.html","title":"NWChem Introduction","text":""},{"location":"Introduction.html#getting-started","title":"Getting Started","text":""},{"location":"Introduction.html#nwchem-architecture","title":"NWChem Architecture","text":""},{"location":"Keywords-on-the-GEOMETRY-directive.html","title":"Keywords on the GEOMETRY directive","text":""},{"location":"Keywords-on-the-GEOMETRY-directive.html#keywords-on-the-geometry-directive","title":"Keywords on the GEOMETRY directive","text":"This section presents the options that can be specified using the keywords and optional input on the main line of the GEOMETRY directive. As described above, the first line of the directive has the general form,
GEOMETRY [<string name default geometry>] \\ \n [units <string units default angstroms>] \\ \n [bqbq] \\ \n [print [xyz] || noprint] \\ \n [center || nocenter] \\\n [autosym [real tol default 1d-2] || noautosym] \n [autoz || noautoz] \\ \n [adjust] \\ \n [(nuc || nucl || nucleus) <string nucmodel>]\n
All of the keywords and input on this line are optional. The following list describes all options and their defaults.
<name>
- user-supplied name for the geometry; the default name is geometry, and all NWChem modules look for a geometry with this name. However, multiple geometries may be specified by using a different name for each. Subsequently, the user can direct a module to a named geometry by using the SET directive (see the example in the SET Section) to associate the default name of geometry with the alternate name.units
- keyword specifying that a value will be entered by the user for the string variable . The default units for the geometry input are Angstr\u00f8ms (Note: atomic units or Bohr are used within the code, regardless of the option specified for the input units. The default conversion factor used in the code to convert from Angstr\u00f8ms to Bohr is 1.8897265 which may be overidden with the angstrom_to_au
keyword described below.). The code recognizes the following possible values for the string variable :angstroms
or an
\u2013 Angstroms , the default (converts to A.U. using the Angstrom to A.U. conversion factor)au
or atomic
or bohr
\u2013 Atomic units (A.U.)nm
or nanometers
\u2013 nanometers (converts to A.U. using a conversion factor computed as 10.0 times the Angstrom to A.U. conversion factor)pm
or picometers
\u2013 picometers
(converts to A.U. using a conversion factor computed as 0.01 times the Angstrom to A.U. conversion factor)angstrom_to_au
- may also be specified as ang2au
. This enables the user to modify the conversion factors used to convert between Angstrom and A.U.. The default value is 1.8897265.bqbq
- keyword to specify the treatment of interactions between dummy centers. The default in NWChem is to ignore such interactions when computing energies or energy derivatives. These interactions will be included if the keyword bqbq
is specified.print
and noprint
- complementary keyword pair to enable or disable printing of the geometry. The default is to print the output associated with the geometry. In addition, the keyword print may be qualified by the additional keyword xyz, which specifies that the coordinates should be printed in the XYZ format of molecular graphics program XMolcenter
and nocenter
- complementary keyword pair to enable or disable translation of the center of nuclear charge to the origin. With the origin at this position, all three components of the nuclear dipole are zero. The default is to move the center of nuclear charge to the origin.autosym
and noautosym
- keyword to specify that the symmetry of the geometric system should be automatically determined. This option is on by default, but can be turned off with noautosym. Only groups up to and including Oh are recognized. Occasionally NWChem will be unable to determine the full symmetry of a molecular system, but will find a proper subgroup of the full symmetry. The default tolerance is set to work for most cases, but may need to be decreased to find the full symmetry of a geometry. Note that autosym will be turned off if the SYMMETRY group input is given (See Symmetry Group Input). Also note that if symmetry equivalent atoms have different tags in the geometry they will not be detected as symmetry equivalent by the autosym
capability. The reason for this is that atoms with different tags might be assigned different basis sets, for example, after which they are no longer symmetry equivalent. Therefore autosym chooses to make the save choice.noautoz
- by default NWChem (release 3.3 and later) will generate redundant internal coordinates from user input Cartesian coordinates. The internal coordinates will be used in geometry optimizations. The noautoz
keyword disables use of internal coordinates. The autoz
keyword is provided only for backward compatibility. See Forcing internal coordinates for a more detailed description of redundant internal coordinates, including how to force the definition of specific internal variables in combination with automatically generated variables.adjust
- This indicates that an existing geometry is to be adjusted. Only new input for the redundant internal coordinates may be provided (ZCOORD: Forcing internal coordinates). It is not possible to define new centers or to modify the point group using this keyword. See Forcing internal coordinates for an example of its usage.nucleus
- keyword to specify the default model for the nuclear charge distribution. The following values are recognized:point
or pt
\u2013 point nuclear charge distribution. This is the default.finite
or fi
\u2013 finite nuclear charge distribution with a Gaussian shape. The RMS radius of the Gaussian is determined from the nuclear mass number A by the expression r RMS = 0.836*A1/3+0.57 fm
NOTE: If you specify a finite nuclear size, you should ensure that the basis set you use is contracted for a finite nuclear size.
The following examples illustrate some of the various options that the user can specify on the first input line of the GEOMETRY directive, using the keywords and input options described above.
The following directives all specify the same geometry for H2 (a bond length of 0.732556 \u00c5):
geometry geometry units nm \n h 0 0 0 h 0 0 0 \n h 0 0 0.732556 h 0 0 0.0732556 \n end end \n\n geometry units pm geometry units atomic \n h 0 0 0 h 0 0 0 \n h 0 0 73.2556 h 0 0 1.3843305 \n end end\n
"},{"location":"Known-Bugs.html","title":"Known Bugs","text":""},{"location":"Known-Bugs.html#how-to-report-bugs","title":"How to report bugs","text":"Use our Github issue tracker to report new bugs.
Also check there for other issues that may not have made it into these lists.
See the FAQ page for solutions to common issues.
"},{"location":"Known-Bugs.html#bugs-present-in-nwchem-binary-packages","title":"Bugs present in NWChem binary packages","text":"spcart_bra2etran: nbf_xj.ne.nbf_sj (xj-sj) = 5\n
https://groups.google.com/g/nwchem-forum/c/RA0tYxdfvaw https://nwchemgit.github.io/Special_AWCforum/st/id3386/Ubuntu_18.html https://bugs.launchpad.net/ubuntu/+source/nwchem/+bug/1675817
Please use commands to install an updated version (as described at the NWChem 7.0.0 release page)
sudo apt -y install curl python3-dev gfortran mpi-default-bin mpi-default-dev libopenblas-dev ssh\n\ncurl -LJO https://github.com/nwchemgit/nwchem/releases/download/v7.0.0-release/nwchem-data_7.0.0-3_all.ubuntu_bionic.deb\ncurl -LJO https://github.com/nwchemgit/nwchem/releases/download/v7.0.0-release/nwchem_7.0.0-3_amd64.ubuntu_bionic.deb\n\nsudo dpkg -i nwchem-data_7.0.0-3*_bionic.deb nwchem_7.0.0-3*_bionic.deb\n
"},{"location":"Known-Bugs.html#known-bugs-for-nwchem-68","title":"Known bugs for NWChem 6.8","text":"make USE_ARUR=n\n
Fix available in the branches master and hotfix/release-6-8
The molecular dynamics module of NWChem uses a distribution of data based on a spacial decomposition of the molecular system, offering an efficient parallel implementation in terms of both memory requirements and communication costs, especially for simulations of large molecular systems.
Inter-processor communication using the global array tools and the design of a data structure allowing distribution based on spacial decomposition are the key elements in taking advantage of the distribution of memory requirements and computational work with minimal communication.
In the spacial decomposition approach, the physical simulation volume is divided into rectangular cells, each of which is assigned to a processor. Depending on the conditions of the calculation and the number of available processors, each processor contains one or more of these spacially grouped cells. The most important aspects of this decomposition are the dependence of the cell sizes and communication cost on the number of processors and the shape of the cells, the frequent reassignment of atoms to cells leading to a fluctuating number of atoms per cell, and the locality of communication which is the main reason for the efficiency of this approach for very large molecular systems.
To improve efficiency, molecular systems are broken up into separately treated solvent and solute parts. Solvent molecules are assigned to the domains according to their center of geometry and are always owned by a one node. This avoids solvent-solvent bonded interactions crossing node boundaries. Solute molecules are broken up into segments, with each segment assigned to a processor based on its center of geometry. This limits the number of solute bonded interactions that cross node boundaries. The processor to which a particular cell is assigned is responsible for the calculation of all interactions between atoms within that cell. For the calculation of forces and energies in which atoms in cells assigned to different processors are involved, data are exchanged between processors. The number of neighboring cells is determined by the size and shape of the cells and the range of interaction. The data exchange that takes place every simulation time step represents the main communication requirements. Consequently, one of the main efforts is to design algorithms and data structures to minimize the cost of this communication. However, for very large molecular systems, memory requirements also need to be taken into account.
To compromise between these requirements exchange of data is performed in successive point to point communications rather than using the shift algorithm which reduces the number of communication calls for the same amount of communicated data.
For inhomogeneous systems, the computational load of evaluating atomic interactions will generally differ between cell pairs. This will lead to load imbalance between processors. Two algorithms have been implemented that allow for dynamically balancing the workload of each processor. One method is the dynamic resizing of cells such that cells gradually become smaller on the busiest node, thereby reducing the computational load of that node. Disadvantages of this method are that the efficiency depends on the solute distribution in the simulation volume and the redistribution of work depends on the number of nodes which could lead to results that depend on the number of nodes used. The second method is based on the dynamic redistribution of intra-node cell-cell interactions. This method represents a more coarse load balancing scheme, but does not have the disadvantages of the cell resizing algorithm. For most molecular systems the cell pair redistribution is the more efficient and preferred method.
The description of a molecular system consists of static and dynamic information. The static information does not change during a simulation and includes items such as connectivity, excluded and third neighbor lists, equilibrium values and force constants for all bonded and non-bonded interactions. The static information is called the topology of the molecular system, and is kept on a separate topology file. The dynamic information includes coordinates and velocities for all atoms in the molecular system, and is kept in a so-called restart file.
"},{"location":"MD.html#topology","title":"Topology","text":"The static information about a molecular system that is needed for a molecular simulation is provided to the simulation module in a topology file. Items in this file include, among many other things, a list of atoms, their non-bonded parameters for van der Waals and electrostatic interactions, and the complete connectivity in terms of bonds, angles and dihedrals.
In molecular systems, a distinction is made between solvent and solute, which are treated separately. A solvent molecule is defined only once in the topology file, even though many solvent molecules usually are included in the actual molecular system. In the current implementation only one solvent can be defined. Everything that is not solvent in the molecular system is solute. Each solute atom in the system must be explicitly defined in the topology.
Molecules are defined in terms of one or more segments. Typically, repetitive parts of a molecule are each defined as a single segment, such as the amino acid residues in a protein. Segments can be quite complicated to define and are, therefore, collected in a set of database files. The definition of a molecular system in terms of segments is a sequence.
Topology files are created using the prepare module.
"},{"location":"MD.html#files","title":"Files","text":"File names used have the form system_calc.ext, with exception of the topology file, which is named system.top. Anything that refers to the definition of the chemical system can be used for system, as long as no periods or underlines are used. The identifier calc can be anything that refers to the type of calculation to be performed for the system with the topology defined. This file naming convention allows for the creation of a single topology file system.top that can be used for a number of different calculations, each identified with a different calc. For example, if crown.top is the name of the topology file for a crown ether, crown_em, crown_md, crown_ti could be used with appropriate extensions for the filenames for energy minimization, molecular dynamics simulation and multi-configuration thermodynamic integration, respectively. All of these calculations would use the same topology file crown.top.
The extensions <ext>
identify the kind of information on a file, and are pre-determined.
Database file supplied with NWChem and used by the prepare module are found in directories with name ffield_level, where ffield is any of the supported force fields. The source of the data is identified by level, and can be
level Description s original published data x additional published data q contributed data u user preferred data t user defined temporary dataThe user is can replace these directories or add additional database files by specifying them in the .nwchemrc file. or in the prepare input file.
The extension 1-9 defines the priority of database file.
frg fragments par parameters seq sequences sgm segments"},{"location":"MD.html#force-fields","title":"Force fields","text":"Force fields recognized are
Keyword Force field Status amber AMBER99 AMBER95,GLYCAM also available charmm CHARMM"},{"location":"MD.html#format-of-fragment-files","title":"Format of fragment files","text":"Fragment files contain the basic information needed to specify all interactions that need to be considered in a molecular simulation. Normally these files are created by the prepare module. Manual editing is needed when, for example, the prepare module could not complete atom typing, or when modified charges are required.
The formats of files used in NWChem are listed here.
"},{"location":"MD.html#creating-segment-files","title":"Creating segment files","text":"The prepare module is used to generate segment files from corresponding fragment files. A segment file contains all information for the calculation of bonded and non-bonded interactions for a given chemical system using a specific force field.
Which atoms form a fragment is specified in the coordinate file, currently only in PDB format. The segment entries define three sets of parameters for each interaction.
Free energy perturbations can be performed using set 1 for the generation of the ensemble while using sets 2 and/or 3 as perturbations. Free energy multiconfiguration thermodynamic integration and multistep thermodynamic perturbation calculations are performed by gradually changing the interactions in the system from parameter set 2 to parameter set 3. These modifications can be edited into the segment files manually, or introduced directly into the topology file using the modify commands in the input for the prepare module.
"},{"location":"MD.html#creating-sequence-files","title":"Creating sequence files","text":"A sequence file describes a molecular system in terms of segments. This file is generated by the prepare module for the molecular system provided on a PDB-formatted coordinate file
"},{"location":"MD.html#creating-topology-files","title":"Creating topology files","text":"The topology describes all static information that describes a molecular system. This includes the connectivity in terms of bond-stretching, angle-bending and torsional interactions, as well as the non-bonded van der Waals and Coulombic interactions.
The topology of a molecular system is generated by the prepare module from the sequence in terms of segments as specified on the PDB file. For each unique segment specified in this file the segment database directories are searched for the segment definition. For segments not found in one of the database directories a segment definition is generated in the temporary directory if a fragment file was found. If a fragment file could not be found, it is generated by the prepare module base on what is found on the PDB file.
When all segments are found or created, the parameter substitutions are performed, using force field parameters taken from the parameter databases. After all lists have been generated the topology is written to a local topology file <system>
.top.
Restart files contain all dynamical information about a molecular system and are created by the prepare module if a topology file is available. The prepare module will automatically generate coordinates for hydrogen atoms and monatomic counter ions not found on the PDB formatted coordinate file, if no fragment or segment files were generated using that PDB file.
The prepare module has a number of other optional input command, including solvation.
"},{"location":"MD.html#molecular-simulations","title":"Molecular simulations","text":"The type of molecular dynamics simulation is specified by the NWChem task directive.
task md [ energy | optimize | dynamics | thermodynamics ]\n
where the theory keyword md specifies use of the molecular dynamics module, and the operation keyword is one of
The chemical system for a calculation is specified in the topology and restart files. These files should be created using the utilities nwtop and nwrst before a simulation can be performed. The names of these files are determined from the required system directive.
system <string systemid>_<string calcid>\n
where the strings systemid and calcid are user defined names for the chemical system and the type of calculation to ber performed, respectively. These names are used to derive the filenames used for the calculation. The topoly file used will be systemid.top, while all other files are named systemid_calcid.ext.
"},{"location":"MD.html#restarting-and-continuing-simulations","title":"Restarting and continuing simulations","text":" finish\n
Specifies that the current job will finish a previous, incomplete simulation, using the input data that have been recorded by that previous run in the restart file. Most of the input in the current md input block will be ignored.
resume\n
Specifies that the current job will be an extension of a previous simulation, using most of the input data that have been recorded by that previous run in the restart file. Typically the input in the current md input block defines a larger number of steps than the previous job.
"},{"location":"MD.html#parameter-set","title":"Parameter set","text":"set <integer iset>\n
Specifies the use of parameter set <iset>
for the molecular dynamics simulation. The topology file contains three separate parameters sets that can be used. The default for <iset>
is 1.
lambda <integer ilambda> <integer ilambda>\n
Specifies the use of parameter set for the ilambda-th of mlambda steps.
pset <integer isetp1> [<integer isetp2>]\n
Specifies the parameter sets to be used as perturbation potentials in single step thermodynamic perturbation free energy evaluations, where <isetp1>
specifies the first perturbation parameter set and <isetp2>
specifies the second perturbation parameter set. Legal values for <isetp1>
are 2 and 3. Legal value for <isetp2>
is 3, in which case <isetp1>
can only be 2. If specified, <iset>
is automatically set to 1.
pmf [ equilharm <integer npmfc> | scale <real facpmf>]\n
Specifies that any potential of mean force functions defined in the topology files are to be used. If equilharm is specified, the first npmfc dynamics steps will use a harmonic potential in stead of any pmf constraint. If scale is specified, all pmf force constants are scaled by a factor facpmf.
distar [draver [<integer ndaver default 1>]] \n [scale <real drsscl>]\n [after <integer nfdrss>]\n
Specifies that any distance restraint functions defined in the topology files are to be used.
qhop [<integer nfhop default 10>] \n [<real rhop default 0.35>]\n [<real thop default 0.02>]\n
Specifies that a Q-HOP simulation is to be carried out with attempted proton hops every nfhop steps, a cutoff for the donor-acceptor pair distance of rhop nm, and a minimum time before back hopping can occur of thop ps.
"},{"location":"MD.html#energy-minimization-algorithms","title":"Energy minimization algorithms","text":"The energy minimization of the system as found in the restart file is performed with the following directives. If both are specified, steepest descent energy minimization precedes conjugate gradient minimization.
sd <integer msdit> [init <real dx0sd>] [min <real dxsdmx>] \\\n [max <real dxmsd>]\n
Specifies the variables for steepest descent energy minimizations, where <msdit>
is the maximum number of steepest descent steps taken, for which the default is 100, <dx0sd>
is the initial step size in nm for which the default is 0.001, <dxsdmx>
is the threshold for the step size in nm for which the default is 0.0001, and <dxmsd>
is the maximum allowed step size in nm for which the default is 0.05.
cg <integer mcgit> [init <real dx0cg>] [min <real dxcgmx>] \\\n [cy <integer ncgcy>]\n
Specifies the variables for conjugate gradient energy minimizations, where <mcgit>
is the maximum number of conjugate gradient steps taken, for which the default is 100, <dx0cg>
is the initial search interval size in nm for which the default is 0.001, <dxcgmx>
is the threshold for the step size in nm for which the default is 0.0001, and <ncgcy>
is the number of conjugate gradient steps after which the gradient history is discarded for which the default is 10. If conjugate gradient energy minimization is preceded by steepest descent energy minimization, the search interval is set to twice the final step of the steepest descent energy minimization.
The following keywords control free energy difference simulations. Multi-configuration thermodynamic integrations are always combined with multiple step thermodynamic perturbations.
(forward | reverse) [[<integer mrun> of] <integer maxlam>]\n
Specifies the direction and number of integration steps in free energy evaluations, with forward being the default direction. <mrun>
is the number of ensembles that will be generated in this calculation, and <maxlam>
is the total number of ensembles to complete the thermodynamic integration. The default value for <maxlam>
is 21. The default value of <mrun>
is the value of <maxlam>
.
error <real edacq>\n
Specifies the maximum allowed statistical error in each generated ensemble, where <edacq>
is the maximum error allowed in the ensemble average derivative of the Hamiltonian with respect to \u03bb with a default of 5.0 kJ mol-1.
drift <real ddacq>\n
Specifies the maximum allowed drift in the free energy result, where is the maximum drift allowed in the ensemble average derivative of the Hamiltonian with respect to \u03bb with a default of 5.0 kJ mol-1 ps-1.
factor <real fdacq>\n
Specifies the maximum allowed change in ensemble size where <fdacq>
is the minimum size of an ensemble relative to the previous ensemble in the calculation with a default value of 0.75.
decomp\n
Specifies that a free energy decomposition is to be carried out. Since free energy contributions are path dependent, results from a decomposition analysis can no be unambiguously interpreted, and the default is not to perform this decomposition.
sss [delta <real delta>]\n
Specifies that atomic non-bonded interactions describe a dummy atom in either the initial or final state of the thermodynamic calculation will be calculated using separation-shifted scaling, where <delta>
is the separation-shifted scaling factor with a default of 0.075 nm2. This scaling method prevents problems associated with singularities in the interaction potentials.
new | renew | extend\n
Specifies the initial conditions for thermodynamic calculations. new indicates that this is an initial mcti calculation, which is the default. renew instructs to obtain the initial conditions for each \u03bb from the mro-file from a previous mcti calculation, which has to be renamed to an mri-file. The keyword extend will extend a previous mcti calculation from the data read from an mri-file.
"},{"location":"MD.html#time-and-integration-algorithm-directives","title":"Time and integration algorithm directives","text":"Following directives control the integration of the equations of motion.
leapfrog | leapfrog_bc\n
Specifies the integration algorithm, where leapfrog specifies the default leap frog integration, and leapfrog_bc specifies the Brown-Clarke leap frog integrator.
guided [<real fguide default 0.2> [<real tguide default 0.2>]]\n
Specifies the use of the guided molecular dynamics simulation technique. Variable fguide defines the fraction of the averaged forces g to be added to the forces ff evaluated using the force field functions to obtain the forces f used to advance the coordinates.
Variable tguide defines the length of the averaging relative to the timestep \u0394 t.
The current implementation is still under development.
equil <integer mequi>\n
Specifies the number of equilibration steps <mequi>
, with a default of 100.
data <integer mdacq> [over <integer ldacq>]]\n
Specifies the number of data gathering steps <mdacq>
with a default of 500. In multi-configuration thermodynamic integrations <mequi>
and <mdacq>
are for each of the ensembles, and variable <ldacq>
specifies the minimum number of data gathering steps in each ensemble. In regular molecular dynamics simulations <ldacq>
is not used. The default value for <ldacq>
is the value of <mdacq>
.
time <real stime>\n
Specifies the initial time <stime>
of a molecular simulation in ps, with a default of 0.0.
step <real tstep>\n
Specifies the time step <tstep>
in ps, with 0.001 as the default value.
Following directives control the ensemble type.
isotherm [<real tmpext> [<real tmpext2>]] [trelax <real tmprlx> [<real tmsrlx>]] \\\n [anneal [<real tann1>] <real tann2>]\n
Specifies a constant temperature ensemble using Berendsen\u2019s thermostat, where <tmpext>
is the external temperature with a default of 298.15 K, and <tmprlx>
and <tmsrlx>
are temperature relaxation times in ps with a default of 0.1. If only <tmprlx>
is given the complete system is coupled to the heat bath with relaxation time <tmprlx>
. If both relaxation times are supplied, solvent and solute are independently coupled to the heat bath with relaxation times <tmprlx>
and <tmsrlx>
, respectively. If keyword anneal is specified, the external temperature will change from tmpext to tempext2 between simulation time tann1 and tann2
isobar [<real prsext>] [trelax <real prsrlx> ] \\\n [compress <real compr>] [anisotropic] [xy | z | xy-z]\n
Specifies a constant pressure ensemble using Berendsen\u2019s piston, where <prsext>
is the external pressure with a default of 1.025 105 Pa, <prsrlx>
is the pressure relaxation time in ps with a default of 0.5, and <compr>
is the system compressibility in with a default of 4.53E-10. Optional keywords xy, z and xy-z may be used to specify that pressure scaling is to be applied in the x and y dimension only, the z dimension only, or, in all three dimensions with identical scaling in the x and y dimension. The last option requires that anisotropic is also specified.
Velocities can be periodically reassigned to reflect a certain temperature.
vreass <integer nfgaus> <real tgauss>\n [fraction [<real frgaus default 0.5]]\n [once]\n [(first | initial)] [(last | final)]\n
Specifies that velocities will be reassigned every <nfgaus>
molecular dynamics steps, reflecting a temperature of <tgauss>
K. The default is not to reassign velocities, i.e. <nfgaus>
is 0. Keyword fraction allows the specification of the fraction of the new velocities are random. Keyword once specifies that velocity reassignment only should be done in the first step. Keywords first or initial and last or final specify that velocity reassigment should only be applied in the first and last window of multiple run simulations.
Cutoff radii can be specified for short range and long range interactions.
cutoff [short] <real rshort> [long <real rlong>] \\\n [qmmm <real rqmmm>]\n
Specifies the short range cutoff radius <rshort>
, and the long range cutoff radius <rlong>
in nm. If the long range cutoff radius is larger than the short range cutoff radius the twin range method will be used, in which short range forces and energies are evaluated every molecular dynamics step, and long range forces and energies with a frequency of <nflong>
molecular dynamics steps. Keyword qmmm specifies the radius of the zone around quantum atoms defining the QM/MM bare charges. The default value for <rshort>
, <rlong>
and <rqmmm>
is 0.9 nm.
First order and self consistent electronic polarization models have been implemented.
polar (first | scf [[<integer mpolit>] <real ptol>])\n
Specifies the use of polarization potentials, where the keyword first specifies the first order polarization model, and scf specifies the self consistent polarization field model, iteratively determined with a maximum of <mpolit>
iterations to within a tolerance of <ptol>
D in the generated induced dipoles. The default is not to use polarization models.
field <real xfield> [freq <real xffreq>] [vector <real xfvect(1:3)>]\n
Specifies an external electrostatic field, where <xfield>
is the field strength, <xffreq>
is the frequency in MHz and <xfvect>
is the external field vector.
Constraints are satisfied using the SHAKE coordinate resetting procedure.
shake [<integer mshitw> [<integer mshits>]] \\\n [<real tlwsha> [<real tlssha>]]\n
Specifies the use of SHAKE constraints, where <mshitw>
is the maximum number of solvent SHAKE iterations, and <mshits>
is the maximum number of solute SHAKE iterations. If only <mshitw>
is specified, the value will also be used for <mshits>
. The default maximum number of iterations is 100 for both. <tlwsha>
is the solvent SHAKE tolerance in nm, and <tlssha>
is the solute SHAKE tolerance in nm. If only <tlwsha>
is specified, the value given will also be used for <tlssha>
. The default tolerance is 0.001 nm for both.
noshake (solvent | solute)\n
Disables SHAKE and treats the bonded interaction according to the force field.
"},{"location":"MD.html#long-range-interaction-corrections","title":"Long range interaction corrections","text":"Long range electrostatic interactions are implemented using the smooth particle mesh Ewald technique, for neutral periodic cubic systems in the constant volume ensemble, using pair interaction potentials. Particle-mesh Ewald long range interactions can only be used in molecular dynamics simulations using effective pair potentials, and not in free energy simulations, QMD or QM/MM simulations.
pme [grid <integer ng>] [alpha <real ealpha>] \\\n [order <integer morder>] [fft <integer imfft>]\\\n [procs <integer nprocs>] [solvent]\n
Specifies the use of smooth particle-mesh Ewald long range interaction treatment, where ng is the number of grid points per dimension, ealpha is the Ewald coefficient in , with a default that leads to a tolerance of at the short range cutoff radius, and morder is order of the Cardinal B-spline interpolation which must be an even number and at least 4 (default value). A platform specific 3D fast Fourier transform is used, if available, when imfft is set to 2. nprocs can be used to define a subset of processors to be used to do the FFT calculations. If solvent is specified, the charge grid will be calculated from the solvent charges only.
react [<real dielec default 80.0>]\n
Specifies that a simple reaction field correction is used with a dielectric constant dielec. This is an experimental option that has not been well tested.
"},{"location":"MD.html#fixing-coordinates","title":"Fixing coordinates","text":"Solvent or solute may be fixed using the following keywords.
( fix | free ) \n solvent ( [<integer idfirst> [<integer idlast>]] | \n ( within | beyond) <real rfix> <string atomname> ) | \\\n solute ( [<integer idfirst> [<integer idlast>]] [ heavy | {<string atomname>}] |\n ( within | beyond) <real rfix> <string atomname> )\n [permanent]\n
For solvent the molecule numbers idfirst and idlastmay be specified to be the first and last molecule to which the directive applies. If omitted, the directive applies to all molecules. For solute, the segment numbers idfirst and idlastmay be specified to be the first and last segment to which the directive applies. If omitted, the directive applies to all segments. In addition, the keyword heavy may be specified to apply to all non hydrogen atoms in the solute, or a set of atom names may be specified in which a wildcard character ? may be used. Keyword permanent is used to keep the specification on the restart file for subsequent simulations.
"},{"location":"MD.html#special-options","title":"Special options","text":" import [<integer impfr default 1> [<integer impto default impfr> \\\n [<integer nftri default 1>]]]\n
Specifies the import of frames impfr to impto with frequency nftri from a trajectory file with extension tri for which energies and forces are to be recalculated. This option only applied to task md energy.
detail\n
Specifies that moments of inertia and radii of gyration will be part of the recorded properties.
profile\n
Specifies that execution time profiling data will be part of the recorded properties.
scale <real scaleq>\n
Specifies that all charges will be scaled by the factro scaleq.
collapse [<real fcoll default 10.0> [ segment | z | xy ]\n
Specifies that additional forces directed to the origin of the simulation cell with strength fcoll will be applied to all solute molecules. If z or xy is specified, these forces will only apply in the specified dimension(s).
include fixed\n
Specifies that energies will be evaluated between fixed atoms. Normally these interactions are excluded from the pairlists.
eqm <real eqm>\n
Specifies the zero point of energy in QMD simulations.
atomlist\n
Specifies that pairlists will be atom based. Normally pairlist are charge group based.
"},{"location":"MD.html#autocorrelation-function","title":"Autocorrelation function","text":"For the evaluation of the statistical error of multi-configuration thermodynamic integration free energy results a correlated data analysis is carried out, involving the calculation of the autocorrelation function of the derivative of the Hamiltonian with respect to the control variable \u03bb.
auto <integer lacf> [fit <integer nfit>] [weight <real weight>]\n
Controls the calculation of the autocorrelation, where <lacf>
is the length of the autocorrelation function, with a default of 1000, <nfit>
is the number of functions used in the fit of the autocorrelation function, with a default of 15, and <weight>
is the weight factor for the autocorrelation function, with a default value of 0.0.
Keywords that control print to the output file, with extension out. Print directives may be combined to a single directive.
print [topol [nonbond] [solvent] [solute]] \\\n [step <integer nfoutp> [extra] [energy]] \\\n [stat <integer nfstat>] \\\n [energies [<integer nfener>]] \\\n [forces [<integer nfforce>]] \\\n [matrix] \\\n [expect <integer npxpct>] \\\n [timing] \\\n [pmf [<integer iprpmf>]] \\\n [out6] \\\n [dayout]\n
<nfstat>
of printing statistical information of properties that are calculated during the simulation. For molecular dynamics simulation this frequency is in time steps, for multi-configuration thermodynamic integration in \u03bb-steps.Following keywords control periodic events during a molecular dynamics or thermodynamic integration simulation. Update directives may be combined to a single directive.
update [pairs <integer nfpair default 1>] \\\n\n [long <integer nflong default 1>] \\\n\n [center <integer nfcntr default 0> [zonly | xyonly] \\\n\n [fraction <integer idscb(1:5)>] \\\n\n [motion <integer nfslow default 0>] \\\n\n [analysis <integer nfanal default 0>] \\\n\n [rdf <integer nfrdf default 0> \\\n\n [range <real rrdf>] [bins <integer ngl>] \\\n
<nfpair>
in molecular dynamics steps of updating the pair lists. The default for the frequency is 1. In addition, pair lists are also updated after each step in which recording of the restart or trajectory files is performed. Updating the pair lists includes the redistribution of atoms that changed domain and load balancing, if specified.<nflong>
in molecular dynamics steps of updating the long range forces. The default frequency is 1. The distinction of short range and long range forces is only made if the long range cutoff radius was specified to be larger than the short range cutoff radius. Updating the long range forces is also done in every molecular dynamics step in which the pair lists are regenerated.<nfcntr>
in molecular dynamics steps in which the center of geometry of the solute(s) is translated to the center of the simulation volume. Optional keyword zonly or xyonly can be used to specify that centering will take place in the z-direction or in the xy-plane only. The solute fractions determining the solutes that will be centered are specified by the keyword fraction and the vector <idscb>
, with a maximum of 5 entries. This translation is implemented such that it has no effect on any aspect of the simulation. The default is not to center, i.e. nfcntr is 0. The default fraction used to center solute is 1.<nfslow>
in molecular dynamics steps of removing the overall rotational and center of mass translational motion.<nfanal>
in molecular dynamics steps of invoking the analysis module. This option is obsolete.<nfrdf>
in molecular dynamics steps of calculating contributions to the radial distribution functions. The default is 0. The range of the radial distribution functions is given by <rrdf>
in nm, with a default of the short range cutoff radius. Note that radial distribution functions are not evaluated beyond the short range cutoff radius. The number of bins in each radial distribution function is given by <ngl>
, with a default of 1000. This option is no longer supported. If radial distribution function are to be calculated, a rdi files needs to be available in which the contributions are specified as follows.The following keywords control recording data to file. Record directives may be combined to a single directive.
record [rest <integer nfrest> [keep]] \\\n\n [coord <integer nfcoor default 0>] \\\n\n [wcoor <integer nfwcoo default 0>] \\\n\n [scoor <integer nfscoo default 0>] \\\n\n [veloc <integer nfvelo default 0>] \\\n\n [wvelo <integer nfwvel default 0>] \\\n\n [svelo <integer nfsvel default 0>] \\\n\n [force <integer nfvelo default 0>] \\\n\n [wforc <integer nfwvel default 0>] \\\n\n [sforc <integer nfsvel default 0>] \\\n\n [(prop | prop_average) <integer nfprop default 0>] \\\n\n [free <integer nffree default 1>] \\\n\n [sync <integer nfsync default 0>] \\\n\n [times <integer nftime default 0>] \\\n\n [acf] [cnv] [fet]\n\n [binary] [ascii] [ecce] [argos]\n
<nfrest>
in molecular dynamics steps of rewriting the restart file, with extension rst. For multi-configuration thermodynamic integration simulations the frequency is in steps in \u03bb. The default is not to record. The restart file is used to start or restart simulations. The keyword keep causes all restart files written to be kept on disk, rather than to be overwritten.<nfcoor>
in molecular dynamics steps of writing coordinates to the trajectory file. This directive redefines previous coord, wcoor and scoor directives. The default is not to record.<nfcoor>
in molecular dynamics steps of writing solvent coordinates to the trajectory file. This keyword takes precedent over coord. This directive redefines previous coord, wcoor and scoor directives. The default is not to record.<nfscoo>
in molecular dynamics steps of writing solute coordinates to the trajectory file. This keyword takes precedent over coord. This directive redefines previous coord, wcoor and scoor directives. The default is not to record.<nfvelo>
in molecular dynamics steps of writing velocities to the trajectory file. This directive redefines previous veloc, wvelo and svelo directives. The default is not to record.<nfvelo>
in molecular dynamics steps of writing solvent velocitiesto the trajectory file. This keyword takes precedent over veloc. This directive redefines previous veloc, wvelo and svelo directives. The default is not to record.<nfsvel>
in molecular dynamics steps of writing solute velocities to the trajectory file. This keyword takes precedent over veloc. This directive redefines previous veloc, wvelo and svelo directives. The default is not to record.<nfvelo>
in molecular dynamics steps of writing forces to the trajectory file. This directive redefines previous vforce, wforc and sforc directives. The default is not to record.<nfvelo>
in molecular dynamics steps of writing solvent forcesto the trajectory file. This keyword takes precedent over force. This directive redefines previous vforce, wforc and sforc directives. The default is not to record.<nfsvel>
in molecular dynamics steps of writing solute forces to the trajectory file. This keyword takes precedent over force. This directive redefines previous vforce, wforc and sforc directives. The default is not to record.<nfprop>
in molecular dynamics steps of writing information to the property file, with extension prp. The default is not to record.<nfprop>
in molecular dynamics steps of writing average information to the property file, with extension prp. The default is not to record.<nffree>
in multi-configuration thermodynamic integration steps to record data to the free energy data file, with extension gib. The default is 1, i.e. to record at every \u03bb. This option is obsolete. All data are required to do the final analysis.<nfsync>
in molecular dynamics steps of writing information to the synchronization file, with extension syn. The default is not to record. The information written is the simulation time, the wall clock time of the previous MD step, the wall clock time of the previous force evaluation, the total synchronization time, the largest synchronization time and the node on which the largest synchronization time was found. The recording of synchronization times is part of the load balancing algorithm. Since load balancing is only performed when pair-lists are updated, the frequency <nfsync>
is correlated with the frequency of pair-list updates <nfpair>
. This directive is only needed for analysis of the load balancing performance. For normal use this directive is not used.<nfsync>
in molecular dynamics steps of writing information to the timings file, with extension tim. The default is not to record. The information written is wall clock time used by each of the processors for the different components in the force evaluation. This directive is only needed for analysis of the wall clock time distribution. For normal use this directive is not used. load [reset] \n ( none | \n size [<real factld>] |\n sizez [<real factld>] | pairs | \n (pairs [<integer ldpair>] size [<real factld>]) )\n [last]\n [minimum]\n [average]\n [combination]\n [iotime]\n [experimental]\n
Determines the type of dynamic load balancing performed, where the default is none. Load balancing option size is resizing cells on a node, and pairs redistributes the cell-cell interactions over nodes. Keyword reset will reset the load balancing read from the restart file. The level of cell resizing can be influenced with factld. The cells on the busiest node are resized with a factor
Where is the accumulated synchronization time of all nodes, is the total number of nodes, is the synchronization time of the busiest node, and is the wall clock time of the molecular dynamics step. For the combined load balancing, ldpair is the number of successive pair redistribution load balancing steps in which the accumulated synchronization time increases, before a resizing load balancing step will be attempted. Load balancing is only performed in molecular dynamics steps in which the pair-list is updated. The default load balancing is equivalent to specifying
load pairs 10 size 0.75\n
Keyword last specifies that the load balancing is based on the synchronization times of the last step. This is the default. Keyword average specifies that the load balancing is based on the average synchronization times since the last load balancing step. Keyword minimum specifies that the load balancing is based on the minimum synchronization times since the last load balancing step. Keywords combination, iotime and experimental are experimental load balancing options that should not be used in production runs.
(pack | nopack)\n
Specifies if data are communicated in packed or unpacked form. The default is pack.
procs <integer npx> <integer npy> <integer npz>\n
Specifies the distribution of the available processors over the three Cartesian dimensions. The default distribution is chosen such that, <npx>
*<npy>
*<npz>
=<np>
and <npx>
<=
<npy>
<= <npz>
, where <npx>
, <npy>
and <npz>
are the processors in the x, y and z dimension respectively, and <np>
is the number of processors allocated for the calculation. Where more than one combination of <npx>
, <npy>
and <npz>
are possible, the combination is chosen with the minimum value of <npx>+<npy>+<npz>
. To change the default setting the following optional input option is provided.
cells <integer nbx> <integer nby> <integer nbz>\n
Specifies the distribution of cells, where <nbx>
, <nby>
and <nbz>
are the number of cells in x, y and z direction, respectively. The molecular system is decomposed into cells that form the smallest unit for communication of atomic data between nodes. The size of the cells is per default set to the short-range cutoff radius. If long-range cutoff radii are used the cell size is set to half the long-range cutoff radius if it is larger than the short-range cutoff. If the number of cells in a dimension is less than the number of processors in that dimension, the number of cells is set to the number of processors.
extra <integer madbox>\n
Sets the number of additional cells for which memory is allocated. In rare events the amount of memory set aside per node is insufficient to hold all atomic coordinates assigned to that node. This leads to execution which aborts with the message that mwm or msa is too small. Jobs may be restarted with additional space allocated by where <madbox>
is the number of additional cells that are allocated on each node. The default for <madbox>
is 6. In some cases <madbox>
can be reduced to 4 if memory usage is a concern. Values of 2 or less will almost certainly result in memory shortage.
mwm <integer mwmreq>\n
Sets the maximum number of solvent molecules <mwmreq>
per node, allowing increased memory to be allocated for solvent molecules. This option can be used if execution aborted because mwm was too small.
msa <integer msareq>\n
Sets the maximum number of solute atoms <msareq>
per node, allowing increased memory to be allocated for solute atoms. This option can be used if execution aborted because msa was too small.
mcells <integer mbbreq>\n
Sets the maximum number of cell pairs <mbbreq>
per node, allowing increased memory to be allocated for the cell pair lists. This option can be used if execution aborted because mbbl was too small.
boxmin <real rbox>\n
Sets the minimum size of a cell. This directive is obsolete. The use of mcells is preferred.
segmentsize <real rsgm>\n
Sets the maximum size of a segment. This value is used to determine which segments at the boundary of the cutoff radius should be considered in the generation of the pairlists. This value is also determined by the prepare module and written to the restart file. Use of this directive is not needed for simulations that use the current prepare module to generate the restart file.
memory <integer memlim>\n
Sets a limit <memlim>
in kB on the allocated amount of memory used by the molecular dynamics module. Per default all available memory is allocated. Use of this command is required for QM/MM simulations only.
expert\n
Enables the use of certain combinations of features that are considered unsafe. This directive should not be used for production runs.
develop <integer idevel>\n
Enables the use of certain development options specified by the integer idevel. This option is for development purposes only, and should not be used for production runs.
control <integer icntrl>\n
Enables the use of certain development options specified by the integer icntrl. This option is for development purposes only, and should not be used for production runs.
numerical\n
Writes out analytical and finite difference forces for test purposes.
server <string servername> <integer serverport>\n
Allows monitoring over a socket connection to the specified port on the named server of basic data as a simulation is running.
For development purposes debug information can be written to the debug file with extension dbg with
debug <integer idebug>\n
where idebug specifies the type of debug information being written.
For testing purposes test information can be written to the test file with extension tst with
test <integer itest>\n
where itest specifies the number of steps test information is written.
On some platforms prefetching of data can improve the efficiency. This feature can be turned on using
prefetch [<integer nbget>]\n
where nbget is the number of outstanding communication operations.
Application of periodic boundary conditions for the evaluation of forces can be controlled with
pbc ( atom | residue | molecule )\n
This option rarely needs to be used.
Autocorrelation functions for error analysis are controlled using
auto [ fit <integer iapprx> | weight <real weight> ]\n
This option is disabled in the current release.
Membrane system equilibration can be made more efficient using
membrane [ rotations ]\n
Constraining the center of mass of solute molecules in the xy plane is accomplished using
scmxy [<integer icmopt default 1>]\n
where icmopt determines if the constraint is mass weighted (2).
Radius of gyration calculations are enabled using
radius_gyration\n
Calculations of diffusion coefficients is enabled using
diffusion\n
This option is disabled in the current release.
comlim ( on | off )\n
is disabled
To limit the size of recoding files, new files are opened every nfnewf md steps using
batch <integer nfnewf>\n
"},{"location":"MM_Parameters.html","title":"MM Parameters","text":"The molecular mechanics parameters are given in the form of standard MD input block as used by the MD module. At the basic level the molecular mechanics input block specifies the restart and topology file that were generated during QM/MM preparation stage. It also contains information relevant to the calculation of the classical region (e.g. cutoff distances, constraints, optimization and dynamics parameters, etc) in the system. In this input block one can also set fixed atom constraints on classical atoms. Continuing with our prepare example for ethanol molecule here is a simple input block that may be used for this system.
md
#\u00a0this\u00a0specifies\u00a0that\u00a0etl_md.rst\u00a0will\u00a0be\u00a0used\u00a0as\u00a0a\u00a0restart\u00a0file
#\u00a0\u00a0and\u00a0etl.top\u00a0will\u00a0be\u00a0a\u00a0topology\u00a0file
system\u00a0etl_md
#\u00a0if\u00a0we\u00a0ever\u00a0wanted\u00a0to\u00a0fix\u00a0C1\u00a0atom
fix\u00a0solute\u00a01\u00a0_C1
noshake\u00a0solute
end
The noshake solute, shown in the above example is a recommended directive for QM/MM simulations that involve optimizations. Otherwise user has to ensure that the optimization method for classical solute atoms is a steepest descent
"},{"location":"MP2.html","title":"MP2","text":""},{"location":"MP2.html#overview","title":"Overview","text":"There are (at least) three algorithms within NWChem that compute the M\u00f8ller-Plesset (or many-body) perturbation theory second-order correction1 to the Hartree-Fock energy (MP2). They vary in capability, the size of system that can be treated and use of other approximations
TASK\u00a0MP2\n
direct_mp2
on the task directive, e.g.TASK\u00a0DIRECT_MP2\n
TASK\u00a0RIMP2\n
All three MP2 tasks share the same input block.
MP2 \n [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\ \n [virtual <integer nfzv default 0>]] \n [TIGHT] \n [PRINT] \n [NOPRINT] \n [VECTORS <string filename default scf-output-vectors> \\ \n [swap [(alpha||beta)] <integer pair-list>] ] \n [RIAPPROX <string riapprox default V>] \n [FILE3C <string filename default $file_prefix$.mo3cint> \n [SCRATCHDISK <integer>] \n END\n
"},{"location":"MP2.html#freeze-freezing-orbitals","title":"FREEZE: Freezing orbitals","text":"All MP2 modules support frozen core orbitals, however, only the direct MP2 and RI-MP2 modules support frozen virtual orbitals.
By default, no orbitals are frozen. The atomic keyword causes orbitals to be frozen according to the rules in the table below. Note that no orbitals are frozen on atoms on which the nuclear charge has been modified either by the user or due to the presence of an ECP. The actual input would be
freeze atomic\n
For example, in a calculation on Si(OH)2, by default the lowest seven orbitals would be frozen (the oxygen 1s, and the silicon 1s, 2s and 2p).
"},{"location":"MP2.html#number-of-orbitals-considered-core-in-the-freeze-by-atoms-algorithm","title":"Number of orbitals considered \u201ccore\u201d in the \u201cfreeze by atoms\u201d algorithm","text":"Period Elements Core Orbitals Number of Core 0 H - He - 0 1 Li - Ne 1s 1 2 Na - Ar 1s2s2p 5 3 K - Kr 1s2s2p3s3p 9 4 Rb - Xe 1s2s2p3s3p4s3d4p 18 5 Cs - Rn 1s2s2p3s3p4s3d4p5s4d5p 27 6 Fr - Lr 1s2s2p3s3p4s3d4p5s4d5p6s4f5d6p 43Caution: The rule for freezing orbitals \u201cby atoms\u201d are rather unsophisticated since the number of orbitals to be frozen is computed from the table above by summing the number of core orbitals in each atom present. Therefore, the corresponding number of lowest-energy orbitals are frozen. If for some reason the actual core orbitals are not the lowest lying, then correct results will not be obtained. It is likely that special attention should be paid to systems including third- and higher- period atoms.
The user may also specify the number of orbitals to be frozen by atom. Following the Si(OH)2 example, the user could specify
freeze atomic O 1 Si 3\n
In this case only the lowest four orbitals would be frozen. If the user does not specify the orbitals by atom, the rules default to values reported in the Table above.
Caution: The system does not check for a valid number of orbitals per atom. If the user specifies to freeze more orbitals then are available for the atom, the system will not catch the error. The user must specify a logical number of orbitals to be frozen for the atom.
The FREEZE directive may also be used to specify the number of core orbitals to freeze. For instance, to freeze the first 10 orbitals
freeze 10\n
or equivalently, using the optional keyword core
freeze core 10\n
Again, note that if the 10 orbitals to be frozen do not correspond to the first 10 orbitals, then the swap keyword of the VECTORS directive must be used to order the input orbitals correctly (MO vectors).
To freeze the highest virtual orbitals, use the virtual keyword. For instance, to freeze the top 5 virtuals
freeze virtual 5\n
Again, note that this only works for the direct-MP2 and RI-MP2 energy codes.
"},{"location":"MP2.html#tight-increased-precision","title":"TIGHT: Increased precision","text":"The TIGHT directive can be used to increase the precision in the MP2 energy and gradients.
By default the MP2 gradient package should compute energies accurate to better than a micro-Hartree, and gradients accurate to about five decimal places (atomic units). However, if there is significant linear dependence in the basis set the precision might not be this good. Also, for computing very accurate geometries or numerical frequencies, greater precision may be desirable.
This option increases the precision to which both the SCF (from 10-6 to 10-8 and CPHF 10-4 to $10-6 are solved, and also tightens thresholds for computation of the AO and MO integrals (from 10-9 to 10-11 within the MP2 code.
"},{"location":"MP2.html#scratchdisk-limiting-io-usage","title":"SCRATCHDISK: Limiting I/O usage","text":"This directive - used only in the semi-direct algorithm - allows to limit the per process disk usage. Mandatory argument for this keyword is the maximum number of MBytes. For example, the following input line
scratchdisk 512\n
puts an upper limit of 512 MBytes to the semi-direct MP2 usage of disk (again, on a per process base).
"},{"location":"MP2.html#print-and-noprint","title":"PRINT and NOPRINT","text":"The standard print control options are recognized. The list of recognized names are given in the table below.
Item Print Level Description RI-MP2 \u201c2/3 ints\u201d debug Partial 3-center integrals \u201c3c ints\u201d debug MO 3-center integrals \u201c4c ints b\u201d debug \u201cB\u201d matrix with approx. 4c integrals \u201c4c ints\u201d debug Approximate 4-center integrals \u201camplitudes\u201d debug \u201cB\u201d matrix with denominators \u201cbasis\u201d high \u201cfit xf\u201d debug Transformation for fitting basis \u201cgeombas\u201d debug Detailed basis map info \u201cgeometry\u201d high \u201cinformation\u201d low General information about calc. \u201cintegral i/o\u201d high File size information \u201cmo ints\u201d debug \u201cpair energies\u201d debug (working only in direct_mp2
) \u201cpartial pair energies\u201d debug Pair energy matrix each time it is updated \u201cprogress reports\u201d default Report completion of time-consuming steps \u201creference\u201d high Details about reference wavefunction \u201cwarnings\u201d low Non-fatal warnings
Printable items in the MP2 modules and their default print levels
"},{"location":"MP2.html#vectors-mo-vectors","title":"VECTORS: MO vectors","text":"All of the (supported) MP2 modules require use of converged canonical SCF (RHF or UHF) orbitals for correct results. The vectors are by default obtained from the preceding SCF calculation, but it is possible to specify a different source using the VECTORS directive. For instance, to obtain vectors from the file /tmp/h2o.movecs, use the directive
vectors /tmp/h2o.movecs\n
As noted above (FREEZE) if the SCF orbitals are not in the correct order, it is necessary to permute the input orbitals using the swap keyword of the VECTORS directive. For instance, if it is desired to freeze a total six orbitals corresponding to the SCF orbitals 1-5, and 7, it is necessary to swap orbital 7 into the 6th position. This is accomplished by
vectors swap 6 7\n
The swap capability is examined in more detail in Input/output of MO vectors.
"},{"location":"MP2.html#ri-mp2-fitting-basis","title":"RI-MP2 fitting basis","text":"The RI-MP2 method requires a fitting basis, which must be specified with the name \u201cri-mp2 basis\u201d (see Basis). For instance,
basis \"ri-mp2 basis\"\n O s; 10000.0 1\n O s; 1000.0 1\n O s; 100.0 1\n ...\n end\n
Alternatively, using a standard capability of basis sets (Basis) another named basis may be associated with the fitting basis. For instance, the following input specifies a basis with the name \u201csmall fitting basis\u201d and then defines this to be the \u201cri-mp2 basis\u201d.
basis \"small fitting basis\"\n H s; 10 1\n H s; 3 1\n H s; 1 1\n H s; 0.1 1\n H s; 0.01 1\n end\n
set \"ri-mp2 basis\" \"small fitting basis\"\n
"},{"location":"MP2.html#file3c-ri-mp2-3-center-integral-filename","title":"FILE3C: RI-MP2 3-center integral filename","text":"The default name for the file used to store the transformed 3-center integrals is \u201cfile_prefix.mo3cint\u201d in the scratch directory. This may be overridden using the FILE3C directive. For instance, to specify the file /scratch/h2o.3c, use this directive
file3c /scratch/h2o.3c\n
"},{"location":"MP2.html#riapprox-ri-mp2-approximation","title":"RIAPPROX: RI-MP2 Approximation","text":"The type of RI approximation used in the RI-MP2 calculation is controlled by means of the RIAPPROX directive. The two possible values are V and SVS (case sensitive), which correspond to the approximations with the same names described by Vahtras et al.4. The default is V.
"},{"location":"MP2.html#advanced-options-for-ri-mp2","title":"Advanced options for RI-MP2","text":"These options, which functioned at the time of writing, are not currently supported.
"},{"location":"MP2.html#control-of-linear-dependence","title":"Control of linear dependence","text":"Construction of the RI fit requires the inversion of a matrix of fitting basis integrals which is carried out via diagonalization. If the fitting basis includes near linear dependencies, there will be small eigenvalues which can ultimately lead to non-physical RI-MP2 correlation energies. Eigenvectors of the fitting matrix are discarded if the corresponding eigenvalue is less than min eval
which defaults to 10-8. This parameter may be changed by setting the a parameter in the database. For instance, to set it to 10-10
set \"mp2:fit min eval\" 1e-10\n
"},{"location":"MP2.html#reference-spin-mapping-for-ri-mp2-calculations","title":"Reference Spin Mapping for RI-MP2 Calculations","text":"The user has the option of specifying that the RI-MP2 calculations are to be done with variations of the SCF reference wavefunction. This is accomplished with a SET directive of the form,
set \"mp2:reference spin mapping\" <integer array default 0>\n
Each element specified for array is the SCF spin case to be used for the corresponding spin case of the correlated calculation. The number of elements set determines the overall type of correlated calculation to be performed. The default is to use the unadulterated SCF reference wavefunction.
For example, to perform a spin-unrestricted calculation (two elements) using the alpha spin orbitals (spin case 1) from the reference for both of the correlated reference spin cases, the SET directive would be as follows,
set \"mp2:reference spin mapping\" 1 1\n
The SCF calculation to produce the reference wavefunction could be either RHF or UHF in this case.
The SET directive for a similar case, but this time using the beta-spin SCF orbitals for both correlated spin cases, is as follows,
set \"mp2:reference spin mapping\" 2 2\n
The SCF reference calculation must be UHF in this case.
The SET directive for a spin-restricted calculation (one element) from the beta-spin SCF orbitals using this option is as follows,
set \"mp2:reference spin mapping\" 2\n
The SET directive for a spin-unrestricted calculation with the spins flipped from the original SCF reference wavefunction is as follows,
set \"mp2:reference spin mapping\" 2 1\n
"},{"location":"MP2.html#batch-sizes-for-the-ri-mp2-calculation","title":"Batch Sizes for the RI-MP2 Calculation","text":"The user can control the size of each batch in the transformation and energy evaluation in the MP2 calculation, and consequently the memory requirements and number of passes required. This is done using two SET directives of the following form,
set \"mp2:transformation batch size\" <integer size default -1>\n set \"mp2:energy batch size\" <integer isize jsize default -1 -1>\n
The default is for the code to determine the batch size based on the available memory. Should there be problems with the program-determined batch sizes, these variables allow the user to override them. The program will always use the smaller of the user\u2019s value of these entries and the internally computed batch size.
The transformation batch size computed in the code is the number of occupied orbitals in the (occ vir|fit) three-center integrals to be produced at a time. If this entry is less than the number of occupied orbitals in the system, the transformation will require multiple passes through the two-electron integrals. The memory requirements of this stage are two global arrays of dimension batch size
x vir x fit with the \u201cfit\u201d dimension distributed across all processors (on shell-block boundaries). The compromise here is memory space versus multiple integral evaluations.
The energy evaluation batch sizes are computed in the code from the number of occupied orbitals in the two sets of three-center integrals to be multiplied together to produce a matrix of approximate four-center integrals. Two blocks of integrals of dimension (batch isize
x vir) and (batch jsize
x vir) by fit are read in from disk and multiplied together to produce batch isize
batch jsize
vir^2 approximate integrals. The compromise here is performance of the distributed matrix multiplication (which requires large matrices) versus memory space.
The user must choose a strategy for the memory allocation in the energy evaluation phase of the RI-MP2 calculation, either by minimizing the amount of I/O, or minimizing the amount of computation. This can be accomplished using a SET directive of the form,
set \"mp2:energy mem minimize\" <string mem_opt default I>\n
A value of I entered for the string mem_opt
means that a strategy to minimize I/O will be employed. A value of C tells the code to use a strategy that minimizes computation.
When the option to minimize I/O is selected, the block sizes are made as large as possible so that the total number of passes through the integral files is as small as possible. When the option to minimize computation is selected, the blocks are chosen as close to square as possible so that permutational symmetry in the energy evaluation can be used most effectively.
"},{"location":"MP2.html#local-memory-usage-in-three-center-transformation","title":"Local Memory Usage in Three-Center Transformation","text":"For most applications, the code will be able to size the blocks without help from the user. Therefore, it is unlikely that users will have any reason to specify values for these entries except when doing very particular performance measurements.
The size of xf3ci:AO 1 batch size
is the most important of the three, in terms of the effect on performance.
Local memory usage in the first two steps of the transformation is controlled in the RI-MP2 calculation using the following SET directives,
set \"xf3ci:AO 1 batch size\" <integer max>\n set \"xf3ci:AO 2 batch size\" <integer max>\n set \"xf3ci:fit batch size\" <integer max>\n
The size of the local arrays determines the sizes of the two matrix multiplications. These entries set limits on the size of blocks to be used in each index. The listing above is in order of importance of the parameters to performance, with xf3ci:AO 1 batch size being most important.
Note that these entries are only upper bounds and that the program will size the blocks according to what it determines as the best usage of the available local memory. The absolute maximum for a block size is the number of functions in the AO basis, or the number of fitting basis functions on a node. The absolute minimum value for block size is the size of the largest shell in the appropriate basis. Batch size entries specified for max that are larger than these limits are automatically reset to an appropriate value.
"},{"location":"MP2.html#one-electron-properties-and-natural-orbitals","title":"One-electron properties and natural orbitals","text":"If an MP2 energy gradient is computed, all contributions are available to form the MP2 linear-response density. This is the density that when contracted with any spin-free, one-electron operator yields the associated property defined as the derivative of the energy. Thus, the reported MP2 dipole moment is the derivative of the energy w.r.t. an external electric field and is not the expectation value of the operator over the wavefunction. It has been shown that evaluating the MP2 density through a derivative provides more accurate results, presumably because this matches the way experiments probe the electron density more closely[raghavachari1981]567.
Only dipole moments are printed by the MP2 gradient code, but natural orbitals are produced and stored in the permanent directory with a file extension of \u201c.mp2nos\u201d. These may be fed into the property package to compute more general properties as in the following example.
start h2o\ngeometry\n O 2.15950 0.88132 0.00000\n H 3.12950 0.88132 0.00000\n H 1.83617 0.89369 -0.91444\nend\n\nbasis spherical\n * library aug-cc-pVDZ\nend\n\nmp2\n freeze atomic\nend\n\ntask mp2 gradient\n\nproperty\n vectors h2o.mp2nos\n mulliken\nend\n\ntask mp2 property\n
Note that the MP2 linear response density matrix is not necessarily positive definite so it is not unusual to see a few small negative natural orbital occupation numbers. Significant negative occupation numbers have been argued to be a sign that the system might be near degenerate8.
"},{"location":"MP2.html#scs-mp2-spin-component-scaled-mp2","title":"SCS-MP2: Spin-Component Scaled MP2","text":"Each MP2 output contains the calculation of the SCS-MP2 correlation energies as suggested by S.Grimme9
The SCS keyword is only required for gradients calculations:
MP2 \n [SCS] \n END\n
Scaling factors for the two components (parallel and opposite spin) can be defined by using the keywords FSS (same spin factor) and FOS (opposite spin factor):
mp2 \n scs \n fss 1.13 \n fos 0.56 \nend\n
Default values are FSS=0.333333333, FOS=1.2 for MP2, and FSS=1.13, FOS=1.27 for CCSD.
"},{"location":"MP2.html#references","title":"References","text":"M\u00f8ller, Chr.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Physical Review 1934, 46 (7), 618\u2013622. https://doi.org/10.1103/PhysRev.46.618.\u00a0\u21a9
Wong, A. T.; Harrison, R. J.; Rendell, A. P. Parallel Direct Four-Index Transformations. Theoretica Chimica Acta 1996, 93 (6), 317\u2013331. https://doi.org/10.1007/BF01129213.\u00a0\u21a9
Bernholdt, D. E.; Harrison, R. J. Large-Scale Correlated Electronic Structure Calculations: The RI-MP2 Method on Parallel Computers. Chemical Physics Letters 1996, 250 (5-6), 477\u2013484. https://doi.org/10.1016/0009-2614(96)00054-1.\u00a0\u21a9
Vahtras, O.; Alml\u00f6f, J.; Feyereisen, M. W. Integral Approximations for LCAO-SCF Calculations. Chemical Physics Letters 1993, 213 (5-6), 514\u2013518. https://doi.org/10.1016/0009-2614(93)89151-7.\u00a0\u21a9
Diercksen, G. H. F.; Roos, B. O.; Sadlej, A. J. Legitimate Calculation of First-Order Molecular Properties in the Case of Limited CI Functions. Dipole Moments. Chemical Physics 1981, 59 (1-2), 29\u201339. https://doi.org/10.1016/0301-0104(81)80082-1.\u00a0\u21a9
Rice, J. E.; Amos, R. D. On the Efficient Evaluation of Analytic Energy Gradients. Chemical Physics Letters 1985, 122 (6), 585\u2013590. https://doi.org/10.1016/0009-2614(85)87275-4.\u00a0\u21a9
Wiberg, K. B.; Hadad, C. M.; LePage, T. J.; Breneman, C. M.; Frisch, M. J. Analysis of the Effect of Electron Correlation on Charge Density Distributions. The Journal of Physical Chemistry 1992, 96 (2), 671\u2013679. https://doi.org/10.1021/j100181a030.\u00a0\u21a9
Gordon, M. S.; Schmidt, M. W.; Chaban, G. M.; Glaesemann, K. R.; Stevens, W. J.; Gonzalez, C. A Natural Orbital Diagnostic for Multiconfigurational Character in Correlated Wave Functions. The Journal of Chemical Physics 1999, 110 (9), 4199\u20134207. https://doi.org/10.1063/1.478301.\u00a0\u21a9
Grimme, S. Improved Second-Order M\u00f8ller-Plesset Perturbation Theory by Separate Scaling of Parallel- and Antiparallel-Spin Pair Correlation Energies. The Journal of Chemical Physics 2003, 118 (20), 9095\u20139102. https://doi.org/10.1063/1.1569242.\u00a0\u21a9
This is a start-up directive that allows the user to specify the amount of memory PER PROCESSOR CORE that NWChem can use for the job. If this directive is not specified, memory is allocated according to installation-dependent defaults. The defaults should generally suffice for most calculations, since the defaults usually correspond to the total amount of memory available on the machine.
The general form of the directive is as follows:
MEMORY\u00a0[[total]\u00a0<integer total_size>]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[stack\u00a0<integer stack_size>]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[heap\u00a0<integer heap_size>]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[global\u00a0<integer global_size>]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[units\u00a0<string units default real>]\u00a0\u00a0\\\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(verify||noverify)]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(nohardfail||hardfail)]\n
NWChem recognizes the following memory units:
In most cases, the user need specify only the total memory limit to adjust the amount of memory used by NWChem. The following specifications all provide for eight megabytes of total memory (assuming 64-bit floating point numbers), which will be distributed according to the default partitioning:
memory\u00a0total\u00a08\u00a0mb\u00a0 \nmemory\u00a0total\u00a01048576\nmemory total 1 gb\n
In NWChem there are three distinct regions of memory: stack, heap, and global. Stack and heap are node-private, while the union of the global region on all processors is used to provide globally-shared memory. The allowed limits on each category are determined from a default partitioning (currently 25% heap, 25% stack, and 50% global). Alternatively, the keywords stack, heap, and global can be used to define specific allocations for each of these categories. If the user sets only one of the stack, heap, or global limits by input, the limits for the other two categories are obtained by partitioning the remainder of the total memory available in proportion to the weight of those two categories in the default memory partitioning. If two of the category limits are given, the third is obtained by subtracting the two given limits from the total limit (which may have been specified or may be a default value). If all three category limits are specified, they determine the total memory allocated. However, if the total memory is also specified, it must be larger than the sum of all three categories. The code will abort if it detects an inconsistent memory specification.
The following memory directives also allocate 8 megabytes, but specify a complete partitioning as well:
memory\u00a0total\u00a08 mb\u00a0stack\u00a02 mb \u00a0heap\u00a02 mb\u00a0global\u00a04\u00a0mb\u00a0 \nmemory\u00a0stack\u00a02\u00a0mb heap\u00a02\u00a0mb global\u00a04\u00a0mb\n
The optional keywords verify and noverify in the directive give the user the option of enabling or disabling automatic detection of corruption of allocated memory. The default is verify, which enables the feature. This incurs some overhead (which can be around 10% increase in walltime on some platforms), which can be eliminated by specifying noverify.
The keywords hardfail and nohardfail give the user the option of forcing (or not forcing) the local memory management routines to generate an internal fatal error if any memory operation fails. The default is nohardfail, which allows the code to continue past any memory operation failure, and perhaps generate a more meaningful error message before terminating the calculation. Forcing a hard-fail can be useful when poorly coded applications do not check the return status of memory management routines.
When assigning the specific memory allocations using the keywords stack, heap, and global in the MEMORY directive, the user should be aware that some of the distinctions among these categories of memory have been blurred in their actual implementation in the code. The memory allocator (MA) allocates both the heap and the stack from a single memory region of size heap+stack, without enforcing the partition. The heap vs. stack partition is meaningful only to applications developers, and can be ignored by most users. Further complicating matters, the global array (GA) toolkit is allocated from within the MA space on distributed memory machines, while on shared-memory machines it is separate. This is because on true shared-memory machines there is no choice but to allocate GAs from within a shared-memory segment, which is managed differently by the operating system.
On distributed memory platforms, the MA region is actually the total size of stack+heap+global. All three types of memory allocation compete for the same pool of memory, with no limits except on the total available memory. This relaxation of the memory category definitions usually benefits the user, since it can allow allocation requests to succeed where a stricter memory model would cause the directive to fail. These implementation characteristics must be kept in mind when reading program output that relates to memory usage.
Standard default for memory is currently 512 MB.
"},{"location":"Multiconfiguration_SCF.html","title":"MCSCF","text":""},{"location":"Multiconfiguration_SCF.html#overview","title":"Overview","text":"The NWChem multiconfiguration SCF (MCSCF) module can currently perform complete active space SCF (CASSCF) calculations with at most 20 active orbitals and about 500 basis functions.
MCSCF \n STATE <string state> \n ACTIVE <integer nactive> \n ACTELEC <integer nactelec> \n MULTIPLICITY <integer multiplicity> \n [SYMMETRY <integer symmetry default 1>] \n [VECTORS [[input] <string input_file default file_prefix.movecs>] \n [swap <integer vec1 vec2> ...] \\ \n [output <string output_file default input_file>] \\ \n [lock] \n [HESSIAN (exact||onel)] \n [MAXITER <integer maxiter default 20>] \n [THRESH <real thresh default 1.0e-4>] \n [TOL2E <real tol2e default 1.0e-9>] \n [LEVEL <real shift default 0.1d0>] \n END\n
Note that the ACTIVE
, ACTELEC
, and MULTIPLICITY
directives are required. The symmetry and multiplicity may alternatively be entered using the STATE directive.
The number of orbitals in the CASSCF active space must be specified using the ACTIVE directive.
E.g.,
active 10\n
The input molecular orbitals (see the vectors directive in MCSCF Vectors and SCF Vectors) must be arranged in order
The number of electrons in the CASSCF active space must be specified using the ACTELEC
directive. An error is reported if the number of active electrons and the multiplicity are inconsistent.
The number of closed shells is determined by subtracting the number of active electrons from the total number of electrons (which in turn is derived from the sum of the nuclear charges minus the total system charge).
"},{"location":"Multiconfiguration_SCF.html#multiplicity","title":"MULTIPLICITY","text":"The spin multiplicity must be specified and is enforced by projection of the determinant wavefunction.
E.g., to obtain a triplet state
multiplicity 3\n
"},{"location":"Multiconfiguration_SCF.html#symmetry-spatial-symmetry-of-the-wavefunction","title":"SYMMETRY: Spatial symmetry of the wavefunction","text":"This species the irreducible representation of the wavefunction as an integer in the range 1\u20138 using the same numbering of representations as output by the SCF program. Note that only Abelian point groups are supported.
E.g., to specify a B1 state when using the C2v group
symmetry 3\n
"},{"location":"Multiconfiguration_SCF.html#state-symmetry-and-multiplicity","title":"STATE: Symmetry and multiplicity","text":"The electronic state (spatial symmetry and multiplicity) may alternatively be specified using the conventional notation for an electronic state, such as 3B2 for a triplet state of B2 symmetry. This would be accomplished with the input
state 3b2\n
which is equivalent to
symmetry 4 \n multiplicity 3\n
"},{"location":"Multiconfiguration_SCF.html#vectors-inputoutput-of-mo-vectors","title":"VECTORS: Input/output of MO vectors","text":"Calculations are best started from RHF/ROHF molecular orbitals (see SCF), and by default vectors are taken from the previous MCSCF or SCF calculation. To specify another input file use the VECTORS
directive. Vectors are by default output to the input file, and may be redirected using the output keyword. The swap keyword of the VECTORS directive may be used to reorder orbitals to obtain the correct active space.
The LOCK keyword allows the user to specify that the ordering of orbitals will be locked to that of the initial vectors, insofar as possible. The default is to order by ascending orbital energies within each orbital space. One application where locking might be desirable is a calculation where it is necessary to preserve the ordering of a previous geometry, despite flipping of the orbital energies. For such a case, the LOCK
directive can be used to prevent the SCF calculation from changing the ordering, even if the orbital energies change.
Output orbitals of a converged MCSCF calculation are canonicalized as follows:
The MCSCF will use a one-electron approximation to the orbital-orbital Hessian until some degree of convergence is obtained, whereupon it will attempt to use the exact orbital-orbital Hessian which makes the micro iterations more expensive but potentially reduces the total number of macro iterations. Either choice may be forced throughout the calculation by specifying the appropriate keyword on the HESSIAN
directive.
E.g., to specify the one-electron approximation throughout
hessian onel\n
"},{"location":"Multiconfiguration_SCF.html#level-level-shift-for-convergence","title":"LEVEL: Level shift for convergence","text":"The Hessian used in the MCSCF optimization is by default level shifted by 0.1 until the orbital gradient norm falls below 0.01, at which point the level shift is reduced to zero. The initial value of 0.1 may be changed using the LEVEL directive. Increasing the level shift may make convergence more stable in some instances.
E.g., to set the initial level shift to 0.5
level 0.5\n
"},{"location":"Multiconfiguration_SCF.html#print-and-noprint","title":"PRINT and NOPRINT","text":"Specific output items can be selectively enabled or disabled using the print control mechanism with the available print options listed in the table below.
MCSCF Print Options Option Class Synopsis ci energy default CI energy eigenvalue fock energy default Energy derived from Fock matrices gradient norm default Gradient norm movecs default Converged occupied MO vectors trace energy high Trace Energy converge info high Convergence data and monitoring precondition high Orbital preconditioner iterations microci high CI iterations in line search canonical high Canonicalization information new movecs debug MO vectors at each macro-iteration ci guess debug Initial guess CI vector density matrix debug One- and Two-particle density matrices
"},{"location":"NWChem-Architecture.html","title":"NWChem Architecture","text":"As described in the Getting Started section, NWChem consists of independent modules that perform the various functions of the code. Examples include the input parser, self-consistent field (SCF) energy, SCF analytic gradient, and density functional theory (DFT) energy modules. The independent NWChem modules can share data only through a disk-resident database, which is similar to the GAMESS-UK dumpfile or the Gaussian checkpoint file. This allows the modules to share data, or to share access to files containing data.
It is not necessary for the user to be intimately familiar with the contents of the database in order to run NWChem. However, a nodding acquaintance with the design of the code will help in clarifying the logic behind the input requirements, especially when restarting jobs or performing multiple tasks within one job.
As detailed in the section describing the (input file structure), all start-up directives are processed at the beginning of the job by the main program, and then the input module is invoked. Each input directive usually results in one or more entries being made in the database. When a TASK directive is encountered, control is passed to the appropriate module, which extracts relevant data from the database and any associated files. Upon completion of the task, the module will store significant results in the database, and may also modify other database entries in order to affect the behavior of subsequent computations.
"},{"location":"NWChem-Architecture.html#database-structure","title":"Database Structure","text":"Data is shared between modules of NWChem by means of the database. Three main types of information are stored in the data base: (1) arrays of data, (2) names of files that contain data, and (3) objects. Arrays are stored directly in the database, and contain the following information:
It is possible to enter data directly into the database using the SET directive. For example, to store a (64-bit precision) three-element real array with the name \u201creference energies\u201d in the database, the directive is as follows:
set \"reference energies\" 0.0 1.0 -76.2
NWChem determines the data to be real (based on the type of the first element, 0.0), counts the number of elements in the array, and enters the array into the database.
Much of the data stored in the database is internally managed by NWChem and should not be modified by the user. However, other data, including some NWChem input options, can be freely modified.
Objects are built in the database by storing associated data as multiple entries, using an internally consistent naming convention. This data is managed exclusively by the subroutines (or methods) that are associated with the object. Currently, the code has two main objects: basis sets and geometries. GEOMETRY and BASIS present a complete discussion of the input to describe these objects.
As an illustration of what comprises a geometry object, the following table contains a partial listing of the database contents for a water molecule geometry named \u201ctest geom\u201d. Each entry contains the field test geom, which is the unique name of the object.
Contents of RTDB h2o.db \n----------------------- \nEntry Type[nelem] \n--------------------------- ---------------------- \ngeometry:test geom:efield double[3] \ngeometry:test geom:coords double[9] \ngeometry:test geom:ncenter int[1] \ngeometry:test geom:charges double[3] \ngeometry:test geom:tags char[6] \n...\n
Using this convention, multiple instances of objects may be stored with different names in the same database. For example, if a user needed to do calculations considering alternative geometries for the water molecule, an input file could be constructed containing all the geometries of interest by storing them in the database under different names.
The runtime database contents for the file h2o.db listed above were generated from the user-specified input directive,
geometry \"test geom\" \n O 0.00000000 0.00000000 0.00000000 \n H 0.00000000 1.43042809 -1.10715266 \n H 0.00000000 -1.43042809 -1.10715266 \n end\n
The GEOMETRY directive allows the user to specify the coordinates of the atoms (or centers), and identify the geometry with a unique name.
Unless a specific name is defined for the geometry, (such as the name \"test geom\"
shown in the example), the default name of geometry is assigned. This is the geometry name that computational modules will look for when executing a calculation. The SET directive can be used in the input to force NWChem to look for a geometry with a name other than geometry. For example, to specify use of the geometry with the name \"test geom\"
in the example above, the SET directive is as follows:
set geometry \"test geom\"\n
NWChem will automatically check for such indirections when loading geometries. Storage of data associated with basis sets, the other database resident object, functions in a similar fashion, using the default name \"ao basis\"
.
The database is persistent, meaning that all input data and output data (calculation results) that are not destroyed in the course of execution are permanently stored. These data are therefore available to subsequent tasks or jobs. This makes the input for restart jobs very simple, since only new or changed data must be provided. It also makes the behavior of successive restart jobs identical to that of multiple tasks within one job.
Sometimes, however, this persistence is undesirable, and it is necessary to return an NWChem module to its default behavior by restoring the database to its input-free state. In such a case, the UNSET directive can be used to delete all database entries associated with a given module (including both inputs and outputs).
"},{"location":"Names-of-3-dimensional-space-groups.html","title":"Names of 3 dimensional space groups","text":""},{"location":"Names-of-3-dimensional-space-groups.html#names-of-3-dimensional-space-groups","title":"Names of 3-dimensional space groups","text":"Web resources:
For many of the space groups there are multiple choices of symmetry transformations. They are denoted as settings for each of the groups. By default, the code will use the first setting. By defining setting <integer setting>
on the symmetry input line (see Symmetry Group Input paragraph), you can tell the code to choose a different setting/symmetry transformation.
P1
P-1
P2
P2_1
C2
Pm
Pc
Cm
Cc
P2/m
P2_1/m
C2/m
P2/c
P2_1/c
C2/c
P222
P222_1
P2_12_12
P2_12_12_1
C222_1
C222
F222
I222
I2_12_12_1
Pmm2
Pmc2_1
Pcc2
Pma2
Pca2_1
Pnc2
Pmn2_1
Pba2
Pna2_1
Pnn2
Cmm2
Cmc2_1
Ccc2
Amm2
Abm2
Ama2
Aba2
Fmm2
Fdd2
Imm2
Iba2
Ima2
Pmmm
Pnnn
Pccm
Pban
Pmma
Pnna
Pmna
Pcca
Pbam
Pccn
Pbcm
Pnnm
Pmmn
Pbcn
Pbca
Pnma
Cmcm
Cmca
Cmmm
Cccm
Cmma
Ccca
Fmmm
Fddd
Immm
Ibam
Ibca
Imma
P4
P4_1
P4_2
P4_3
I4
I4_1
P-4
I-4
P4/m
P4_2/m
P4/n
P4_2/n
I4/m
I4_1/a
P422
P42_12
P4_122
P4_12_12
P4_222
P4_22_12
P4_322
P4_32_12
I422
I4_122
P4mm
P4bm
P4_2cm
P4_2nm
P4cc
P4nc
P4_2mc
P4_2bc
I4mm
I4cm
I4_1md
I4_1cd
P-42m
P-42c
P-42_1m
P-42_1c
P-4m2
P-4c2
P-4b2
P-4n2
I-4m2
I-4c2
I-42m
I-42d
P4/mmm
P4/mcc
P4/nbm
P4/nnc
P4/mbm
P4/mnc
P4/nmm
P4/ncc
P4_2/mmc
P4_2/mcm
P4_2/nbc
P4_2/nnm
P4_2/mbc
P4_2/mnm
P4_2/nmc
P4_2/ncm
I4/mmm
I4/mcm
I4_1/amd
I4_1/acd
P3
P3_1
P3_2
R3
P-3
R-3
P312
P321
P3_112
P3_121
P3_212
P3_221
R32
P3m1
P31m
P3c1
P31c
R3m
R3c
P-31m
P-31c
P-3m1
P-3c1
R-3m
R-3c
P6
P6_1
P6_5
P6_2
P6_4
P6_3
P-6
P6/m
P6_3/m
P622
P6_122
P6_522
P6_222
P6_422
P6_322
P6mm
P6cc
P6_3cm
P6_3mc
P-6m2
P-6c2
P-62m
P-62c
P6/mmm
P6/mcc
P6_3/mcm
P6_3/mmc
P23
F23
I23
P2_13
I2_13
Pm-3
Pn-3
Fm-3
Fd-3
Im-3
Pa-3
Ia-3
P432
P4_232
F432
F4_132
I432
P4_332
P4_132
I4_132
P-43m
F-43m
I-43m
P-43n
F-43c
I-43d
Pm-3m
Pn-3n
Pm-3n
Pn-3m
Fm-3m
Fm-3c
Fd-3m
Fd-3c
Im-3m
Ia-3d
The NEB module is an implementation of the nudged elastic band (NEB) method of Jonsson et al., and it is one of two drivers in NWChem that can be used to perform minimum energy path optimizations. NEB can be used at all levels of theory, including SCF, HF, DFT, PSPW, BAND, MP2, RIMP2, CCSD, TCE.
Input to the NEB modules is contained with the NEB block
NEB \n ... \n END\n
To run a NEB calculation the following the following task directives is used
TASK <theory> NEB \nTASK <theory> NEB ignore\n
where <theory>
is SCF, HF, DFT, PSPW, BAND, MP2, CCSD, TCE, etc.. The Task directive with the ignore option is recommended, otherwise NWChem will crash if the path is not optimized in the allowed maximum number of iterations.
Optional input for this module is specified within the compound directive,
NEB \n NBEADS <integer nbeads default 5> \n KBEADS <float kbeads default 0.1> \n MAXITER <integer maxiter default 5> \n\n STEPSIZE <integer stepsize default 1.0> \n NHIST <integer nhist default 5> \n ALGORITHM <integer algorithm default 0> \n\n [loose | default | tight] \n GMAX <float gmax default 0.00045> \n GRMS <float grms default 0.00030> \n XMAX <float xmax default 0.00018> \n XMRS <float xmrs default 0.00012> \n\n [IMPOSE] \n [HASMIDDLE] \n [XYZ_PATH <string xyzfilename>] \n [RESET] \n [PRINT_SHIFT <integer print_shift default 0>] \n END\n
The following list describes the input for the NEB block
PRINT_SHIFT
directive causes the path energies and geometries to be outputed every <print_shift>
steps. The current path energies are appended to the file jobname.neb_epath
and the current geometries are appended to the file jobname.nebpath_\"current iteration\".xyz
.There are three different ways to define the initial path for NEB optimization.
The geometries in the path are defined by
where the starting geometry is entered in the geometry block labeled geometry
, e.g.
geometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend\n
and the last geometry in the path is entered in the geometry block label endgeom
, e.g.
geometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend\n
The geometries for this path are defined by
and
where the starting , middle and last geometries are entered in the geometry blocks geometry
, midgeom
and endgeom
respectively, e.g.
geometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend\n\ngeometry midgeom nocenter noautosym noautoz \nO 0.00000000 0.00000000 0.00000000 \nH 0.00000000 0.00000000 1.00000000 \nH 0.00000000 0.00000000 -1.00000000 \nend\n\ngeometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend\n
xyz_path
to explicitly input a path of geometriesThe xyz_path
option can also be used to define the initial path.
... \nNEB \n ... \n XYZ_PATH path.xyz\nEND \n...\n
where path.xyz contains a list of geometries in xyz format, e.g.
--------------- path.xyz ------------------ \n 3 \nenergy= -17.107207699285738 \nO 0.000000 -0.022939 0.000000 \nH 0.000000 0.550469 0.754065 \nH 0.000000 0.550469 -0.754065 \n 3 \nenergy= -17.094903833074170 \nO -0.000003 -0.110080 -0.000000 \nH -0.000000 0.273180 0.847029 \nH -0.000000 0.273180 -0.847029 \n 3 \nenergy= -17.063823686395292 \nO -0.000000 -0.000080 -0.000000 \nH 0.000000 -0.000002 0.941236 \nH 0.000000 -0.000002 -0.941236 \n 3 \nenergy= -17.094944036147005 \nO -0.000000 0.110472 -0.000000 \nH -0.000000 -0.273172 0.846957 \nH -0.000000 -0.273172 -0.846957 \n 3 \nenergy= -17.107208157343706 \nO 0.000000 0.022939 0.000000 \nH 0.000000 -0.550469 0.754065 \nH 0.000000 -0.550469 -0.754065 \n--------------- path.xyz ------------------\n
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#convergence-criteria","title":"Convergence criteria","text":"The defaults may be used, or the directives LOOSE, DEFAULT, or TIGHT specified to use standard sets of values, or the individual criteria adjusted. All criteria are in atomic units. GMAX and GRMS control the maximum and root mean square gradient in the coordinates. XMAX and XRMS control the maximum and root mean square of the Cartesian step.
LOOSE DEFAULT TIGHT GMAX 0.0045d0 0.00045 0.000015 GRMS 0.0030d0 0.00030 0.00001 XMAX 0.0054d0 0.00180 0.00006 XRMS 0.0036d0 0.00120 0.00004"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#neb-tutorial-1-h2o-inversion","title":"NEB Tutorial 1: H2O Inversion","text":"(input:h2o-neb.nw, output:h2o-neb.nwout, datafiles: h2o-neb.neb_epath.dat h2o-neb.neb_final_epath.dat )
(xyzfiles: h2o-neb.nebpath_000001.xyz h2o-neb.nebpath_000005.xyz h2o-neb.nebpath_000010.xyz h2o-neb.nebpath_000020.xyz h2o-neb.nebpath_final.xyz )
Title \"H2O inversion calculation\"\necho\nstart h2o-neb\n\ngeometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend \n\ngeometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend \n#### Gaussian DFT #### \nbasis \n* library 3-21G \nend \n\ndft \n xc b3lyp \n maxiter 5001 \n cgmin \nend \n\nneb \n nbeads 10 \n kbeads 1.0 \n maxiter 10 \n stepsize 0.10 \n print_shift 1 \nend \ntask dft neb ignore\nneb \n # increase the number of images \n nbeads 20 \n kbeads 1.0 \n stepsize 1.0 \n maxiter 30 \n loose \nend \ntask dft neb ignore\n
After each optimization step the path energies are outputed as follows
neb: Path Energy # 9 \nneb: 1 -75.970000166349976 \nneb: 2 -75.973958450556779 \nneb: 3 -75.973964391052448 \nneb: 4 -75.973965560274110 \nneb: 5 -75.973961077512683 \nneb: 6 -75.973087554095144 \nneb: 7 -75.965847261117744 \nneb: 8 -75.950292780255126 \nneb: 9 -75.932932759963109 \nneb: 10 -75.921912278179292 \nneb: 11 -75.921834552460439 \nneb: 12 -75.932680002200939 \nneb: 13 -75.949868818688529 \nneb: 14 -75.965372754426866 \nneb: 15 -75.972788885848303 \nneb: 16 -75.973958649400714 \nneb: 17 -75.973965255113598 \nneb: 18 -75.973964962774133 \nneb: 19 -75.973959526041568 \nneb: 20 -75.970000163960066 \n
Another way to keep track of the optimization process is to run the following grep command on the output file.
[WE24397:NWChem/NEB/Example2] bylaska% grep @ h2o-neb.nwout \n@neb \n@neb NEB Method \n@neb algorithm = 0 \n@neb maxiter = 10 \n@neb nbeads = 10 \n@neb nhist = 5 \n@neb natoms = 3 \n@neb stepsize = 0.100E+01 \n@neb trust = 0.100E+00 \n@neb kbeads = 0.100E+00 \n@neb Gmax tolerance = 0.450E-03 \n@neb Grms tolerance = 0.300E-03 \n@neb Xmax tolerance = 0.180E-03 \n@neb Xrms tolerance = 0.120E-03 \n@neb \n@neb Step Intrinsic E Mid-Point E Minimum E Maximum E Gmax Grms Xrms Xmax Walltime \n@neb ---- -------------- -------------- -------------- -------------- -------- -------- -------- -------- -------- \n@neb 1 -75.951572 -75.921109 -75.970632 -75.921109 0.55875 0.01606 0.14221 1.54029 454.9 \n@neb 2 -75.953755 -75.923180 -75.972590 -75.923177 0.38930 0.01116 0.01588 0.45644 624.4 \n@neb 3 -75.956726 -75.924391 -75.972861 -75.924387 0.25587 0.00961 0.03673 0.83118 805.2 \n@neb 4 -75.957861 -75.924279 -75.973059 -75.924275 0.23572 0.00894 0.01793 0.24399 971.8 \n@neb 5 -75.959613 -75.925045 -75.973869 -75.925036 0.10257 0.00464 0.03197 0.20350 1152.8 \n@neb 6 -75.959964 -75.925503 -75.973957 -75.925486 0.04762 0.00196 0.00905 0.10433 1316.4 \n@neb 7 -75.960068 -75.925822 -75.973956 -75.925791 0.03897 0.00141 0.00308 0.04432 1519.9 \n@neb 8 -75.960091 -75.925914 -75.973959 -75.925877 0.03707 0.00127 0.00070 0.01691 2055.8 \n@neb 9 -75.960129 -75.926078 -75.973962 -75.926028 0.03353 0.00108 0.00127 0.03707 2297.2 \n@neb 10 -75.960142 -75.926142 -75.973963 -75.926085 0.03199 0.00101 0.00054 0.00420 2756.6 \n@neb NEB calculation not converged \n@neb \n@neb NEB Method \n@neb algorithm = 0 \n@neb maxiter = 30 \n@neb nbeads = 20 \n@neb nhist = 5 \n@neb natoms = 3 \n@neb stepsize = 0.100E+01 \n@neb trust = 0.100E+00 \n@neb kbeads = 0.100E+01 \n@neb Gmax tolerance = 0.450E-02 \n@neb Grms tolerance = 0.300E-02 \n@neb Xmax tolerance = 0.540E-02 \n@neb Xrms tolerance = 0.360E-02 \n@neb \n@neb Step Intrinsic E Mid-Point E Minimum E Maximum E Gmax Grms Xrms Xmax Walltime \n@neb ---- -------------- -------------- -------------- -------------- -------- -------- -------- -------- -------- \n@neb 1 -75.960225 -75.921704 -75.973965 -75.921669 0.24799 0.00398 0.00272 0.08741 3966.5 \n@neb 2 -75.960339 -75.921782 -75.973965 -75.921745 0.24794 0.00328 0.00199 0.12148 5023.2 \n@neb 3 -75.960424 -75.921742 -75.973965 -75.921701 0.19390 0.00286 0.00164 0.08342 5741.4 \n@neb 4 -75.960494 -75.921849 -75.973965 -75.921804 0.19681 0.00266 0.00143 0.09030 6079.7 \n@neb 5 -75.960646 -75.921874 -75.973965 -75.921820 0.17459 0.00240 0.00241 0.22047 6751.5 \n@neb 6 -75.960674 -75.921856 -75.973965 -75.921797 0.14246 0.00165 0.00060 0.00256 7572.3 \n@neb 7 -75.960724 -75.921884 -75.973966 -75.921817 0.13004 0.00153 0.00082 0.05401 7893.3 \n@neb 8 -75.960747 -75.921892 -75.973966 -75.921822 0.12809 0.00149 0.00038 0.00237 8631.2 \n@neb 9 -75.960792 -75.921912 -75.973966 -75.921835 0.12267 0.00142 0.00075 0.05081 9222.0 \n@neb 10 -75.960813 -75.921923 -75.973966 -75.921841 0.11902 0.00138 0.00035 0.00212 10163.2 \n@neb 11 -75.960834 -75.921934 -75.973966 -75.921846 0.11569 0.00135 0.00035 0.00203 10478.3 \n@neb 12 -75.961060 -75.922060 -75.973966 -75.921889 0.07709 0.00104 0.00365 0.30944 10863.8 \n@neb 13 -75.961255 -75.922186 -75.973966 -75.921919 0.04600 0.00087 0.00309 0.19999 11357.0 \n@neb 14 -75.961405 -75.922286 -75.973966 -75.921927 0.03549 0.00079 0.00244 0.03857 11860.0 \n@neb NEB calculation converged\n
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#zero-temperature-string-method","title":"Zero Temperature String Method","text":"The STRING module is an implementation of the zero temperature string method of vanden Eijden et al., and it is one of two drivers in NWChem that can be used to perform minimum energy path optimizations. STRING can be used at all levels of theory, including SCF, HF, DFT, PSPW, BAND, MP2, RIMP2, CCSD, TCE.
Input to the STRING module is contained with the STRING block
STRING\n ...\n END\n
To run a STRING calculation the following the following task directives is used
TASK <theory> STRING\nTASK <theory> STRING ignore\n
where <theory>
is SCF, HF, DFT, PSPW, BAND, MP2, CCSD, TCE, etc.. The Task directive with the ignore option is recommended, otherwise NWChem will crash if the path is not optimized in the allowed maximum number of iterations.
Optional input for this module is specified within the compound directive,
STRING \n NBEADS <integer nbeads default 5> \n MAXITER <integer maxiter default 5> \n\n STEPSIZE <integer stepsize default 1.0> \n NHIST <integer nhist default 5> \n INTERPOL <integer algorithm default 1> \n\n FREEZE1 <logical freeze1 default .false.> \n FREEZEN <logical freezen default .false.> \n\n TOL <float tol default 0.00045> \n\n [IMPOSE] \n [HASMIDDLE] \n [XYZ_PATH <string xyzfilename>] \n [RESET] \n PRINT_SHIFT <integer print_shift default 0> \n END\n
The following list describes the input for the STRING block
.true.
: first bead of simulation frozen, .false.
:first bead of simulation not frozen..true.
:last bead of simulation frozen, .false.
:last bead of simulation not frozen<print_shift>
steps. The current path energies are appended to the file jobname.neb_epath
and the current geometries are appended to the file jobname.nebpath _\"current iteration\".xyz
There are three different ways to define the initial path for NEB optimization.
The geometries in the path are defined by
where the starting geometry is entered in the geometry block labeled geometry
, e.g.
geometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend\n
and the last geometry in the path is entered in the geometry block label endgeom
, e.g.
geometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend\n
The geometries for this path are defined by
and
where the starting , middle and last \u201d geometries are entered in the geometry blocks geometry
, midgeom
and endgeom
respectively, e.g.
geometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend\n\ngeometry midgeom nocenter noautosym noautoz \nO 0.00000000 0.00000000 0.00000000 \nH 0.00000000 0.00000000 1.00000000 \nH 0.00000000 0.00000000 -1.00000000 \nend\n\ngeometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend\n
xyz_path
to explicitly input a path of geometriesThe xyz_path
option can also be used to define the initial path, e.g.
...\nSTRING\n ...\n XYZ_PATH path.xyz\nEND\n...\n
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#string-tutorial-1hcn-hnc-path-optimization","title":"String Tutorial 1:HCN \u2013> HNC path optimization","text":"(input:HCN-string1.nw, output:HCN-string1.nwout, datafiles: HCN-string1.string_epath.dat HCN-string1.string_final_epath.dat )
(xyzfiles: HCN-string1.stringpath_000001.xyz HCN-string1.stringpath_000005.xyz HCN-string1.stringpath_000010.xyz HCN-string1.stringpath_000020.xyz HCN-string1.stringpath_000030.xyz HCN-string1.stringpath_final.xyz )
In this example, the path energy for the reaction HCN \u2013> HNC is calculated.
# \n# The initial path has the Carbon moving through the Nitrogen. \n# So for this simulation to work that atom avoidance code needs to work. \n# Because the initial path is so stiff the wavefunction optimizer needs to requires \n# lots of iterations during the early stages of the path optimization. \n# \n# \nTitle \"HCN --> HNC Zero-Temperature String Simulation\" \necho \nstart hcn-hnc-dft \n\ngeometry noautoz noautosym \nC 0.00000000 0.00000000 -0.49484657 \nN 0.00000000 0.00000000 0.64616359 \nH 0.00000000 0.00000000 -1.56151539 \nend \n\ngeometry endgeom noautoz noautosym \nC 0.00000000 0.00000000 0.73225318 \nN 0.00000000 0.00000000 -0.42552059 \nH 0.00000000 0.00000000 -1.42351006 \nend \n\n#### Gaussian DFT #### \nbasis \n* library 3-21G \nend \n\ndft \n xc b3lyp \n maxiter 501 \nend \n\nstring \n nhist 10 \n nbeads 10 \n maxiter 10 \n stepsize 0.10 \n print_shift 1 \n\n # don't allow the end points of the path to move \n freeze1 .true. \n freezeN .true. \nend \ntask dft string ignore\n\nstring \n # increase the number of images \n nbeads 20 \n maxiter 20 \n\n # allow the end points of the path to move \n freeze1 .false. \n freezeN .false. \nend \ntask dft string ignore\n
After each optimization step the path energies are outputed as follows
string: Path Energy # 2 \n string: 1 -92.906682492969779 \n string: 2 -92.743446565848473 \n string: 3 -92.751945829987775 \n string: 4 -92.756507971834026 \n string: 5 -92.726984154346979 \n string: 6 -92.701651474021503 \n string: 7 -92.672613497521183 \n string: 8 -92.825096796032099 \n string: 9 -92.716422030970662 \n string: 10 -92.881713271394148\n
Another way to keep track of the optimization process is to run the following grep command on the output file.
[WE24397:NWChem/NEB/Example2] bylaska% grep @ HCN-dft.out \n@zts \n@zts String method. \n@zts Temperature = 0.00000 \n@zts Covergence Tolerance = 0.00010 \n@zts Step Size = 0.10000 \n@zts Maximum Time Steps = 10 \n@zts Number of replicas = 10 \n@zts Number of histories = 10 \n@zts String Interpolator = 1 \n@zts First Replica = frozen \n@zts Last Replica = frozen \n@zts \n@zts Step xrms xmax E start E middle E end E max E average \n@zts 1 0.460700 2.602234 -92.9066825 -83.4767173 -92.8817133 -83.4767173 -91.6169775 \n@zts 2 0.862226 5.405612 -92.9066825 -92.3028437 -92.8817133 -92.3028437 -92.6631831 \n@zts 3 0.105285 0.530157 -92.9066825 -92.3289676 -92.8817133 -92.3289676 -92.6702949 \n@zts 4 0.134687 0.740991 -92.9066825 -92.3512584 -92.8817133 -92.3512584 -92.6821949 \n@zts 5 0.117113 0.916210 -92.9066825 -92.3767826 -92.8817133 -92.3767826 -92.6899234 \n@zts 6 0.124464 0.844439 -92.9066825 -92.4195957 -92.8817133 -92.4195957 -92.7045117 \n@zts 7 0.092105 0.731434 -92.9066825 -92.4510785 -92.8817133 -92.4510785 -92.7156403 \n@zts 8 0.049227 0.330651 -92.9066825 -92.4690983 -92.8817133 -92.4690983 -92.7288274 \n@zts 9 0.032819 0.177356 -92.9066825 -92.4827444 -92.8817133 -92.4827444 -92.7344806 \n@zts 10 0.076249 0.444246 -92.9066825 -92.4930430 -92.8817133 -92.4930430 -92.7381477 \n@zts The string calculation failed to converge \n@zts Bead number 1 Potential Energy = -92.906682487840 \n@zts Bead number 2 Potential Energy = -92.850640135623 \n@zts Bead number 3 Potential Energy = -92.819370566454 \n@zts Bead number 4 Potential Energy = -92.680821335407 \n@zts Bead number 5 Potential Energy = -92.505231918657 \n@zts Bead number 6 Potential Energy = -92.493042984646 \n@zts Bead number 7 Potential Energy = -92.637367419044 \n@zts Bead number 8 Potential Energy = -92.775376312982 \n@zts Bead number 9 Potential Energy = -92.831230727986 \n@zts Bead number 10 Potential Energy = -92.881713271394 \n@zts \n@zts String method. \n@zts Temperature = 0.00000 \n@zts Covergence Tolerance = 0.00010 \n@zts Step Size = 0.10000 \n@zts Maximum Time Steps = 20 \n@zts Number of replicas = 20 \n@zts Number of histories = 10 \n@zts String Interpolator = 1 \n@zts First Replica = moves \n@zts Last Replica = moves \n@zts \n@zts Step xrms xmax E start E middle E end E max E average \n@zts 1 1.039809 5.039486 -92.9071472 -92.4998400 -92.8820628 -92.4998400 -92.7500136 \n@zts 2 0.192562 0.999019 -92.9073958 -92.5259828 -92.8821500 -92.5259828 -92.7624061 \n@zts 3 0.244943 1.236459 -92.9075306 -92.5735140 -92.8821223 -92.5735140 -92.7816692 \n@zts 4 0.207031 1.093667 -92.9075888 -92.6229190 -92.8821177 -92.6154678 -92.7979112 \n@zts 5 0.056648 0.293829 -92.9075975 -92.6672565 -92.8821033 -92.6507897 -92.8101666 \n@zts 6 0.078950 0.555245 -92.9076044 -92.7245122 -92.8822536 -92.7014407 -92.8241914 \n@zts 7 0.065564 0.521110 -92.9076101 -92.7539982 -92.8822915 -92.7376310 -92.8326007 \n@zts 8 0.050188 0.319477 -92.9076113 -92.7695725 -92.8824219 -92.7612604 -92.8378464 \n@zts 9 0.055301 0.322130 -92.9076168 -92.7754581 -92.8825732 -92.7740099 -92.8408900 \n@zts 10 0.038769 0.195102 -92.9076177 -92.7775695 -92.8826652 -92.7775695 -92.8425440 \n@zts 11 0.064900 0.273480 -92.9076215 -92.7800330 -92.8827175 -92.7800330 -92.8443574 \n@zts 12 0.062593 0.266337 -92.9076224 -92.7823972 -92.8826993 -92.7823972 -92.8458976 \n@zts 13 0.205437 0.948190 -92.9076243 -92.7842034 -92.8826408 -92.7842034 -92.8469810 \n@zts 14 0.015025 0.068924 -92.9076247 -92.7844362 -92.8826536 -92.7844362 -92.8472227 \n@zts 15 0.129208 0.602636 -92.9076254 -92.7849856 -92.8826676 -92.7849856 -92.8477169 \n@zts 16 0.013479 0.056561 -92.9076260 -92.7855201 -92.8826783 -92.7855201 -92.8481626 \n@zts 17 0.472858 2.220715 -92.9076271 -92.7878088 -92.8826913 -92.7878088 -92.8497919 \n@zts 18 0.162617 0.766201 -92.9076273 -92.7879912 -92.8826934 -92.7879912 -92.8499197 \n@zts 19 0.013204 0.060562 -92.9076276 -92.7885097 -92.8826994 -92.7885097 -92.8502675 \n@zts 20 0.718205 3.423813 -92.9076278 -92.7905066 -92.8827009 -92.7895258 -92.8514863 \n@zts The string calculation failed to converge \n@zts Bead number 1 Potential Energy = -92.907627751439 \n@zts Bead number 2 Potential Energy = -92.905047596626 \n@zts Bead number 3 Potential Energy = -92.897944354806 \n@zts Bead number 4 Potential Energy = -92.887494117302 \n@zts Bead number 5 Potential Energy = -92.874059841858 \n@zts Bead number 6 Potential Energy = -92.857382758537 \n@zts Bead number 7 Potential Energy = -92.837207959079 \n@zts Bead number 8 Potential Energy = -92.815902497386 \n@zts Bead number 9 Potential Energy = -92.798474907121 \n@zts Bead number 10 Potential Energy = -92.789525765222 \n@zts Bead number 11 Potential Energy = -92.790506632257 \n@zts Bead number 12 Potential Energy = -92.799861168980 \n@zts Bead number 13 Potential Energy = -92.814252430183 \n@zts Bead number 14 Potential Energy = -92.830704548760 \n@zts Bead number 15 Potential Energy = -92.847248091296 \n@zts Bead number 16 Potential Energy = -92.861557132126 \n@zts Bead number 17 Potential Energy = -92.871838446832 \n@zts Bead number 18 Potential Energy = -92.878543965696 \n@zts Bead number 19 Potential Energy = -92.881844751735 \n@zts Bead number 20 Potential Energy = -92.882700859222\n
A plotting program (e.g. gnuplot, xmgrace) can be used to look at final path as well as the the convergence of the path i.e.,
[WE24397:NEB/Example2/perm] bylaska% gnuplot \n\n G N U P L O T \n Version 4.6 patchlevel 0 last modified 2012-03-04 \n Build System: Darwin x86_64 \n\n Copyright (C) 1986-1993, 1998, 2004, 2007-2012 \n Thomas Williams, Colin Kelley and many others \n\n gnuplot home: <http://www.gnuplot.info> \n faq, bugs, etc: type \"help FAQ\" \n immediate help: type \"help\" (plot window: hit 'h') \n\nTerminal type set to 'aqua' \ngnuplot> set xlabel \"Reaction Coordinate\" \ngnuplot> set ylabel \"Energy (kcal/mol)\" \ngnuplot> set yrange [0:100] \ngnuplot> set grid \ngnuplot> set style data linespoints \ngnuplot> plot \"hcn-hnc-dft.string_epath\" using 1:($2+92.908)*27.2116*23.06,\"hcn-hnc-dft.string_final_epath\" using 1:($2+92.908)*27.2116*23.06 \ngnuplot> \n
400px
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#string-tutorial-2","title":"String Tutorial 2:","text":"Title \"2SiO4H4 --> H3O3Si-O-SiO3H3 + H2O\" \necho \nstart sio4h4-dimer \n\ngeometry noautoz noautosym \nSi -3.90592 -0.11789 0.03791 \nO -2.32450 -0.24327 -0.05259 \nO -4.45956 -1.13247 1.13159 \nO -4.53584 -0.45118 -1.38472 \nO -4.28179 1.37363 0.44838 \nSi 1.27960 0.06912 0.14555 \nO 2.85122 0.23514 0.32761 \nO 0.54278 0.38513 1.52092 \nO 0.94484 -1.42248 -0.29913 \nO 0.75605 1.07390 -0.97272 \nH -1.66762 -0.74425 -0.29362 \nH -4.05734 2.06481 0.90983 \nH -4.30983 -1.85807 1.57116 \nH -4.43621 -0.88060 -2.12508 \nH 3.59374 -0.16315 0.50572 \nH 0.36896 0.10990 2.31839 \nH 0.53993 -2.15495 -0.09488 \nH 0.43207 1.85525 -1.13531 \nend \n\ngeometry endgeom noautoz noautosym \nSi -3.07373 0.18232 -0.24945 \nO -1.50797 0.23823 -0.53062 \nO -3.36758 -0.93058 0.85023 \nO -3.83958 -0.20093 -1.59101 \nO -3.57993 1.59735 0.27471 \nSi -0.05186 0.25441 0.11277 \nO 0.94679 -0.58168 -0.80206 \nO -0.10091 -0.40972 1.55838 \nO 1.41035 -3.75872 1.22931 \nO 0.47135 1.75206 0.24209 \nH 1.03624 -4.62405 0.92620 \nH -3.81554 2.06192 0.96069 \nH -3.97094 -1.38510 1.26383 \nH -4.39754 -0.73964 -1.96563 \nH 1.45990 -0.57144 -1.49361 \nH -0.44444 -0.37536 2.34765 \nH 2.15751 -4.00850 1.82933 \nH 0.77180 2.44229 -0.17616 \nend \n\nnwpw \n simulation_cell \n SC 18.0 \n end \n cutoff 30.0 \n lmbfgs \nend \n\nstring \n nhist 10 \n nbeads 10 \n maxiter 10 \n stepsize 0.10 \n print_shift 1 \n\n # don't allow the end points of the path to move \n freeze1 .true. \n freezeN .true. \nend \ntask pspw string ignore\n\nstring \n # increase the number of images \n nbeads 20 \n maxiter 20 \n\n # allow the end points of the path to move \n freeze1 .false. \n freezeN .false. \nend \ntask pspw string ignore\n
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#string-tutorial-3-combining-neb-and-string-path-optimizations","title":"String Tutorial 3: Combining NEB and String path optimizations","text":""},{"location":"ONIOM.html","title":"Hybrid Calculations with ONIOM","text":""},{"location":"ONIOM.html#overview","title":"Overview","text":"ONIOM is the hybrid method of Morokuma and co-workers that enables different levels of theory to be applied to different parts of a molecule/system and combined to produce a consistent energy expression. The objective is to perform a high-level calculation on just a small part of the system and to include the effects of the remainder at lower levels of theory, with the end result being of similar accuracy to a high-level calculation on the full system.
The NWChem ONIOM module implements two- and three-layer ONIOM models for use in energy, gradient, geometry optimization, and vibrational frequency calculations with any of the pure quantum mechanical methods within NWChem. At the present time, it is not possible to perform ONIOM calculations with either solvation models or classical force fields. Nor is it yet possible to compute properties except as derivatives of the total energy.
Using the terminology of Morokuma et al., the full molecular geometry including all atoms is referred to as the \u201creal\u201d geometry and it is treated using a \u201clow\u201d-level of theory. A subset of these atoms (referred to as the \u201cmodel\u201d geometry) are treated using both the \u201clow\u201d-level and a \u201chigh\u201d-level of theory. A three-layer model also introduces an \u201cintermediate\u201d model geometry and a \u201cmedium\u201d level of theory.
The two-layer model requires a high and low level of theory and a real and model molecular geometry. The energy at the high-level of theory for the real geometry is estimated as
E(High,Real) = E(Low,Real) + [E(High,Model) - E(Low,Model)].\n
The three-layer model requires high, medium and low levels of theory, and real, intermediate and model geometries and the corresponding energy estimate is
E(High,Real) = E(Low,Real) + [E(High,Model) - E(Medium,Model)]\n + [E(Medium,Inter) - E(Low,Inter)].\n
When does ONIOM work well? The approximation for a two-layer model will be good if
ONIOM is used to compute energy differences and the absolute energies are not all that meaningful even though they are well defined. Due to cancellation of errors, ONIOM actually works better than you might expect, but a poorly designed calculation can yield very bad results. Please read and heed the caution at the end of the article by Dapprich et al.
The input options are as follows
ONIOM \n HIGH <string theory> [basis <string basis default \"ao basis\">] \\ \n [ecp <string ecp>] [input <string input>] \n [MEDIUM <string theory> [basis <string basis default \"ao basis\">] \\ \n [ecp <string ecp>] [input <string input>]] \n LOW <string theory> [basis <string basis default \"ao basis\">] \\ \n [ecp <string ecp>] [input <string input>] \n MODEL <integer natoms> [charge <double charge>] \\ \n [<integer i1 j1> <real g1> [<string tag1>] ...] \n [INTER <integer natoms> [charge <double charge>] \\ \n [<integer i1 j1> <real g1> [<string tag1>] ...]] \n [VECTORS [low-real <string mofile>] [low-model <string mofile>] \\ \n [high-model <string mofile>] [medium-model <string mofile]\\ \n [medium-inter <string mofile>] [low-inter <string mofile>]] \n [PRINT ...] \n [NOPRINT ...] \nEND\n
which are described in detail below.
For better validation of user input, the HIGH
, LOW
and MODEL
directives must always be specified. If the one of the MEDIUM
or INTER
directives are specified, then so must the other.
The geometry and total charge of the full or real system should be specified as normal using the geometry directive. If of the atoms are to be included in the model system, then these should be specified first in the geometry. Similarly, in a three-layer calculation, if there are atoms to be included in the intermediate system, then these should also be arranged together at the beginning of the geometry. The implict assumption is that the model system is a subset of the intermediate system which is a subset of the real system. The number of atoms to be included in the model and intemediate systems are specified using the MODEL and INTER directives. Optionally, the total charge of the model and intermediate systems may be adjusted. The default is that all three systems have the same total charge.
Example 1. A two-layer calculation on taking the potassium ion as the model system. Note that no bonds are broken so no link atoms are introduced. The real geometry would be specified with potassium (the model) first.
geometry autosym \n K 0 0.00 1.37 \n O 0 0.00 -1.07 \n H 0 -0.76 -1.68 \n H 0 0.76 -1.68 \n end\n
and the following directive in the ONIOM input block indicates that one atom (implicitly the first in the geometry) is in the model system
model 1\n
"},{"location":"ONIOM.html#link-atoms","title":"Link atoms","text":"Link atoms for bonds spanning two regions are automatically generated from the bond information. The additional parameters on the MODEL
and INTER
directives describe the broken bonds including scale factors for placement of the link atom and, optionally, the type of link atom. The type of link atom defaults to hydrogen, but any type may be specified (actually here you are specifying a geometry tag which is used to associate a geometrical center with an atom type and basis sets, etc. For each broken bond specify the numbers of the two atoms (i and j), the scale factor (g) and optionally the tag of the link atom. Link atoms are placed along the vector connecting the the first to the second atom of the bond according to the equation
where g is the scale factor. If the scale factor is one, then the link atom is placed where the second atom was. More usually, the scale factor is less than one, in which case the link atom is placed between the original two atoms. The scale factor should be chosen so that the link atom (usually hydrogen) is placed near its equilibrium bond length from the model atom. E.g., when breaking a single carbon-carbon bond (typical length 1.528 Angstr\u00f8ms) using a hydrogen link atom we will want a carbon-hydrogen bond length of about 1.084 Angstr\u00f8ms, so the scale factor should be chosen as 1.084/1.528 ~ 0.709.
Example 2. A calculation on acetaldehyde (H3C-CHO) using aldehyde (H-CHO) as the model system. The covalent bond between the two carbon atoms is broken and a link atom must be introduced to replace the methyl group. The link atom is automatically generated \u2013 all you need to do is specify the atoms in the model system that are also in the real system (here CHO) and the broken bonds. Here is the geometry of acetaldehyde with the CHO of aldehyde first
geometry \n C -0.383 0.288 0.021 \n H -1.425 0.381 0.376 \n O 0.259 1.263 -0.321 \n\n H 0.115 -1.570 1.007 \n H -0.465 -1.768 -0.642 \n H 1.176 -1.171 -0.352 \n C 0.152 -1.150 0.005 \n end\n
There are three atoms (the first three) of the real geometry included in the model geometry, and we are breaking the bond between atoms 1 and 7, replacing atom 7 with a hydrogen link atom. This is all accomplished by the directive
model 3 1 7 0.709 H\n
Since the default link atom is hydrogen there is actually no need to specify the \u201cH\u201d.
See also the ONIOM three layer example for a more complex example.
"},{"location":"ONIOM.html#numbering-of-the-link-atoms","title":"Numbering of the link atoms","text":"The link atoms are appended to the atoms of the model or intermediate systems in the order that the broken bonds are specified in the input. This is of importance only if manually constructing an initial guess.
"},{"location":"ONIOM.html#high-medium-and-low-theories","title":"High, medium and low theories","text":"The two-layer model requires both the high-level and low-level theories be specified. The three-layer model also requires the medium-level theory. Each of these includes a theory (such as SCF, MP2, DFT, CCSD, CCSD(T), etc.), an optional basis set, an optional ECP, and an optional string containing general NWChem input.
"},{"location":"ONIOM.html#basis-specification","title":"Basis specification","text":"The basis name on the theory directive (high, medium, or low) is that specified on a basis set directive (see Section 7) and not the name of a standard basis in the library. If not specified, the basis set for the high-level theory defaults to the standard \u201cao basis\u201d. That for the medium level defaults to the high-level basis, and the low-level basis defaults to the medium-level basis. Other wavefunction parameters are obtained from the standard wavefunction input blocks. See Effective core potentials for an example.
"},{"location":"ONIOM.html#effective-core-potentials","title":"Effective core potentials","text":"If an effective core potential is specified in the usual fashion outside of the ONIOM input then this will be used in all calculations. If an alternative ECP name (the name specified on the ECP directive in the same manner as done for basis sets) is specified on one of the theory directives, then this ECP will be used in preference for that level of theory. See the ONIOM three layer example for sample input.
"},{"location":"ONIOM.html#general-input-strings","title":"General input strings","text":"For many purposes, the ability to specify the theory, basis and effective core potential is adequate. All of the options for each theory are determined from their independent input blocks. However, if the same theory (e.g., DFT) is to be used with different options for the ONIOM theoretical models, then the general input strings must be used. These strings are processed as NWChem input each time the theoretical model is invoked. The strings may contain any NWChem input, except for options pertaining to ONIOM and the task
directive. The intent that the strings be used just to control the options pertaining to the theory being used.
A word of caution. Be sure to check that the options are producing the desired results. Since the NWChem database is persistent and the ONIOM calculations happen in an undefined order, the input strings should fully define the calculation you wish to have happen.
For instance, if the high model is DFT/B3LYP/6-311g** and the low model is DFT/LDA/3-21g, the ONIOM input might look like this
oniom \n model 3 \n low dft basis 3-21g input \"dft; xc; end\" \n high dft basis 6-311g** input \"dft; xc b3lyp; end\" \n end\n
The empty XC directive restores the default LDA exchange-correlation option (see Section 11.3). Note that semi-colons and other quotation marks inside the input string must be preceded by a backslash to avoid special interpretation.
See |DFT with and without charge fitting for another example.
"},{"location":"ONIOM.html#use-of-symmetry","title":"Use of symmetry","text":"Symmetry should work just fine as long as the model and intermediate regions respect the symmetry \u2013 i.e., symmetry equivalent atoms need to be treated equivalently. If symmetry equivalent atoms must be treated in separate regions then the symmetry must be lowered (or completely switched off).
"},{"location":"ONIOM.html#molecular-orbital-files","title":"Molecular orbital files","text":"The VECTORS directive in the ONIOM block is different to that elsewhere in NWChem. For each of the necessary combinations of theory and geometry you can specify a different file for the molecular orbitals. By default each combination will store the MO vectors in the permanent directory using a file name created by appending to the name of the calculation the following string
Each calculation will utilize the appropriate vectors which is more efficient during geometry optimizations and frequency calculations, and is also useful for the initial calculation. In the absence of existing MO vectors files, the default atomic guess is used (see |Input/output of MO vectors).
If special measures must be taken to converge the initial SCF, DFT or MCSCF calculation for one or more of the systems, then initial vectors may be saved in a file with the default name, or another name may be specified using the VECTORS directive. Note that subsequent vectors (e.g., from a geometry optimization) will be written back to this file, so take a copy if you wish to preserve it. To generate the initial guess for the model or intermediate systems it is necessary to generate the geometries which is most readily done, if there are link atoms, by just running NWChem on the input for the ONIOM calculation on your workstation. It will print these geometries before starting any calculations which you can then terminate.
E.g., in a calculation on Fe(III) surrounded by some ligands, it is hard to converge the full (real) system from the atomic guess so as to obtain a configuration for the iron atom since the d orbitals are often nominally lower in energy than some of the ligand orbitals. The most effective mechanism is to converge the isolated Fe(III) and then to use the fragment guess as a starting guess for the real system. The resulting converged molecular orbitals can be saved either with the default name (as described above in this section), in which case no additional input is necessary. If an alternative name is desired, then the VECTORS
directive may be used as follows
vectors low-real /u/rjh/jobs/fe_ether_water.mos\n
"},{"location":"ONIOM.html#restarting","title":"Restarting","text":"Restart of ONIOM calculations does not currently work as smoothly as we would like. For geometry optimizations that terminated gracefully by running out of iterations, the restart will work as normal. Otherwise, specify in the input of the restart job the last geometry of the optimization. The Hessian information will be reused and the calculation should proceed losing at most the cost of one ONIOM gradient evaluation. For energy or frequency calculations, restart may not currently be possible.
"},{"location":"ONIOM.html#examples","title":"Examples","text":""},{"location":"ONIOM.html#hydrocarbon-bond-energy","title":"Hydrocarbon bond energy","text":"A simple two-layer model changing just the wavefunction with one link atom.
This reproduces the two-layer ONIOM (MP2:HF) result from Dapprich et al. for the reaction with using as the model. The geometries of and are optimized at the DFT-B3LYP/6-311++G** level of theory, and then ONIOM is used to compute the binding energy using UMP2 for the model system and HF for the real system. The results, including MP2 calculations on the full system for comparison, are as given in the table below.
Theory Me-CH2 Me-Me H De(Hartree) De(kcal/mol) B3LYP -79.185062 -79.856575 -0.502256 0.169257 106.2 HF -78.620141 -79.251701 -0.499817 0.131741 82.7 MP2 -78.904716 -79.571654 -0.499817 0.167120 104.9 MP2:HF -78.755223 -79.422559 -0.499817 0.167518 105.1
Energies for ONIOM example 1, hydrocarbon bond energy using MP2:HF two-layer model.
The following input first performs a calculation on , and then on . Note that in the second calculation we cannot use the full symmetry since we are breaking the C-C bond in forming the model system (the non-equivalence of the methyl groups is perhaps more apparent if we write ).
start \n\n basis spherical \n H library 6-311++G**; C library 6-311++G** \n end \n\n title \"ONIOM Me-CH2\" \n\n geometry autosym \n H -0.23429328 1.32498565 0.92634814 \n H -0.23429328 1.32498565 -0.92634814 \n C -0.13064265 0.77330370 0.00000000 \n H -1.01618703 -1.19260361 0.00000000 \n H 0.49856072 -1.08196901 -0.88665533 \n H 0.49856072 -1.08196901 0.88665533 \n C -0.02434414 -0.71063687 0.00000000 \n end \n\n scf; uhf; doublet; thresh 1e-6; end \n mp2; freeze atomic; end \n\n oniom \n high mp2 \n low scf \n model 3 3 7 0.724 \n end \n\n task oniom \n\n title \"ONIOM Me-Me\" \n\n geometry # Note cannot use full D3D symmetry here, either specify noautosym, or change an atom tag (here C -> C1) \n H -0.72023641 0.72023641 -1.16373235 \n H 0.98386124 0.26362482 -1.16373235 \n H -0.26362482 -0.98386124 -1.16373235 \n C 0.00000000 0.00000000 -0.76537515 \n H 0.72023641 -0.72023641 1.16373235 \n H -0.98386124 -0.26362482 1.16373235 \n H 0.26362482 0.98386124 1.16373235 \n C1 0.00000000 0.00000000 0.76537515 \n end \n\n scf; rhf; singlet; end \n\n oniom \n high mp2 \n low scf \n model 4 4 8 0.724 \n end \n\n task oniom\n
"},{"location":"ONIOM.html#optimization-and-frequencies","title":"Optimization and frequencies","text":"A two-layer model including modification of theory, basis, ECP and total charge and no link atoms.
This input reproduces the ONIOM optimization and vibrational frequency calculation of Rh(CO)2Cp of Dapprich et al. The model system is Rh(CO)2+. The low theory is the Gaussian LANL2MB model (Hay-Wadt n+1 ECP with minimal basis on Rh, STO-3G on others) with SCF. The high theory is the Gaussian LANL2DZ model (another Hay-Wadt ECP with a DZ basis set on Rh, Dunning split valence on the other atoms) with DFT/B3LYP. Note that different names should be used for the basis set and ECP since the same mechanism is used to store them in the database.
start \n\n ecp LANL2DZ_ECP \n rh library LANL2DZ_ECP \n end \n\n basis LANL2DZ spherical \n rh library LANL2DZ_ECP \n o library SV_(Dunning-Hay); c library SV_(Dunning-Hay); h library SV_(Dunning-Hay) \n end \n\n ecp Hay-Wadt_MB_(n+1)_ECP \n rh library Hay-Wadt_MB_(n+1)_ECP \n end \n\n # This is the minimal basis used by Gaussian. It is not the same \n # as the one in the EMSL basis set library for this ECP. \n basis Hay-Wadt_MB_(n+1) spherical \n Rh s; .264600D+01 -.135541D+01; .175100D+01 .161122D+01; .571300D+00 .589381D+00 \n Rh s; .264600D+01 .456934D+00; .175100D+01 -.595199D+00; .571300D+00 -.342127D+00 \n .143800D+00 .410138D+00; .428000D-01 .780486D+00 \n Rh p; .544000D+01 -.987699D-01; .132900D+01 .743359D+00; .484500D+00 .366846D+00 \n Rh p; .659500D+00 -.370046D-01; .869000D-01 .452364D+00; .257000D-01 .653822D+00 \n Rh d; .366900D+01 .670480D-01; .142300D+01 .455084D+00; .509100D+00 .479584D+00 \n .161000D+00 .233826D+00 \n o library sto-3g; c library sto-3g; h library sto-3g \n end \n\n charge 0 \n geometry autosym \n rh 0.00445705 -0.15119674 0.00000000 \n c -0.01380554 -1.45254070 1.35171818 \n c -0.01380554 -1.45254070 -1.35171818 \n o -0.01805883 -2.26420212 2.20818932 \n o -0.01805883 -2.26420212 -2.20818932 \n c 1.23209566 1.89314720 0.00000000 \n c 0.37739392 1.84262319 -1.15286640 \n c -1.01479160 1.93086461 -0.70666350 \n c -1.01479160 1.93086461 0.70666350 \n c 0.37739392 1.84262319 1.15286640 \n h 2.31251453 1.89903673 0.00000000 \n h 0.70378132 1.86131979 -2.18414218 \n h -1.88154273 1.96919306 -1.35203550 \n h -1.88154273 1.96919306 1.35203550 \n h 0.70378132 1.86131979 2.18414218 \n end \n\n dft; grid fine; convergence gradient 1e-6 density 1e-6; xc b3lyp; end \n scf; thresh 1e-6; end \n\n oniom \n low scf basis Hay-Wadt_MB_(n+1) ecp Hay-Wadt_MB_(n+1)_ECP \n high dft basis LANL2DZ ecp LANL2DZ_ECP \n model 5 charge 1 \n print low \n end \n\n task oniom optimize \n task oniom freq\n
"},{"location":"ONIOM.html#a-three-layer-example","title":"A three-layer example","text":"A three layer example combining CCSD(T), and MP2 with two different quality basis sets, and using multiple link atoms.
The full system is tetra-dimethyl-amino-ethylene (TAME) or (N(Me)2)2-C=C-(N(Me)2)2. The intermediate system is (NH2)2-C=C-(NH2)2 and H2C=CH2 is the model system. CCSD(T)+aug-cc-pvtz is used for the model region, MP2+aug-cc-pvtz for the intermediate region, and MP2+aug-cc-pvdz for everything.
In the real geometry the first two atoms (C, C) are the model system (link atoms will be added automatically). The first six atoms (C, C, N, N, N, N) describe the intermediate system (again with link atoms to be added automatically). The atoms have been numbered using comments to make the bonding input easier to generate.
To make the model system, four C-N bonds are broken between the ethylene fragment and the dimethyl-amino groups and replaced with C-H bonds. To make the intermediate system, eight C-N bonds are broken between the nitrogens and the methyl groups and replaced with N-H bonds. The scaling factor could be chosen differently for each of the bonds.
start \n\n geometry \n C 0.40337795 -0.17516305 -0.51505208 # 1 \n C -0.40328664 0.17555927 0.51466084 # 2 \n N 1.87154979 -0.17516305 -0.51505208 # 3 \n N -0.18694782 -0.60488524 -1.79258692 # 4 \n N 0.18692927 0.60488318 1.79247594 # 5 \n N -1.87148219 0.17564718 0.51496494 # 6 \n C 2.46636552 1.18039452 -0.51505208 # 7 \n C 2.48067731 -1.10425355 0.46161675 # 8 \n C -2.46642715 -1.17982091 0.51473105 # 9 \n C -2.48054940 1.10495864 -0.46156202 # 10 \n C 0.30027136 0.14582197 -2.97072148 # 11 \n C -0.14245927 -2.07576980 -1.96730852 # 12 \n C -0.29948109 -0.14689874 2.97021079 # 13 \n C 0.14140463 2.07558249 1.96815181 # 14 \n H 0.78955302 2.52533887 1.19760764 \n H -0.86543435 2.50958894 1.88075113 \n ... and 22 other hydrogen atoms on the methyl groups \n end \n\n basis aug-cc-pvtz spherical \n C library aug-cc-pvtz; H library aug-cc-pvtz \n end \n\n basis aug-cc-pvdz spherical \n C library aug-cc-pvtz; H library aug-cc-pvtz \n end \n\n oniom \n high ccsd(t) basis aug-cc-pvtz \n medium mp2 basis aug-cc-pvtz \n low mp2 basis aug-cc-pvdz \n model 2 1 3 0.87 1 4 0.87 2 5 0.87 2 6 0.87 \n\n inter 6 3 7 0.69 3 8 0.69 4 11 0.69 4 12 0.69 \\ \n 5 13 0.69 5 14 0.69 6 9 0.69 6 10 0.69 \n end \n\n task oniom\n
"},{"location":"ONIOM.html#dft-with-and-without-charge-fitting","title":"DFT with and without charge fitting","text":"Demonstrates use of general input strings.
A two-layer model for anthracene (a linear chain of three fused benzene rings) using benzene as the model system. The high-level theory is DFT/B3LYP/TZVP with exact Coulomb. The low level is DFT/LDA/DZVP2 with charge fitting.
Note the following.
start \n geometry \n symmetry d2h \n C 0.71237329 -1.21458940 0.0 \n C -0.71237329 -1.21458940 0.0 \n C 0.71237329 1.21458940 0.0 \n C -0.71237329 1.21458940 0.0 \n C -1.39414269 0.00000000 0.0 \n C 1.39414269 0.00000000 0.0 \n H -2.47680865 0.00000000 0.0 \n H 2.47680865 0.00000000 0.0 \n C 1.40340535 -2.48997027 0.0 \n C -1.40340535 -2.48997027 0.0 \n C 1.40340535 2.48997027 0.0 \n C -1.40340535 2.48997027 0.0 \n C 0.72211503 3.64518615 0.0 \n C -0.72211503 3.64518615 0.0 \n C 0.72211503 -3.64518615 0.0 \n C -0.72211503 -3.64518615 0.0 \n H 2.48612947 2.48094825 0.0 \n H 1.24157357 4.59507342 0.0 \n H -1.24157357 4.59507342 0.0 \n H -2.48612947 2.48094825 0.0 \n H 2.48612947 -2.48094825 0.0 \n H 1.24157357 -4.59507342 0.0 \n H -1.24157357 -4.59507342 0.0 \n H -2.48612947 -2.48094825 0.0 \n end \n\n basis small \n h library DZVP_(DFT_Orbital) \n c library DZVP_(DFT_Orbital) \n end \n\n basis fitting \n h library DGauss_A1_DFT_Coulomb_Fitting \n c library DGauss_A1_DFT_Coulomb_Fitting \n end \n\n basis big \n h library TZVP_(DFT_Orbital) \n c library TZVP_(DFT_Orbital) \n end \n\n oniom \n model 8 1 9 0.75 2 10 0.75 3 11 0.75 4 12 0.75 \n high dft basis big input \"unset \"cd basis\"; dft; xc b3lyp; end\" \n low dft basis small input \"set \"cd basis\" fitting; dft; xc; end\" \n end \n\n task oniom\n
"},{"location":"Ongoing_Projects.html","title":"Ongoing Projects and Future Directions (Obsolete content dating from 2018)","text":""},{"location":"Ongoing_Projects.html#density-functional-theory-dft-time-dependent-dft-td-dft-and-properties","title":"Density functional theory (DFT), time-dependent DFT (TD-DFT) and properties","text":"Dynamics on excited-state surfaces, surface hopping, GW/BSE for molecular systems, Spin-flip TDDFT, Non-collinear DFT, spin-orbit TDDFT, interface to QWalk Quantum Monte-Carlo Program (w/ Lucas Wagner University of Illinois, Urbana-Champaign)
"},{"location":"Ongoing_Projects.html#plane-wave-density-functional-theory-dft-ab-initio-molecular-dynamics-and-nwphys","title":"Plane-Wave Density Functional Theory (DFT), Ab Initio Molecular Dynamics, and NWPhys","text":"New NWPhys module development (w/ John Rehr University of Washington) which will include new methods to calculate XPS and XANES spectra. Interface to QWalk Quantum Monte-Carlo Program (w/ Lubos Mitas University of North Carolina).
"},{"location":"Ongoing_Projects.html#high-level-coupled-cluster-methods","title":"High-level Coupled-Cluster methods","text":"CC/EOMCC analytical gradients, Multi-reference CC formulations employing incomplete model spaces.
"},{"location":"Ongoing_Projects.html#long-term-nwchem-development-plans","title":"Long-term NWChem development plans","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Triclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-3.html","title":"P 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0147\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-31c.html","title":"P 31c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0163\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-31c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,-z+1/2\n-x+y,+y,-z+1/2\n+x,+x-y,-z+1/2\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-31m.html","title":"P 31m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0162\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-31m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-3c1.html","title":"P 3c1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0165\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-3c1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z+1/2\n+x-y,-y,-z+1/2\n-x,-x+y,-z+1/2\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-3m1.html","title":"P 3m1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0164\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-3m1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-4.html","title":"P 4","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a081\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-42_1c.html","title":"P 42 1c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0114\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0P-42_1c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-42_1m.html","title":"P 42 1m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0113\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0P-42_1m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-y+1/2,-x+1/2,+z\n+y+1/2,+x+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-42c.html","title":"P 42c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0112\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-42c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x,+y,-z+1/2\n+x,-y,-z+1/2\n-y,-x,+z+1/2\n+y,+x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-42m.html","title":"P 42m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0111\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-42m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x,+y,-z\n+x,-y,-z\n-y,-x,+z\n+y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-43m.html","title":"P 43m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0215\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-43m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"P-43n.html","title":"P 43n","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0218\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-43n\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"P-4b2.html","title":"P 4b2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0117\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4b2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n+y+1/2,+x+1/2,-z\n-y+1/2,-x+1/2,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-4c2.html","title":"P 4c2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0116\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4c2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n+y,+x,-z+1/2\n-y,-x,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P-4m2.html","title":"P 4m2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0115\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4m2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x,-y,+z\n-x,+y,+z\n+y,+x,-z\n-y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-4n2.html","title":"P 4n2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0118\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4n2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n+y+1/2,+x+1/2,-z+1/2\n-y+1/2,-x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P-6.html","title":"P 6","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0174\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-6\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z\n-y,+x-y,-z\n-x+y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-62c.html","title":"P 62c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0190\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-62c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z+1/2\n-y,+x-y,-z+1/2\n-x+y,-x,-z+1/2\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-62m.html","title":"P 62m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0189\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-62m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z\n-y,+x-y,-z\n-x+y,-x,-z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-6c2.html","title":"P 6c2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0188\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-6c2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z+1/2\n-y,+x-y,-z+1/2\n-x+y,-x,-z+1/2\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-6m2.html","title":"P 6m2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0187\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-6m2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z\n-y,+x-y,-z\n-x+y,-x,-z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P1.html","title":"P1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Triclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a01\n\n+x,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n
"},{"location":"P2.html","title":"P2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a03\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,+y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a03\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,-y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P222.html","title":"P222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a016\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P222_1.html","title":"P222 1","text":"\u00a0group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a017\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P222_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n-x,+y,-z+1/2\n+x,-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P23.html","title":"P23","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0195\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P23\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n+z,+x,+y\n+z,-x,-y\n-z,-x,+y\n-z,+x,-y\n+y,+z,+x\n-y,+z,-x\n+y,-z,-x\n-y,-z,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"P2Sc.html","title":"P2Sc","text":" group number = 13\n group name = P2/c\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,+y,-z+1/2\n -x,-y,-z\n +x,-y,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n group number = 13\n group name = P2/c\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 4\n\n +x,+y,+z\n -x+1/2,-y,+z\n -x,-y,-z\n +x+1/2,+y,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P2Sm.html","title":"P2Sm","text":"group name = P2/m\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,+y,-z\n -x,-y,-z\n +x,-y,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n group number = 10\n group name = P2/m\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,-y,+z\n -x,-y,-z\n +x,+y,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P2_1.html","title":"P2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a04\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,+y+1/2,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a04\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,-y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P2_12_12.html","title":"P2 12 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a018\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0P2_12_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P2_12_12_1.html","title":"P2 12 12 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a019\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0P2_12_12_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P2_13.html","title":"P2 13","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0198\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2_13\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"P2_1Sc.html","title":"P2 1Sc","text":" group number = 14\n group name = P2_1/c\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,+y+1/2,-z+1/2\n -x,-y,-z\n +x,-y+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 14\n group name = P2_1/c\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 4\n\n +x,+y,+z\n -x+1/2,-y,+z+1/2\n -x,-y,-z\n +x+1/2,+y,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P2_1Sm.html","title":"P2 1Sm","text":" group number = 11\n group name = P2_1/m\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,+y+1/2,-z\n -x,-y,-z\n +x,-y+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 11\n group name = P2_1/m\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,-y,+z+1/2\n -x,-y,-z\n +x,+y,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P3.html","title":"P3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0143\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a03\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P312.html","title":"P312","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0149\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P312\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P31c.html","title":"P31c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0159\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P31c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P31m.html","title":"P31m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0157\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P31m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P321.html","title":"P321","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0150\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P321\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P3_1.html","title":"P3 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0144\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a03\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667 \n
"},{"location":"P3_112.html","title":"P3 112","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0151\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P3_112\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-y,-x,-z+2/3\n-x+y,+y,-z+1/3\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P3_121.html","title":"P3 121","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0152\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P3_121\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n+y,+x,-z\n+x-y,-y,-z+2/3\n-x,-x+y,-z+1/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333 \n
"},{"location":"P3_2.html","title":"P3 2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0145\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3_2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a03\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333 \n
"},{"location":"P3_212.html","title":"P3 212","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0153\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P3_212\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-y,-x,-z+1/3\n-x+y,+y,-z+2/3\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P3_221.html","title":"P3 221","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0154\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P3_221\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n+y,+x,-z\n+x-y,-y,-z+1/3\n-x,-x+y,-z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667 \n
"},{"location":"P3c1.html","title":"P3c1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0158\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3c1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P3m1.html","title":"P3m1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0156\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3m1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4.html","title":"P4","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a075\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P422.html","title":"P422","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a089\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P422\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n-x,+y,-z\n+x,-y,-z\n+y,+x,-z\n-y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P42_12.html","title":"P42 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a090\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P42_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y+1/2,+x+1/2,+z\n+y+1/2,-x+1/2,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n+y,+x,-z\n-y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P432.html","title":"P432","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0207\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P432\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"P4Sm.html","title":"P4Sm","text":" group number = 83\n group name = P4/m\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P4Smbm.html","title":"P4Smbm","text":" group number = 127\n group name = P4/mbm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x+1/2,+y+1/2,-z\n +x+1/2,-y+1/2,-z\n +y+1/2,+x+1/2,-z\n -y+1/2,-x+1/2,-z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x+1/2,-y+1/2,+z\n -x+1/2,+y+1/2,+z\n -y+1/2,-x+1/2,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4Smcc.html","title":"P4Smcc","text":" group number = 124\n group name = P4/mcc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z+1/2\n +x,-y,-z+1/2\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y,-x,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4Smmm.html","title":"P4Smmm","text":" group number = 123\n group name = P4/mmm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z\n -y,-x,-z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z\n -x,+y,+z\n -y,-x,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4Smnc.html","title":"P4Smnc","text":" group number = 128\n group name = P4/mnc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y+1/2,+x+1/2,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4Sn.html","title":"P4Sn","text":" group number = 85\n group name = P4/n\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z\n +y+1/2,-x+1/2,+z\n -x+1/2,-y+1/2,-z\n +x+1/2,+y+1/2,-z\n +y,-x,-z\n -y,+x,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n group number = 85\n group name = P4/n\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 8\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P4Snbm.html","title":"P4Snbm","text":" group number = 125\n group name = P4/nbm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z\n -y,-x,-z\n -x+1/2,-y+1/2,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x+1/2,-z\n -y+1/2,+x+1/2,-z\n +x+1/2,-y+1/2,+z\n -x+1/2,+y+1/2,+z\n -y+1/2,-x+1/2,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 125\n group name = P4/nbm\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x+1/2,+y,-z\n +x,-y+1/2,-z\n +y,+x,-z\n -y+1/2,-x+1/2,-z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n +x+1/2,-y,+z\n -x,+y+1/2,+z\n -y,-x,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4Sncc.html","title":"P4Sncc","text":" group number = 130\n group name = P4/ncc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z\n +y+1/2,-x+1/2,+z\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x+1/2,-y+1/2,-z\n +x+1/2,+y+1/2,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 130\n group name = P4/ncc\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x,+y+1/2,-z+1/2\n +x+1/2,-y,-z+1/2\n +y+1/2,+x+1/2,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n +x,-y+1/2,+z+1/2\n -x+1/2,+y,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4Snmm.html","title":"P4Snmm","text":" group number = 129\n group name = P4/nmm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z\n +y+1/2,-x+1/2,+z\n -x+1/2,+y+1/2,-z\n +x+1/2,-y+1/2,-z\n +y,+x,-z\n -y,-x,-z\n -x+1/2,-y+1/2,-z\n +x+1/2,+y+1/2,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z\n -x,+y,+z\n -y+1/2,-x+1/2,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 129\n group name = P4/nmm\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x,+y+1/2,-z\n +x+1/2,-y,-z\n +y+1/2,+x+1/2,-z\n -y,-x,-z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n +x,-y+1/2,+z\n -x+1/2,+y,+z\n -y+1/2,-x+1/2,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4Snnc.html","title":"P4Snnc","text":" group number = 126\n group name = P4/nnc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z\n -y,-x,-z\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 126\n group name = P4/nnc\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x+1/2,+y,-z+1/2\n +x,-y+1/2,-z+1/2\n +y,+x,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n +x+1/2,-y,+z+1/2\n -x,+y+1/2,+z+1/2\n -y,-x,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_1.html","title":"P4 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a076\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y,+x,+z+1/4\n+y,-x,+z+3/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75 \n
"},{"location":"P4_122.html","title":"P4 122","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a091\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_122\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y,+x,+z+1/4\n+y,-x,+z+3/4\n-x,+y,-z\n+x,-y,-z+1/2\n+y,+x,-z+3/4\n-y,-x,-z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25 \n
"},{"location":"P4_12_12.html","title":"P4 12 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a092\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0P4_12_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y+1/2,+x+1/2,+z+1/4\n+y+1/2,-x+1/2,+z+3/4\n-x+1/2,+y+1/2,-z+1/4\n+x+1/2,-y+1/2,-z+3/4\n+y,+x,-z\n-y,-x,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P4_132.html","title":"P4 132","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0213\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_132\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75 \n
"},{"location":"P4_2.html","title":"P4 2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a077\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4_2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P4_222.html","title":"P4 222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a093\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n-x,+y,-z\n+x,-y,-z\n+y,+x,-z+1/2\n-y,-x,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P4_22_12.html","title":"P4 22 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a094\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0P4_22_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n+y,+x,-z\n-y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P4_232.html","title":"P4 232","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0208\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_232\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"P4_2Sm.html","title":"P4 2Sm","text":" group number = 84\n group name = P4_2/m\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z+1/2\n +y,-x,+z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z+1/2\n -y,+x,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P4_2Smbc.html","title":"P4 2Smbc","text":" group number = 135\n group name = P4_2/mbc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z+1/2\n +y,-x,+z+1/2\n -x+1/2,+y+1/2,-z\n +x+1/2,-y+1/2,-z\n +y+1/2,+x+1/2,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z+1/2\n -y,+x,-z+1/2\n +x+1/2,-y+1/2,+z\n -x+1/2,+y+1/2,+z\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_2Smcm.html","title":"P4 2Smcm","text":" group number = 132\n group name = P4_2/mcm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z+1/2\n +y,-x,+z+1/2\n -x,+y,-z+1/2\n +x,-y,-z+1/2\n +y,+x,-z\n -y,-x,-z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z+1/2\n -y,+x,-z+1/2\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y,-x,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4_2Smmc.html","title":"P4 2Smmc","text":" group number = 131\n group name = P4_2/mmc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z+1/2\n +y,-x,+z+1/2\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z+1/2\n -y,+x,-z+1/2\n +x,-y,+z\n -x,+y,+z\n -y,-x,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_2Smnm.html","title":"P4 2Smnm","text":" group number = 136\n group name = P4_2/mnm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y,+x,-z\n -y,-x,-z\n -x,-y,-z\n +x,+y,-z\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y,-x,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4_2Sn.html","title":"P4 2Sn","text":" group number = 86\n group name = P4_2/n\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n group number = 86\n group name = P4_2/n\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 8\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y,+x+1/2,+z+1/2\n +y+1/2,-x,+z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y,-x+1/2,-z+1/2\n -y+1/2,+x,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P4_2Snbc.html","title":"P4 2Snbc","text":" group number = 133\n group name = P4_2/nbc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x,+y,-z+1/2\n +x,-y,-z+1/2\n +y+1/2,+x+1/2,-z\n -y+1/2,-x+1/2,-z\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n +x+1/2,-y+1/2,+z\n -x+1/2,+y+1/2,+z\n -y,-x,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n group number = 133\n group name = P4_2/nbc\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z+1/2\n +y,-x+1/2,+z+1/2\n -x+1/2,+y,-z\n +x,-y+1/2,-z\n +y,+x,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z+1/2\n -y,+x+1/2,-z+1/2\n +x+1/2,-y,+z\n -x,+y+1/2,+z\n -y,-x,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_2Sncm.html","title":"P4 2Sncm","text":" group number = 138\n group name = P4_2/ncm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z\n +x+1/2,-y+1/2,-z\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y+1/2,-x+1/2,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 138\n group name = P4_2/ncm\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z+1/2\n +y,-x+1/2,+z+1/2\n -x,+y+1/2,-z+1/2\n +x+1/2,-y,-z+1/2\n +y+1/2,+x+1/2,-z\n -y,-x,-z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z+1/2\n -y,+x+1/2,-z+1/2\n +x,-y+1/2,+z+1/2\n -x+1/2,+y,+z+1/2\n -y+1/2,-x+1/2,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4_2Snmc.html","title":"P4 2Snmc","text":" group number = 137\n group name = P4_2/nmc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y,+x,-z\n -y,-x,-z\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z\n -x,+y,+z\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 137\n group name = P4_2/nmc\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z+1/2\n +y,-x+1/2,+z+1/2\n -x,+y+1/2,-z\n +x+1/2,-y,-z\n +y+1/2,+x+1/2,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z+1/2\n -y,+x+1/2,-z+1/2\n +x,-y+1/2,+z\n -x+1/2,+y,+z\n -y+1/2,-x+1/2,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_2Snnm.html","title":"P4 2Snnm","text":" group number = 134\n group name = P4_2/nnm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x,+y,-z\n +x,-y,-z\n +y+1/2,+x+1/2,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y,-x,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n group number = 134\n group name = P4_2/nnm\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z+1/2\n +y,-x+1/2,+z+1/2\n -x+1/2,+y,-z+1/2\n +x,-y+1/2,-z+1/2\n +y,+x,-z\n -y+1/2,-x+1/2,-z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z+1/2\n -y,+x+1/2,-z+1/2\n +x+1/2,-y,+z+1/2\n -x,+y+1/2,+z+1/2\n -y,-x,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4_2bc.html","title":"P4 2bc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0106\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_2bc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P4_2cm.html","title":"P4 2cm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0101\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_2cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n-y,-x,+z\n+y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4_2mc.html","title":"P4 2mc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0105\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_2mc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n+x,-y,+z\n-x,+y,+z\n-y,-x,+z+1/2\n+y,+x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P4_2nm.html","title":"P4 2nm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0102\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_2nm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n-y,-x,+z\n+y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4_3.html","title":"P4 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a078\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4_3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y,+x,+z+3/4\n+y,-x,+z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25 \n
"},{"location":"P4_322.html","title":"P4 322","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a095\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_322\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y,+x,+z+3/4\n+y,-x,+z+1/4\n-x,+y,-z\n+x,-y,-z+1/2\n+y,+x,-z+1/4\n-y,-x,-z+3/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75 \n
"},{"location":"P4_32_12.html","title":"P4 32 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a096\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0P4_32_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y+1/2,+x+1/2,+z+3/4\n+y+1/2,-x+1/2,+z+1/4\n-x+1/2,+y+1/2,-z+3/4\n+x+1/2,-y+1/2,-z+1/4\n+y,+x,-z\n-y,-x,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P4_332.html","title":"P4 332","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0212\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_332\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25 \n
"},{"location":"P4bm.html","title":"P4bm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0100\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4bm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n-y+1/2,-x+1/2,+z\n+y+1/2,+x+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4cc.html","title":"P4cc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0103\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4cc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n-y,-x,+z+1/2\n+y,+x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P4mm.html","title":"P4mm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a099\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4mm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x,-y,+z\n-x,+y,+z\n-y,-x,+z\n+y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4nc.html","title":"P4nc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0104\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4nc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P6.html","title":"P6","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0168\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z\n+y,-x+y,+z\n+x-y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P622.html","title":"P622","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0177\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P622\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z\n+y,-x+y,+z\n+x-y,+x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P6Sm.html","title":"P6Sm","text":" group number = 175\n group name = P6/m\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 12\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z\n +y,-x+y,+z\n +x-y,+x,+z\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z\n -y,+x-y,-z\n -x+y,-x,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 7 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P6Smcc.html","title":"P6Smcc","text":" group number = 192\n group name = P6/mcc\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 24\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z\n +y,-x+y,+z\n +x-y,+x,+z\n +y,+x,-z+1/2\n +x-y,-y,-z+1/2\n -x,-x+y,-z+1/2\n -y,-x,-z+1/2\n -x+y,+y,-z+1/2\n +x,+x-y,-z+1/2\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z\n -y,+x-y,-z\n -x+y,-x,-z\n -y,-x,+z+1/2\n -x+y,+y,+z+1/2\n +x,+x-y,+z+1/2\n +y,+x,+z+1/2\n +x-y,-y,+z+1/2\n -x,-x+y,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 14 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 15 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 16 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 17 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 18 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 19 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 20 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 21 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 22 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 23 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 24 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P6Smmm.html","title":"P6Smmm","text":" group number = 191\n group name = P6/mmm\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 24\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z\n +y,-x+y,+z\n +x-y,+x,+z\n +y,+x,-z\n +x-y,-y,-z\n -x,-x+y,-z\n -y,-x,-z\n -x+y,+y,-z\n +x,+x-y,-z\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z\n -y,+x-y,-z\n -x+y,-x,-z\n -y,-x,+z\n -x+y,+y,+z\n +x,+x-y,+z\n +y,+x,+z\n +x-y,-y,+z\n -x,-x+y,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 14 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 15 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 16 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 17 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 18 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 19 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 20 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 21 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 22 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 23 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 24 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P6_1.html","title":"P6 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0169\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-x,-y,+z+1/2\n+y,-x+y,+z+5/6\n+x-y,+x,+z+1/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.166666666667 \n
"},{"location":"P6_122.html","title":"P6 122","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0178\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_122\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-x,-y,+z+1/2\n+y,-x+y,+z+5/6\n+x-y,+x,+z+1/6\n+y,+x,-z+1/3\n+x-y,-y,-z\n-x,-x+y,-z+2/3\n-y,-x,-z+5/6\n-x+y,+y,-z+1/2\n+x,+x-y,-z+1/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.166666666667\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.166666666667 \n
"},{"location":"P6_2.html","title":"P6 2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0171\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-x,-y,+z\n+y,-x+y,+z+2/3\n+x-y,+x,+z+1/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333 \n
"},{"location":"P6_222.html","title":"P6 222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0180\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-x,-y,+z\n+y,-x+y,+z+2/3\n+x-y,+x,+z+1/3\n+y,+x,-z+2/3\n+x-y,-y,-z\n-x,-x+y,-z+1/3\n-y,-x,-z+2/3\n-x+y,+y,-z\n+x,+x-y,-z+1/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333 \n
"},{"location":"P6_3.html","title":"P6 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0173\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z+1/2\n+y,-x+y,+z+1/2\n+x-y,+x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P6_322.html","title":"P6 322","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0182\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_322\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z+1/2\n+y,-x+y,+z+1/2\n+x-y,+x,+z+1/2\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n-y,-x,-z+1/2\n-x+y,+y,-z+1/2\n+x,+x-y,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P6_3Sm.html","title":"P6 3Sm","text":" group number = 176\n group name = P6_3/m\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 12\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z+1/2\n +y,-x+y,+z+1/2\n +x-y,+x,+z+1/2\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z+1/2\n -y,+x-y,-z+1/2\n -x+y,-x,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P6_3Smcm.html","title":"P6 3Smcm","text":" group number = 193\n group name = P6_3/mcm\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 24\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z+1/2\n +y,-x+y,+z+1/2\n +x-y,+x,+z+1/2\n +y,+x,-z+1/2\n +x-y,-y,-z+1/2\n -x,-x+y,-z+1/2\n -y,-x,-z\n -x+y,+y,-z\n +x,+x-y,-z\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z+1/2\n -y,+x-y,-z+1/2\n -x+y,-x,-z+1/2\n -y,-x,+z+1/2\n -x+y,+y,+z+1/2\n +x,+x-y,+z+1/2\n +y,+x,+z\n +x-y,-y,+z\n -x,-x+y,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 14 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 15 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 16 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 17 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 18 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 19 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 20 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 21 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 22 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 23 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 24 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P6_3Smmc.html","title":"P6 3Smmc","text":" group number = 194\n group name = P6_3/mmc\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 24\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z+1/2\n +y,-x+y,+z+1/2\n +x-y,+x,+z+1/2\n +y,+x,-z\n +x-y,-y,-z\n -x,-x+y,-z\n -y,-x,-z+1/2\n -x+y,+y,-z+1/2\n +x,+x-y,-z+1/2\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z+1/2\n -y,+x-y,-z+1/2\n -x+y,-x,-z+1/2\n -y,-x,+z\n -x+y,+y,+z\n +x,+x-y,+z\n +y,+x,+z+1/2\n +x-y,-y,+z+1/2\n -x,-x+y,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 14 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 15 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 16 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 17 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 18 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 19 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 20 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 21 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 22 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 23 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 24 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P6_3cm.html","title":"P6 3cm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0185\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_3cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z+1/2\n+y,-x+y,+z+1/2\n+x-y,+x,+z+1/2\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P6_3mc.html","title":"P6 3mc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0186\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_3mc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z+1/2\n+y,-x+y,+z+1/2\n+x-y,+x,+z+1/2\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P6_4.html","title":"P6 4","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0172\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-x,-y,+z\n+y,-x+y,+z+1/3\n+x-y,+x,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667 \n
"},{"location":"P6_422.html","title":"P6 422","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0181\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_422\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-x,-y,+z\n+y,-x+y,+z+1/3\n+x-y,+x,+z+2/3\n+y,+x,-z+1/3\n+x-y,-y,-z\n-x,-x+y,-z+2/3\n-y,-x,-z+1/3\n-x+y,+y,-z\n+x,+x-y,-z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667 \n
"},{"location":"P6_5.html","title":"P6 5","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0170\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_5\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-x,-y,+z+1/2\n+y,-x+y,+z+1/6\n+x-y,+x,+z+5/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.166666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333 \n
"},{"location":"P6_522.html","title":"P6 522","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0179\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_522\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-x,-y,+z+1/2\n+y,-x+y,+z+1/6\n+x-y,+x,+z+5/6\n+y,+x,-z+2/3\n+x-y,-y,-z\n-x,-x+y,-z+1/3\n-y,-x,-z+1/6\n-x+y,+y,-z+1/2\n+x,+x-y,-z+5/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.166666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.166666666667\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333 \n
"},{"location":"P6cc.html","title":"P6cc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0184\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6cc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z\n+y,-x+y,+z\n+x-y,+x,+z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P6mm.html","title":"P6mm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0183\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6mm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z\n+y,-x+y,+z\n+x-y,+x,+z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"PDF.html","title":"NWChem manual in PDF format","text":"Manual in PDF format
"},{"location":"Pa-3.html","title":"Pa 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0205\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pa-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Pba2.html","title":"Pba2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a032\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pba2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pbam.html","title":"Pbam","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a055\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pbam\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x,+y,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pban.html","title":"Pban","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a050\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pban\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a050\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pban\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y,-z\n+x,-y+1/2,-z\n-x,-y,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y,+z\n-x,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pbca.html","title":"Pbca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a061\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pbca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pbcm.html","title":"Pbcm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a057\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pbcm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-x,+y+1/2,-z+1/2\n+x,-y+1/2,-z\n-x,-y,-z\n+x,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pbcn.html","title":"Pbcn","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a060\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pbcn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-x,+y,-z+1/2\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x+1/2,+y+1/2,-z+1/2\n+x,-y,+z+1/2\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pc.html","title":"Pc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a07\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n+x,-y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a07\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n+x+1/2,+y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"Pca2_1.html","title":"Pca2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a029\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Pca2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n+x+1/2,-y,+z\n-x+1/2,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pcc2.html","title":"Pcc2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a027\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pcc2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pcca.html","title":"Pcca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a054\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pcca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z\n-x,+y,-z+1/2\n+x+1/2,-y,-z+1/2\n-x,-y,-z\n+x+1/2,+y,-z\n+x,-y,+z+1/2\n-x+1/2,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pccm.html","title":"Pccm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a049\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pccm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z+1/2\n+x,-y,-z+1/2\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pccn.html","title":"Pccn","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a056\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pccn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x,+y+1/2,-z+1/2\n+x+1/2,-y,-z+1/2\n-x,-y,-z\n+x+1/2,+y+1/2,-z\n+x,-y+1/2,+z+1/2\n-x+1/2,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Permanent_Dir.html","title":"Permanent Dir","text":""},{"location":"Permanent_Dir.html#permanent_dir","title":"PERMANENT_DIR","text":"This start-up directive allows the user to specify the directory location of permanent files created by NWChem. NWChem distinguishes between permanent (or persistent) files and scratch (or temporary) files, and allows the user the option of putting them in different locations. In most installations, however, permanent and scratch files are all written to the current directory by default. What constitutes \u201clocal\u201d disk space may also differ from machine to machine.
The PERMANENT_DIR
directive enable the user to specify a single directory for all processes or different directories for different processes. The general form of the directive is as follows:
(PERMANENT_DIR)\u00a0[(<string\u00a0host>||<integer process>):]\u00a0\u00a0<string directory>\u00a0\u00a0[...]\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html","title":"Plane-Wave Density Functional Theory","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#contents","title":"Contents","text":"The NWChem plane-wave (NWPW) module uses pseudopotentials and plane-wave basis sets to perform Density Functional Theory calculations (simple introduction pw-lecture.pdf). This module complements the capabilities of the more traditional Gaussian function based approaches by having an accuracy at least as good for many applications, yet is still fast enough to treat systems containing hundreds of atoms. Another significant advantage is its ability to simulate dynamics on a ground state potential surface directly at run-time using the Car-Parrinello algorithm. This method\u2019s efficiency and accuracy make it a desirable first principles method of simulation in the study of complex molecular, liquid, and solid state systems. Applications for this first principles method include the calculation of free energies, search for global minima, explicit simulation of solvated molecules, and simulations of complex vibrational modes that cannot be described within the harmonic approximation.
The NWPW module is a collection of three modules.
The PSPW, Band, and PAW modules can be used to compute the energy and optimize the geometry. Both the PSPW and Band modules can also be used to find saddle points, and compute numerical second derivatives. In addition the PSPW module can also be used to perform Car-Parrinello molecular dynamics. Section PSPW Tasks describes the tasks contained within the PSPW module, section Band Tasks describes the tasks contained within the Band module, section PAW Tasks describes the tasks contained within the PAW module, and section Pseudopotential and PAW basis Libraries describes the pseudopotential library included with NWChem. The datafiles used by the PSPW module are described in section NWPW RTDB Entries and DataFiles. Car-Parrinello output data files are described in section Car-Parrinello Output Datafiles, and the minimization and Car-Parrinello algorithms are described in section Car-Parrinello Scheme for Ab Initio Molecular Dynamics. Examples of how to setup and run a PSPW geometry optimization, a Car-Parrinello simulation, a band structure minimization, and a PAW geometry optimization are presented at the end. Finally in section NWPW Capabilities and Limitations the capabilities and limitations of the NWPW module are discussed.
As of NWChem 6.6 to use PAW potentials the user is recommended to use the implementation contained in the PSPW module (see Sections ). PAW potentials are also being integrated into the BAND module. Unfortunately, the porting to BAND was not completed for the NWChem 6.6 release.
If you are a first time user of this module it is recommended that you skip the next five sections and proceed directly to the tutorials.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#pspw-tasks-gamma-point-calculations","title":"PSPW Tasks: Gamma Point Calculations","text":"All input to the PSPW Tasks is contained within the compound PSPW block,
PSPW \n ...\nEND\n
To perform an actual calculation a TASK PSPW directive is used (Section Task).
TASK PSPW
In addition to the directives listed in Task, i.e.
TASK PSPW energy \nTASK PSPW gradient \nTASK PSPW optimize \nTASK PSPW saddle \nTASK PSPW freqencies\nTASK PSPW vib \n
there are additional directives that are specific to the PSPW module, which are:
TASK PSPW [Car-Parrinello || \n Born-Oppenheimer ||\n Metropolis ||\n pspw_et ||\n noit_energy ||\n stress ||\n pspw_dplot || \n wannier ||\n expand_cell || \n exafs ||\n ionize ||\n lcao ||\n rdf ||\n aimd_properties ||\n translate ||\n psp_generator || \n steepest_descent || \n psp_formatter || \n wavefunction_initializer || \n v_wavefunction_initializer || \n wavefunction_expander ]\n
Once a user has specified a geometry, the PSPW module can be invoked with no input directives (defaults invoked throughout). However, the user will probably always specify the simulation cell used in the computation, since the default simulation cell is not well suited for most systems. There are sub-directives which allow for customized application; those currently provided as options for the PSPW module are:
NWPW \n SIMULATION_CELL ... (see section [Simulation Cell](#Simulation_Cell)) END\n CELL_NAME <string cell_name default 'cell_default'>\n VECTORS [[input (<string input_wavefunctions default file_prefix.movecs>) || \n [output(<string output_wavefunctions default file_prefix.movecs>)]] \n XC (Vosko || LDA || PBE96 || revPBE || PBEsol || \n LDA-SIC || LDA-SIC/2 || LDA-0.4SIC || LDA-SIC/4 || LDA-0.2SIC || \n PBE96-SIC || PBE96-SIC/2 || PBE96-0.4SIC || PBE96-SIC/4 || PBE96-0.2SIC || \n revPBE-SIC || revPBE-SIC/2 || revPBE-0.4SIC || revPBE-SIC/4 || revPBE-0.2SIC || \n PBE96-Grimme2 || PBE96-Grimme3 || PBE96-Grimme4 || BLYP-Grimme2 || BLYP-Grimme3 || BLYP-Grimme4 || \n revPBE-Grimme2 || revPBE-Grimme3 || revPBE-Grimme4 || PBEsol-Grimme2 || PBEsol-Grimme3 || PBEsol-Grimme4 || \n PBE0-Grimme2 || PBE0-Grimme3 || PBE0-Grimme4 || B3LYP-Grimme2 || B3LYP-Grimme3 || B3LYP-Grimme4 ||\n revPBE0-Grimme2 || revPBE0-Grimme3 || revPBE0-Grimme4 ||\n PBE0 || revPBE0 || HSE || HF || default Vosko) \n XC new ...(see section [Using Exchange-Correlation Potentials Available in the DFT Module](#Using_Exchange-Correlation_Potentials_Available_in_the_DFT_Module))\n DFT||ODFT||RESTRICTED||UNRESTRICTED \n MULT <integer mult default 1> \n CG \n LMBFGS \n SCF [Anderson|| simple || Broyden] \n [CG || RMM-DIIS] \n [density || potential]\n [ALPHA real alpha default 0.25]\n [Kerker real ekerk nodefault] \n [ITERATIONS integer inner_iterations default 5] \n [OUTER_ITERATIONS integer outer_iterations default 0]\n LOOP <integer inner_iteration outer_iteration default 10 100> \n TOLERANCES <real tole tolc default 1.0e-7 1.0e-7> \n FAKE_MASS <real fake_mass default 400000.0> \n TIME_STEP <real time_step default 5.8> \n EWALD_NCUT <integer ncut default 1> \n EWALD_RCUT <real rcut default (see input description)> \n CUTOFF <real cutoff> \n ENERGY_CUTOFF <real ecut default (see input description)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n ALLOW_TRANSLATION \n TRANSLATION (ON || OFF)\n ROTATION (ON || OFF) \n MULLIKEN [OFF]\n EFIELD \n\n BO_STEPS <integer bo_inner_iteration bo_outer_iteration default 10 100> \n MC_STEPS <integer mc_inner_iteration mc_outer_iteration default 10 100>\n BO_TIME_STEP <real bo_time_step default 5.0> \n BO_ALGORITHM [verlet|| velocity-verlet || leap-frog]\n BO_FAKE_MASS <real bo_fake_mass default 500.0> \n\n SOCKET (UNIX || IPI_CLIENT) <string socketname default (see input description)> \n\n MAPPING <integer mapping default 1> \n NP_DIMENSIONS <integer npi npj default -1 -1> \n CAR-PARRINELLO ... (see section [Car-Parrinello](#Car-Parrinello)) END \n STEEPEST_DESCENT ... (see section [Steepest Descent](#STEEPEST_DESCENT)) END\n DPLOT ... (see section [DPLOT](#DPLOT)) END \n WANNIER ... (see section [Wannier](#Wannier)) END \n PSP_GENERATOR ... (see section [PSP Generator](#PSP_GENERATOR))) END \n\n WAVEFUNCTION_INITIALIZER ... (see section [Wavefunction Initializer](NWPW_RETIRED.md#WAVEFUNCTION_INITIALIZER) - retired) END \n V_WAVEFUNCTION_INITIATIZER ... (see section [Wavefunction Velocity Initializer (NWPW_RETIRED#V_WAVEFUNCTION_INITIALIZER) - retired) END \n WAVEFUNCTION_EXPANDER ... (see section [Wavefunction Expander](NWPW_RETIRED.md#WAVEFUNCTION_EXPANDER) - retired) END \n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default file_prefix.movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default file_prefix.movecs> \nEND\n
The following list describes the keywords contained in the PSPW input block.
cell_name
- name of the simulation_cell named cell_name
. See section Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name of the file that will contain the one-electron orbitals at the end of the run.fake_mass
- value for the electronic fake mass This parameter is not presently used in a conjugate gradient simulation.time_step
- value for the time step . This parameter is not presently used in a conjugate gradient simulation.inner_iteration
- number of iterations between the printing out of energies and tolerancesouter_iteration
- number of outer iterationstole
- value for the energy tolerance.tolc
- value for the one-electron orbital tolerance.cutoff
- value for the cutoff energy used to define the wavefunction. In addition using the CUTOFF keyword automatically sets the cutoff energy for the density to be twice the wavefunction cutoff.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.ncut
- value for the number of unit cells to sum over (in each direction) for the real space part of the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.rcut
- value for the cutoff radius used in the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.Default set to be .
mapping
- for a value of 1 slab FFT is used, for a value of 2 a 2d-hilbert FFT is used.A variety of prototype minimizers can be used to minimize the energy. To use these other optimizers the following SET directive needs to be specified:
set nwpw:mimimizer 1 # Default - Grassman conjugate gradient minimizer is used to minimize the energy. \nset nwpw:mimimizer 2 # Grassman LMBFGS minimimzer is used to minimize the energy.\nset nwpw:minimizer 4 # Stiefel conjugate gradient minimizer is used to minimize the energy. \nset nwpw:minimizer 5 # Band-by-band (potential) minimizer is used to minimize the energy.\nset nwpw:minimizer 6 # Projected Grassman LMBFGS minimizer is used to minimize the energy.\nset nwpw:minimizer 7 # Stiefel LMBFGS minimizer is used to minimize the energy.\nset nwpw:minimizer 8 # Band-by-band (density) minimizer is used to minimize the energy.\n
Limited testing suggests that the Grassman LMBFGS minimizer is about twice as fast as the conjugate gradient minimizer. However, there are several known cases where this optimizer fails, so it is currently not a default option, and should be used with caution.
In addition the following SET directives can be specified:
set nwpw:lcao_skip .false. # Initial wavefunctions generated using an LCAO guess. \nset nwpw:lcao_skip .true. # Default - Initial wavefunctions generated using a random plane-wave guess.\nset nwpw:lcao_print .false. # Default - Output not produced during the generation of the LCAO guess. \nset nwpw:lcao_print .true. # Output produced during the generation of the LCAO guess.\nset nwpw:lcao_iterations 2 #specifies the number of LCAO iterations.\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#paw-potentials","title":"PAW Potentials","text":"The PSPW code can now handle PAW potentials. To use them the pseudopotentials input block is used to redirect the code to use the paw potentials located in the default paw potential library ($NWCHEM_TOP/src/nwpw/libraryp/paw_default
). For example, to redirect the code to use PAW potentials for carbon and hydrogen, the following input would be used.
nwpw \n pseudopotentials \n C library paw_default \n H library paw_default \n end \nend\n
Most of the capabilities of PSPW will work with PAW potentials including geometry optimization, Car-Parrinello ab initio molecular dynamics, Born-Oppenheimer ab initio molecular dynamics, Metropolis Monte-Carlo, and AIMD/MM. Unfortunately, some of the functionality is missing at this point in time such as Mulliken analysis, and analytic stresses. However these small number of missing capabilities should become available over the next couple of months in the development tree of NWChem.
Even though analytic stresses are not currently available with PAW potentials unit cell optimization can still be carried out using numerical stresses. The following SET directives can be used to tell the code to calculate stresses numerically.
set includestress .true. #this option tells driver to optimize the unit cell \nset includelattice .true. #this option tells driver to optimize cell using a,b,c,alpha,beta,gamma \nset nwpw:frozen_lattice:thresh 999.0 #large number guarentees the lattice gridding does not adjust during optimization\nset nwpw:cif_filename pspw_corundum\nset nwpw:stress_numerical .true. \nset nwpw:lstress_numerical .true.\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#paw-implementation-notes","title":"PAW Implementation Notes","text":"The main idea in the PAW method(Blochl 1994) is to project out the high-frequency components of the wavefunction in the atomic sphere region. Effectively this splits the original wavefunction into two parts:
The first part is smooth and can be represented using a plane wave basis set of practical size. The second term is localized with the atomic spheres and is represented on radial grids centered on the atoms as
where the coefficients are given by
This decomposition can be expressed using an invertible linear transformation, , is defined which relates the stiff one-electron wavefunctions to a set of smooth one-electron wavefunctions
which can be represented by fairly small plane-wave basis. The transformation is defined using a local PAW basis, which consists of atomic orbitals, , smooth atomic orbitals, \u03b1I(r) which coincide with the atomic orbitals outside a defined atomic sphere, and projector functions, . Where I is the atomic index and \u03b1 is the orbital index. The projector functions are constructed such that they are localized within the defined atomic sphere and in addition are orthonormal to the atomic orbitals. Bl\u00f6chl defined the invertible linear transformations by
The main effect of the PAW transformation is that the fast variations of the valence wave function in the atomic sphere region are projected out using local basis set, thereby producing a smoothly varying wavefunction that may be expanded in a plane wave basis set of a manageable size.
The expression for the total energy in PAW method can be separated into the following 15 terms.
The first five terms are essentially the same as for a standard pseudopotential plane-wave program, minus the non-local pseudopotential, where
The local potential in the term is the Fourier transform of
It turns out that for many atoms needs to be fairly small. This results in being stiff. However, since in the integral above this function is multiplied by a smooth density the expansion of Vlocal(G) only needs to be the same as the smooth density. The auxiliary pseudoptential is defined to be localized within the atomic sphere and is introduced to remove ghost states due to local basis set incompleteness.
The next four terms are atomic based and they essentially take into account the difference between the true valence wavefunctions and the pseudowavefunctions.
The next three terms are the terms containing the compensation charge densities.
In the first two formulas the first terms are computed using plane-waves and the second terms are computed using Gaussian two center integrals. The smooth local potential in the term is the Fourier transform of
The stiff and smooth compensation charge densities in the above formula are
where
The decay parameter is defined the same as above, and I is defined to be smooth enough in order that \u03c1\u0303cmp(r) and local(r) can readily be expanded in terms of plane-waves.
The final three terms are the energies that contain the core densities
The matrix elements contained in the above formula are
"},{"location":"Plane-Wave-Density-Functional-Theory.html#exchange-correlation-potentials","title":"Exchange-Correlation Potentials","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#dft-u-corrections","title":"DFT + U Corrections","text":"
TO DO
nwpw \n uterm d 0.13634 0.0036749 1 \nend\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#langreth-style-vdw-and-vdw-van-der-wall-functionals","title":"Langreth style vdw and vdw van der Wall functionals","text":"These potenials that are used to augment standard exchange-correlation potentials area calculated from a double integral over a nonlocal interaction kernel,
that is evaluated using the fast Fourier transformation method of Roman-Perez and Soler.
G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).
Langreth vdw and vdw2 van der Wall functionals are currently available for the BEEF, PBE96, revPBE, PBEsol, BLYP, PBE0, revPBE0, HSE, and B3LYP exchange-correlation functionals. To use them the following keywords BEEF-vdw, BEEF-vdw2, PBE96-vdw, PBE96-vdw2, BLYP-vdw, BLYP-vdw2, revPBE-vdw, revPBE-vdw, PBEsol-vdw PBEsol-vdw2, PBE0-vdw, PBE0-vdw2, revPBE0-vdw, revPBE0-vdw2, HSE-vdw, HSE-vdw2, B3LYP-vdw, and B3LYP-vdw2 can be used in the XC input directive, e.g.
nwpw\n xc beef-vdw \nend\n
nwpw\n xc beef-vdw2 \nend\n
the vdw and vdw2 functionals are defined in
(vdw) Dion M, Rydberg H, Schr\u00f6der E, Langreth DC, Lundqvist BI. Van der Waals density functional for general geometries. Physical review letters. 2004 Jun 16;92(24):246401.
(vdw2) K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
"},{"location":"Plane-Wave-Density-Functional-Theory.html#grimme-dispersion-corrections","title":"Grimme Dispersion Corrections","text":"Grimme dispersion corrections are currently available for the PBE96, revPBE, PBEsol, BLYP, PBE0, revPBE0, HSE, and B3LYP exchange-correlation functionals. To use them the following keywords PBE96-Grimme2, PBE96-Grimme3, PBE96-Grimme4, BLYP-Grimme2, BLYP-Grimme3, BLYP-Grimme4, revPBE-Grimme2, revPBE-Grimme3, revPBE-Grimme4, PBEsol-Grimme2, PBEsol-Grimme3, PBEsol-Grimme4, PBE0-Grimme2, PBE0-Grimme3, PBE0-Grimme4, revPBE0-Grimme2, revPBE0-Grimme3, revPBE0-Grimme4, HSE-Grimme2, HSE-Grimme3, HSE-Grimme4, B3LYP-Grimme2, B3LYP-Grimme3, and B3LYP-Grimme4 can be used in the XC input directive, e.g.
nwpw\n xc pbe96-grimme2 \nend\n
In these functionals Grimme2, Grimme3 and Grimme4 are defined in the following papers by S. Grimme.
Grimme2 - Commonly known as DFT-D2, S. Grimme, J. Comput. Chem., 27 (2006), 1787-1799.
Grimme3 - Commonly known as DFT-D3, S. Grimme, J. Antony, S. Ehrlich and H. Krieg A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, 132 (2010), 154104
Grimme4 - Commonly known as DFT-D3 with BJ damping. This correction augments the Grimme3 correction by including BJ-damping, S. Grimme, J. Antony, S. Ehrlich and H. Krieg A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, 132 (2010), 154104. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem, 32 (2011), 1456-1465. This correction augments the Grimme3 correction by including BJ-damping.
If these functionals are used in a publication please include in your citations the references to Grimme\u2019s work.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#using-exchange-correlation-potentials-available-in-the-dft-module","title":"Using Exchange-Correlation Potentials Available in the DFT Module","text":"(Warning - To use this capability in NWChem 6.6 the user must explicitly include the nwxc module in the NWCHEM_MODULES list when compiling. Unfortunately, there was too much uncertainty in how the nwxc computed higher-order derivatives used by some of the functionality in nwdft module to include it in a release for all the functionality in NWChem. We are planning to have a debug release in winter 2016 to take fix this problem. This capability is still included by default in NWChem 6.5)
The user has the option of using many of the exchange-correlation potentials available in DFT Module (see Section XC and DECOMP \u2013 Exchange-Correlation Potentials).
XC [[acm] [b3lyp] [beckehandh] [pbe0] [bhlyp]\\\n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke98] [hcth] [hcth120] [hcth147] \\ \n [hcth407] [becke97gga1] [hcth407p] \\\n [optx] [hcthp14] [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\\n [HFexch <real prefactor default 1.0>] \\\n [becke88 [nonlocal] <real prefactor default 1.0>] \\\n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\\n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\\n [gill96 [nonlocal] <real prefactor default 1.0>] \\\n [lyp <real prefactor default 1.0>] \\\n [perdew81 <real prefactor default 1.0>] \\\n [perdew86 [nonlocal] <real prefactor default 1.0>] \\\n [perdew91 [nonlocal] <real prefactor default 1.0>] \\\n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\\n [pw91lda <real prefactor default 1.0>] \\\n [slater <real prefactor default 1.0>] \\\n [vwn_1 <real prefactor default 1.0>] \\\n [vwn_2 <real prefactor default 1.0>] \\\n [vwn_3 <real prefactor default 1.0>] \\\n [vwn_4 <real prefactor default 1.0>] \\\n [vwn_5 <real prefactor default 1.0>] \\\n [vwn_1_rpa <real prefactor default 1.0>]]\n
These functional can be invoked by prepending the \u201cnew\u201d directive before the exchange correlation potetntials in the input directive, XC new slater vwn_5.
That is, this statement in the input file
nwpw \n XC new slater vwn_5 \nend \ntask pspw energy\n
Using this input the user has ability to include only the local or nonlocal contributions of a given functional. The user can also specify a multiplicative prefactor (the variable prefactor
in the input) for the local/nonlocal component or total (for more details see Section XC and DECOMP \u2013 Exchange-Correlation Potentials). An example of this might be,
XC new becke88 nonlocal 0.72
The user should be aware that the Becke88 local component is simply the Slater exchange and should be input as such.
Any combination of the supported exchange functional options can be used. For example the popular Gaussian B3 exchange could be specified as:
XC new slater 0.8 becke88 nonlocal 0.72 HFexch 0.2
Any combination of the supported correlation functional options can be used. For example B3LYP could be specified as:
XC new vwn_1_rpa 0.19 lyp 0.81 HFexch 0.20 slater 0.80 becke88 nonlocal 0.72
and X3LYP as:
xc new vwn_1_rpa 0.129 lyp 0.871 hfexch 0.218 slater 0.782 \\ \nbecke88 nonlocal 0.542 xperdew91 nonlocal 0.167\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#exact-exchange","title":"Exact Exchange","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#self-interaction-corrections","title":"Self-Interaction Corrections","text":"The SET directive is used to specify the molecular orbitals contribute to the self-interaction-correction (SIC) term.
set pspw:SIC_orbitals <integer list_of_molecular_orbital_numbers>\n
This defines only the molecular orbitals in the list as SIC active. All other molecular orbitals will not contribute to the SIC term. For example the following directive specifies that the molecular orbitals numbered 1,5,6,7,8, and 15 are SIC active.
set pspw:SIC_orbitals 1 5:8 15
or equivalently
set pspw:SIC_orbitals 1 5 6 7 8 15
The following directive turns on self-consistent SIC.
set pspw:SIC_relax .false. # Default - Perturbative SIC calculation \nset pspw:SIC_relax .true. # Self-consistent SIC calculation\n
Two types of solvers can be used and they are specified using the following SET directive
set pspw:SIC_solver_type 1 # Default - cutoff coulomb kernel \nset pspw:SIC_solver_type 2 # Free-space boundary condition kernel\n
The parameters for the cutoff coulomb kernel are defined by the following SET directives:
set pspw:SIC_screening_radius <real rcut> \nset pspw:SIC_screening_power <real rpower>\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#wannier","title":"Wannier","text":"The pspw wannier task is generate maximally localized (Wannier) molecular orbitals. The algorithm proposed by Silvestrelli et al is use to generate the Wannier orbitals.
Input to the Wannier task is contained within the Wannier sub-block.
NWPW \n... \n Wannier \n ... \n END \n... \nEND\n
To run a Wannier calculation the following directive is used:
TASK PSPW Wannier
Listed below is the format of a Wannier sub-block.
NWPW \n... \n Wannier \n OLD_WAVEFUNCTION_FILENAME <string input_wavefunctions default input_movecs> \n NEW_WAVEFUNCTION_FILENAME <string output_wavefunctions default input_movecs> \n END\n... \nEND\n
The following list describes the input for the Wannier sub-block.
input_wavefunctions
- name of pspw wavefunction file.output_wavefunctions
- name of pspw wavefunction file that will contain the Wannier orbitals.The \u201cdos\u201d option is used to turn on a density of states analysis. This option can be specified without additional parameters, i.e.
nwpw \n dos \nend\n
in which case default values are used, or it can be specified with additional parameters, e.g.
nwpw\n dos 0.002 700 -0.80000 0.8000 \nend\n
The parameters are
nwpw \n dos [<alpha> <npoints> <emin> <emax>] \nend\n
where
alpha
value for the broadening the eigenvalues, default 0.05/27.2116 aunpoints
number of plotting points in dos files, default 500emin
minimum energy in dos plots, default min(eigenvalues)-0.1 auemax
maximimum energy in dos plots, default max(eigenvalues)+0.1 auThe units for dos parameters are in atomic units. Note that if virtual states are specified in the pspw calculation then the virtual density of states will also be generated in addition to the filled density of states.
The following files are generated and written to the permanent_dir for restricted calculations
For unrestricted calculations
The nwpw:dos:actlist variable is used to specify the atoms used to determine weights for dos generation. If the variable is not set then all the atoms are used, e.g.
set nwpw:dos:actlist 1 2 3 4
For projected density of states the \u201cMulliken\u201d keyword needs to be set, e.g.
nwpw \n Mulliken \n dos\nend\n
The following additional files are generated and written to the permanent_dir for restricted calculations
\u2026
Similarly for unrestricted calculations
\u2026
\u2026
\u2026
The MULLIKEN option can be used to generate derived atomic point charges from a plane-wave density. This analysis is based on a strategy suggested in the work of P.E. Blochl, J. Chem. Phys. vol. 103, page 7422 (1995). In this strategy the low-frequency components a plane-wave density are fit to a linear combination of atom centered Gaussian functions.
The following SET directives are used to define the fitting.
set nwpw_APC:Gc <real Gc_cutoff> # specifies the maximum frequency component of the density to be used in the fitting in units of au. \nset nwpw_APC:nga <integer number_gauss> # specifies the the number of Gaussian functions per atom.\nset nwpw_APC:gamma <real gamma_list> # specifies the decay lengths of each atom centered Gaussian. \n
We suggest using the following parameters.
set nwpw_APC:Gc 2.5\nset nwpw_APC:nga 3 \nset nwpw_APC:gamma 0.6 0.9 1.35 \n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#pspw_dplot-generate-gaussian-cube-files","title":"PSPW_DPLOT: Generate Gaussian Cube Files","text":"The pspw dplot task is used to generate plots of various types of electron densities (or orbitals) of a molecule. The electron density is calculated on the specified set of grid points from a PSPW calculation. The output file generated is in the Gaussian Cube format. Input to the DPLOT task is contained within the DPLOT sub-block.
NWPW \n... \n DPLOT \n ... \n END \n... \nEND\n
To run a DPLOT calculation the following directive is used:
TASK PSPW PSPW_DPLOT
Listed below is the format of a DPLOT sub-block.
NWPW \n... \n DPLOT \n VECTORS <string input_wavefunctions default input_movecs> \n DENSITY [total||diff||alpha||beta||laplacian||potential default total] \n <string density_name no default> \n ELF [restricted|alpha|beta] <string elf_name no default>\n ORBITAL <integer orbital_number no default> <string orbital_name no default> \n [LIMITXYZ [units <string Units default au>] \n <real X_From> <real X_To> <integer No_Of_Spacings_X> \n <real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n <real Z_From> <real Z_To> <integer No_Of_Spacings_Z>] \n NCELL <integer nx default 0> <integer ny default 0> <integer nz default 0>\n POSITION_TOLERANCE <real rtol default 0.001>\n END \n... \nEND\n
The following list describes the input for the DPLOT sub-block.
VECTORS <string input_wavefunctions default input_movecs>\n
This sub-directive specifies the name of the molecular orbital file. If the second file is optionally given the density is computed as the difference between the corresponding electron densities. The vector files have to match.
DENSITY [total||difference||alpha||beta||laplacian||potential default total] \n <string density_name no default>\n
This sub-directive specifies, what kind of density is to be plotted. The known names for total, difference, alpha, beta, laplacian, and potential.
ELF [restricted|alpha|beta] <string elf_name no default>\n
This sub-directive specifies that an electron localization function (ELF) is to be plotted.
ORBITAL <integer orbital_number no default> <string orbital_name no default>\n
This sub-directive specifies the molecular orbital number that is to be plotted.
LIMITXYZ [units <string Units default angstroms>] \n<real X_From> <real X_To> <integer No_Of_Spacings_X> \n<real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n<real Z_From> <real Z_To> <integer No_Of_Spacings_Z>\n
By default the grid spacing and the limits of the cell to be plotted are defined by the input wavefunctions. Alternatively the user can use the LIMITXYZ sub-directive to specify other limits. The grid is generated using No_Of_Spacings + 1 points along each direction. The known names for Units are angstroms, au and bohr.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#band-tasks-multiple-k-point-calculations","title":"Band Tasks: Multiple k-point Calculations","text":"All input to the Band Tasks is contained within the compound NWPW block,
NWPW \n ... \nEND\n
To perform an actual calculation a Task Band directive is used (Section Task).
Task Band
Once a user has specified a geometry, the Band module can be invoked with no input directives (defaults invoked throughout). There are sub-directives which allow for customized application; those currently provided as options for the Band module are:
NWPW \n CELL_NAME <string cell_name default cell_default> \n ZONE_NAME <string zone_name default zone_default> \n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default input_movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default input_movecs> \n FAKE_MASS <real fake_mass default 400000.0> \n TIME_STEP <real time_step default 5.8> \n LOOP <integer inner_iteration outer_iteration default 10 100> \n TOLERANCES <real tole tolc default 1.0e-7 1.0e-7> \n CUTOFF <real cutoff> \n ENERGY_CUTOFF <real ecut default (see input description)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n EWALD_NCUT <integer ncut default 1>] \n EWALD_RCUT <real rcut default (see input description)> \n\n XC (Vosko || LDA || PBE96 || revPBE || PBEsol || ` \n || HSE || default Vosko) ` \n #Note that HSE is the only hybrid functional implemented in BAND\n\n DFT||ODFT||RESTRICTED||UNRESTRICTED \n MULT <integer mult default 1> \n CG \n LMBFGS \n SCF [Anderson|| simple || Broyden] \n [CG || RMM-DIIS] [density || potential] \n [ALPHA real alpha default 0.25] \n [ITERATIONS integer inner_iterations default 5] \n [OUTER_ITERATIONS integer outer_iterations default 0]\n\n SIMULATION_CELL [units <string units default bohrs>]\n ... (see input description) \n END \n BRILLOUIN_ZONE \n ... (see input description) \n END \n MONKHORST-PACK <real n1 n2 n3 default 1 1 1>\n BAND_DPLOT \n ... (see input description) \n END \n MAPPING <integer mapping default 1> \n SMEAR <sigma default 0.001> \n [TEMPERATURE <temperature>] \n [FERMI || GAUSSIAN || MARZARI-VANDERBILT default FERMI] \n [ORBITALS <integer orbitals default 4>] \nEND \n
The following list describes these keywords.
cell_name
- name of the simulation_cell named cell_name
. See Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name that will point to file containing the one-electron orbitals at the end of the run.fake_mass
- value for the electronic fake mass . This parameter is not presently used in a conjugate gradient simulationtime_step
- value for the time step . This parameter is not presently used in a conjugate gradient simulation.inner_iteration
- number of iterations between the printing out of energies and tolerancesouter_iteration
- number of outer iterationstole
- value for the energy tolerance.tolc
- value for the one-electron orbital tolerance.cutoff
- value for the cutoff energy used to define the wavefunction. In addition using the CUTOFF keyword automatically sets the cutoff energy for the density to be twice the wavefunction cutoff.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fix within the simulation_cell cell_name
.ncut
- value for the number of unit cells to sum over (in each direction) for the real space part of the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.rcut
- value for the cutoff radius used in the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.Default set to be .
smear
- value for smearing broadendingtemperature
- same as smear but in units of K.To supply the special points of the Brillouin zone, the user defines a brillouin_zone sub-block within the NWPW block. Listed below is the format of a brillouin_zone sub-block.
NWPW \n... \n BRILLOUIN_ZONE \n ZONE_NAME <string name default zone_default> \n (KVECTOR <real k1 k2 k3 no default> <real weight default (see input description)> \n ...) \n END \n... \nEND\n
The user enters the special points and weights of the Brillouin zone. The following list describes the input in detail.
name
- user-supplied name for the simulation block.k1 k2 k3
- user-supplied values for a special point in the Brillouin zone.weight
- user-supplied weight. Default is to set the weight so that the sum of all the weights for the entered special points adds up to unity.SC: gamma, m, r, x
FCC: gamma, k, l, u, w, x
BCC: gamma, h, n, p
Rhombohedral: not currently implemented
Hexagonal: gamma, a, h, k, l, m
Simple Tetragonal: gamma, a, m, r, x, z
Simple Orthorhombic: gamma, r, s, t, u, x, y, z
Body-Centered Tetragonal: gamma, m, n, p, x
"},{"location":"Plane-Wave-Density-Functional-Theory.html#special-points-of-different-space-groups-conventional-cells","title":"Special Points of Different Space Groups (Conventional Cells)","text":"(1) P1
(2) P-1
(3)
"},{"location":"Plane-Wave-Density-Functional-Theory.html#screened-exchange","title":"Screened Exchange","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#density-of-states-and-projected-density-of-states","title":"Density of States and Projected Density of States","text":"The \u201cdos\u201d option is used to calculate density of states using broadening of the eigenvalues . This option can be specified without additional parameters, i.e.
nwpw \n dos\nend\n
in which case default values are used, or it can be specified with additional parameters, e.g.
nwpw \n dos 0.002 700 -0.80000 0.8000\nend\n
The parameters are
nwpw \n dos [<alpha> <npoints> <emin> <emax>]\nend\n
where
alpha
- value for the broadening the eigenvalues, default 0.05/27.2116 aunpoints
- number of plotting points in dos files, default 500emin
- minimum energy in dos plots, default min(eigenvalues)-0.1 auemax
- maximimum energy in dos plots, default max(eigenvalues)+0.1 auThe units for dos parameters are in atomic units. Note that if virtual states are specified in the pspw calculation then the virtual density of states will also be generated in addition to the filled density of states.
The following files are generated and written to the permanent_dir for restricted calculations
For unrestricted calculations
The nwpw:dos:actlist variable is used to specify the atoms used to determine weights for dos generation. If the variable is not set then all the atoms are used, e.g.
set nwpw:dos:actlist 1 2 3 4
For projected density of states the \u201cMulliken\u201d keyword needs to be set, e.g.
nwpw\n Mulliken\n dos \nend\n
The following additional files are generated and written to the permanent_dir for restricted calculations
\u2026
Similarly for unrestricted calculations
\u2026
\u2026
\u2026
The BAND BAND_DPLOT task is used to generate plots of various types of electron densities (or orbitals) of a crystal. The electron density is calculated on the specified set of grid points from a Band calculation. The output file generated is in the Gaussian Cube format. Input to the BAND_DPLOT task is contained within the BAND_DPLOT sub-block.
NWPW \n... \n BAND_DPLOT \n ... \n END \n...\nEND\n
To run a BAND_DPLOT calculation the following directive is used:
TASK BAND BAND_DPLOT
Listed below is the format of a BAND_DPLOT sub-block.
NWPW\n... \n BAND_DPLOT \n VECTORS <string input_wavefunctions default input_movecs>\n DENSITY [total||difference||alpha||beta||laplacian||potential default total] <string density_name no default>\n ELF [restricted|alpha|beta] <string elf_name no default> \n ORBITAL (density || real || complex default density) \n <integer orbital_number no default> \n <integer brillion_number default 1> \n <string orbital_name no default> \n [LIMITXYZ [units <string Units default angstroms>] \n <real X_From> <real X_To> <integer No_Of_Spacings_X> \n <real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n <real Z_From> <real Z_To> <integer No_Of_Spacings_Z>] \n END\n...\nEND\n
The following list describes the input for the BAND_DPLOT sub-block.
VECTORS <string input_wavefunctions default input_movecs>
This sub-directive specifies the name of the molecular orbital file. If the second file is optionally given the density is computed as the difference between the corresponding electron densities. The vector files have to match.
DENSITY [total||difference||alpha||beta||laplacian||potential default total] <string density_name no default>\n
This sub-directive specifies, what kind of density is to be plotted. The known names for total, difference, alpha, beta, laplacian, and potential.
ELF [restricted|alpha|beta] <string elf_name no default>\n
This sub-directive specifies that an electron localization function (ELF) is to be plotted.
ORBITAL (density || real || complex default density) <integer orbital_number no default><integer brillion_number default 1> <string orbital_name no default>\n
This sub-directive specifies the molecular orbital number that is to be plotted.
LIMITXYZ [units <string Units default angstroms>] \n<real X_From> <real X_To> <integer No_Of_Spacings_X> \n<real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n<real Z_From> <real Z_To> <integer No_Of_Spacings_Z>\n
By default the grid spacing and the limits of the cell to be plotted are defined by the input wavefunctions. Alternatively the user can use the LIMITXYZ sub-directive to specify other limits. The grid is generated using No_Of_Spacings + 1 points along each direction. The known names for Units are angstroms, au and bohr.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#car-parrinello","title":"Car-Parrinello","text":"The Car-Parrinello task is used to perform ab initio molecular dynamics using the scheme developed by Car and Parrinello. In this unified ab initio molecular dynamics scheme the motion of the ion cores is coupled to a fictitious motion for the Kohn-Sham orbitals of density functional theory. Constant energy or constant temperature simulations can be performed. A detailed description of this method is described in section Car-Parrinello Scheme for Ab Initio Molecular Dynamics.
Input to the Car-Parrinello simulation is contained within the Car-Parrinello sub-block.
NWPW \n... \n Car-Parrinello \n ... \n END \n...\nEND\n
To run a Car-Parrinello calculation the following directives are used:
TASK PSPW Car-Parrinello \n TASK BAND Car-Parrinello\n TASK PAW Car-Parrinello\n
The Car-Parrinello sub-block contains a great deal of input, including pointers to data, as well as parameter input. Listed below is the format of a Car-Parrinello sub-block.
NWPW \n... \n Car-Parrinello \n CELL_NAME <string cell_name default 'cell_default'>\n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default file_prefix.movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default file_prefix.movecs> \n INPUT_V_WAVEFUNCTION_FILENAME <string input_v_wavefunctions default file_prefix.vmovecs> \n OUTPUT_V_WAVEFUNCTION_FILENAME <string output_v_wavefunctions default file_prefix.vmovecs> \n FAKE_MASS <real fake_mass default default 1000.0>\n TIME_STEP <real time_step default 5.0> \n LOOP <integer inner_iteration outer_iteration default 10 1> \n SCALING <real scale_c scale_r default 1.0 1.0> \n ENERGY_CUTOFF <real ecut default (see input description)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n EWALD_NCUT <integer ncut default 1> \n EWALD_RCUT <real rcut default (see input description)> \n XC (Vosko || LDA || PBE96 || revPBE || HF || \n LDA-SIC || LDA-SIC/2 || LDA-0.4SIC || LDA-SIC/4 || LDA-0.2SIC || \n PBE96-SIC || PBE96-SIC/2 || PBE96-0.4SIC || PBE96-SIC/4 || PBE96-0.2SIC || \n revPBE-SIC || revPBE-SIC/2 || revPBE-0.4SIC || revPBE-SIC/4 || revPBE-0.2SIC || \n PBE0 || revPBE0 || default Vosko) \n [Nose-Hoover <real Period_electron real Temperature_electron \n real Period_ion real Temperature_ion \n integer Chainlength_electron integer Chainlength_ion default 100.0 298.15 100.0 298.15 1 1>] \n [TEMPERATURE <real Temperature_ion real Period_ion \n real Temperature_electron real Period_electron \n integer Chainlength_ion integer Chainlength_electron default 298.15 1200 298.15 1200.0 1 1>] \n [SA_decay <real sa_scale_c sa_scale_r default 1.0 1.0>] \n XYZ_FILENAME <string xyz_filename default file_prefix.xyz> \n ION_MOTION_FILENAME <string ion_motion_filename default file_prefix.ion_motion\n EMOTION_FILENAME <string emotion_filename default file_prefix.emotion> \n HMOTION_FILENAME <string hmotion_filename nodefault>\n OMOTION_FILENAME <string omotion_filename nodefault>\n EIGMOTION_FILENAME <string eigmotion_filename nodefault> \n END \n... \nEND\n
The following list describes the input for the Car-Parrinello sub-block.
cell_name
- name of the the simulation_cell named cell_name
. See section Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name of the file that will contain the one-electron orbitals at the end of the run.input_v_wavefunctions
- name of the file containing one-electron orbital velocities.output_v_wavefunctions
- name of the file that will contain the one-electron orbital velocities at the end of the run.fake_mass
- value for the electronic fake mass ( ).time_step
- value for the Verlet integration time step ().inner_iteration
- number of iterations between the printing out of energies.outer_iteration
- number of outer iterationsscale_c
- value for the initial velocity scaling of the one-electron orbital velocities.scale_r
- value for the initial velocity scaling of the ion velocities.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.ncut
- value for the number of unit cells to sum over (in each direction) for the real space part of the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.rcut
- value for the cutoff radius used in the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.Default set to be .
Period_electron
- estimated period for fictitious electron thermostat.Temperature_electron
- temperature for fictitious electron motionPeriod_ion
- estimated period for ionic thermostatTemperature_ion
- temperature for ion motionChainlength_electron
- number of electron thermostat chainsChainlength_ion
- number of ion thermostat chainssa_scale_c
- decay rate in atomic units for electronic temperature.sa_scale_r
- decay rate in atomic units for the ionic temperature. xyz_filename
- name of the XYZ motion file generatedemotion_filename
- name of the emotion motion file. See section EMOTION motion file for a description of the datafile.hmotion_filenameh
- name of the hmotion motion file. See section HMOTION motion file for a description of the datafile.eigmotion_filename
- name of the eigmotion motion file. See section EIGMOTION motion file for a description of the datafile.ion_motion_filename
- name of the ion_motion motion file. See section ION_MOTION motion file- for a description of the datafile.omotion_filename
- name of the omotion motion file. See section OMOTION motion file for a description of the datafile.When a DPLOT sub-block is specified the following SET directive can be used to output dplot data during a PSPW Car-Parrinello simulation:
set pspw_dplot:iteration_list <integer list_of_iteration_numbers>\n
The Gaussian cube files specified in the DPLOT sub-block are appended with the specified iteration number.
For example, the following directive specifies that at the 3,10,11,12,13,14,15, and 50 iterations Gaussian cube files are to be produced.
set pspw_dplot:iteration_list 3,10:15,50
The Car-Parrinello module allows users to freeze the cartesian coordinates in a simulation (Note - the Car-Parrinello code recognizes Cartesian constraints, but it does not recognize internal coordinate constraints). The +SET+ directive (Section Applying constraints in geometry optimizations) is used to freeze atoms, by specifying a directive of the form:
set geometry:actlist <integer list_of_center_numbers>\n
This defines only the centers in the list as active. All other centers will have zero force assigned to them, and will remain frozen at their starting coordinates during a Car-Parrinello simulation.
For example, the following directive specifies that atoms numbered 1, 5, 6, 7, 8, and 15 are active and all other atoms are frozen:
set geometry:actlist 1 5:8 15
or equivalently,
set geometry:actlist 1 5 6 7 8 15
If this option is not specified by entering a +SET+ directive, the default behavior in the code is to treat all atoms as active. To revert to this default behavior after the option to define frozen atoms has been invoked, the +UNSET+ directive must be used (since the database is persistent, see Section NWChem Architecture). The form of the +UNSET+ directive is as follows:
unset geometry:actlist
In addition, the Car-Parrinello module allows users to freeze bond lengths via a Shake algorithm. The following +SET+ directive shows how to do this.
set nwpw:shake_constraint \"2 6 L 6.9334\"
This input fixes the bond length between atoms 2 and 6 to be 6.9334 bohrs. Note that this input only recognizes bohrs.
When using constraints it is usually necessary to turn off center of mass shifting. This can be done by the following +SET+ directive.
set nwpw:com_shift .false.
Data file that stores ion positions and velocities as a function of time in XYZ format.
[line 1: ] n_ion\n[line 2: ] do ii=1,n_ion\n[line 2+ii: ] atom_name(ii), x(ii),y(ii),z(ii),vx(ii),vy(ii),vz(ii)\nend do \n[line n_ion+3 ] n_nion \n do ii=1,n_ion\n[line n_ion+3+ii: ] atom_name(ii), x(ii),y(ii),z(ii), vx(ii),vy(ii),vz(ii) \nend do\n[line 2*n_ion+4: ] ....\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ion_motion-motion-file","title":"ION_MOTION motion file","text":"Datafile that stores ion positions and velocities as a function of time
[line 1: ] it_out, n_ion, omega, a1.x,a1.y,a1.z, a2.x,a2,y,a2.z, a3.x,a3.y,a3.z \n[line 2: ] time \ndo ii=1,n_ion\n[line 2+ii: ] ii, atom_symbol(ii),atom_name(ii), x(ii),y(ii),z(ii), vx(ii),vy(ii),vz(ii) \nend do\n[line n_ion+3 ] time \ndo do ii=1,n_ion \n[line n_ion+3+ii: ] ii, atom_symbol(ii),atom_name(ii), x(ii),y(ii),z(ii), vx(ii),vy(ii),vz(ii) \nend do \n[line 2*n_ion+4: ] ....\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#emotion-motion-file","title":"EMOTION motion file","text":"Datafile that store energies as a function of time.
[line 1: ] time, E1,E2,E3,E4,E5,E6,E7,E8,(E9,E10, if Nose-Hoover),eave,evar,have,hvar,ion_Temp \n[line 2: ] ...\n
where
E1 = total energy\nE2 = potential energy\nE3 = ficticious kinetic energy\nE4 = ionic kinetic energy\nE5 = orbital energy\nE6 = hartree energy\nE7 = exchange-correlation energy \nE8 = ionic energy\neave = average potential energy \nevar = variance of potential energy\nhave = average total energy\nhvar = variance of total energy\nion_Temp = temperature\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#hmotion-motion-file","title":"HMOTION motion file","text":"Datafile that stores the rotation matrix as a function of time.
[line 1: ] time\n[line 2: ] ms,ne(ms),ne(ms)\ndo i=1,ne(ms)\n[line 2+i: ] (hml(i,j), j=1,ne(ms)\nend do\n[line 3+ne(ms): ] time\n[line 4+ne(ms): ] ....\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#eigmotion-motion-file","title":"EIGMOTION motion file","text":"Datafile that stores the eigenvalues for the one-electron orbitals as a function of time.
[line 1: ] time, (eig(i), i=1,number_orbitals) \n[line 2: ] ...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#omotion-motion-file","title":"OMOTION motion file","text":"Datafile that stores a reduced representation of the one-electron orbitals. To be used with a molecular orbital viewer that will be ported to NWChem in the near future.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#born-oppenheimer-molecular-dynamics","title":"Born-Oppenheimer Molecular Dynamics","text":"NWPW\n...\n BO_STEPS <integer bo_inner_iteration bo_outer_iteration default 10 100> \n BO_TIME_STEP <real bo_time_step default 5.0> \n BO_ALGORITHM [verlet|| velocity-verlet || leap-frog]\n BO_FAKE_MASS <real bo_fake_mass default 500.0> \nEND\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#i-pi-socket-communication","title":"i-PI Socket Communication","text":"NWPW\n SOCKET (UNIX || IPI_CLIENT) <string socketname default (see input description)>\nEND\n
The NWPW
module provides native communication via the i-PI socket protocol. The behavior is identical to the i-PI socket communication provided by the DRIVER
module. The NWPW
implementation of the SOCKET
directive is better optimized for plane-wave calculations.
For proper behavior, the TASK
directive should be set to GRADIENT
, e.g. TASK PSPW GRADIENT
or TASK BAND GRADIENT
.
NWPW\n...\n MC_STEPS <integer mc_inner_iteration mc_outer_iteration default 10 100> \nEND\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#free-energy-simulations","title":"Free Energy Simulations","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#metadynamics","title":"MetaDynamics","text":"Metadynamics234 is a powerful, non-equilibrium molecular dynamics method which accelerates the sampling of the multidimensional free energy surfaces of chemical reactions. This is achieved by adding an external time-dependent bias potential that is a function of user defined collective variables, . The bias potential discourages the system from sampling previously visited values of (i.e., encourages the system to explore new values of . During the simulation the bias potential accumulates in low energy wells which then allows the system to cross energy barriers much more quickly than would occur in standard dynamics. The collective variable is a generic function of the system coordinates, (e.g. bond distance, bond angle, coordination numbers, etc.) that is capable of describing the chemical reaction of interest. can be regarded as a reaction coordinate if it can distinguish between the reactant, transition, and products states, and also capture the kinetics of the reaction.
The biasing is achieved by \u201cflooding\u201d the energy landscape with repulsive Gaussian \u201chills\u201d centered on the current location of at a constant time interval . If the height of the Gaussians is constant in time then we have standard metadynamics; if the heights vary (slowly decreased) over time then we have well-tempered metadynamics. In between the addition of Gaussians, the system is propagated by normal (but out of equilibrium) dynamics. Suppose that the dimension of the collective space is , i.e. and that prior to any time during the simulation, Gaussians centered on are deposited along the trajectory of at times . Then, the value of the bias potential, , at an arbitrary point, , along the trajectory of at time is given by
where is the time-dependent Gaussian height. and are width and initial height respectively of Gaussians, and is the tempered metadynamics temperature. corresponds to standard molecular dynamics because and therfore there is no bias. corresponds to standard metadynamics since in this case =constant. A positive, finite value of (eg. >=1500 K) corresponds to well-tempered metadynamics in which .
For sufficiently large , the history potential will nearly flatten the free energy surface, , along and an unbiased estimator of F(s) is given by
"},{"location":"Plane-Wave-Density-Functional-Theory.html#input","title":"Input","text":"
Input to a metadynamics simulation is contained within the METADYNAMICS sub-block. Listed below is the the format of a METADYNAMICS sub-block,
NWPW \n METADYNAMICS\n [\n BOND <integer atom1_index no default> <integer atom2_index no default> \n [W <real w default 0.00005>] \n [SIGMA <real sigma default 0.1>] \n [RANGE <real a b default (see input description)>] \n [NRANGE <integer nrange default 501>] \n ...] \n [\n ANGLE <integer atom1_index no default> <integer atom2_index no default> <integer atom3_index no default> \n [W <real w default 0.00005>] \n [SIGMA <real sigma default 0.1>]\n [RANGE <real a b default 0]\n [NRANGE <integer nrange default 501>] \n ...]\n [\n COORD_NUMBER [INDEX1 <integer_list atom1_indexes no default>][INDEX2 <integer_list atom2_indexes no default>] \n [SPRIK] \n [N <real n default 6.0>]\n [M <real m default 12.0>]\n [R0 <real r0 default 3.0>] \n\n [W <real w default 0.00005>] \n [SIGMA <real sigma default 0.1>] \n [RANGE <real a b no default>] \n [NRANGE <integer nrange default 501>] \n ...] \n [ \n N-PLANE <integer atom1_index no default> <integer_list atom_indexes no default> \n [W <real w default 0.00005>] \n [SIGMA <real sigma default 0.1>] \n [RANGE <real a b no default>] \n [NRANGE <integer nrange default 501>] \n [NVECTOR <real(3) nx ny nz>] \n ...] \n [UPDATE <integer meta_update default 1>] \n [PRINT_SHIFT <integer print_shift default 0>]\n [TEMPERED <real tempered_temperature no default>] \n [BOUNDARY <real w_boundary sigma_boundary no default>]\n END\nEND\n
Multiple collective variables can be defined at the same time, e.g.
NWPW \n METADYNAMICS \n BOND 1 8 W 0.0005 SIGMA 0.1 \n BOND 1 15 W 0.0005 SIGMA 0.1 \n END\nEND\n
will produce a two-dimensional potential energy surface.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#tamd-temperature-accelerated-molecular-dynamics","title":"TAMD - Temperature Accelerated Molecular Dynamics","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#input_1","title":"Input","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#collective-variables","title":"Collective Variables","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#bond-distance-collective-variable","title":"Bond Distance Collective Variable","text":"This describes the bond distance between any pair of atoms and :
"},{"location":"Plane-Wave-Density-Functional-Theory.html#angle-collective-variable","title":"Angle Collective Variable","text":"
This describes the bond angle formed at by the triplet
"},{"location":"Plane-Wave-Density-Functional-Theory.html#coordination-collective-variable","title":"Coordination Collective Variable","text":"
The coordination number collective variable is defined as
where the summation over and runs over two types of atoms, is the weighting function, and is the cut-off distance. In the standard procedure for computing the coordination number, =1 if , otherwise =0, implying that is not continuous when . To ensure a smooth and continuous definition of the coordination number, we adopt two variants of the weighting function. The first variant is
where and are integers (m > n) chosen such that when and when is much larger than . For example, the parameters of the O-H coordination in water is well described by =1.6 \u00c5, and . In practice, and must tuned for a given to ensure that is smooth and satisfies the above mentioned properties, particularly the large
The second form of the weighting function, which is due to Sprik, is
In this definition is analogous to the Fermi function and its width is controlled by the parameter . Large and small values of respectively correspond to sharp and soft transitions at . Furthermore should approach 1 and 0 when and respectively. In practice =6-10 \u00c5 . For example, a good set of parameters of the O-H coordination in water is =1.4 \u00c5 and =10 \u00c5 .
"},{"location":"Plane-Wave-Density-Functional-Theory.html#n-plane-collective-variable","title":"N-Plane Collective Variable","text":"The N-Plane collective variable is useful for probing the adsorption of adatom/admolecules to a surface. It is defined as the average distance of the adatom/admolecule from a given layer in the slab along the surface normal:
where denotes the position of the adatom/admolecule/impurity along the surface normal (here, we assume the surface normal to be the z-axis) and the summation over runs over atoms at which form the layer. The layer could be on the face or in the interior of the slab.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#user-defined-collective-variable","title":"User defined Collective Variable","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#extended-x-ray-absorption-fine-structure-exafs-integration-with-feff6l","title":"Extended X-Ray Absorption Fine Structure (EXAFS) - Integration with FEFF6L","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#frozen-phonon-calculations","title":"Frozen Phonon Calculations","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#steepest-descent","title":"Steepest Descent","text":"The functionality of this task is now performed automatically by the PSPW and BAND. For backward compatibility, we provide a description of the input to this task.
The steepest_descent task is used to optimize the one-electron orbitals with respect to the total energy. In addition it can also be used to optimize geometries. This method is meant to be used for coarse optimization of the one-electron orbitals.
Input to the steepest_descent simulation is contained within the steepest_descent sub-block.
NWPW \n... \n STEEPEST_DESCENT \n ... \n END \n... \nEND\n
To run a steepest_descent calculation the following directive is used:
TASK PSPW steepest_descent \nTASK BAND steepest_descent \n
The steepest_descent sub-block contains a great deal of input, including pointers to data, as well as parameter input. Listed below is the format of a STEEPEST_DESCENT sub-block.
NWPW \n... \n STEEPEST_DESCENT \n CELL_NAME <string cell_name> \n [GEOMETRY_OPTIMIZE] \n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default file_prefix.movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default file_prefix.movecs> \n FAKE_MASS <real fake_mass default 400000.0> \n TIME_STEP <real time_step default 5.8> \n LOOP <integer inner_iteration outer_iteration default 10 1> \n TOLERANCES <real tole tolc tolr default 1.0d-9 1.0d-9 1.0d-4> \n ENERGY_CUTOFF <real ecut default (see input desciption)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n EWALD_NCUT <integer ncut default 1> \n EWALD_RCUT <real rcut default (see input description)> \n XC (Vosko || LDA || PBE96 || revPBE || HF || \n LDA-SIC || LDA-SIC/2 || LDA-0.4SIC || LDA-SIC/4 || LDA-0.2SIC || \n PBE96-SIC || PBE96-SIC/2 || PBE96-0.4SIC || PBE96-SIC/4 || PBE96-0.2SIC || \n revPBE-SIC || revPBE-SIC/2 || revPBE-0.4SIC || revPBE-SIC/4 || revPBE-0.2SIC || \n PBE0 || revPBE0 || default Vosko) \n [MULLIKEN] \n END \n... \nEND\n
The following list describes the input for the STEEPEST_DESCENT sub-block.
cell_name
- name of the simulation_cell named cell_name
. See Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name of the file tha will contain the one-electron orbitals at the end of the run.fake_mass
- value for the electronic fake mass time_step
- value for the time step .inner_iteration
- number of iterations between the printing out of energies and tolerancesouter_iteration
- number of outer iterationstole
- value for the energy tolerance.tolc
- value for the one-electron orbital tolerance.tolr
- value for the ion position tolerance.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.ncut
- value for the number of unit cells to sum over (in each direction) for the real space part of the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.rcut
- value for the cutoff radius used in the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.Default set to be .
The simulation cell parameters are entered by defining a simulation_cell sub-block within the PSPW block. Listed below is the format of a simulation_cell sub-block.
NWPW \n... \n SIMULATION_CELL [units <string units default bohrs>]\n CELL_NAME <string name default 'cell_default'> \n BOUNDARY_CONDITIONS (periodic || aperiodic default periodic) \n LATTICE_VECTORS \n <real a1.x a1.y a1.z default 20.0 0.0 0.0> \n <real a2.x a2.y a2.z default 0.0 20.0 0.0> \n <real a3.x a3.y a3.z default 0.0 0.0 20.0> \n NGRID <integer na1 na2 na3 default 32 32 32> \n END \n... \nEND\n
Basically, the user needs to enter the dimensions, gridding and boundary conditions of the simulation cell. The following list describes the input in detail.
name
- user-supplied name for the simulation block.a1.x a1.y a1.z
- user-supplied values for the first lattice vectora2.x a2.y a2.z
- user-supplied values for the second lattice vectora3.x a3.y a3.z
- user-supplied values for the third lattice vectorna1 na2 na3
- user-supplied values for discretization along lattice vector directions.Alternatively, instead of explicitly entering lattice vectors, users can enter the unit cell using the standard cell parameters, a, b, c, , , and , by using the LATTICE block. The format for input is as follows:
NWPW \n... \n SIMULATION_CELL [units <string units default bohrs>] \n ... \n LATTICE \n [lat_a <real a default 20.0>] \n [lat_b <real b default 20.0>] \n [lat_c <real c default 20.0>] \n [alpha <real alpha default 90.0>] \n [beta <real beta default 90.0>] \n [gamma <real gamma default 90.0>] \n END \n ... \n END\n...\nEND\n
The user can also enter the lattice vectors of standard unit cells using the keywords SC, FCC, BCC, for simple cubic, face-centered cubic, and body-centered cubic respectively. Listed below is an example of the format of this type of input.
NWPW \n... \n SIMULATION_CELL [units <string units default bohrs>]\n SC 20.0 \n .... \n END\n...\nEND\n
Finally, the lattice vectors from the unit cell can also be defined using the fractional coordinate input in the GEOMETRY input (see section Geometry Lattice Parameters). Listed below is an example of the format of this type of input for an 8 atom silicon carbide unit cell.
geometry units au \n system crystal \n lat_a 8.277\n lat_b 8.277 \n lat_c 8.277 \n alpha 90.0 \n beta 90.0 \n gamma 90.0 \n end\n Si -0.50000 -0.50000 -0.50000\n Si 0.00000 0.00000 -0.50000 \n Si 0.00000 -0.50000 0.00000\n Si -0.50000 0.00000 0.00000 \n C -0.25000 -0.25000 -0.25000 \n C 0.25000 0.25000 -0.25000 \n C 0.25000 -0.25000 0.25000 \n C -0.25000 0.25000 0.25000 \nend\n
Warning - Currently only the \u201csystem crystal\u201d option is recognized by NWPW. The \u201csystem slab\u201d and \u201csystem polymer\u201d options will be supported in the future.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#unit-cell-optimization","title":"Unit Cell Optimization","text":"The PSPW module using the DRIVER geometry optimizer can optimize a crystal unit cell. Currently this type of optimization works only if the geometry is specified in fractional coordinates. The following SET directive is used to tell the DRIVER geometry optimizer to optimize the crystal unit cell in addition to the geometry.
set includestress .true.
The smear keyword to turn on fractional occupation of the molecular orbitals in PSPW and BAND calculations
SMEAR <sigma default 0.001> [TEMPERATURE <temperature>]\n [FERMI || GAUSSIAN || MARZARI-VANDERBILT default FERMI]\n [ORBITALS <integer orbitals default 4>]\n
Fermi-Dirac (FERMI), Gaussian, and Marzari-Vanderbilt broadening functions are available. The ORBITALS keyword is used to change the number of virtual orbitals to be used in the calculation. Note to use this option the user must currently use the SCF minimizer. The following SCF options are recommended for running fractional occupation
SCF Anderson outer_iterations 0 Kerker 2.0
Spin-penalty functions makes it easier to define antiferromagnetic structures. These functions are implemented by adding a scaling factor to the non-local psp for up/down spins on atoms and angular momentum that you specify.
Basically, the pseudopotential energy
was modified to
An example input is as follows:
title \"hematite 10 atoms\"\n\nstart hema10\n\nmemory 1900 mb\n\npermanent_dir ./perm\nscratch_dir ./perm\n\ngeometry center noautosym noautoz print\n system crystal\n lat_a 5.42 \n lat_b 5.42 \n lat_c 5.42 \n alpha 55.36 \n beta 55.36 \n gamma 55.36 \n end\nFe 0.355000 0.355000 0.355000\nFe 0.145000 0.145000 0.145000 \nFe -0.355000 -0.355000 -0.355000 \nFe 0.855000 0.855000 0.855000 \nO 0.550000 -0.050000 0.250000 \nO 0.250000 0.550000 -0.050000 \nO -0.050000 0.250000 0.550000 \nO -0.550000 0.050000 -0.250000 \nO -0.250000 -0.550000 0.050000 \nO 0.050000 -0.250000 -0.550000\\ \nend \n\nnwpw\n virtual 8\n odft\n ewald_rcut 3.0\n ewald_ncut 8 \n xc pbe96\n lmbfgs \n mult 1\n dplot\n density diff diff1.cube\n end\n\n #spin penalty functions \n pspspin up d -1.0 1:2 \n pspspin down d -1.0 3:4 \nend\ntask pspw energy \ntask pspw pspw_dplot \n\nnwpw\n pspspin off\n dplot\n density diff diff2.cube\n end \nend \ntask pspw energy\ntask pspw pspw_dplot\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#aimdmm-qmmm","title":"AIMD/MM (QM/MM)","text":"A QM/MM capability is available that is integrated with PSPW module and can be used with Car-Parrinello simulations. Currently, the input is not very robust but it is straightforward. The first step to run a QM/MM simulations is to define the MM atoms in the geometry block. The MM atoms must be at the end of the geometry and a carat, \u201d ^ \u201c, must be appended to the end of the atom name, e.g.
geometry units angstrom nocenter noautosym noautoz print xyz \n C -0.000283 0.000106 0.000047 \n Cl -0.868403 1.549888 0.254229 \n Cl 0.834043 -0.474413 1.517103 \n Cl -1.175480 -1.275747 -0.460606 \n Cl 1.209940 0.200235 -1.310743 \n O^ 0.3226E+01 -0.4419E+01 -0.5952E+01 \n H^ 0.3193E+01 -0.4836E+01 -0.5043E+01 \n H^ 0.4167E+01 -0.4428E+01 -0.6289E+01 \n O^ 0.5318E+01 -0.3334E+01 -0.1220E+01 \n H^ 0.4978E+01 -0.3040E+01 -0.2113E+01 \n H^ 0.5654E+01 -0.2540E+01 -0.7127E+00 \nend\n
Another way to specify the MM atoms is to use the mm_tags option which appends the atoms with a \u201d ^ \u201c.
geometry units angstrom nocenter noautosym noautoz print xyz \n C -0.000283 0.000106 0.000047 \n Cl -0.868403 1.549888 0.254229 \n Cl 0.834043 -0.474413 1.517103 \n Cl -1.175480 -1.275747 -0.460606 \n Cl 1.209940 0.200235 -1.310743 \n O 0.3226E+01 -0.4419E+01 -0.5952E+01 \n H 0.3193E+01 -0.4836E+01 -0.5043E+01 \n H 0.4167E+01 -0.4428E+01 -0.6289E+01 \n O 0.5318E+01 -0.3334E+01 -0.1220E+01 \n H 0.4978E+01 -0.3040E+01 -0.2113E+01 \n H 0.5654E+01 -0.2540E+01 -0.7127E+00 \nend \nNWPW \n QMMM \n mm_tags 6:11 \n END \nEND\n
The option \u201cmm_tags off\u201d can be used to remove the \u201d ^ \u201d from the atoms, i.e.
NWPW \n QMMM \n mm_tags 6:11 off \n END \nEND \n
Next the pseudopotentials have be defined for the every type of MM atom contained in the geometry blocks. The following local pseudopotential suggested by Laio, VandeVondele and Rothlisberger can be automatically generated.
The following input To define this pseudopo the O^ MM atom using the following input
NWPW \n QMMM \n mm_psp O^ -0.8476 4 0.70 \n END \nEND\n
defines the local pseudopotential for the O^ MM atom , where , , and . The following input can be used to define the local pseudopotentials for all the MM atoms in the geometry block defined above
NWPW \n QMMM \n mm_psp O^ -0.8476 4 0.70 \n mm_psp H^ 0.4238 4 0.40 \n END \nEND\n
Next the Lenard-Jones potentials for the QM and MM atoms need to be defined. This is done as as follows
NWPW \n QMMM \n lj_ion_parameters C 3.41000000d0 0.10d0 \n lj_ion_parameters Cl 3.45000000d0 0.16d0 \n lj_ion_parameters O^ 3.16555789d0 0.15539425d0 \n END \nEND\n
Note that the Lenard-Jones potential is not defined for the MM H atoms in this example. The final step is to define the MM fragments in the simulation. MM fragments are a set of atoms in which bonds and angle harmonic potentials are defined, or alternatively shake constraints are defined. The following input defines the fragments for the two water molecules in the above geometry,
NWPW \n QMMM \n fragment spc \n size 3 #size of fragment \n index_start 6:9:3 #atom index list that defines the start of \n # the fragments (start:final:stride) \n bond_spring 1 2 0.467307856 1.889726878 #bond i j Kspring r0 \n bond_spring 1 3 0.467307856 1.889726878 #bond i j Kspring r0 \n angle_spring 2 1 3 0.07293966 1.910611932 #angle i j k Kspring theta0 \n end \n END \nEND\n
The fragments can be defined using shake constraints as
NWPW \n QMMM \n fragment spc \n size 3 #size of fragment \n index_start 6:9:3 #atom index list that defines the start of \n # the fragments (start:final:stride) \n shake units angstroms 1 2 3 cyclic 1.0 1.632993125 1.0 \n end \n END \nEND\n
Alternatively, each water could be defined independently as follows.
NWPW \n QMMM \n fragment spc1 \n size 3 #size of fragment \n index_start 6 #atom index list that defines the start of \n #the fragments \n bond_spring 1 2 0.467307856 1.889726878 #bond i j Kspring r0 \n bond_spring 1 3 0.467307856 1.889726878 #bond i j Kspring r0 \n angle_spring 2 1 3 0.07293966 1.910611932 #angle i j k Kspring theta0 \n end \n fragment spc2 \n size 3 #size of fragment \n index_start 9 #atom index list that defines the start of \n #the fragments \n shake units angstroms 1 2 3 cyclic 1.0 1.632993125 1.0 \n end \n END \nEND\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#psp_generator","title":"PSP_GENERATOR","text":"A one-dimensional pseudopotential code has been integrated into NWChem. This code allows the user to modify and develop pseudopotentials. Currently, only the Hamann and Troullier-Martins norm-conserving pseudopotentials can be generated. In future releases, the pseudopotential library (section Pseudopotential and PAW basis Libraries) will be more complete, so that the user will not have explicitly generate pseudopotentials using this module.
Input to the PSP_GENERATOR task is contained within the PSP_GENERATOR sub-block.
NWPW \n... \n PSP_GENERATOR \n ... \n END \n... \nEND\n
To run a PSP_GENERATOR calculation the following directive is used:
TASK PSPW PSP_GENERATOR
Listed below is the format of a PSP_GENERATOR sub-block.
NWPW \n... \n PSP_GENERATOR \n PSEUDOPOTENTIAL_FILENAME: <string psp_name> \n ELEMENT: <string element> \n CHARGE: <real charge> \n MASS_NUMBER: <real mass_number> \n ATOMIC_FILLING: <integer ncore nvalence> ( (1||2||...) (s||p||d||f||...) <real filling> ...)\n\n [CUTOFF: <integer lmax> ( (s||p||d||f||g) <real rcut> ...) ] \n\n PSEUDOPOTENTIAL_TYPE: (TROULLIER-MARTINS || HAMANN default HAMANN) \n SOLVER_TYPE: (PAULI || SCHRODINGER default PAULI) \n EXCHANGE_TYPE: (dirac || PBE96 default DIRAC) \n CORRELATION_TYPE: (VOSKO || PBE96 default VOSKO) \n [SEMICORE_RADIUS: <real rcore>]\n\n END \n... \nEND\n
The following list describes the input for the PSP_GENERATOR sub-block.
psp_name
- name that points to a.element
- Atomic symbol.charge
- charge of the atommass
- mass number for the atomncore
- number of core statesnvalence
- number of valence states.filling
- occupation of atomic statercore
- value for the semicore radius (see below)This required block is used to define the reference atom which is used to define the pseudopotential. After the ATOMIC_FILLING: line, the core states are listed (one per line), and then the valence states are listed (one per line). Each state contains two integer and a value. The first integer specifies the radial quantum number, , the second integer specifies the angular momentum quantum number, , and the third value specifies the occupation of the state.
For example to define a pseudopotential for the Neon atom in the state could have the block
ATOMIC_FILLING: 1 2 \n 1 s 2.0 #core state - 1s^2 \n 2 s 2.0 #valence state - 2s^2 \n 2 p 6.0 #valence state - 2p^6\n
for a pseudopotential with a and valence electrons or the block
ATOMIC_FILLING: 3 0 \n 1 s 2.0 #core state \n 2 s 2.0 #core state \n 2 p 6.0 #core state\n
could be used for a pseudopotential with no valence electrons.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#cutoff","title":"CUTOFF","text":"This optional block specifies the cutoff distances used to match the all-electron atom to the pseudopotential atom. For Hamann pseudopotentials defines the distance where the all-electron potential is matched to the pseudopotential, and for Troullier-Martins pseudopotentials defines the distance where the all-electron orbital is matched to the pseudowavefunctions. Thus the definition of the radii depends on the type of pseudopotential. The cutoff radii used in Hamann pseudopotentials will be smaller than the cutoff radii used in Troullier-Martins pseudopotentials.
For example to define a softened Hamann pseudopotential for Carbon would be
ATOMIC_FILLING: 1 2 \n 1 s 2.0 \n 2 s 2.0 \n 2 p 2.0 \nCUTOFF: 2 \n s 0.8 \n p 0.85 \n d 0.85\n
while a similarly softened Troullier-Marting pseudopotential for Carbon would be
ATOMIC_FILLING: 1 2 \n 1 s 2.0 \n 2 s 2.0 \n 2 p 2.0 \nCUTOFF: 2 \n s 1.200 \n p 1.275 \n d 1.275\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#semicore_radius","title":"SEMICORE_RADIUS","text":"Specifying the SEMICORE_RADIUS option turns on the semicore correction approximation proposed by Louie et al (S.G. Louie, S. Froyen, and M.L. Cohen, Phys. Rev. B, 26(, 1738, (1982)). This approximation is known to dramatically improve results for systems containing alkali and transition metal atoms.
The implementation in the PSPW module defines the semi-core density, , by using the sixth-order polynomial
This expansion was suggested by Fuchs and Scheffler (M. Fuchs, and M. Scheffler, Comp. Phys. Comm.,119,67 (1999)), and is better behaved for taking derivatives (i.e. calculating ionic forces) than the expansion suggested by Louie et al.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#paw-tasks-legacy-implementation","title":"PAW Tasks: Legacy Implementation","text":"(This capability is now available in PSPW. It is recommended that this module only be used for testing purposes. )
All input to the PAW Tasks is contained within the compound NWPW block,
NWPW \n ... \nEND\n
To perform an actual calculation a TASK PAW directive is used (Task).
TASK PAW
In addition to the directives listed in Task, i.e.
TASK paw energy \nTASK paw gradient \nTASK paw optimize \nTASK paw saddle \nTASK paw freqencies \nTASK paw vib\n
there are additional directives that are specific to the PSPW module, which are:
TASK PAW [Car-Parrinello || steepest_descent ]
Once a user has specified a geometry, the PAW module can be invoked with no input directives (defaults invoked throughout). There are sub-directives which allow for customized application; those currently provided as options for the PAW module are:
NWPW \n CELL_NAME <string cell_name default 'cell_default'> \n [GEOMETRY_OPTIMIZE] \n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default input_movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default input_movecs> \n FAKE_MASS <real fake_mass default 400000.0> \n TIME_STEP <real time_step default 5.8> \n LOOP <integer inner_iteration outer_iteration default 10 100> \n TOLERANCES <real tole tolc default 1.0e-7 1.0e-7> \n CUTOFF <real cutoff> \n ENERGY_CUTOFF <real ecut default (see input description)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n EWALD_NCUT <integer ncut default 1>] \n EWALD_RCUT <real rcut default (see input description)> \n XC (Vosko || PBE96 || revPBE default Vosko) \n DFT||ODFT||RESTRICTED||UNRESTRICTED \n MULT <integer mult default 1> \n INTEGRATE_MULT_L <integer imult default 1> \n SIMULATION_CELL \n ... (see input description) \n END \n CAR-PARRINELLO \n ... (see input description) \n END \n MAPPING <integer mapping default 1> \nEND \n
The following list describes these keywords.
cell_name
- name of the the simulation_cell named cell_name
. The current version of PAW only accepts periodic unit cells. See Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name of the file that will contain the one-electron orbitals at the end of the run.fake_mass
- value for the electronic fake mass . This parameter is not presently used in a conjugate gradient simulationtime_step
- value for the time step (). This parameter is not presently used in a conjugate gradient simulation.inner_iteration
- number of iterations between the printing out of energies and tolerancesouter_iteration
- number of outer iterationstole
- value for the energy tolerance.tolc
- value for the one-electron orbital tolerance.cutoff
- value for the cutoff energy used to define the wavefunction. In addition using the CUTOFF keyword automatically sets the cutoff energy for the density to be twice the wavefunction cutoff.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fix within the simulation_cell cell_name
.ncuth
- value for the number of unit cells to sum over (in each direction) for the real space part of the smooth compensation summation.rcut
- value for the cutoff radius used in the smooth compensation summation.Default set to be .
mapping
- for a value of 1 slab FFT is used, for a value of 2 a 2d-Hilbert FFT is used.A library of pseudopotentials used by PSPW and BAND is currently available in the directory $NWCHEM_TOP/src/nwpw/libraryp/pspw_default
The elements listed in the following table are present:
H He \n------- ------------------ \n Li Be B C N O F Ne \n------- ------------------- \n Na Mg Al Si P S Cl Ar \n------------------------------------------------------- \n K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr \n------------------------------------------------------- \n Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe \n------------------------------------------------------- \n Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn \n------------------------------------------------------- \n Fr Ra . \n----------------- \n ------------------------------------------ \n . . . . . . Gd . . . . . . . \n ------------------------------------------ \n . . U . Pu . . . . . . . . . \n ------------------------------------------\n
The pseudopotential libraries are continually being tested and added. Also, the PSPW program can read in pseudopotentials in CPI and TETER format generated with pseudopotential generation programs such as the OPIUM package of Rappe et al. The user can request additional pseudopotentials from Eric J. Bylaska at (Eric.Bylaska@pnl.gov).
Similarly, a library of PAW basis used by PAW is currently available in the directory $NWCHEM_TOP/src/nwpw/libraryp/paw_default
H He \n------- ----------------- \n Li Be B C N O F Ne \n------- ------------------ \n Na Mg Al Si P S Cl Ar \n------------------------------------------------------ \n K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr \n------------------------------------------------------ \n . . . . . . . . . . . . . . . . . . \n------------------------------------------------------ \n . . . . . . . . . . . . . . . . . . \n------------------------------------------------------ \n . . . \n----------------- \n ------------------------------------------ \n . . . . . . . . . . . . . . \n ------------------------------------------ \n . . . . . . . . . . . . . . \n ------------------------------------------\n
Currently there are not very many elements available for PAW. However, the user can request additional basis sets from Eric J. Bylaska at (Eric.Bylaska@pnl.gov).
A preliminary implementation of the HGH pseudopotentials (Hartwigsen, Goedecker, and Hutter) has been implemented into the PSPW module. To access the pseudopotentials the pseudopotentials input block is used. For example, to redirect the code to use HGH pseudopotentials for carbon and hydrogen, the following input would be used.
nwpw \n... \n pseudopotentials \n C library HGH_LDA \n H library HGH_LDA \n end \n... \nend\n
The implementation of HGH pseudopotentials is rather limited in this release. HGH pseudopotentials cannot be used to optimize unit cells, and they do not work with the MULLIKEN option. They also have not yet been implemented into the BAND structure code. To read in pseudopotentials in CPI format the following input would be used.
nwpw \n... \n pseudopotentials \n C CPI c.cpi \n H CPI h.cpi \n end \n... \nend\n
In order for the program to recognize the CPI format the CPI files, e.g. c.cpi have to be prepended with the \u201c\u201d keyword.
To read in pseudopotentials in TETER format the following input would be used.
nwpw \n... \n pseudopotentials \n C TETER c.teter \n H TETER h.teter \n end \n... \nend\n
In order for the program to recognize the TETER format the TETER files, e.g. c.teter have to be prepended with the \u201c\u201d keyword.
If you wish to redirect the code to a different directory other than the default one, you need to set the environmental variable NWCHEM_NWPW_LIBRARY to the new location of the libraryps directory.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-rtdb-entries-and-miscellaneous-datafiles","title":"NWPW RTDB Entries and Miscellaneous DataFiles","text":"Input to the PSPW and Band modules are contained in both the RTDB and datafiles. The RTDB is used to store input that the user will need to directly specify. Input of this kind includes ion positions, ion velocities, and simulation cell parameters. The datafiles are used to store input, such the one-electron orbitals, one-electron orbital velocities, formatted pseudopotentials, and one-dimensional pseudopotentials, that the user will in most cases run a program to generate.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ion-positions","title":"Ion Positions","text":"The positions of the ions are stored in the default geometry structure in the RTDB and must be specified using the GEOMETRY directive.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ion-velocities","title":"Ion Velocities","text":"The velocities of the ions are stored in the default geometry structure in the RTDB, and must be specified using the GEOMETRY directive.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#wavefunction-datafile","title":"Wavefunction Datafile","text":"The one-electron orbitals are stored in a wavefunction datafile. This is a binary file and cannot be directly edited. This datafile is used by steepest_descent and Car-Parrinello tasks and can be generated using the wavefunction_initializer or wavefunction_expander tasks.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#velocity-wavefunction-datafile","title":"Velocity Wavefunction Datafile","text":"The one-electron orbital velocities are stored in a velocity wavefunction datafile. This is a binary file and cannot be directly edited. This datafile is automatically generated the first time a Car-Parrinello task is run.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#formatted-pseudopotential-datafile","title":"Formatted Pseudopotential Datafile","text":"The pseudopotentials in Kleinman-Bylander form expanded on a simulation cell (3d grid) are stored in a formatted pseudopotential datafile (PSPW-\u201catomname.vpp\u201d, BAND-\u201catomname.cpp\u201d, PAW-\u201catomname.jpp\u201d). These are binary files and cannot be directly edited. These datafiles are automatically generated.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#one-dimensional-pseudopotential-datafile","title":"One-Dimensional Pseudopotential Datafile","text":"The one-dimensional pseudopotentials are stored in a one-dimensional pseudopotential file (\u201catomname.psp\u201d). This is an ASCII file and can be directly edited with a text editor or can be generated using the pspw_generator task. However, these datafiles are usually atomatically generated.
The data stored in the one-dimensional pseudopotential file is
character*2 element :: element name \ninteger charge :: valence charge of ion \nreal mass :: mass of ion \ninteger lmax :: maximum angular component \nreal rcut(lmax) :: cutoff radii used to define pseudopotentials \ninteger nr :: number of points in the radial grid \nreal dr :: linear spacing of the radial grid \nreal r(nr):: one-dimensional radial grid \nreal Vpsp(nr,lmax) :: one-dimensional pseudopotentials \nreal psi(nr,lmax) :: one-dimensional pseudowavefunctions \nreal r_semicore :: semicore radius \nreal rho_semicore(nr) :: semicore density \n
and the format of it is:
[line 1: ] element [line 2: ] charge mass lmax \n[line 3: ] (rcut(l), l=1,lmax) \n[line 4: ] nr dr \n[line 5: ] r(1) (Vpsp(1,l), l=1,lmax) \n[line 6: ] .... \n[line nr+4: ] r(nr) (Vpsp(nr,l), l=1,lmax) \n[line nr+5: ] r(1) (psi(1,l), l=1,lmax) [line nr+6: ] .... \n[line 2*nr+4:] r(nr) (psi(nr,l), l=1,lmax) \n[line 2*nr+5:] r_semicore \nif (r_semicore read) then \n [line 2*nr+6:] r(1) rho_semicore(1) \n [line 2*nr+7:] .... \n [line 3*nr+5:] r(nr) rho_semicore(nr) \nend if\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#car-parrinello-scheme-for-ab-initio-molecular-dynamics","title":"Car-Parrinello Scheme for Ab Initio Molecular Dynamics","text":"Car and Parrinello developed a unified scheme for doing ab initio molecular dynamics by combining the motion of the ion cores and a fictitious motion for the Kohn-Sham orbitals of density-functional theory (R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471, (1985) - simple introduction cpmd-lecture.pdf). At the heart of this method they introduced a fictitious kinetic energy functional for the Kohn-Sham orbitals.
Given this kinetic energy the constrained equations of motion are found by taking the first variation of the auxiliary Lagrangian.
Which generates a dynamics for the wavefunctions and atoms positions through the constrained equations of motion:
where is the fictitious mass for the electronic degrees of freedom and are the ionic masses. The adjustable parameter is used to describe the relative rate at which the wavefunctions change with time. are the Lagrangian multipliers for the orthonormalization of the single-particle orbitals . They are defined by the orthonormalization constraint conditions and can be rigorously found. However, the equations of motion for the Lagrange multipliers depend on the specific algorithm used to integrate the Eqns. above.
For this method to give ionic motions that are physically meaningful the kinetic energy of the Kohn-Sham orbitals must be relatively small when compared to the kinetic energy of the ions. There are two ways where this criterion can fail. First, the numerical integrations for the Car-Parrinello equations of motion can often lead to large relative values of the kinetic energy of the Kohn-Sham orbitals relative to the kinetic energy of the ions. This kind of failure is easily fixed by requiring a more accurate numerical integration, i.e. use a smaller time step for the numerical integration. Second, during the motion of the system a the ions can be in locations where there is an Kohn-Sham orbital level crossing, i.e. the density-functional energy can have two states that are nearly degenerate. This kind of failure often occurs in the study of chemical reactions. This kind of failure is not easily fixed and requires the use of a more sophisticated density-functional energy that accounts for low-lying excited electronic states.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#verlet-algorithm-for-integration","title":"Verlet Algorithm for Integration","text":"Integrating the Eqns. above using the Verlet algorithm results in
In this molecular dynamic procedure we have to know variational derivative
and the matrix . The variational derivative
can be analytically found and is
To find the matrix impose the orthonormality constraint on obtain a matrix Riccatti equation, and then Riccatti equation is solved by an iterative solution.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#constant-temperature-simulations-nose-hoover-thermostats","title":"Constant Temperature Simulations: Nose-Hoover Thermostats","text":"Nose-Hoover Thermostats for the electrons and ions can also be added to the Car-Parrinello simulation. In this type of simulation thermostats variables and are added to the simulation by adding the auxiliary energy functionals to the total energy.
In these equations, the average kinetic energy for the ions is
where is the number of atomic degrees of freedom, \u201d is Boltzmann\u2019s constant, and T is the desired t emperature. Defining the average fictitious kinetic energy of the electrons is not as straightforward. Bl\u00f6chl and Parrinello (P.E. Bl\u00f6chl and M. Parrinello, Phys. Rev. B, 45, 9413, (1992)) have suggested the following formula for determining the average fictitious kinetic energy
where is the fictitious electronic mass, is average mass of one atom, and is the kinetic energy of the electrons.
Bl\u00f6chl and Parrinello suggested that the choice of mass parameters, , and should be made such that the period of oscillating thermostats should be chosen larger than the typical time scale for the dynamical events of interest but shorter than the simulation time.
where and are the periods of oscillation for the ionic and fictitious electronic thermostats.
In simulated annealing simulations the electronic and ionic Temperatures are scaled according to an exponential cooling schedule,
where and are the initial temperatures, and and are the cooling rates in atomic units.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-1-s2-dimer-examples-with-pspw","title":"NWPW Tutorial 1: S2 dimer examples with PSPW","text":"A description of all the examples in NWPW Tutorial 1 can be found in the attached pdf nwpwexample1.pdf
"},{"location":"Plane-Wave-Density-Functional-Theory.html#total-energy-of-s2-dimer-with-lda-approximation","title":"Total energy of S2 dimer with LDA approximation","text":"(input:Media:s2-example1.nw, output:Media:s2-example1.nwout)
In this example, the total energy of the S2 dimer using LDA approximation for the exchange-correlation functional is calculated.
echo \n title \"total energy of s2-dimer LDA/30Ry with PSPW method\" \n scratch_dir ./scratch \n permanent_dir ./perm \n start s2-pspw-energy \n geometry \n S 0.0 0.0 0.0 \n S 0.0 0.0 1.88 \n end \n nwpw \n simulation_cell \n SC 20.0 \n end \n cutoff 15.0 \n mult 3 \n xc lda \n lmbfgs \n end \n task pspw energy\n
The energies from the simulation will be
... \n == Summary Of Results == \n\n number of electrons: spin up= 7.00000 down= 5.00000 (real space) \n\n total energy : -0.2041363137E+02 ( -0.10207E+02/ion) \n total orbital energy: -0.4944372503E+01 ( -0.41203E+00/electron) \n hartree energy : 0.1680529987E+02 ( 0.14004E+01/electron) \n exc-corr energy : -0.4320620600E+01 ( -0.36005E+00/electron) \n ion-ion energy : 0.8455644190E-02 ( 0.42278E-02/ion) \n\n kinetic (planewave) : 0.7529965882E+01 ( 0.62750E+00/electron) \n V_local (planewave) : -0.4506036741E+02 ( -0.37550E+01/electron) \n V_nl (planewave) : 0.4623635248E+01 ( 0.38530E+00/electron) \n V_Coul (planewave) : 0.3361059973E+02 ( 0.28009E+01/electron) \n V_xc. (planewave) : -0.5648205953E+01 ( -0.47068E+00/electron) \n Virial Coefficient : -0.1656626150E+01 \n\n orbital energies: \n -0.2001309E+00 ( -5.446eV) \n -0.2001309E+00 ( -5.446eV) \n -0.3294434E+00 ( -8.965eV) -0.2991148E+00 ( -8.139eV) \n -0.3294435E+00 ( -8.965eV) -0.2991151E+00 ( -8.139eV) \n -0.3582269E+00 ( -9.748eV) -0.3352434E+00 ( -9.123eV) \n -0.5632339E+00 ( -15.326eV) -0.5246249E+00 ( -14.276eV) \n -0.7642738E+00 ( -20.797eV) -0.7413909E+00 ( -20.174eV) \n\n Total PSPW energy : -0.2041363137E+02 \n ...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#structural-optimization-of-s2-dimer-with-lda-approximation","title":"Structural optimization of S2 dimer with LDA approximation","text":"(input:Media:s2-example2.nw, output:Media:s2-example2.nwout)
In this example, the structure of the S2 dimer using results generated from prior energy calculation is calculated. Since most of the parameters are already stored in the run-time database the input is very simple.
echo \n title \"optimization of s2-dimer LDA/30Ry with PSPW method\" \n scratch_dir ./scratch \n permanent_dir ./perm \n restart s2-pspw-energy \n driver \n maxiter 20 \n xyz s2 \n end \n task pspw optimize\n
As the optimization process consists of series of total energy evaluations the contents of the output file are very much similar to that in Example I. At each step the total energy and force information will be outputed as follows
Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n @ 1 -20.41364254 -7.1D-05 0.00004 0.00004 0.00605 0.01048 7.8\n
The best way to keep track of the optimization calculation is to run the following grep command on the output file.
grep @ outputfile \n\n @ Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n @ ---- ---------------- -------- -------- -------- -------- -------- -------- \n @ 0 -20.41357202 0.0D+00 0.00672 0.00672 0.00000 0.00000 1.5 \n @ 1 -20.41364254 -7.1D-05 0.00004 0.00004 0.00605 0.01048 7.8 \n @ 2 -20.41364256 -2.3D-08 0.00020 0.00020 0.00003 0.00005 9.7 \n @ 2 -20.41364256 -2.3D-08 0.00020 0.00020 0.00003 0.00005 9.7\n
The optimized energy and geometry will be
... \n ---------------------- \n Optimization converged \n ---------------------- \n\n\n Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n @ 2 -20.41364256 -2.3D-08 0.00020 0.00020 0.00003 0.00005 9.7 \n ok ok ok ok \n\n\n\n Z-matrix (autoz) \n -------- \n\n Units are Angstrom for bonds and degrees for angles \n\n Type Name I J K L M Value Gradient \n ----------- -------- ----- ----- ----- ----- ----- ---------- ---------- \n 1 Stretch 1 2 1.89115 0.00020 \n\n\n\n Geometry \"geometry\" -> \"geometry\" \n --------------------------------- \n\n Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.) \n\n No. Tag Charge X Y Z \n ---- ---------------- ---------- -------------- -------------- -------------- \n 1 S 16.0000 0.00000000 0.00000000 -0.94557591 \n 2 S 16.0000 0.00000000 0.00000000 0.94557591 \n\n ...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#frequency-calculation-of-s2-dimer-with-lda-approximation","title":"Frequency calculation of S2 dimer with LDA approximation","text":"(input:Media:s2-example3.nw, output:Media:s2-example3.nwout)
In this example, the vibrational frequency of the S2 dimer using results generated from prior geometry optimization is calculated. Since most of the parameters are already stored in the run-time database the input is very simple.
echo \n title \"frequency calculation of s2-dimer LDA/30Ry with PSPW method\" \n scratch_dir ./scratch \n permanent_dir ./perm \n restart s2-pspw-energy \n freq \n animate \n end \n task pspw freq\n
The frequency and thermodynamic analysis generated
... \n Temperature = 298.15K \n frequency scaling parameter = 1.0000 \n\n\n Linear Molecule \n\n Zero-Point correction to Energy = 1.034 kcal/mol ( 0.001647 au) \n Thermal correction to Energy = 2.579 kcal/mol ( 0.004110 au) \n Thermal correction to Enthalpy = 3.171 kcal/mol ( 0.005054 au) \n\n Total Entropy = 52.277 cal/mol-K \n - Translational = 38.368 cal/mol-K (mol. weight = 63.9441) \n - Rotational = 13.630 cal/mol-K (symmetry # = 2) \n - Vibrational = 0.279 cal/mol-K \n\n Cv (constant volume heat capacity) = 5.750 cal/mol-K \n - Translational = 2.979 cal/mol-K \n - Rotational = 1.986 cal/mol-K \n - Vibrational = 0.785 cal/mol-K \n ... \n ---------------------------------------------------------------------------- \n Normal Eigenvalue || Projected Infra Red Intensities \n Mode [cm**-1] || [atomic units] [(debye/angs)**2] [(KM/mol)] [arbitrary] \n ------ ---------- || -------------- ----------------- ---------- ----------- \n 1 0.000 || 0.000030 0.001 0.029 0.000 \n 2 0.000 || 2.466908 56.914 2404.864 15.000 \n 3 0.000 || 2.466908 56.914 2404.864 15.000 \n 4 0.000 || 2.466908 56.914 2404.864 15.000 \n 5 0.000 || 2.466908 56.914 2404.864 15.000 \n 6 723.419 || 0.000000 0.000 0.000 0.000 \n ---------------------------------------------------------------------------- \n ...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ab-initio-molecular-dynamics-simulation-car-parrinello-of-s2-dimer-using-the-lda-approximation","title":"Ab initio molecular dynamics simulation (Car-Parrinello) of S2 dimer using the LDA approximation","text":"(input:Media:s2-example4.nw, output:Media:s2-example4.nwout Media:s2-md.xyz Media:s2-md.emotion.dat )
In this example, a constant energy Car-Parrinello simulation of S2 dimer using LDA approximation is calculated. A brief introduction to the Car-Parrinello method can be found in cpmd-lecture.pdf
echo \n title \"AIMD simulation of s2-dimer\" \n scratch_dir ./scratch \n permanent_dir ./perm \n start s2-md \n geometry \n S 0.0 0.0 0.0 \n S 0.0 0.0 1.95 \n end \n nwpw \n simulation_cell \n SC 20.0 \n end \n cutoff 15.0 \n mult 3 \n xc lda \n lmbfgs \n car-parrinello \n time_step 5.0 \n fake_mass 600.0 \n loop 1 1000 \n xyz_filename s2-md.xyz \n end \n end \n task pspw energy \n task pspw car-parrinello\n
A plotting program (e.g. gnuplot, xmgrace) can be used to look at the total, potential, kinetic energies, contained in the s2-md.emotion file (see section EMOTION motion file for datafile format) i.e.,
seattle-1604% gnuplot \n\n G N U P L O T \n Version 4.0 patchlevel 0 \n last modified Thu Apr 15 14:44:22 CEST 2004 \n System: Linux 2.6.18-194.8.1.el5 \n\n Copyright (C) 1986 - 1993, 1998, 2004 \n Thomas Williams, Colin Kelley and many others \n\n This is gnuplot version 4.0. Please refer to the documentation \n for command syntax changes. The old syntax will be accepted \n throughout the 4.0 series, but all save files use the new syntax. \n\n Type help to access the on-line reference manual. \n The gnuplot FAQ is available from \n <http://www.gnuplot.info/faq/> \n\n Send comments and requests for help to \n <gnuplot-info@lists.sourceforge.net> \n Send bugs, suggestions and mods to \n <gnuplot-bugs@lists.sourceforge.net> \n\n\n Terminal type set to 'x11' \n gnuplot> plot \"s2-md.emotion\",\"s2-md.emotion\" using 1:3 \n gnuplot> \n
The following plot shows the Car-Parrinello S energy surface generated from the simulation.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ab-initio-molecular-dynamics-simulation-born-oppenheimer-of-ssub2-dimer-using-the-lda-approximation","title":"Ab initio molecular dynamics simulation (Born-Oppenheimer) of S<sub2 dimer using the LDA approximation","text":"
(input:Media:s2-example5.nw, output:Media:s2-example5.nwout Media:s2-bomd.xyz Media:s2-bomd.emotion.dat ) In this example, a constant energy Born-Oppenheimer simulation of S2 dimer using LDA approximation is calculated.
title \"AIMD simulation of s2-dimer\" \necho\n\nscratch_dir ./scratch\npermanent_dir ./perm\n\nstart s2-bomd \n\ngeometry\nS 0.0 0.0 0.0\nS 0.0 0.0 1.95\nend\n\nnwpw \n simulation_cell\n SC 20.0 \n end\n cutoff 15.0 \n mult 3 \n xc lda \n lmbfgs \nend\ntask pspw energy \n\nnwpw \n bo_steps 1 500 \n bo_time_step 10.0 \nend \ntask pspw born-oppenheimer\n
The following plot shows the energy surface generated from the simulation.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-2-using-pspw-car-parrinello-simulated-annealing-simulations-to-optimize-structures","title":"NWPW Tutorial 2: Using PSPW Car-Parrinello Simulated Annealing Simulations to Optimize Structures","text":"
In principle quantum mechanical calculations can be used to determine the structure of any chemical system. One chooses a structure, calculates the total energy of the system, and repeats the calculation for all possible geometries. Of course the major limitation of this approach is that the number of local minima structures increases dramatically with system size and the cost of quantum mechanical calculations also increases dramatically with system size. Not surprisingly most quantum mechanical calculations limit the number of structures to be calculated by using experimental results or chemical intuition. One could speed up the calculations by using simplified inter-atomic force fields instead of quantum mechanical calculations. However, inter-atomic forces fields have many simplifying assumptions that can severely limit their predictability. Another approach is to use ab initio molecular dynamics methods combined with simulated annealing. These methods are quite robust and allow strongly interacting many body systems to be studied by direct dynamics simulation without the introduction of empirical interactions. In these methods, the atomic forces are calculated from ab initio calculations that are performed \u201con-the-fly\u201d as the molecular dynamics trajectory is generated.
The following examples demonstrate how to use the ab initio molecular dynamics methods and simulated annealing strategies of NWChem to determine the lowest energy structures of the B12 cluster. This example is based on a study performed by Kiran Boggavarapu et al.. One might expect from chemical intuition that lowest energy structure of B12 will be an icosahedron, since B12 icosahedra are a common structural unit found in many boron rich materials. Despite this prevalence, ab initio calculations performed by several researchers have suggested that B12, as well as B12+ and B12-, will have a more open geometry.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#simulated-annealing-using-constant-energy-simulation","title":"Simulated Annealing Using Constant Energy Simulation","text":"
(input:Media:b12-example2a.nw, output:Media:b12-example2a.nwout Media:b12.00.xyz Media:b12.00.emotion.dat Media:b12.01.xyz Media:b12.01.emotion.dat)
This example uses a series of constant energy Car-Parrinello simulations with velocity scaling to do simulated annealing. The initial four Car-Parrinello simulations are used to heat up the system to several thousand Kelvin. Then the system is cooled down thru a series of constant energy simulations in which the electronic and ionic velocities are scaled by 0.99 at the start of each Car-Parrinello simulation. Energy minimization calculations are used periodically in this simulation to bring the system back down to Born-Oppenheimer surface. This is necessary because of electronic heating.
The Car-Parrinello keyword \u201cscaling\u201d scales the wavefunction and ionic velocities at the start of the simulation. The following input is used to increase the ionic velocities by a factor of two at the start of the Car-Parrinello simulation.
Key Input
...\nCar-Parrinello \nfake_mass 500.0\ntime_step 5.0 \nloop 10 100 \n** scaling 1.0 2.0** \nemotion_filename b12.00.emotion\nxyz_filename b12.00.xyz\nend \n...\n
Output
... \n wavefnc cutoff= 10.000 fft= 42x 42x 42( 6027 waves 1004 per task) \n\ntechnical parameters: \n translation contrained \n time step= 5.00 ficticious mass= 500.0 \n **cooling/heatting rates: 0.10000E+01 (psi)\n0.20000E+01\n(ion)** \n maximum iterations = 1000 ( 10 inner 100 outer ) \n initial kinetic energy: 0.99360E-05 (psi) 0.27956E-03 (ion) \n 0.20205E-28 (c.o.m.) \n **after scaling: 0.99360E-05 (psi) 0.11182E-02\n(ion)** \n **increased energy: 0.00000E+00 (psi)\n0.83868E-03 (ion)** \n\nConstant Energy Simulation \n...\n
The program checks to see if the initial input ionic velocities have a non-zero center of mass velocity. If there is a non-zero center of mass velocity in the system then by default the program removes it. To turn off this feature set the following
nwpw \n translation on \n end\n
or
set nwpw:com_shift .false.\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#simulated-annealing-using-constant-temperature-simulation","title":"Simulated Annealing Using Constant Temperature Simulation","text":"(input:Media:b12-example2b.nw, output:Media:b12-example2b.nwout Media:b12.10.xyz Media:b12.10.emotion.dat Media:b12.11.xyz.gz Media:b12.11.emotion.dat)
(mpeg movie of simulation: Media:boron.mpg)
The simulated annealing calculation in this example uses a constant temperature Car-Parrinello simulation with an exponential cooling schedule,
where T0 and \u03c4 are an initial temperature and a time scale of cooling, respectively. In the present calculations T0=3500K and \u03c4=4.134e+4 au (1.0 ps) were used and the thermostat masses were kept fixed to the initial values determined by T=Te=3500K and (2\u03c0/\u03c9)=250 a.u. (6 fs). Annealing proceeded for 50000 steps, until a temperature of 10K was reached. After which, the metastable structure is optimized using the driver optimizer. The keyword SA_decay is used to enter the decay rates, \u03c4electron and \u03c4ion, used in the simulated annealing algorithm in the constant temperature car-parrinello simulation. The decay rates are in units of au (conversion 1 au = 2.41889e-17 seconds).
Key Input
\u2026.\n Car-Parrinello \n SA_decay 4.134d4 4.134d4 #decay rate in units of au (1au=2.41889e-17seconds) \n \u2026.\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-3-using-isodesmic-reaction-energies-to-estimate-gas-phase-thermodynamics","title":"NWPW Tutorial 3: using isodesmic reaction energies to estimate gas-phase thermodynamics","text":"(isodesmic.pdf isodesmic.tgz)
The development of a computational scheme that can accurately predict reaction energies requires some care. As shown in Table 1 energy errors associated with ab initio calculations can be quite high. Even though ab initio electronic structure methods are constantly being developed and improved upon, these methods are rarely able to give heat of formations of a broad class of molecules with error limits of less than a few kcal/mol. Only when very large basis sets such as the correlation-consistent basis sets, high level treatments of correlation energy such as coupled cluster methods (CCSD(T)), and small correction factors such as core-valence correlation energies and relativistic effects, are included will the heat of formation from ab initio electronic structure methods be accurate to within one kcal/mol. Although one can now accurately calculate the heats of formation of molecules with up to 6 first row atoms, such high-level calculations are extremely demanding and scale computationally as for basis functions.
Examples of these types of large errors are shown in the following Table, where the enthalpies of formation of CClSH are calculated by using atomization energies from different levels of ab initio theory.
MP2/cc-pVDZ LDA/DZVP2 BP91/DZVP2 B3LYP/DZVP2 G2 Theory \u0394H +4.9 -80.0 -2.6 +26.5 -13.0Table 1: Standard enthalpy of formation (\u0394H(298K) for CClSH in kcal/mol from atomization energies with various electronic structure methods. Results taken from reference [2].
Differences of up to 106.5 kcal/mol are found between different levels of theory. This example demonstrates that care must be taken in choosing the appropriate method for calculating the heats of formation from total atomization energies.
The difficulties associated with calculating absolute heats of formation from atomization energies can be avoided by using a set of isodesmic reactions[1]. The defining property of an isodesmic reaction - that there are an equal number of like bonds on the left-hand and right-hand sides of the reaction - helps to minimize the error in the reaction energy. These reactions are designed to separate out the interactions between molecular subsistents and non-bonding electrons from the direct bonding interactions by having the direct bonding interactions largely canceling one another. This separation is quite attractive. Most ab initio methods give substantial errors when estimating direct bonding interactions due to the computational difficulties associated with electron pair correlation, whereas ab initio methods are expected to be more accurate for estimating neighboring interactions and long-range through-bond effects.
The following isodesmic reaction can be used determine the enthalpy of formation for CClSH that is significantly more accurate than the estimates based on atomization energies.
CClSH + CH CHSH + CClH, \u0394H(calc).
The first step is to calculate the reaction enthalpy of this reaction from electronic, thermal and vibrational energy differences at 298.15K at a consistent level of theory. The defining property of an isodesmic reaction that there are an equal number of like bonds on the left-hand and right-hand sides of the reaction helps to minimize the error in the calculation of the reaction energy. The enthalpy of formation of CClSH can then be calculated by using Hess\u2019s law with the calculated enthalpy change and the experimentally known heats of formation of the other 3 species (see Table 3).
\u0394H(CClSH) = \u0394H(CHSH)(exp) + \u0394H(CClH)(exp) - \u0394H(CH)(exp)- \u0394H(calc).
In this example, try to design and run NWPW simulations that can be used to estimate the enthalpy of formation for CClSH using its atomization energy and using the reaction enthalpy of the isodesmic reaction and compare your results to Table 2. Be careful to make sure that you use the same cutoff energy for all the simulations (.e.g. cutoff 35.0). You might also try to estimate enthalpies of formation for CHClSH and CHClSH. Also try designing simulations that use the SCF, DFT, MP2, and TCE modules.
CClSH + CH CHSH + CClH
Un-optimized geometries for CClSH, CHSH, CClH and CH which are needed to design your simulations are contained in the file Media:thermodynamics.xyz. You will also need to calculate the energies for the H, C, S, and Cl atoms to calculate the atomization energies. The multiplicities for these atoms are 2, 3, 3 and 2 respectively. You will also need to calculate the enthalpy of a molecule. The enthalpy of a molecule at 298.15K is sum of the total energy and a thermal correction to the enthalpy. A good estimate for the thermal correction to the enthalpy can be obtained from a frequency calculation, i.e.
H = E + H
Thermodynamic output from a frequency calculation:
Temperature = 298.15K \nfrequency scaling parameter = 1.0000 \n\nZero-Point correction to Energy = 27.528 kcal/mol ( 0.043869 au) \nThermal correction to Energy = 29.329 kcal/mol ( 0.046739 au)\n
The following line contains the value for H
Thermal correction to Enthalpy = 29.922 kcal/mol ( 0.047683 au)\n\nTotal Entropy = 44.401 cal/mol-K \n - Translational = 34.246 cal/mol-K (mol. weight = 16.0313) \n - Rotational = 10.060 cal/mol-K (symmetry # = 12) \n - Vibrational = 0.095 cal/mol-K \n\nCv (constant volume heat capacity) = 6.503 cal/mol-K \n - Translational = 2.979 cal/mol-K \n - Rotational = 2.979 cal/mol-K \n - Vibrational = 0.544 cal/mol-K\n
Compounds MP2/cc-pVDZ LDA/DZVP2 BP91/DZVP2 B3LYP/DZVP2 G2 Experiment (isodesmic) (isodesmic) (isodesmic) (isodesmic) (atomization) CCl$_3SH -13.40 -11.86 -8.68 -7.64 -12.95 CHClSH -11.48 -11.07 -8.66 -7.92 -11.52 CHClSH -7.01 -6.66 -5.44 -5.20 -6.98 CHSH -4.76 -5.34 Table 2: Gas-phase standard enthalpies of formation ( \u0394H(298K)) in kcal/mol from isodesmic reactions and G2 Theory calculations taken from [3].
Compounds \u0394H(298K) H 52.095 C 171.291 S 66.636 Cl 29.082 CCl -24.59 CClH -24.65 CClH -22.10 CClH -19.32 CH -17.88 CHSH -5.34Table 3: Miscellaneous experimental gas-phase enthalpies of formation (kcal/mol) taken from [3].
(input:Media:ccl4-64water.nw, output:Media:ccl4-64water.nwout)
In this section we show how use the PSPW module to perform a Car-Parrinello AIMD/MM simulation for a CCl molecule in a box of 64 HO. Before running a PSPW Car-Parrinello simulation the system should be on the Born-Oppenheimer surface, i.e. the one-electron orbitals should be minimized with respect to the total energy (i.e. task pspw energy). In this example, default pseudopotentials from the pseudopotential library are used for C, Cl, O^ and H^, exchange correlation functional is PBE96, The boundary condition is periodic, and with a side length of 23.577 Bohrs and has a cutoff energy is 50 Ry). The time step and fake mass for the Car-Parrinello run are specified to be 5.0 au and 600.0 au, respectively.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-5-optimizing-the-unit-cell-and-geometry-of-diamond","title":"NWPW Tutorial 5: Optimizing the Unit Cell and Geometry of Diamond","text":"The PSPW and BAND codes can be used to determine structures and energies for a wide range of crystalline systems. It can also be used to generate band structure and density of state plots.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#optimizing-the-unit-cell-and-geometry-for-an-8-atom-supercell-of-diamond-with-pspw","title":"Optimizing the Unit Cell and Geometry for an 8 Atom Supercell of Diamond with PSPW","text":"(input:Media:diamond-pspw.nw, output:Media:diamond-pspw.nwout, Media:diamond.opt.cif)
(input:Media:catom-pspw.nw, output:Media:catom-pspw.nwout)
The following example uses the PSPW module to optimize the unit cell and geometry for a diamond crystal. The fractional coordinates and the unit cell are defined in the geometry block. The simulation_cell block is not needed since NWPW automatically uses the unit cell defined in the geometry block.
title \"Diamond 8 atom cubic cell - geometry and unit cell optimization\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond \n\nmemory 950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 3.56d0 \n lat_b 3.56d0 \n lat_c 3.56d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \n end \n C -0.50000d0 -0.50000d0 -0.50000d0 \n C 0.00000d0 0.00000d0 -0.50000d0 \n C 0.00000d0 -0.50000d0 0.00000d0 \n C -0.50000d0 0.00000d0 0.00000d0 \n C -0.25000d0 -0.25000d0 -0.25000d0 \n C 0.25000d0 0.25000d0 -0.25000d0 \n C 0.25000d0 -0.25000d0 0.25000d0 \n C -0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased for small cells \n lmbfgs \n xc pbe96 \nend \n\ndriver \n clear \n maxiter 40 \nend \n\nset nwpw:cif_filename diamond.opt # create a CIF file containing optimization history \nset includestress .true. # this option tells driver to optimize the unit cell \ntask pspw optimize ignore\n
The optimized energy and geometry will be
... \n ---------------------- \n Optimization converged \n ---------------------- \n\n Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 6 -45.07688304 -1.1D-07 0.00037 0.00021 0.00002 0.00003 174.5 \n ok ok ok ok \n\n\n\n Geometry \"geometry\" -> \"geometry\" \n --------------------------------- \n\nOutput coordinates in angstroms (scale by 1.889725989 to convert to a.u.) \n\n No. Tag Charge X Y Z \n---- ---------------- ---------- -------------- -------------- -------------- \n 1 C 6.0000 1.82723789 1.82729813 1.82705440 \n 2 C 6.0000 0.00000857 -0.00006053 1.82730027 \n 3 C 6.0000 -0.00000584 1.82706061 0.00002852 \n 4 C 6.0000 1.82712018 0.00006354 -0.00002544 \n 5 C 6.0000 2.74074195 2.74072805 2.74088522 \n 6 C 6.0000 0.91366407 0.91370055 2.74064976 \n 7 C 6.0000 0.91351181 2.74080771 0.91352917 \n 8 C 6.0000 2.74078843 0.91348115 0.91365446 \n\n Lattice Parameters \n ------------------ \n\n lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.) \n\n a1=< 3.654 0.000 0.000 > \n a2=< 0.000 3.654 0.000 > \n a3=< 0.000 0.000 3.654 > \n a= 3.654 b= 3.654 c= 3.654 \n alpha= 90.000 beta= 90.000 gamma= 90.000 \n omega= 48.8 \n\n reciprocal lattice vectors in a.u. \n\n b1=< 0.910 0.000 0.000 > \n b2=< 0.000 0.910 0.000 > \n b3=< 0.000 0.000 0.910 > \n\n Atomic Mass \n ----------- \n\n C 12.000000 \n\n\n============================================================================== \n internuclear distances \n------------------------------------------------------------------------------ \n center one | center two | atomic units | angstroms \n------------------------------------------------------------------------------ \n 5 C | 1 C | 2.99027 | 1.58238 \n 6 C | 1 C | 2.99027 | 1.58238 \n 6 C | 2 C | 2.99027 | 1.58238 \n 7 C | 1 C | 2.99026 | 1.58238 \n 7 C | 3 C | 2.99027 | 1.58238 \n 8 C | 1 C | 2.99027 | 1.58238 \n 8 C | 4 C | 2.99027 | 1.58238 \n------------------------------------------------------------------------------ \n number of included internuclear distances: 7 \n============================================================================== \n\n============================================================================== \n internuclear angles \n------------------------------------------------------------------------------ \n center 1 | center 2 | center 3 | degrees \n------------------------------------------------------------------------------ \n 5 C | 1 C | 6 C | 109.46 \n 5 C | 1 C | 7 C | 109.48 \n 5 C | 1 C | 8 C | 109.48 \n 6 C | 1 C | 7 C | 109.47 \n 6 C | 1 C | 8 C | 109.46 \n 7 C | 1 C | 8 C | 109.48 \n 1 C | 6 C | 2 C | 109.48 \n 1 C | 7 C | 3 C | 109.47 \n 1 C | 8 C | 4 C | 109.47 \n------------------------------------------------------------------------------ \n number of included internuclear angles: 9 \n============================================================================== ...\n
The C-C bond distance after the geometry optimization is 1.58 Angs. and agrees very well with the experimental value of 1.54 Angs.. Another quantity that can be calculated from this simulation is the cohesive energy.The cohesive energy of a crystal is the energy needed to separate the atoms of the solid into isolated atoms, i.e.
where is the energy of the solid and are the energies of the isolated atoms. In order to calculate the cohesive energy the energy of an isolated carbon atom at the same level of theory and cutoff energy will need to be calculated. The following input can be used to the energy of an isolated carbon atom.
(input:file:catom-pspw.nw, output:file:catom-pspw.nwout)
title \"triplet carbon atom at pbe96 level using a large unit cell\" \nstart c1-pspw \nmemory 1400 mb \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\ngeometry \nC 0 0 0 \nend \n\nnwpw \n simulation_cell \n FCC 38.0 #large unit cell \n boundary_conditions periodic # periodic boundary conditions are used by default. \n #boundary_conditions aperiodic # free-space (or aperiodic) boundary conditions could also be used. \n end \n xc pbe96 \n mult 3 \n lmbfgs \nend \ntask pspw energy\n
The total energy from the simulation will be
Total PSPW energy : -0.5421213534E+01
Using this energy and energy of diamond the cohesive energy per atom is calculated to be
This value is substantially lower than the experimental value of ! It turns out this error is a result of the unit cell being too small for the diamond calculation (or too small of a Brillioun zone sampling). In the next section, we show how increasing the Brillouin zone sampling reduces the error in the calculated cohesive energy.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#optimizing-the-unit-cell-for-an-8-atom-supercell-of-diamond-with-band","title":"Optimizing the Unit Cell for an 8 Atom Supercell of Diamond with BAND","text":"(input:Media:diamond-band.nw, output:Media:diamond-band.nwout)
In this example the BAND module is used to optimize the unit cell and geometry for a diamond crystal at different Brillouin zone samplings.
title \"Diamond 8 atom cubic cell - geometry and unit cell optimization\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond-band \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 3.58d0 \n lat_b 3.58d0 \n lat_c 3.58d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \n end \n C -0.50000d0 -0.50000d0 -0.50000d0 \n C 0.00000d0 0.00000d0 -0.50000d0 \n C 0.00000d0 -0.50000d0 0.00000d0 \n C -0.50000d0 0.00000d0 0.00000d0 \n C -0.25000d0 -0.25000d0 -0.25000d0 \n C 0.25000d0 0.25000d0 -0.25000d0 \n C 0.25000d0 -0.25000d0 0.25000d0 \n C -0.25000d0 0.25000d0 0.25000d0 \nend \nset includestress .true. # option tells driver to optimize the unit cell \nset nwpw:zero_forces .true. # option zeros the forces on the atoms--> only lattice parameters optimized \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \nend \n\n#1x1x1 k-point mesh \nnwpw \n monkhorst-pack 1 1 1 \nend \nset nwpw:cif_filename diamond111.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#2x2x2 k-point mesh \nnwpw \n monkhorst-pack 2 2 2 \nend \nset nwpw:cif_filename diamond222.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#3x3x3 k-point mesh \nnwpw \n monkhorst-pack 3 3 3 \nend \nset nwpw:cif_filename diamond333.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#4x4x4 k-point mesh \nnwpw \n monkhorst-pack 4 4 4 \nend \nset nwpw:cif_filename diamond444.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#5x5x5 k-point mesh \nnwpw \n monkhorst-pack 5 5 5 \nend \nset nwpw:cif_filename diamond555.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n
The following figure shows a plot of the cohesive energy and C-C bond distance versus the Brillouin zone sampling. As can be seen in this figure the cohesive energy (w/o zero-point correction) and C-C bond distance agree very well with the experimental values of 7.37 eV (including zero-point correction) and 1.54 Angs.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#using-band-to-optimize-the-unit-cell-for-a-2-atom-primitive-cell-of-diamond","title":"Using BAND to Optimize the Unit Cell for a 2 Atom Primitive Cell of Diamond","text":"
(input:Media:diamond-fcc.nw, output:Media:diamond-fcc.nwout.gz)
In this example the BAND module is used to optimize a 2 atom unit cell for a diamond crystal at different Brillouin zone samplings. The optimized energy and geometry will be (Monkhorst-Pack sampling of 11x11x11)
---------------------- \n Optimization converged \n ---------------------- \n\n Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 1 -11.40586236 5.2D-07 0.00039 0.00018 0.00002 0.00003 662.0 \n ok ok ok ok \n\n\n\n Geometry \"geometry\" -> \"geometry\" \n --------------------------------- \n\n Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.) \n\n No. Tag Charge X Y Z \n ---- ---------------- ---------- -------------- -------------- -------------- \n 1 C 6.0000 0.00000000 0.00000000 0.00000000 \n 2 C 6.0000 0.72201500 1.25056532 0.51054180 \n\n Lattice Parameters \n ------------------ \n\n lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.) \n\n a1=< 2.165 1.251 0.001 > \n a2=< 0.001 2.500 0.001 > \n a3=< 0.722 1.251 2.041 > \n a= 2.500 b= 2.500 c= 2.500 \n alpha= 59.966 beta= 59.966 gamma= 59.966 \n omega= 11.0 \n\n reciprocal lattice vectors in a.u. \n\n b1=< 1.536 -0.768 0.000 > \n b2=< 0.000 1.330 0.000 > \n b3=< -0.543 -0.543 1.629 > \n\n Atomic Mass \n ----------- \n\n C 12.000000 \n\n\n ============================================================================== \n internuclear distances \n ------------------------------------------------------------------------------ \n center one | center two | atomic units | angstroms \n ------------------------------------------------------------------------------ \n 2 C | 1 C | 2.89435 | 1.53162 \n ------------------------------------------------------------------------------ \n number of included internuclear distances: 1 \n ==============================================================================\n
The following figure shows a plot of the cohesive energy and C-C bond distance versus the Brillouin zone sampling for the 8 atom SC unit cell and the 2 atom FCC unit cell.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#using-band-to-calculate-the-band-structures-of-diamond","title":"Using BAND to Calculate the Band Structures of Diamond","text":"
(input:Media:diamond-structure.nw, output:Media:diamond-structure.nwout, file:diamondfcc.restricted_band.dat)
The following example uses the BAND module to calculate the band structure for the FCC cell of the a diamond crystal. The fractional coordinates and the unit cell are defined in the geometry block. The simulation_cell block is not needed since NWPW automatically uses the unit cell defined in the geometry block.
title \"Diamond 2 atom fcc cell Brillouin sampling=9x9x9 M-P - Band structure plot\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamondfcc \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 2.500d0 \n lat_b 2.500d0 \n lat_c 2.500d0 \n alpha 60.0d0 \n beta 60.0d0 \n gamma 60.0d0 \n end \n C 0.00000d0 0.00000d0 0.00000d0 \n C 0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \n\n monkhorst-pack 9 9 9 \nend \n\n#need to run \"task band energy\" before \"task band structure\" can be run \ntask band energy \n\nnwpw \n virtual 16 \n brillouin_zone \n zone_name fccpath \n path fcc l gamma x w k gamma \n end \n zone_structure_name fccpath \nend \ntask band structure\n
This calculation outputs the file:diamondfcc.restricted_band.dat) data file in the permanent_directory. A plotting (e.g. gnuplot or xmgrace) can be used to display the band structure.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#using-band-to-calculate-the-density-of-states-of-diamond","title":"Using BAND to Calculate the Density of States of Diamond","text":"
(2 atom cell - input:diamond-dos.nw output:diamond-dos.nwout, diamond-dos.dos.dat (8 atom cell - input:diamond-dos8.nw output: diamond-dos8.nwout.gz, diamond-dos8.dos.dat
There are two possible ways to use the BAND module to calculate the density and projected density of states. The first approach just uses the eigenvalues generated from an energy calculation to generate a density of states. The following example uses this strategy to calculate the density of states and projected density of states of diamond.
title \"Diamond 2 atom fcc cell Brillouin sampling=9x9x9 M-P - density of states plot\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond-dos \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 2.500d0 \n lat_b 2.500d0 \n lat_c 2.500d0 \n alpha 60.0d0 \n beta 60.0d0 \n gamma 60.0d0 \n end \n C 0.00000d0 0.00000d0 0.00000d0 \n C 0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \n\n monkhorst-pack 9 9 9 \n dos # dos keyword tells the code to calculate dos at the end of an energy calculation\n mulliken # turn on projected density of states\n virtual 8 # include 8 virtual states\nend \n\ntask band energy \n
The other approach uses the band structure code to calculate the eigenvalues given a precomputed density. The approach is slower than the first approach, however, it can be used to substantially increase the number of k-points and virtual orbitals used to generate the density of states. The following example demonstrates this capability to calculate the density of states and projected density of states of the diamond crystal.
title \"Diamond 2 atom fcc cell Brillouin sampling=9x9x9 M-P - density of states plot\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond-dos \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 2.500d0 \n lat_b 2.500d0 \n lat_c 2.500d0 \n alpha 60.0d0 \n beta 60.0d0 \n gamma 60.0d0 \n end \n C 0.00000d0 0.00000d0 0.00000d0 \n C 0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \n\n monkhorst-pack 9 9 9 \nend \n\n#need to run \"task band energy\" before \"task band dos\" can be run \ntask band energy \n\nnwpw \n virtual 26 #26 virtual orbitals included in the DOS calculation \n dos 0.002 700 -1.00000 2.0000 #alpha npoints emin emax,....,change default energy range and gridding. note alpha not used in task band dos calculations\n dos-grid 11 11 11 \n mulliken # mulliken keyword used to turn on projected density of states\nend \ntask band dos\n
This calculation outputs the data file in the permanent_directory. A plotting (e.g. gnuplot or xmgrace) can be used to display the density of states.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#calculate-the-phonon-spectrum-of-diamond","title":"Calculate the Phonon Spectrum of Diamond","text":"
title \"Diamond 2 atom fcc cell Brillouin sampling=9x9x9 M-P - Phonon spectra\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond-dos \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 2.500d0 \n lat_b 2.500d0 \n lat_c 2.500d0 \n alpha 60.0d0 \n beta 60.0d0 \n gamma 60.0d0 \n end \n C 0.00000d0 0.00000d0 0.00000d0 \n C 0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \n\n monkhorst-pack 9 9 9 \nend \n\ntask band energy \ntask band freq\n\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-6-optimizing-the-unit-cell-of-nickel-with-fractional-occupation","title":"NWPW Tutorial 6: optimizing the unit cell of nickel with fractional occupation","text":"(input:Media:Ni-band.nw output:Media:Ni-band.nwout) The following example demonstrates how to uses the BAND module to optimize the unit cell and geometry for FCC cell of Nickel metal
title \"Ni FCC metal, monkhorst-pack=3x3x3, 5x5x5, and 7x7x7, fermi smearing, xc=pbe96\" \necho \n\nstart Ni-band \n\nmemory 1900 mb \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\ngeometry units angstroms center noautosym noautoz print \n system crystal \n lat_a 3.5451d0 \n lat_b 3.5451d0 \n lat_c 3.5454d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \n end \n\nNi 0.000000 0.000000 0.000000 \nNi 0.000000 0.500000 0.500000 \nNi 0.500000 0.000000 0.500000 \nNi 0.500000 0.500000 0.000000 \nend \nset nwpw:cif_filename Ni-band \nset nwpw:zero_forces .true. \nset includestress .true. \n\n#turn on pseudopotential filtering \nset nwpw:kbpp_ray .true. \nset nwpw:kbpp_filter .true. \n\nnwpw \n #fractional occupation \n smear fermi \n\n #scf option used with smear \n scf anderson outer_iterations 0 kerker 2.0 \n\n ewald_ncut 8 \n ewald_rcut 3.0 \n xc pbe96 \n monkhorst-pack 3 3 3 \n np_dimensions -1 -1 4 \nend \n\n#generate initial wavefunctions w/ low cutoff energy \nnwpw \n loop 10 10 \n cutoff 10.0 \nend \ntask band energy \n\n#increase cutoff energy and number of iterations \nnwpw \n cutoff 50.0 \n loop 10 100 \nend\n\n#3x3x3 k-point mesh \nnwpw \n monkhorst-pack 3 3 3 \nend \nset nwpw:cif_filename nickel333.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#5x5x5 k-point mesh \nnwpw \n monkhorst-pack 5 5 5 \nend \nset nwpw:cif_filename nickel555.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#7x7x7 k-point mesh \nnwpw \n monkhorst-pack 7 7 7 \nend \nset nwpw:cif_filename nickel777.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n
The following figure shows a plot of the cohesive energy and Ni-Ni bond distance versus the Brillouin zone sampling. As can be seen in this figure the cohesive energy (w/o zero-point correction) and Ni-Ni bond distance agree very well with the experimental values of 4.44 eV (including zero-point correction) and 2.49 Angs.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-7-optimizing-the-unit-cells-with-symmetry-diamond-with-fd-3m-symmetry-and-brucite-with-p-3m1-symmetry","title":"NWPW Tutorial 7: Optimizing the unit cells with symmetry: Diamond with Fd-3m symmetry and Brucite with P-3m1 symmetry","text":"
(Diamond example, input:Media:diamond-symmetry.nw, output:Media:diamond-symmetry.nwout)
(Brucite example, input:Media:brucite-symmetry.nw, output:Media:brucite-symmetry.nwout)
The following example uses the BAND module to optimize the unit cell and geometry for a Diamond crystal with Fd-3m symmetry. The fractional coordinates, unit cell, and symmetry are defined in the geometry block.
title \"Diamond 8 atom cubic cell generated using Fd-3m symmetry - geometry and unit cell optimization\" \necho \n\nmemory 1500 mb\n\npermanent_dir ./perm\nscratch_dir ./scratch\n\nstart diamond-symmetry \n\n\ngeometry nocenter noautosym noautoz print \n system crystal \n lat_a 3.58 \n lat_b 3.58 \n lat_c 3.58 \n alpha 90.0 \n beta 90.0 \n gamma 90.0 \n end\nsymmetry Fd-3m\nC 0.0 0.0 0.0\nend \nset nwpw:cif_filename diamond-symmetry\n\n#turn on pseudopotential filtering \nset nwpw:kbpp_ray .true.\nset nwpw:kbpp_filter .true.\n\n#***** setup the nwpw Band code - 3x3x3 k-point mesh **** \nnwpw\n ewald_rcut 3.0\n ewald_ncut 8\n xc pbe96 \n lmbfgs\n monkhorst-pack 3 3 3\n np_dimensions -1 -1 4\nend \n\nset includestress .true. # tell driver to optimize unit cell\nset includelattice .true. # tell driver to optimize with a,b,c,alpha,beta,gamma\ntask band optimize ignore\n
The optimized geometry will also contain the information about the symmetry being used
.... \n ---------------------- \n Optimization converged \n ---------------------- \n\n\n Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 7 -45.62102901 -4.1D-07 0.00010 0.00003 0.00019 0.00060 287.1 \n ok ok ok ok \n\n\n\n Geometry \"geometry\" -> \"geometry\" \n --------------------------------- \n\nOutput coordinates in angstroms (scale by 1.889725989 to convert to a.u.) \n\n No. Tag Charge X Y Z \n---- ---------------- ---------- -------------- -------------- -------------- \n 1 C 6.0000 0.00000000 0.00000000 0.00000000 \n 2 C 6.0000 0.00000000 1.76715074 1.76715074 \n 3 C 6.0000 1.76715074 1.76715074 0.00000000 \n 4 C 6.0000 1.76715074 0.00000000 1.76715074 \n 5 C 6.0000 2.65072611 0.88357537 2.65072611 \n 6 C 6.0000 0.88357537 0.88357537 0.88357537 \n 7 C 6.0000 0.88357537 2.65072611 2.65072611 \n 8 C 6.0000 2.65072611 2.65072611 0.88357537 \n\n Lattice Parameters \n ------------------ \n\n lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.) \n\n a1=< 3.534 0.000 0.000 > \n a2=< 0.000 3.534 0.000 > \n a3=< 0.000 0.000 3.534 > \n a= 3.534 b= 3.534 c= 3.534 \n alpha= 90.000 beta= 90.000 gamma= 90.000 \n omega= 44.1 \n\n reciprocal lattice vectors in a.u. \n\n b1=< 0.941 0.000 0.000 > \n b2=< 0.000 0.941 0.000 > \n b3=< 0.000 0.000 0.941 > \n\n Atomic Mass \n ----------- \n\n C 12.000000 \n\n\n Symmetry information \n -------------------- \n\nGroup name Fd-3m \nGroup number 227 \nGroup order 192 \nNo. of unique centers 1 \nSetting number 1 \n\n Symmetry unique atoms \n\n 1 \n\n============================================================================== \n internuclear distances \n------------------------------------------------------------------------------ \n center one | center two | atomic units | angstroms \n------------------------------------------------------------------------------ \n 5 C | 4 C | 2.89203 | 1.53040 \n 6 C | 1 C | 2.89203 | 1.53040 \n 6 C | 2 C | 2.89203 | 1.53040 \n 6 C | 3 C | 2.89203 | 1.53040 \n 6 C | 4 C | 2.89203 | 1.53040 \n 7 C | 2 C | 2.89203 | 1.53040 \n 8 C | 3 C | 2.89203 | 1.53040 \n------------------------------------------------------------------------------ \n number of included internuclear distances: 7 \n============================================================================== \n\n\n\n============================================================================== \n internuclear angles \n------------------------------------------------------------------------------ \n center 1 | center 2 | center 3 | degrees \n------------------------------------------------------------------------------ \n 6 C | 2 C | 7 C | 109.47 \n 6 C | 3 C | 8 C | 109.47 \n 5 C | 4 C | 6 C | 109.47 \n 1 C | 6 C | 2 C | 109.47 \n 1 C | 6 C | 3 C | 109.47 \n 1 C | 6 C | 4 C | 109.47 \n 2 C | 6 C | 3 C | 109.47 \n 2 C | 6 C | 4 C | 109.47 \n 3 C | 6 C | 4 C | 109.47 \n------------------------------------------------------------------------------ \n number of included internuclear angles: 9 \n==============================================================================\n
The following example uses the BAND module to optimize the unit cell and geometry for a Brucite crystal (Mg(OH)2 with P-3m1 symmetry.
title \"brucite testing - using P-3m1 symmetry\" \necho \n\nmemory 1500 mb \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\ngeometry nocenter noautosym noautoz print \n system crystal \n lat_a 3.14979 \n lat_b 3.14979 \n lat_c 4.7702 \n alpha 90.0 \n beta 90.0 \n gamma 120.0 \n end \nsymmetry P-3m1 \nMg 0.00000 0.00000 0.00000 \nO 0.33333 0.66667 0.22030 \nH 0.33333 0.66667 0.41300 \nend \nset nwpw:cif_filename brucite \n\n#turn on pseudopotential filtering \nset nwpw:kbpp_ray .true. \nset nwpw:kbpp_filter .true. \n\n#***** setup the nwpw gamma point code **** \nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 \n xc pbe96 \n lmbfgs \n monkhorst-pack 3 3 2 \n #np_dimensions -1 -1 4 \nend \n\ndriver \n clear \n maxiter 31 \nend \n\nset includestress .true. # tell driver to optimize unit cell \nset includelattice .true. \n\ntask band optimize ignore\n
Optimizing Brucite, which is a soft layered material (2.5-3 Mohs scale), is more difficult to optimize than a hard material such as Diamond. For these types of materials using symmetry can often result in a faster optimization. For example, with symmetry the optimization converges within 20 to 30 geometry optimization steps,
@ Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n@ ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 0 -34.39207476 0.0D+00 0.24673 0.10223 0.00000 0.00000 172.7 \n@ 1 -34.39340208 -1.3D-03 0.00872 0.00302 0.00198 0.00485 328.5 \n.... \n@ 20 -34.39042736 -1.2D-05 0.00195 0.00083 0.00440 0.01964 3019.2 \n@ 21 -34.39043463 -7.3D-06 0.00028 0.00011 0.00493 0.02042 3150.6 \n@ 22 -34.39043484 -2.1D-07 0.00043 0.00014 0.00002 0.00008 3278.5 \n@ 22 -34.39043484 -2.1D-07 0.00043 0.00014 0.00002 0.00008 3278.5\n
whereas, without symmetry the optimization may not be converged even at 100 geometry steps (input:Media:brucite-nosymmetry.nw, output:Media:brucite-nosymmetry.nwout).
@ Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n@ ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 0 -34.39207476 0.0D+00 0.24673 0.10250 0.00000 0.00000 18.4 \n@ 1 -34.39340765 -1.3D-03 0.02963 0.00715 0.00202 0.00500 30.7 \n... \n@ 49 -34.39027641 -2.1D-06 0.01870 0.00646 0.00074 0.00202 595.7 \n@ 50 -34.39027503 1.4D-06 0.01962 0.00669 0.00069 0.00197 608.4 \n... \n@ 100 -34.39034236 -3.8D-07 0.00380 0.00150 0.00036 0.00132 1155.3 \n@ 101 -34.39034431 -1.9D-06 0.00305 0.00118 0.00012 0.00045 1166.8 \n@ 102 -34.39034449 -1.8D-07 0.00370 0.00144 0.00006 0.00020 1177.9 \n...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-8-nvt-metropolis-monte-carlo-simulations","title":"NWPW Tutorial 8: NVT Metropolis Monte-Carlo Simulations","text":"In this example the PSPW module is used to run an NVT simulation for a diamond crystal using the a Metropolis Monte-Carlo algorithm.
title \"Metropolis NVT simulation of diamond - this input is used to put the system in equilibrium\" \necho \n\nstart diamond-nvt \n\n#permanent_dir ./perm \n#scratch_dir ./perm \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \nsystem crystal \n lat_a 3.56d0 \n lat_b 3.56d0 \n lat_c 3.56d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \nend \nC -0.50000d0 -0.50000d0 -0.50000d0 \nC 0.00000d0 0.00000d0 -0.50000d0 \nC 0.00000d0 -0.50000d0 0.00000d0 \nC -0.50000d0 0.00000d0 0.00000d0 \nC -0.25000d0 -0.25000d0 -0.25000d0 \nC 0.25000d0 0.25000d0 -0.25000d0 \nC 0.25000d0 -0.25000d0 0.25000d0 \nC -0.25000d0 0.25000d0 0.25000d0 \nend \nset nwpw:cif_filename diamond_nvt_234 \n\n###### setup the nwpw gamma point code ###### \nset nwpw:kbpp_ray .true. \nset nwpw:kbpp_filter .true. \nset nwpw:frozen_lattice:thresh 999.0 \nnwpw \n lmbfgs \n ewald_rcut 3.0 \n ewald_ncut 8 \n xc pbe \nend \ntask pspw energy \n\n##### optimize the unit cell ##### \nset includestress .true. #this option tells driver to optimize the unit cell \nset includelattice .true. #this option tells driver to optimize cell using a,b,c,alpha,beta,gamma \ndriver \n clear \n maxiter 51 \nend \ntask pspw optimize ignore \n\n#################################################################################### \n###### setup Metropolis NVT code - input will change in a forthcoming release ###### \n#################################################################################### \nset nwpw:mc_seed 234 # Seed for random number generator \nset nwpw:mc_algorithm 1 # 1-NVT; 2-NPT \nset nwpw:mc_aratio 0.234 # targeted acceptance ratio \nset nwpw:mc_ddx 0.1 # parameter used to adjust geometry dispacement to have sampling with targeted acceptance \nset nwpw:mc_temperature 300.0 # Temperature in K \nset nwpw:mc_step_size 0.250 # initial geometry displacement step size \n\nnwpw \n mc_steps 10 100 #total number of iterations = 10*100, number of iterations between step size adjustments = 10 \n cpmd_properties on \nend \ntask pspw Metropolis\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-9-npt-metropolis-monte-carlo-simulations","title":"NWPW Tutorial 9: NPT Metropolis Monte-Carlo Simulations","text":"In this example the PSPW module is used to run an NPT simulation for a diamond crystal using the a Metropolis Monte-Carlo algorithm.
(input:Media:diamond-metropolis.nw, output:Media:diamond-metropolis.nwout.gz, datafiles:Media:diamond-metropolis.emotion.gz, Media:diamond-metropolis.ion_motion.gz, Media:diamond-metropolis.xyz.gz, Media:diamond_metropolis_1234.cif.gz)
title \"Metropolis NPT simulation of diamond - this input is used to put the system in equilibrium\" \necho \n\nstart diamond-metropolis \n\n#permanent_dir ./perm \n#scratch_dir ./perm \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 3.56d0 \n lat_b 3.56d0 \n lat_c 3.56d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \n end \n C -0.50000d0 -0.50000d0 -0.50000d0 \n C 0.00000d0 0.00000d0 -0.50000d0 \n C 0.00000d0 -0.50000d0 0.00000d0 \n C -0.50000d0 0.00000d0 0.00000d0 \n C -0.25000d0 -0.25000d0 -0.25000d0 \n C 0.25000d0 0.25000d0 -0.25000d0 \n C 0.25000d0 -0.25000d0 0.25000d0 \n C -0.25000d0 0.25000d0 0.25000d0 \nend \nset nwpw:cif_filename pspw_metropolis \n\n###### setup the nwpw gamma point code ###### \nset nwpw:kbpp_ray .true. \nset nwpw:kbpp_filter .true. \nset nwpw:frozen_lattice:thresh 999.0 \nnwpw \n lmbfgs \n ewald_rcut 3.0 \n ewald_ncut 8 \n xc pbe \nend \ntask pspw energy \n\n\n#################################################################################### \n###### setup Metropolis NPT code - input will change in a forthcoming release ###### \n#################################################################################### \nset nwpw:mc_seed 1234 # Seed for random number generator \nset nwpw:mc_algorithm 2 # 1-NVT; 2-NPT \nset nwpw:mc_aratio 0.234 # targeted acceptance ratio \nset nwpw:mc_ddx 0.1 # parameter used to adjust geometry dispacement to have sampling with targeted acceptance \nset nwpw:mc_ddv 0.1 # parameter used to adjust volume change to have sampling with targeted acceptance \nset nwpw:mc_temperature 300.0 # Temperature in K \nset nwpw:mc_step_size 0.250 # geometry displacement step size \nset nwpw:mc_volume_step 0.130 # volume displacement step size \n\nnwpw \n bo_steps 10 100 #total number of iterations = 10*100, number of iterations between step size adjustments = 10 \nend \ntask pspw Metropolis\n
(inputs:Media:diamond-metropolis-sampling.nw.tgz)
(python analysis program:Media:makehistogram.gz)
[WE27972:~/Projects/NWChem/Metropolis] bylaska% makehistogram -t 300 -c 2 1235/diamond-metropolis-1235.emotion 1236/diamond-metropolis-1236.emotion \n1237/diamond-metropolis-1237.emotion 1238/diamond-metropolis-1238.emotion 1239/diamond-metropolis-1239.emotion 1240/diamond-metropolis-1240.emotion \n1241/diamond-metropolis-1241.emotion 1242/diamond-metropolis-1242.emotion 1243/diamond-metropolis-1243.emotion 1244/diamond-metropolis-1244.emotion \n1245/diamond-metropolis-1245.emotion 1246/diamond-metropolis-1246.emotion 1248/diamond-metropolis-1248.emotion 1249/diamond-metropolis-1249.emotion \nmakehistogram Program \nlen(args)= 14 \n\nunitconversion = 1.0 \ntemperature (K) = 300 \nRT (au) = 0.000949482834326 ( 0.5958 kcal/mol) \n\ndata columns -1 = [1] \ndata rows (n) = 52000 \n\ndelta (au) = 0.01 \nxmin-delta (au) = -45.08080365 \nxmax+delta (au) = -45.05079515 \n\ndata averaging: \n- xbar (au) = -45.0668093497 \n- S2_{n-1} (au) = 1.08378343101e-05 \n- <exp((x-xmin)/RT)> (au) = 5293374903.39 \n- <exp((x-xbar)/RT)> (au) = 2102.44405413 \n- Free energy = -45.0595449934 \n- Free energy1 = -45.0595449934 \n\nhistogram distribution parameters: \n- number of bins (Rice k) = 75 \n- bin width = 0.00040552027027 \n- norm = 1.0 \n- xbar (au) = -45.0668107987 (error= -1.44908364064e-06 ) \n- S2_{n-1} (au) = 1.0858459744e-05 (error= 2.06254339582e-08 ) \n- <exp((x-xmin)/RT)> (au) = 5184600342.01 (error= -108774561.378 ) \n- <exp((x-xbar)/RT)> (au) = 2062.38570923 (error= -40.0583449011 ) \n- Free energy = -45.0595647078 (error= -1.9714360235e-05 ) \n- Free energy1 = -45.0595647078 (error= -1.9714360235e-05 ) \n- histogram plot file = histogram.dat \n\nnormal distribution parameters: \n- average x (input xbar) = -45.0668093497 \n- unbiased sample variance (input S2_(n-1))= 1.08378343101e-05 \n- xbar-xmin = 0.0139943003357 \n- norm = 0.99998877936 \n- xbar (au) = -45.0663035243 (error= 0.000505825397738 ) \n- S2_{n-1} (au) = 1.1091077321e-05 (error= 2.53243010936e-07 ) \n- <exp((x-xmin)/RT)> (au) = 943482808.939 (error= -4349892094.45 ) \n- <exp((x-xbar)/RT)> (au) = 219.968603653 (error= -1882.47545048 ) \n- Free energy = -45.061182503 (error= -0.00163750957643 ) \n- Free energy1 = -45.061182503 (error= -0.00163750957643 ) \n- normal distribution plot file = normdist.dat \n- number data points = 1500 \n\ngamma distribution parameters: \n- alpha0= 18.0700715921 \n- beta0 = 1291.24508969 \n- xmin + alpha0/beta0 = -45.0668093497 \n- alpha = 18.5003178357 \n- beta = 1321.98948086 \n- xmin + alpha/beta = -45.0668093497 \n- norm = 0.999923464137 0.99993569948 \n- xbar (au) = -45.0633614482 -45.0639126423 (error= 0.00344790150088 0.00289670733491 ) \n- S2_{n-1} (au) = 2.27110055327e-05 1.89632753897e-05 (error= 1.18731712226e-05 8.12544107961e-06 ) \n- <exp((x-xmin)/RT)> (au) = 7932775654.26 7060892836.07 (error= 2639400750.87 1767517932.68 ) \n- <exp((x-xbar)/RT)> (au) = 83.43400035 132.707151194 (error= -2019.01005378 -1969.73690294 ) \n- Free energy = -45.059160883 -45.0592714327 (error= 0.000384110406969 0.000273560709338 ) \n- Free energy1 = -45.059160883 -45.0592714327 (error= 0.000384110406969 0.000273560709338 ) \n- gamma distribution plot file = gammadist.dat \n- number data points = 1500 \n\nHausdorff distribution parameters: \n- xmin = -45.08080365 \n- xmax = -45.05079515 \n- number moments = 15 \n -- < x^0 > = 1.000000000000000 \n -- < x^1 > = 0.466344546904007 \n -- < x^2 > = 0.229512222180349 \n -- < x^3 > = 0.119040323347820 \n -- < x^4 > = 0.064946164109284 \n -- < x^5 > = 0.037186896798964 \n -- < x^6 > = 0.022287980659815 \n -- < x^7 > = 0.013942929105868 \n -- < x^8 > = 0.009076370636747 \n -- < x^9 > = 0.006128509645342 \n -- < x^10 > = 0.004278147917961 \n -- < x^11 > = 0.003077410986590 \n -- < x^12 > = 0.002273768533280 \n -- < x^13 > = 0.001720304299285 \n -- < x^14 > = 0.001328990330385 \n- norm = 1.0000000003 \n- xbar (au) = -45.066809363 (error= -1.33426993898e-08 ) \n- S2_{n-1} (au) = 1.08376258908e-05 (error= -2.08419282206e-10 ) \n- <exp((x-xmin)/RT)> (au) = 5423305875.35 (error= 129930971.958 ) \n- <exp((x-xbar)/RT)> (au) = 2154.08083332 (error= 51.6367791881 ) \n- Free energy = -45.0595219689 (error= 2.30245307122e-05 ) \n- Free energy1 = -45.0595219689 (error= 2.30245307122e-05 ) \n- Hausdorff moment history file = moment_hist.dat \n- Hausdorff distribution plot file = hausdorff.dat \n- number data points = 1500\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-9-free-energy-simulations","title":"NWPW Tutorial 9: Free Energy Simulations","text":"
A description of using the WHAM method for generating free energy of the gas-phase dissociation reaction CHCl CH+Cl can be found in the attached pdf (nwchem-new-pmf.pdf)
"},{"location":"Plane-Wave-Density-Functional-Theory.html#paw-tutorial","title":"PAW Tutorial","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#optimizing-a-water-molecule","title":"Optimizing a water molecule","text":"The following input deck performs for a water molecule a PSPW energy calculation followed by a PAW energy calculation and a PAW geometry optimization calculation. The default unit cell parameters are used (SC=20.0, ngrid 32 32 32). In this simulation, the first PAW run optimizes the wavefunction and the second PAW run optimizes the wavefunction and geometry in tandem.
title \"paw steepest descent test\" \nstart paw_test \ncharge 0 \ngeometry units au nocenter noautoz noautosym \nO 0.00000 0.00000 0.01390 \nH -1.49490 0.00000 -1.18710 \nH 1.49490 0.00000 -1.18710 \nend \nnwpw \n time_step 15.8 \n ewald_rcut 1.50 \n tolerances 1.0d-8 1.0d-8 \nend \nset nwpw:lcao_iterations 1 \nset nwpw:minimizer 2 \ntask pspw energy \ntask paw energy \nnwpw \n time_step 5.8 \n geometry_optimize \n ewald_rcut 1.50 \n tolerances 1.0d-7 1.0d-7 1.0d-4 \nend\ntask paw steepest_descent \ntask paw optimize\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#optimizing-a-unit-cell-and-geometry-for-silicon-carbide","title":"Optimizing a unit cell and geometry for Silicon-Carbide","text":"The following example demonstrates how to uses the PAW module to optimize the unit cell and geometry for a silicon-carbide crystal.
title \"SiC 8 atom cubic cell - geometry and unit cell optimization\" \nstart SiC\n#**** Enter the geometry using fractional coordinates **** \ngeometry units au center noautosym noautoz print\n system crystal\n lat_a 8.277d0\n lat_b 8.277d0 \n lat_c 8.277d0 \n alpha 90.0d0 \n beta 90.0d0\n gamma 90.0d0\n end \nSi -0.50000d0 -0.50000d0 -0.50000d0\nSi 0.00000d0 0.00000d0 -0.50000d0 \nSi 0.00000d0 -0.50000d0 0.00000d0 \nSi -0.50000d0 0.00000d0 0.00000d0\nC -0.25000d0 -0.25000d0 -0.25000d0\nC 0.25000d0 0.25000d0 -0.25000d0 \nC 0.25000d0 -0.25000d0 0.25000d0\nC -0.25000d0 0.25000d0 0.25000d0 \nend \n#***** setup the nwpw gamma point code **** \nnwpw\n simulation_cell \n ngrid 16 16 16\n end\n ewald_ncut 8 \nend \nset nwpw:minimizer 2\nset nwpw:psi_nolattice .true. # turns of unit cell checking for wavefunctions \ndriver\n clear \n maxiter 40 \nend\nset includestress .true. # this option tells driver to optimize the unit cell\nset nwpw:stress_numerical .true. #currently only numerical stresses implemented in paw\ntask paw optimize\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#running-a-car-parrinello-simulation","title":"Running a Car-Parrinello Simulation","text":"In this section we show how use the PAW module to perform a Car-Parrinello molecular dynamic simulation for a C2 molecule at the LDA level. Before running a PAW Car-Parrinello simulation the system should be on the Born-Oppenheimer surface, i.e. the one-electron orbitals should be minimized with respect to the total energy (i.e. task pspw energy). The input needed is basically the same as for optimizing the geometry of a C2 molecule at the LDA level,except that and additional Car-Parrinello sub-block is added.
In the following example we show the input needed to run a Car-Parrinello simulation for a C2 molecule at the LDA level. In this example, default pseudopotentials from the pseudopotential library are used for C, the boundary condition is free-space, the exchange correlation functional is LDA, The boundary condition is free-space, and the simulation cell cell is aperiodic and cubic with a side length of 10.0 Angstroms and has 40 grid points in each direction (cutoff energy is 44 Ry). The time step and fake mass for the Car-Parrinello run are specified to be 5.0 au and 600.0 au, respectively.
start c2_paw_lda_md \ntitle \"C2 restricted singlet dimer, LDA/44Ry - constant energy Car-Parrinello simulation\"\ngeometry \n C -0.62 0.0 0.0 \n C 0.62 0.0 0.0 \nend\npspw \n simulation_cell units angstroms \n boundary_conditions aperiodic \n lattice \n lat_a 10.00d0 \n lat_b 10.00d0\n lat_c 10.00d0\n end \n ngrid 40 40 40\n end \n Car-Parrinello \n fake_mass 600.0\n time_step 5.0 \n loop 10 10 \n end \nend \nset nwpw:minimizer 2\ntask paw energy\ntask paw Car-Parrinello\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-capabilities-and-limitations","title":"NWPW Capabilities and Limitations","text":"Questions and encountered problems should be reported to the NWChem Community Forum or to Eric J. Bylaska, Eric.Bylaska@pnl.gov
"},{"location":"Pm-3.html","title":"Pm 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0200\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Pm-3m.html","title":"Pm 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0221\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Pm-3n.html","title":"Pm 3n","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0223\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm-3n\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Pm.html","title":"Pm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a06\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n+x,-y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a06\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n+x,+y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"Pma2.html","title":"Pma2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a028\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pma2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y,+z\n-x+1/2,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmc2_1.html","title":"Pmc2 1","text":"group number = 26\n\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Pmc2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmm2.html","title":"Pmm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a025\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmma.html","title":"Pmma","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a051\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmma\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmmm.html","title":"Pmmm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a047\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmmm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmmn.html","title":"Pmmn","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a059\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmmn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x,-y,+z\n-x,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a059\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmmn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x,+y+1/2,-z\n+x+1/2,-y,-z\n-x,-y,-z\n+x+1/2,+y+1/2,-z\n+x,-y+1/2,+z\n-x+1/2,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmn2_1.html","title":"Pmn2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a031\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Pmn2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmna.html","title":"Pmna","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a053\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmna\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x+1/2,+y,-z+1/2\n+x,-y,-z\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x+1/2,-y,+z+1/2\n-x,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pn-3.html","title":"Pn 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0201\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pn-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Pn-3m.html","title":"Pn 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0224\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pn-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Pn-3n.html","title":"Pn 3n","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0222\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pn-3n\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Pna2_1.html","title":"Pna2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a033\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Pna2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnc2.html","title":"Pnc2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a030\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnc2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnma.html","title":"Pnma","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a062\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnma\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x,+y+1/2,-z\n+x+1/2,-y+1/2,-z+1/2\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnn2.html","title":"Pnn2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a034\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnn2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnna.html","title":"Pnna","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a052\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnna\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z\n-x+1/2,+y+1/2,-z+1/2\n+x,-y+1/2,-z+1/2\n-x,-y,-z\n+x+1/2,+y,-z\n+x+1/2,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnnm.html","title":"Pnnm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a058\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnnm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-x,-y,-z\n+x,+y,-z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnnn.html","title":"Pnnn","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a048\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnnn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a048\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnnn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y,-z+1/2\n+x,-y+1/2,-z+1/2\n-x,-y,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y,+z+1/2\n-x,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Potential-Energy-Surface-Analysis.html","title":"Potential Energy Surface Analysis","text":""},{"location":"Potential-Energy-Surface-Analysis.html#constraints-for-optimization","title":"Constraints for Optimization","text":""},{"location":"Potential-Energy-Surface-Analysis.html#geometry-optimization-minimization-transition-state-search","title":"Geometry Optimization (Minimization & Transition State Search)","text":""},{"location":"Potential-Energy-Surface-Analysis.html#hessians-vibrational-frequencies","title":"Hessians & Vibrational Frequencies","text":""},{"location":"Potential-Energy-Surface-Analysis.html#nudged-elastic-band-neb-and-zero-temperature-string-methods","title":"Nudged Elastic Band (NEB) and Zero Temperature String Methods","text":""},{"location":"Prepare.html","title":"Prepare","text":"The prepare module is used to set up the necessary files for a molecular dynamics simulation with NWChem. User supplied coordinates can be used to generate topology and restart files. The topology file contains all static information about a molecular system, such as lists of atoms, bonded interactions and force field parameters. The restart file contains all dynamic information about a molecular system, such as coordinates, velocities and properties.
Without any input, the prepare module checks the existence of a topology and restart file for the molecular systems. If these files exist, the module returns to the main task level without action. The module will generate these files when they do not exist. Without any input to the module, the generated system will be for a non-solvated isolated solute system.
To update existing files, including solvation, the module requires input directives read from an input deck,
prepare\n ...\nend\n
The prepare module performs three sub-tasks:
Files involved in the preparation phase exist in the following hierarchy:
Data is taken from the database files searched in the above order. If data is specified more than once, the last found values are used. For example, if some standard segment is redefined in a temporary file, the latter one will be used. This allows the user to redefine standards or extensions without having to modify those database files, which may reside in a generally available, non-modifyable directory. If a filename is specified rather than a directory, the filename indicates the parameter file definition. All other files (frg and sgm files) will be take from the specified directory.
The most common problems with the prepare module are
The file $HOME/.nwchemrc may contain the following entries that determine which files are used by the prepare module.
ffield <string ffname>\n
This entry specifies the default force field. Database files supplied with NWChem currently support values for ffname of amber, referring to AMBER95, and charmm, referring to the academic CHARMM22 force field.
<string ffname>_(1-9) <string ffdir>[{<string parfile>}]\n
Entries of this type specify the directory ffdir in which force field database files can be found. Optionally the parameterfile in this directory may be specified as parfile. The prepare module will only use files in directories specified here. One exception is that files in the current work directory will be used if no directory with current files is specified. The directories are read in the order 1-9 with duplicate parameters taken from the last occurrence found. Note that multiple parameter files may be specified that will be read in the order in which they are specified.
<string solvnam> <string solvfil>\n
This entry may be used to identify a pure solvent restart file solvfil by a name solvnam
An example file $HOME/.nwchemrc is:
ffield amber\n\namber_1 /soft/nwchem/share/amber/amber_s/amber99.par,spce.par\n\namber_2 /soft/nwchem/share/amber/amber_x/\n\namber_3 /usr/people/username/data/amber/amber_u/\n\nspce /soft/nwchem/share/solvents/spce.rst\n\ncharmm_1 /soft/nwchem/share/charmm/charmm_s/\n\ncharmm_2 /soft/nwchem/share/charmm/charmm_x/\n
"},{"location":"Prepare.html#system-name-and-coordinate-source","title":"System name and coordinate source","text":"system <string sys_calc>\n
The system name can be explicitly specified for the prepare module. If not specified, the system name will be taken from a specification in a previous md input block, or derived from the run time database name.
source ( pdb | rtdb )\n
The source of the coordinates can be explicitly specified to be from a PDB formatted file sys.pdb, or from a geometry object in the run time database. If not specified, a pdb file will be used when it exists in the current directory or the rtdb geometry otherwise.
model <integer modpdb default 0>\n
If a PDB formatted source file contains different MODELs, the model keyword can be used to specify which MODEL will be used to generate the topology and restart file. If not specified, the first MODEL found on the PDB file will be read.
altloc <character locpdb default ' '>\n
The altloc keyword may be used to specify the use of alternate location coordinates on a PDB file.
chain <character chnpdb default ' '>\n
The chain keyword may be used to specify the chain identifier for coordinates on a PDB file.
histidine ( hid | hie | hip )\n
specifies the default protonation state of histidine.
sscyx\n
Keyword sscyx may be used to rename cysteine residues that form sulphur bridges to CYX.
hbuild\n
Keyword hbuild may be used to add hydrogen atoms to the unknown segments of the structure found on the pdb file. Placement of hydrogen atoms is based on geometric criteria, and the resulting fragment and segment files should be carefully examined for correctness.
The database directories are used as specified in the file .nwchemrc. Specific definitions for the force field used may be changed in the input file using
directory_(1-9) <string ffdir> [<string parfile>]\n
"},{"location":"Prepare.html#sequence-file-generation","title":"Sequence file generation","text":"If no existing sequence file is present in the current directory, or if the new_seq keyword was specified in the prepare input deck, a new sequence file is generated from information from the pdb file, and the following input directives.
maxscf <integer maxscf default 20>\n
Variable maxscf specifies the maximum number of atoms in a segment for which partial atomic charges will be determined from an SCF calculation followed by RESP charge fitting. For larger segments a crude partial charge guestimation will be done.
qscale <real qscale default 1.0>\n
Variable qscale specifies the factor with which SCF/RESP determined charges will be multiplied.
modify sequence { <integer sgmnum>:<string sgmnam> }\n
This command specifies that segment sgmnam should be used for segment with number sgmnum. This command can be used to specify a particular protonation state. For example, the following command specifies that residue 114 is a hystidine protonated at the N\u03b5 site and residue 202 is a hystidine protonated at the N\u03b4 site:
modify sequence 114:HIE 202:HID\n
Links between atoms can be enforced with
link <string atomname> <string atomname>\n
For example, to link atom SG in segment 20 with atom FE in segment 55, use:
link 20:_SG 55:FE\n
The format of the sequence file is given in this table. In addition to the list of segments this file also includes links between non-standard segments or other non-standard links. These links are generated based on distances found between atoms on the pdb file. When atoms are involved in such non-standard links that have not been identified in the fragment of segment files as a non-chain link atom, the prepare module will ignore these links and report them as skipped. If one or more of these links are required, the user has to include them with explicit link directives in the sequence file, making them forced links. Alternatively, these links can be made forced-links by changing link into LINK in the sequence file.
fraction { <integer imol> }\n
Directive fraction can be used to separate solute molecules into fractions for which energies will be separately reported during molecular dynamics simulations. The listed molecules will be the last molecule in a fraction. Up to 10 molecules may be specified in this directive.
counter <integer num> <string ion>\n
Directive counter adds num counter ions of type ion to the sequence file. Up to 10 counter directives may appear in the input block.
counter <real factor>\n
This directive scales the counter ion charge by the specified factor in the determination of counter ions positions.
"},{"location":"Prepare.html#topology-file-generation","title":"Topology file generation","text":"new_top [ new_seq ]\n
Keyword new_top is used to force the generation of a new topology file. An existing topology file for the system in the current directory will be overwritten. If keyword new_seq is also specified, an existing sequence file will also be overwritten with a newly generated file.
amber | charmm\n
The prepare module generates force field specific fragment, segment and topology files. The force field may be explicitly specified in the prepare input block by specifying its name. Currently AMBER and CHARMM are the supported force fields. A default force field may be specified in the file $HOME/.nwchemrc.
standard <string dir_s>[<string par_s>]\nextensions <string dir_x>[<string par_x>]\ncontributed <string dir_q>[<string par_q>]\nuser <string dir_u>[<string par_u>]\ntemporary <string dir_t>[<string par_t>]\ncurrent <string dir_c>[<string par_c>]\n
The user can explicitly specify the directories where force field specific databases can be found. These include force field standards, extensions, quality assurance tests, user preferences, temporary , and current database files. Defaults for the directories where database files reside may be specified in the file $HOME/.nwchemrc for each of the supported force fields. Fragment, segment and sequence files generated by the prepare module are written in the temporary directory. When not specified, the current directory will be used. Topology and restart files are always created in the current directory.
The following directives control the modifications of a topology file. These directives are executed in the order in which they appear in the prepare input deck. The topology modifying commands are not stored on the run-time database and are, therefor, not persistent.
modify atom <string atomname> [set <integer mset> | initial | final] \\\n ( type <string atomtyp> | charge <real atomcharge> | \\\n polar <real atompolar> | dummy | self | quantum | quantum_high )\n
These modify commands change the atom type, partial atomic charge, atomic polarizability, specify a dummy, self-interaction and quantum atom, respectively. If mset is specified, the modification will only apply to the specified set, which has to be 1, 2 or 3. If not specified, the modification will be applied to all three sets. The quantum region in QM/MM simulations is defined by specifying atoms with the quantum or quantum_high label. For atoms defined quantum_high basis sets labeled X_H will be used. The atomnam should be specified as :, where isgm is the segment number, and name is the atom name. A leading blank in an atom name should be substituted with an underscore. The modify commands may be combined. For example, the following directive changes for the specified atom the charge and atom type in set 2 and specifies the atom to be a dummy in set 3.
modify atom 12:_C1 set 2 charge 0.12 type CA set 3 dummy\n
With the following directives modifications can be made for entire segments.
modify segment <integer isgm> \\\n [protonation <integer iprot> | set <integer mset> | initial | final] \\\n ( dummy | self | uncharged | quantum | quantum_high )\n
where protonation specifies a modification of the default protonation state of the segment as specified in the segment file. This option only applies to Q-HOP simulations.
Modifications to bonded interaction parameters can be made with the following modify commands.
modify ( bond <string atomtyp> <string atomtyp> | \\\n angle <string atomtyp> <string atomtyp> <string atomtyp> | \\ \n torsion <string atomtyp> <string atomtyp> <string atomtyp> \\\n <string atomtyp> [ multiplicity <integer multip> ] | \\\n plane <string atomtyp> <string atomtyp> <string atomtyp> \\\n <string atomtyp> ) [set <integer mset>` | initial | final] \\\n <real value> <real forcon>\n
where atomtyp and mset are defined as above, multip is the torsion ultiplicity for which the modification is to be applied, value is the reference bond, angle, torsion angle of out-of-plane angle value respectively, and forcon is the force constant for bond, angle, torsion angle of out-of-plane angle. When multip or mset are not defined the modification will be applied to all multiplicities and sets, respectively, for the identified bonded interaction.
After modifying atoms to quantum atoms the bonded interactions in which only quantum atoms are involved are removed from the bonded lists using
update lists\n
Error messages resulting from parameters not being defined for bonded interaction in which only quantum atoms are involved are ignored using
ignore\n
To specify that a free energy calculation will be carried out using the topology file, the following keyword needs to be specified,
free\n
To specify that a Q-HOP simulation will be carried out using the topology file, the following keyword needs to be specified,
qhop\n
To specify that only the first set of parameters should be used, even if multiple sets have been defined in the fragment or segment files, the following keyword needs to be specified,
first\n
Note that keywords free, qhop and qhop are mutually exclusive.
"},{"location":"Prepare.html#appending-to-an-existing-topology-file","title":"Appending to an existing topology file","text":"noe <string atom1> <string atom3> \\\n\n <real dist1> <real dist2> <real dist3> <real forc1> <real forc2>\n
This directive specifies a distance restraint potential between atoms atom1 and atom2, with a harmonic function with force constant forc1 between dist1 and dist2, and a harmonic function with force constant forc2 between dist2 and dist3. For distances shorter than dist1 or larger than dist3, a constant force is applied such that force and energy are continuous at dist1 and dist3, respectively. Distances are given in nm, force constants in .
select <integer isel> { <string atoms> }\n
Directive select specifies a group of atoms used in the definition of potential of mean force potentials.
The selected atoms are specified by the string atoms which takes the form
[{isgm [ - jsgm ] [,]} [:] [{aname[,]}]\n
For example, all carbon and oxygen atoms in segments 3 and 6 through 12 are selected for group 1 by
3,6-12:_C????,_O????\npmf [all] [bias] zalign <integer isel> <real forcon1> <real forcon2>\npmf [combine] [bias] xyplane <integer isel> <real forcon1> <real forcon2>\npmf [constraint] [bias] (distance | zdistance) <integer isel> <integer jsel> \\\n <real dist1> <real dist2> <real forcon1> <real forcon2>\npmf [bias] angle <integer isel> <integer jsel> <integer ksel> \\\n <real angle1> <real angle2> <real forcon1> <real forcon2>\npmf [bias] torsion <integer isel> <integer jsel> <integer ksel> <integer lsel> \\\n <real angle1> <real angle2> <real forcon1> <real forcon2>\npmf [bias] basepair <integer isel> <integer jsel> \\\n <real dist1> <real dist2> <real forcon1> <real forcon2>\npmf [bias] (zaxis | zaxis-cog) <integer isel> <integer jsel> <integer ksel> \\\n <real dist1> <real dist2> <real forcon1> <real forcon2>\n
Directive pmf specifies a potential of mean force potential in terms of the specified atom selection. Option zalign specifies the atoms in the selection to be restrained to a line parallel to the z-axis. Option xyplane specifies the atoms in the selection to be restrained to a plane perpendicular to the z-axis. Options distance, angle and torsion, are defined in terms of the center of geometry of the specified atom selections. Keyword basepair is used to specify a harmonic potential between residues isel and jsel. Keywords zaxis and zaxis-cog can be used to pull atoms toward the z-axis. Option all may be specified to apply an equivalent pmf to each of the equivalent solute molecules in the system. Option combine may be specified to apply the specified pmf to the atoms in all of the equivalent solute molecules. Option constraint may be specified to a distance pmf to treat the distance as a constraint. Option bias may be specified to indicate that this function should be treated as a biasing potential. Appropriate corrections to free energy results will be evaluated.
"},{"location":"Prepare.html#generating-a-restart-file","title":"Generating a restart file","text":"new_rst\n
Keyword new_rst will cause an existing restart file to be overwritten with a new file.
The follwing directives control the manipulation of restart files, and are executed in the order in which they appear in the prepare input deck.
solvent name <string*3 slvnam default 'HOH'> \\ \n model <string slvmdl default 'spce'> \n
The solvent keyword can be used to specify the three letter solvent name as expected on the PDB formatted file, and the name of the solvent model for which solvent coordinates will be used.
solvate [ < real rshell default 1.2 > ] \\\n ( [ cube [ <real edge> ]] | \\\n [ box [ <real xedge> [ <real xedge> [ <real xedge> ]]]] | \\\n [ sphere <real radius> ] |\n [ troct <real edge> ])\n
Solvation can be specified to be in a cubic box with specified edge, rectangular box with specified edges, or in a sphere with specified radius. Solvation in a cube or rectangular box will automatically also set periodic boundary conditions. Solvation in a sphere will only allow simulations without periodic boundary conditions. The size of the cubic and rectangular boxes will be expanded by a length specified by the expand variable. If no shape is specified, solvation will be done for a cubic box with an edge that leaves rshell nm between any solute atom and a periodic image of any solute atom after the solute has been centered. An explicit write is not needed to write the restart file. The solvate will write out a file sys_calc.rst. If not specified, the dimension of the solvation cell will be as large as to have at least a distance of rshell nm between any solute atom and the edge of the cell. The experimental troct directive generates a truncated octrahedral box.
touch <real touch default 0.23>\n
The variable touch specifies the minimum distance between a solvent and solute atom for which a solvent molecule will be accepted for solvation.
envelope `<real xpndw default 0.0>\n
sets the expand vealues to be used in solvate operations.
expand <real xpndw default 0.1>\n
The variable xpndw specifies the size in nm with which the simulation volume will be increased after solvation.
read [rst | rst_old | pdb] <string filename>\nwrite [rst | [solute [<integer nsolvent>]] ( [large] pdb | xyz)] <string filename>\n
These directives read and write the file filename in the specified format. The solute option instructs to write out the coordinates for solute and all, or if specified the first nsolvent, crystal solvent molecules only. If no format is specified, it will be derived from the extension of the filename. Recognized extensions are rst, rst_old (read only), pdb, xyz (write only) and pov (write only). Reading and then writing the same restart file will cause the sub-block size information to be lost. If this information needs to be retained a shell copy command needs to be used. The large keyword allows PDB files to be written with more than 9999 residues. Since the PDB file will not conform to the PDB convention, this option should only be used if required. NWChem will be able to read the resulting PDB file, but other codes may not.
scale <real scale default -1.0>\n
This directive scales the volume and coordinates written to povray files. A negative value of scale (default) scales the coordinates to lie in [-1:1].
cpk [<real cpk default 1.0>]\n
This directive causes povray files to contain cpk model output. The optional value is used to scale the atomic radii. A neagtive value of cpk resets the rendering to stick.
center | centerx | centery | centerz\n
These directives center the solute center of geometry at the origin, in the y-z plane, in the x-z plane or in the x-y plane, respectively.
orient\n
This directive orients the solute principal axes.
translate [atom | segment | molecule] \\\n <integer itran> <integer itran> <real xtran(3)>\n
This directive translates solute atoms in the indicated range by xtran, without checking for bad contacts in the resulting structure.
rotate [atom | segment | molecule] \\\n\n <integer itran> <integer itran> <real angle> <real xrot(3)>\n
This directive rotates solute atoms in the indicated range by angle around the vector given by xrot,, without checking for bad contacts in the resulting structure.
remove solvent [inside | outside] [x <real xmin> <real xmax>] \\\n[y <real ymin> <real ymax>] [z <real zmin> <real zmax>]\n
This directive removes solvent molecules inside or outside the specified coordinate range.
periodic\n
This directive enables periodic boundary conditions.
vacuo\n
This directive disables periodic boundary conditions.
grid <integer mgrid default 24> <real rgrid default 0.2>\n
This directive specifies the grid size of trial counter-ion positions and minimum distance between an atom in the system and a counter-ion.
crop\n
prints minimum and maximum solute coordinates.
boxsize\n
specifies to redetermine the box size.
cube\n
specifies to redetermine the smallest cubic box size.
box <real xsize> <real ysize>` <real zsize>\n
The box directive resets the box size.
align <string atomi> <string atomj> <string atomk>\n
The align directive orients the system such that atomi and atomj are on the z-axis, and atomk in the x=y plane.
repeat [randomx | randomy | randomz] [chains | molecules | fractions ] \\\n <integer nx> <integer ny> <integer nz> [<real dist>] [<real zdist>]\n
The repeat directive causes a subsequent write pdb directive to write out multiple copies of the system, with nx copies in the x, ny copies in the y, and nz copies in the z-direction, with a minimum distance of dist between any pair of atoms from different copies. If nz is -2, an inverted copy is placed in the z direction, with a separation of zdist nm. If dist is negative, the box dimensions will be used. For systems with solvent, this directive should be used with a negative dist. Optional keywords chains, molecules and fractions specify to write each repeating solute unit as a chain, to repeat each solute molecule, or each solute fraction separately. Optional keywords randomx, randomy, and randomz can be used to apply random rotations for each repeat unit around a vector through the center of geometry of the solute in the x, y or z direction.
skip <integer ix> <integer iy> <integer iz>\n
The skip directive can be used to skip single repeat unit from the repeat directive. Up to 100 skip directives may be specified, and will only apply to the previously specified repeat directive.
(collapsexy | collapsez) [ <integer nmoves>]\n
specifies to move all solute molecules toward the z-axis or x=y-plane, respectively, to within a distance of touch nm between any pair of atoms from different solute molecules. Parameter nmoves specifies the number of collapse moves that will be made. Monatomic ions will move with the nearest multi-atom molecule.
collapse_group <integer imol> <integer jmol>\n
specifies that molecule jmol will move together with molecule imol in collapse operations.
merge <real xtran(3)> <string pdbfile>\n
specifies to merge the coordinates found on the specified pdb file into the current structure after translation by xtran(3).
"},{"location":"Print_Noprint.html","title":"Print Noprint","text":"The PRINT and NOPRINT directives allow the user to control how much output NWChem generates. These two directives are special in that the compound directives for all modules are supposed to recognize them. Each module can control both the overall print level (general verbosity) and the printing of individual items which are identified by name (see below). The standard form of the PRINT directive is as follows:
PRINT [(none || low || medium || high || debug) default medium] [<string list_of_names ... >]\nNOPRINT <string list_of_names ... >\n
The default print level is medium.
Every output that is printed by NWChem has a print threshold associated with it. If this threshold is equal to or lower than the print level requested by the user, then the output is generated. For example, the threshold for printing the SCF energy at convergence is low. This means that if the user-specified print level on the PRINT directive is low, medium, high, or debug, then the SCF energy will be printed at convergence.
The overall print level specified using the PRINT directive is a convenient tool for controlling the verbosity of NWChem. Setting the print level to high might be helpful in diagnosing convergence problems. The print level of debug might also be of use in evaluating problem cases, but the user should be aware that this can generate a huge amount of output. Setting the print level to low might be the preferable choice for geometry optimizations that will perform many steps which are in themselves of little interest to the user.
In addition, it is possible to enable the printing of specific items by naming them in the PRINT directive in the . Items identified in this way will be printed, regardless of the overall print level specified. Similarly, the NOPRINT directive can be used to suppress the printing of specific items by naming them in its . These items will not be printed, regardless of the overall print level, or the specific print level of the individual items.
The list of items that can be printed for each module is documented as part of the input instructions for that module. The items recognized by the top level of the code, and their thresholds, are:
Name Print Level Description \u201ctotal time\u201d medium Print cpu and wall time at job end \u201ctask time\u201d high Print cpu and wall time for each task \u201crtdb\u201d high Print names of RTDB entries \u201crtdbvalues\u201d high Print name and values of RTDB entries \u201cga summary\u201d medium Summarize GA allocations at job end \u201cga stats\u201d high Print GA usage statistics at job end \u201cma summary\u201d medium Summarize MA allocations at job end \u201cma stats\u201d high Print MA usage statistics at job end \u201cversion\u201d debug Print version number of all compiled routines \u201ctcgmsg\u201d never Print TCGMSG debug information"},{"location":"Print_Noprint.html#top-level-print-control-specifications","title":"Top Level Print Control Specifications","text":"The following example shows how a PRINT directive for the top level process can be used to limit printout to only essential information. The directive is
print none \"ma stats\" rtdb\n
This directive instructs the NWChem main program to print nothing, except for the memory usage statistics (ma stats) and the names of all items stored in the database at the end of the job.
The print level within a module is inherited from the calling layer. For instance, by specifying the print to be low within the MP2 module will cause the SCF, CPHF and gradient modules when invoked from the MP2 to default to low print. Explicit user input of print thresholds overrides the inherited value.
"},{"location":"Properties.html","title":"Properties","text":""},{"location":"Properties.html#overview","title":"Overview","text":"Properties can be calculated for both the Hartree-Fock and DFT wave functions. The properties that are available are:
The properties module is started when the task directive TASK property is defined in the user input file. The input format has the form:
PROPERTY \n [property keyword] \n [CENTER ((com || coc || origin || arb <real x y z>) default coc)] \n END\n
Most of the properties can be computed for Hartree-Fock (closed-shell RHF, open-shell ROHF, and open-shell UHF), and DFT (closed-shell and open-shell spin unrestricted) wavefunctions. The NMR hyperfine and indirect spin-spin coupling require a UHF or ODFT wave function.
"},{"location":"Properties.html#vectors-keyword","title":"Vectors keyword","text":" VECTORS [ (<string input_movecs >)]\n
The VECTORS directive allows the user to specify the input molecular orbital vectors for the property calculation
"},{"location":"Properties.html#property-keywords","title":"Property keywords","text":"Each property can be requested by defining one of the following keywords:
NBOFILE \n DIPOLE \n QUADRUPOLE \n OCTUPOLE \n MULLIKEN \n ESP \n EFIELD \n EFIELDGRAD \n EFIELDGRADZ4 \n GSHIFT \n ELECTRONDENSITY \n HYPERFINE [<integer> number_of_atoms <integer> atom_list] \n SHIELDING [<integer> number_of_atoms <integer> atom_list] \n SPINSPIN [<integer> number_of_pairs <integer> pair_list] \n RESPONSE [<integer> response_order <real> frequency] \n AIMFILE \n MOLDENFILE \n ALL\n
The ALL
keyword generates all currently available properties.
Both the NMR shielding and spin-spin coupling have additional optional parameters that can be defined in the input. For the shielding the user can define the number of atoms for which the shielding tensor should be calculated, followed by the list of specific atom centers. In the case of spin-spin coupling the number of atom pairs, followed by the atom pairs, can be defined (i.e., spinspin 1 1 2
will calculate the coupling for one pair, and the coupling will be between atoms 1 and 2).
For both the NMR spin-spin and hyperfine coupling the isotope that has the highest abundance and has spin, will be chosen for each atom under consideration.
"},{"location":"Properties.html#calculating-epr-and-paramagnetic-nmr-parameters","title":"Calculating EPR and paramagnetic NMR parameters","text":"The following tutorial illustrates how to combine the hyperfine, gshift and shielding to calculate the EPR and paramagnetic NMR parameters of an open-shell system. All calculations are compatible with the ZORA model potential approach.
For theoretical and computational details, please refer to references123.
"},{"location":"Properties.html#nmr-input-example","title":"NMR: Input Example","text":"geometry nocenter\n C 0.00000000 0.00000000 0.00000000\n O 1.18337200 0.00000000 0.00000000\n H -.63151821 0.94387462 0.00000000\nend\n\nbasis\n \"*\" library 6-311G**\nend\nproperty\n efieldgradz4 1 3\n shielding 2 1 2\n hyperfine 2 1 3\n gshift\nend\n\nrelativistic\n zora on\n zora:cutoff_NMR 1d-8\n zora:cutoff 1d-30\nend\n\ndft\nmult 2\nxc becke88 perdew86\nend\n\ntask dft property\n
"},{"location":"Properties.html#center-center-of-expansion-for-multipole-calculations","title":"CENTER: Center of expansion for multipole calculations","text":"The user also has the option to choose the center of expansion for the dipole, quadrupole, and octupole calculations.
[CENTER ((com || coc || origin || arb <real x y z>) default coc)]\n
com is the center of mass, coc is the center of charge, origin is (0.0, 0.0, 0.0) and arb is any arbitrary point which must be accompanied by the coordinated to be used. Currently the x, y, and z coordinates must be given in the same units as UNITS in GEOMETRY.
"},{"location":"Properties.html#response-calculations","title":"Response Calculations","text":"Response calculations can be calculated as follows:
property\n response 1 7.73178E-2 # response order and frequency in Hartree energy units \n velocity # use modified velocity gauge for electric dipole \n orbeta # calculate optical rotation 'beta' directly [^4] \n giao # GIAO optical rotation [^5][^6][^7], forces orbeta \n bdtensor # calculates B-tilde of Refs. [^5][^7] \n analysis # analyze response in terms of MOs [^7] \n damping 0.007 # complex response functions with damping, Ref [^8] \n convergence 1e-4 # set CPKS convergence criterion (default 1e-4) \nend\n
Response calculations are currently supported only for
The output consists of the electric polarizability and optical rotation tensors (alpha, beta for optical rotation) in atomic units. The response
keyword requires two arguments: response order and frequency in Hartree energy units (the aoresponse
keyword can be used with same effect as the response
keyword). If the velocity
or giao
keywords are absent, the dipole-length form will be used for the dipole integrals. This is a bit faster. The isotropic optical rotation is origin independent when using the velocity gauge (by means of velocity
keyword) or with GIAOs 5 (by means of the giao
keyword). With the keyword bdtensor
, a fully origin-invariant optical rotation tensor is calculated 57. Note that velocity
and orbeta
are incompatible. The input line
set prop:newaoresp 0\n
outside of the properties
block forces the use of an older version of the response code, which has fewer features (in particular, no working GIAO optical rotation) but which has been tested more thoroughly. In the default newer version you may encounter undocumented features (bugs). The keyword analysis
triggers an analysis of the response tensors in terms of molecular orbitals. If the property input block also contains the keyword pmlocalization
, then the analysis is performed in terms of Pipek-Mezey localized MOs, otherwise the canonical set is used (this feature may currently not work, please check the sum of the analysis carefully). See Ref. [6] for an example. Works with HF and density functionals for which linear response kernels are implemented in NWChem.
Please refer to papers546987 for further details:
"},{"location":"Properties.html#raman","title":"Raman","text":"Raman calculations can be performed by specifying the Raman block. These calculations are performed in conjunction with polarizability calculations. Detailed description of input parameters at https://pubs.acs.org/doi/10.1021/jp411039m#notes-1
RAMAN \n [ (NORMAL | | RESONANCE) default NORMAL ] \n [ (LORENTZIAN | | GAUSSIAN) default LORENTZIAN ] \n [ LOW <double low default 0.0> ] \n [ HIGH <double high default highest normal mode> ] \n [ FIRST <integer first default 7> ] \n [ LAST < integer last default number of normal modes > ] \n [ WIDTH <double width default 20.0> ] \n [ DQ <double dq default 0.01> ] \nEND \ntask dft raman\n
or
task dft raman numerical\n
Sample input block:
property\n response 1 8.8559E-2 \n damping 0.007 \nend \nraman \n normal \n lorentzian \nend\n
"},{"location":"Properties.html#raman-keywords","title":"Raman Keywords","text":"NORMAL
and RESONANCE
: Type of Raman plot to make.LORENTZIAN
and GAUSSIAN
: Generation of smoothed spectra (rather than sticks) using either a Lorentzian function or a Gaussian function. The default is LORENTZIAN
.LOW
and HIGH
: The default range in which to generate the Raman spectrum plot is (0.0, highest wavenumber normal mode) cm-1. The LOW
and HIGH
keywords modify the frequency range.FIRST
and LAST
: The default range of indices of normal modes used in the plot is (7, number of normal modes). The FIRST
and LAST
keywords modify the range of indices.WIDTH
: Controls the width in the smoothed peaks, using Lorentzians or Gaussians, in the plot. The default value for WIDTH
is 20.0.DQ
: Size of the steps along the normal modes. The default value for DQ
is 0.01. It is related to the step size dR used in numerical evaluation of polarizability derivativeRaman spectrum in stick format and smoothed using Lorentzians or Gaussians stored in a filename with format [fname].normal
. The number of points is 1000 by default. This value can be changed by adding the following SET directive to the input file
set raman:numpts <integer>\n
"},{"location":"Properties.html#raman-references","title":"Raman References","text":"Please refer to papers1011 for further details:
"},{"location":"Properties.html#polarizability-computed-with-the-sum-over-orbitals-method","title":"Polarizability computed with the Sum over Orbitals method","text":"As an alternative to the linear response method, the Sum over Orbitals (SOO) method is available to compute polarizabilities. Results of these method are much less accurate than linear response calculations, with values off by a factor of 2-4x. However, the qualitative nature of this results can be used to compute Raman frequencies when coupled with QMD, as described in references 1213.
Sample input computing polarizability both with the SOO method and the linear response method:
property\n polfromsos\nend\n\ntask dft property\n\nproperty\n response 1 0\nend\ntask dft property\n
"},{"location":"Properties.html#nbofile","title":"Nbofile","text":"The keyword NBOFILE
does not execute the Natural Bond Analysis code, but simply creates an input file to be used as input to the stand-alone NBO code. All other properties are calculated upon request.
Following the successful completion of an electronic structure calculation, a Natural Bond Orbital (NBO) analysis may be carried out by providing the keyword NBOFILE
in the PROPERTY
directive. NWChem will query the rtdb and construct an ASCII file, file_prefix.gen
, that may be used as input to the stand alone version of the NBO program, GenNBO. file_prefix is equal to string following the START
directive. The input deck may be edited to provide additional options to the NBO calculation, (see the NBO user\u2019s manual for details.)
Users that have their own NBO version can compile and link the code into the NWChem software. See the INSTALL file in the source for details.
"},{"location":"Properties.html#gaussian-cube-files","title":"Gaussian Cube Files","text":"Electrostatic potential (keyword esp
) and the magnitude of the electric field (keyword efield
) on the grid can be generated in the form of the Gaussian Cube File. This behavior is triggered by the inclusion of grid keyword as shown below
grid [pad dx [dy dz]] [rmax x y z] [rmin x y z] [ngrid nx [ny nz]] [output filename]\n
where
pad dx [dy dz]
- specifies amount of padding (in angstroms) in x,y, and z dimensions that will be applied in the automatic construction of the rectangular grid volume based on the geometry of the system. If only one number is provided then the same amount of padding will be applied in all dimensions. The default setting is 4 angstrom padding in all dimensions.
rmin x y z
- specifies the coordinates (in angstroms) of the minimum corner of the rectangular grid volume. This will override any padding in this direction.
rmax x y z
- specifies the coordinates (in angstroms) of the maximum corner of the rectangular grid volume. This will override any padding in this direction.
ngrid nx [ny nz]
- specifies number of grid points along each dimension. If only one number is provided then the same number of grid points are assumed all dimensions. In the absence of this directive the number of grid points would be computed such that grid spacing will be close to 0.2 angstrom, but not exceeding 50 grid points in either dimension.
output filename
- specifies name of the output cube file. The default behavior is to use prefix-elp.cube
or prefix-elf.cube
file names for electrostatic potential or electric field respectively. Here prefix denotes the system name as specified in start directive. Note that Gaussian cube files will be written in the run directory (where the input file resides).
Example input file
echo \n start nacl \n\n\n geometry nocenter noautoz noautosym \n Na -0.00000000 0.00000000 -0.70428494 \n Cl 0.00000000 -0.00000000 1.70428494 \n end \n\n\n basis \n * library 6-31g* \n end \n\n #electric field would be written out to nacl.elf.cube file \n #with \n #ngrid : 20 20 20 \n #rmax : 4.000 4.000 5.704 \n #rmin :-4.000 -4.000 -4.704 \n\n property \n efield \n grid pad 4.0 ngrid 20 \n end \n\n task dft property \n\n #electrostatic potential would be written to esp-pad.cube file \n # with the same parameters as above \n\n property \n esp \n grid pad 4.0 ngrid 20 output esp-pad.cube \n end \n\n task dft property \n\n #illustrating explicit specification of minumum box coordinates \n\n property \n esp \n grid pad 4.0 rmax 4.000 4.000 5.704 ngrid 20 \n end \n\n task dft property\n
"},{"location":"Properties.html#aimfile","title":"Aimfile","text":"This keyword generates AIM Wavefunction files. The resulting AIM wavefunction file (.wfn/.wfx) can be post-processed with a variety of codes, e.g.
WARNING: Since we have discovered issues in generating .WFN files with this module (e.g. systems with ECPs), the recommended method for generating .WFN file is to first generate a Molden file with the Moldenfile option, then convert the Molden file into a WFN file by using the Molden2AIM program.
"},{"location":"Properties.html#moldenfile","title":"Moldenfile","text":"MOLDENFILE\nMOLDEN_NORM (JANPA | | NWCHEM || NONE)\n
This keyword generates files using the Molden format. The resulting Molden file (.molden) should compatible with a variety of codes that can input Molden files, e.g.
MOLDEN_NORM JANPA
keyword)the MOLDEN_NORM
option allows the renormalization of the basis set coefficients. By default, the coefficient values from input are not modified. Using the JANPA
value coefficients are normalized following JANPA\u2018s convention (where basis coefficients are normalized to unity), while the NWCHEM
will produce coefficients normalized according to NWChem\u2019s convention. Using MOLDEN_NORM
equal NONE
will leave the input coefficients unmodified. It is strongly recommended to use spherical basis set when using the NWChem Molden output for JANPA analysis
Example input file for a scf calculation. The resulting Molden file will be named h2o.molden
start heat\n\n geometry; he 0. 0. 0.; end \n\n basis spherical; * library 6-31g ; end \n\n task scf \n\n property \n vectors heat.movecs \n moldenfile \n molden_norm janpa \n end\n\n task scf property\n
Then, the resulting h2o.molden
file can be post processed by Janpa with the following command
java -jar janpa.jar h2o.molden > h2o.janpa.txt\n
"},{"location":"Properties.html#localization","title":"Localization","text":"Localized molecular orbitals can be computed with the localization
keyword.
property localization (( pm || boys || ibo) default pm) end
The following methods are available:
pm
keyword (default) boys
keyword ibo
keyword Autschbach, J.; Patchkovskii, S.; Pritchard, B. Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory. Journal of Chemical Theory and Computation 2011, 7 (7), 2175\u20132188. https://doi.org/10.1021/ct200143w.\u00a0\u21a9
Aquino, F.; Pritchard, B.; Autschbach, J. Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts. Journal of Chemical Theory and Computation 2012, 8 (2), 598\u2013609. https://doi.org/10.1021/ct2008507.\u00a0\u21a9
Aquino, F.; Govind, N.; Autschbach, J. Scalar Relativistic Computations of Nuclear Magnetic Shielding and <i>g</i>-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals. Journal of Chemical Theory and Computation 2011, 7 (10), 3278\u20133292. https://doi.org/10.1021/ct200408j.\u00a0\u21a9
Autschbach. Computation of Optical Rotation Using Timedependent Density Functional Theory. Computing Letters 2007, 3 (2), 131\u2013150. https://doi.org/10.1163/157404007782913327.\u00a0\u21a9
Autschbach, J. Time-Dependent Density Functional Theory for Calculating Origin-Independent Optical Rotation and Rotatory Strength Tensors. ChemPhysChem 2011, 12 (17), 3224\u20133235. https://doi.org/10.1002/cphc.201100225.\u00a0\u21a9\u21a9\u21a9
Krykunov, M.; Autschbach, J. Calculation of Optical Rotation with Time-Periodic Magnetic-Field-Dependent Basis Functions in Approximate Time-Dependent Density-Functional Theory. The Journal of Chemical Physics 2005, 123 (11), 114103. https://doi.org/10.1063/1.2032428.\u00a0\u21a9
Moore, B.; Srebro, M.; Autschbach, J. Analysis of Optical Activity in Terms of Bonds and Lone-Pairs: The Exceptionally Large Optical Rotation of Norbornenone. Journal of Chemical Theory and Computation 2012, 8 (11), 4336\u20134346. https://doi.org/10.1021/ct300839y.\u00a0\u21a9\u21a9
Krykunov, M.; Kundrat, M. D.; Autschbach, J. Calculation of Circular Dichroism Spectra from Optical Rotatory Dispersion, and Vice Versa, as Complementary Tools for Theoretical Studies of Optical Activity Using Time-Dependent Density Functional Theory. The Journal of Chemical Physics 2006, 125 (19), 194110. https://doi.org/10.1063/1.2363372.\u00a0\u21a9
Hammond, J. R.; Govind, N.; Kowalski, K.; Autschbach, J.; Xantheas, S. S. Accurate Dipole Polarizabilities for Water Clusters n=212 at the Coupled-Cluster Level of Theory and Benchmarking of Various Density Functionals. The Journal of Chemical Physics 2009, 131 (21), 214103. https://doi.org/10.1063/1.3263604.\u00a0\u21a9
Mullin, J. M.; Autschbach, J.; Schatz, G. C. Time-Dependent Density Functional Methods for Surface Enhanced Raman Scattering (SERS) Studies. Computational and Theoretical Chemistry 2012, 987, 32\u201341. https://doi.org/10.1016/j.comptc.2011.08.027.\u00a0\u21a9
Aquino, F. W.; Schatz, G. C. Time-Dependent Density Functional Methods for Raman Spectra in Open-Shell Systems. The Journal of Physical Chemistry A 2014, 118 (2), 517\u2013525. https://doi.org/10.1021/jp411039m.\u00a0\u21a9
Fischer, S. A.; Ueltschi, T. W.; El-Khoury, P. Z.; Mifflin, A. L.; Hess, W. P.; Wang, H.-F.; Cramer, C. J.; Govind, N. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study. The Journal of Physical Chemistry B 2015, 120 (8), 1429\u20131436. https://doi.org/10.1021/acs.jpcb.5b03323.\u00a0\u21a9
Apr\u00e0, E.; Bhattarai, A.; Baxter, E.; Wang, S.; Johnson, G. E.; Govind, N.; El-Khoury, P. Z. Simplified Ab Initio Molecular Dynamics-Based Raman Spectral Simulations. Applied Spectroscopy 2020, 74 (11), 1350\u20131357. https://doi.org/10.1177/0003702820923392.\u00a0\u21a9
Pipek, J.; Mezey, P. G. A Fast Intrinsic Localization Procedure Applicable for Ab Initio and Semiempirical Linear Combination of Atomic Orbital Wave Functions. The Journal of Chemical Physics 1989, 90 (9), 4916\u20134926. https://doi.org/10.1063/1.456588.\u00a0\u21a9
Foster, J. M.; Boys, S. F. Canonical Configurational Interaction Procedure. Reviews of Modern Physics 1960, 32 (2), 300\u2013302. https://doi.org/10.1103/revmodphys.32.300.\u00a0\u21a9
Knizia, G. Intrinsic Atomic Orbitals: An Unbiased Bridge Between Quantum Theory and Chemical Concepts. Journal of Chemical Theory and Computation 2013, 9 (11), 4834\u20134843. https://doi.org/10.1021/ct400687b.\u00a0\u21a9
Knizia, G.; Klein, J. E. M. N. Electron Flow in Reaction Mechanisms-Revealed from First Principles. Angewandte Chemie International Edition 2015, 54 (18), 5518\u20135522. https://doi.org/10.1002/anie.201410637.\u00a0\u21a9
Python programs may be embedded into the NWChem input and used to control the execution of NWChem. Python is a very powerful and widely used scripting language that provides useful things such as variables, conditional branches and loops, and is also readily extended. Example applications include scanning potential energy surfaces, computing properties in a variety of basis sets, optimizing the energy w.r.t. parameters in the basis set, computing polarizabilities with finite field, and simple molecular dynamics.
Look in the NWChem contrib directory for useful scripts and examples. Visit the Python web-site https://www.python.org for a full manual and lots of useful code and resources.
"},{"location":"Python.html#how-to-input-and-run-a-python-program-inside-nwchem","title":"How to input and run a Python program inside NWChem","text":"A Python program is input into NWChem inside a Python compound directive.
python [print|noprint]\n ...\n end\n
The END directive must be flush against the left margin (see the Troubleshooting section for the reason why).
The program is by default printed to standard output when read, but this may be disabled with the noprint keyword. Python uses indentation to indicate scope (and the initial level of indentation must be zero), whereas NWChem uses optional indentation only to make the input more readable. For example, in Python, the contents of a loop, or conditionally-executed block of code must be indented further than the surrounding code. Also, Python attaches special meaning to several symbols also used by NWChem. For these reasons, the input inside a PYTHON compound directive is read verbatim except that if the first line of the Python program is indented, the same amount of indentation is removed from all subsequent lines. This is so that a program may be indented inside the PYTHON input block for improved readability of the NWChem input, while satisfying the constraint that when given to Python the first line has zero indentation.
E.g., the following two sets of input specify the same Python program.
python \n print (\"Hello\")\n print (\"Goodbye\")\nend\n\npython \nprint (\"Hello\")\nprint (\"Goodbye\")\nend\n
whereas this program is in error since the indentation of the second line is less than that of the first.
python \n print (\"Hello\")\nprint (\"Goodbye\")\nend\n
The Python program is not executed until the following directive is encountered
task python\n
which is to maintain consistency with the behavior of NWChem in general. The program is executed by all nodes. This enables the full functionality and speed of NWChem to be accessible from Python, but there are some gotchas
rtdb_put()
) it is the data from node zero that is written.Since we have little experience using Python, the NWChem-Python interface might change in a non-backwardly compatible fashion as we discover better ways of providing useful functionality. We would appreciate suggestions about useful things that can be added to the NWChem-Python interface. In principle, nearly any Fortran or C routine within NWChem can be extended to Python, but we are also interested in ideas that will enable users to build completely new things. For instance, how about being able to define your own energy functions that can be used with the existing optimizers or dynamics package?
Python has been extended with a module named \u201cnwchem\u201d which is automatically imported and contains the following NWChem-specific commands. They all handle NWChem-related errors by raising the exception \u201cNWChemError\u201d, which may be handled in the standard Python manner (see Section describing handling exception).
input_parse(string)
\u2013 invokes the standard NWChem input parser with the data in string as input. Note that the usual behavior of NWChem will apply \u2013 the parser only reads input up to either end of input or until a TASK
directive is encountered (the task directive is not executed by the parser).task_energy(theory)
\u2013 returns the energy as if computed with the NWChem directive TASK ENERGY <THEORY>
.task_gradient(theory)
\u2013 returns a tuple (energy,gradient) as if computed with the NWChem directive TASK GRADIENT <THEORY>
.task_optimize(theory)
\u2013 returns a tuple (energy,gradient) as if computed with the NWChem directive TASK OPTIMIZE <THEORY>
. The energy and gradient will be those at the last point in the optimization and consistent with the current geometry in the database.ga_nodeid()
\u2013 returns the number of the parallel process.rtdb_print(print_values)
\u2013 prints the contents of the RTDB. If print_values
is 0, only the keys are printed, if it is 1 then the values are also printed.rtdb_put(name, values)
or rtdb_put(name, values, type)
\u2013 puts the values into the database with the given name. In the first form, the type is inferred from the first value, and in the second form the type is specified using the last argument as one of INT, DBL, LOGICAL, or CHAR.rtdb_get(name)
\u2013 returns the data from the database associated with the given name.An example below explains, in lieu of a Python wrapper for the geometry object, how to obtain the Cartesian molecular coordinates directly from the database.
"},{"location":"Python.html#examples","title":"Examples","text":"Several examples will provide the best explanation of how the extensions are used, and how Python might prove useful.
"},{"location":"Python.html#hello-world","title":"Hello world","text":"python\n print ('Hello world from process %i' % ga_nodeid())\nend\n\ntask python\n
This input prints the traditional greeting from each parallel process.
"},{"location":"Python.html#scanning-a-basis-exponent","title":"Scanning a basis exponent","text":"geometry units au\n O 0 0 0; H 0 1.430 -1.107; H 0 -1.430 -1.107\nend\n\npython\nexponent = 0.1\nwhile (exponent <= 2.01):\n input_parse(''' \n basis noprint \n H library 3-21g; O library 3-21g; O d; %f 1.0 \n end \n ''' % (exponent))\n print (' exponent = %5.4f,' % exponent, ', energy = %16.10f' % task_energy('scf'))\n exponent = exponent + 0.1\nend\n\nprint none\n\ntask python\n
This program augments a 3-21g basis for water with a d-function on oxygen and varies the exponent from 0.1 to 2.0 in steps of 0.1, printing the exponent and energy at each step.
The geometry is input as usual, but the basis set input is embedded inside a call to input_parse()
in the Python program. The standard Python string substitution is used to put the current value of the exponent into the basis set (replacing the %f) before being parsed by NWChem. The energy is returned by task_energy('scf')
and printed out. The print none in the NWChem input switches off all NWChem output so all you will see is the output from your Python program.
Note that execution in parallel may produce unwanted output since all process execute the print statement inside the Python program.
Look in the NWChem contrib directory for a routine that makes the above task easier.
"},{"location":"Python.html#scanning-a-basis-exponent-revisited","title":"Scanning a basis exponent revisited","text":"geometry units au\nO 0 0 0; H 0 1.430 -1.107; H 0 -1.430 -1.107\nend\n\n\npython\n if (ga_nodeid() == 0): plotdata = open(\"plotdata\",'w')\n\n def energy_at_exponent(exponent):\n input_parse(''' \n basis noprint \n H library 3-21g; O library 3-21g; O d; %f 1.0 \n end \n ''' % (exponent))\n return task_energy('scf')\n\n exponent = 0.1\n while exponent <= 2.01:\n energy = energy_at_exponent(exponent)\n if (ga_nodeid() == 0):\n print (' exponent = %5.4f,' % exponent, ', energy = %16.10f' % energy)\n plotdata.write('%f %f\\n' % (exponent , energy))\n exponent = exponent + 0.1\n\n if (ga_nodeid() == 0): plotdata.close()\nend\n\nprint none\ntask python\n
This input performs exactly the same calculation as the previous one, but uses a slightly more sophisticated Python program, also writes the data out to a file for easy visualization with a package such as gnuplot, and protects write statements to prevent duplicate output in a parallel job. The only significant differences are in the Python program. A file called \u201cplotdata\u201d is opened, and then a procedure is defined which given an exponent returns the energy. Next comes the main loop that scans the exponent through the desired range and prints the results to standard output and to the file. When the loop is finished the additional output file is closed.
"},{"location":"Python.html#scanning-a-geometric-variable","title":"Scanning a geometric variable","text":"python\n geometry = '''\n geometry noprint; symmetry d2h\n C 0 0 %f; H 0 0.916 1.224\n end\n '''\n x = 0.6\n while (x < 0.721):\n input_parse(geometry % x)\n energy = task_energy('scf')\n print (' x = %5.2f energy = %10.6f' % (x, energy))\n x = x + 0.01\nend\n\nbasis; C library 6-31g*; H library 6-31g*; end\n\nprint none\n\ntask python\n
This scans the bond length in ethene from 1.2 to 1.44 in steps of 0.2 computing the energy at each geometry. Since it is using D2h symmetry the program actually uses a variable (x) that is half the bond length.
Look in the NWChem contrib directory for a routine that makes the above task easier.
"},{"location":"Python.html#scan-using-the-bsse-counterpoise-corrected-energy","title":"Scan using the BSSE counterpoise corrected energy","text":"basis spherical\n Ne library cc-pvdz; BqNe library Ne cc-pvdz\n He library cc-pvdz; BqHe library He cc-pvdz\nend\n\nmp2; tight; freeze core atomic; end\n\nprint none\n\npython\n supermolecule = 'geometry noprint; Ne 0 0 0; He 0 0 %f; end\\n'\n fragment1 = 'geometry noprint; Ne 0 0 0; BqHe 0 0 %f; end\\n'\n fragment2 = 'geometry noprint; BqNe 0 0 0; He 0 0 %f; end\\n'\n\n def energy(geometry):\n input_parse(geometry + 'scf; vectors atomic; end\\n')\n return task_energy('mp2')\n\n def bsse_energy(z):\n return energy(supermolecule % z) - \\\n energy(fragment1 % z) - \\\n energy(fragment2 % z)\n z = 3.3\n while (z < 4.301):\n e = bsse_energy(z)\n if (ga_nodeid() == 0): print (' z = %5.2f energy = %10.7f ' % (z, e))\n z = z + 0.1\nend\n\ntask python\n
This example scans the He\u2013Ne bond-length from 3.3 to 4.3 and prints out the BSSE counterpoise corrected MP2 energy.
The basis set is specified as usual, noting that we will need functions on ghost centers to do the counterpoise correction. The Python program commences by defining strings containing the geometry of the super-molecule and two fragments, each having one variable to be substituted. Next, a function is defined to compute the energy given a geometry, and then a function is defined to compute the counterpoise corrected energy at a given bond length. Finally, the bond length is scanned and the energy printed. When computing the energy, the atomic guess has to be forced in the SCF since by default it will attempt to use orbitals from the previous calculation which is not appropriate here.
Since the counterpoise corrected energy is a linear combination of other standard energies, it is possible to compute the analytic derivatives term by term. Thus, combining this example and the next could yield the foundation of a BSSE corrected geometry optimization package.
"},{"location":"Python.html#scan-the-geometry-and-compute-the-energy-and-gradient","title":"Scan the geometry and compute the energy and gradient","text":" basis noprint; H library sto-3g; O library sto-3g; end\n\n python\n print (' y z energy gradient')\n print (' ----- ----- ---------- ------------------------------------')\n y = 1.2\n while y <= 1.61:\n z = 1.0\n while z <= 1.21:\n input_parse('''\n geometry noprint units atomic\n O 0 0 0\n H 0 %f -%f\n H 0 -%f -%f\n end\n ''' % (y, z, y, z))\n\n (energy,gradient) = task_gradient('scf')\n\n print (' %5.2f %5.2f %9.6f' % (y, z, energy)),\n i = 0\n while (i < len(gradient)):\n print ('%5.2f' % gradient[i]),\n i = i + 1\n print ('')\n z = z + 0.1\n y = y + 0.1\nend\n\nprint none\n\ntask python\n
This program illustrates evaluating the energy and gradient by calling task_gradient(). A water molecule is scanned through several C2v geometries by varying the y and z coordinates of the two hydrogen atoms. At each geometry the coordinates, energy and gradient are printed.
The basis set (sto-3g) is input as usual. The two while loops vary the y and z coordinates. These are then substituted into a geometry which is parsed by NWChem using input_parse()
. The energy and gradient are then evaluated by calling task_gradient()
which returns a tuple containing the energy (a scalar) and the gradient (a vector or list). These are printed out exploiting the Python convention that a print statement ending in a comma does not print end-of-line.
mp2; freeze atomic; end\n\nprint none\n\npython\n energies = {}\n c2h4 = 'geometry noprint; symmetry d2h; \\\n C 0 0 0.672; H 0 0.935 1.238; end\\n'\n ch4 = 'geometry noprint; symmetry td; \\\n C 0 0 0; H 0.634 0.634 0.634; end\\n'\n h2 = 'geometry noprint; H 0 0 0.378; H 0 0 -0.378; end\\n'\n\n def energy(basis, geometry):\n input_parse('''\n basis spherical noprint\n c library %s ; h library %s \n end\n ''' % (basis, basis))\n input_parse(geometry)\n return task_energy('mp2')\n\n for basis in ('sto-3g', '6-31g', '6-31g*', 'cc-pvdz', 'cc-pvtz'):\n energies[basis] = 2*energy(basis, ch4) \\\n - 2*energy(basis, h2) - energy(basis, c2h4)\n if (ga_nodeid() == 0): print (basis, ' %8.6f' % energies[basis])\nend \n\ntask python\n
In this example the reaction energy for 2H2 + C2H4 \u2192 2CH4 is evaluated using MP2 in several basis sets. The geometries are fixed, but could be re-optimized in each basis. To illustrate the useful associative arrays in Python, the reaction energies are put into the associative array energies \u2013 note its declaration at the top of the program.
"},{"location":"Python.html#using-the-database","title":"Using the database","text":" python \n rtdb_put(\"test_int2\", 22) \n rtdb_put(\"test_int\", [22, 10, 3], INT) \n rtdb_put(\"test_dbl\", [22.9, 12.4, 23.908], DBL) \n rtdb_put(\"test_str\", \"hello\", CHAR) \n rtdb_put(\"test_logic\", [0,1,0,1,0,1], LOGICAL) \n rtdb_put(\"test_logic2\", 0, LOGICAL) \n\n rtdb_print(1) \n\n print \"test_str = \", rtdb_get(\"test_str\") \n print \"test_int = \", rtdb_get(\"test_int\") \n print \"test_in2 = \", rtdb_get(\"test_int2\") \n print \"test_dbl = \", rtdb_get(\"test_dbl\") \n print \"test_logic = \", rtdb_get(\"test_logic\") \n print \"test_logic2 = \", rtdb_get(\"test_logic2\") \n end \n\n task python\n
This example illustrates how to access the database from Python.
"},{"location":"Python.html#handling-exceptions-from-nwchem","title":"Handling exceptions from NWChem","text":" geometry; he 0 0 0; he 0 0 2; end \n basis; he library 3-21g; end \n scf; maxiter 1; end \n\n python \n try: \n task_energy('scf') \n except NWChemError, message: \n print 'Error from NWChem ... ', message \n end \n\n task python\n
The above test program shows how to handle exceptions generated by NWChem by forcing an SCF calculation on He2<\\sub> to fail due to insufficient iterations.
If an NWChem command fails it will raise the exception \u201cNWChemError\u201d (case sensitive) unless the error was fatal. If the exception is not caught, then it will cause the entire Python program to terminate with an error. This Python program catches the exception, prints out the message, and then continues as if all was well since the exception has been handled.
If your Python program detects an error, raise an unhandled exception. Do not call exit(1) since this may circumvent necessary clean-up of the NWChem execution environment.
"},{"location":"Python.html#accessing-geometry-information-a-temporary-hack","title":"Accessing geometry information: a temporary hack","text":"In an ideal world the geometry and basis set objects would have full Python wrappers, but until then a back-door solution will have to suffice. We\u2019ve already seen how to use input_parse()
to put geometry (and basis) data into NWChem, so it only remains to get the geometry data back after it has been updated by a geometry optimzation or some other operation.
The following Python procedure retrieves the coordinates in the same units as initially input for a geometry of a given name. Its full source is included in the NWChem contrib directory.
def geom_get_coords(name): \n try: \n actualname = rtdb_get(name) \n except NWChemError: \n actualname = name \n coords = rtdb_get('geometry:' + actualname + ':coords') \n units = rtdb_get('geometry:' + actualname + ':user units') \n if (units == 'a.u.'): \n factor = 1.0 \n elif (units == 'angstroms'): \n factor = rtdb_get('geometry:'+actualname+':angstrom_to_au') \n else: \n raise NWChemError,'unknown units' \n i = 0 \n while (i < len(coords)): \n coords[i] = coords[i] / factor \n i = i + 1 \n return coords\n
A geometry with name NAME has its coordinates (in atomic units) stored in the database entry geometry:NAME:coords
. A minor wrinkle here is that indirection is possible (and used by the optimizers) so that we must first check if NAME actually points to another name. In the program this is done in the first try\u2026except sequence. With the actual name of the geometry, we can get the coordinates. Any exceptions are passed up to the caller. The rest of the code is just to convert back into the initial input units \u2013 only atomic units or Angstr\u00f8ms are handled in this simple example. Returned is a list of the atomic coordinates in the same units as your initial input.
The routine is used as follows
coords = geom_get_coords('geometry')\n
or, if you want better error handling
try: \n coords = geom_get_coords('geometry') \n except NWChemError,message: \n print 'Coordinates for geometry not found ', message \n else: \n print coords\n
This is very dirty and definitely not supported from one release to another, but, browsing the output of rtdb_print()
at the end of a calculation is a good way to find stuff. To be on safer ground, look in the programmers manual since some of the high-level routines do pass data via the database in a well-defined and supported manner. Be warned \u2013 you must be very careful if you try to modify data in the database. The input parser does many important things that are not immediately apparent (e.g., ensure the geometry is consistent with the point group, mark the SCF as not converged if the SCF options are changed, \u2026). Where at all possible your Python program should generate standard NWChem input and pass it to input_parse()
rather than setting parameters directly in the database.
geometry units au \n O 0 0 0; H 0 1.430 -1.107; H 0 -1.430 -1.107 \n end \n\n print none \n\n python \n import Gnuplot, time, signal \n\n def energy_at_exponent(exponent): \n input_parse(''' \n basis noprint \n H library 3-21g; O library 3-21g; O d; %f 1.0 \n end \n ''' % (exponent)) \n return task_energy('scf') \n\n data = [] \n exponent = 0.5 \n while exponent <= 0.6: \n energy = energy_at_exponent(exponent) \n print ' exponent = ', exponent, ' energy = ', energy \n data = data + [exponent,energy](exponent,energy.md) \n exponent = exponent + 0.02 \n\n if (ga_nodeid() == 0): \n signal.signal(signal.SIGCHLD, signal.SIG_DFL) \n g = Gnuplot.Gnuplot() \n g('set data style linespoints') \n g.plot(data) \n time.sleep(30) # 30s to look at the plot \n\n end \n\n task python\n
This illustrates how to handle signals from terminating child processes and how to generate simple plots on UNIX systems. The scanning example is modified so that instead of writing the data to a file for subsequent visualization, it is saved for subsequent visualization with Gnuplot (you\u2019ll need both Gnuplot and the corresponding package for Python in your PYTHONPATH. Look at https://web.archive.org/web/20010717060625/http://monsoon.harvard.edu/~mhagger/download/).
The issue is that NWChem traps various signals from the O/S that usually indicate bad news in order to provide better error handling and reliable clean-up of shared, parallel resources. One of these signals is SIGCHLD which is generated whenever a child process terminates. If you want to create child processes within Python, then the NWChem handler for SIGCHLD must be replaced with the default handler. There seems to be no easy way to restore the NWChem handler after the child has completed, but this should have no serious side effect.
"},{"location":"Python.html#troubleshooting","title":"Troubleshooting","text":"Common problems with Python programs inside NWChem.
0:python_input: indentation must be >= that of first line: 4 \n
This indicates that NWChem thinks that a line is less indented than\nthe first line. If this is not the case then perhaps there is a tab\nin your input which NWChem treats as a single space character but\nappears to you as more spaces. Try running untabify in Emacs. The\nproblem could also be the END directive that terminates the PYTHON\ncompound directive -- since Python also has an end statement. To\navoid confusion the END directive for NWChem must be at the start of\nthe line.\n
Setting up QM/MM calculations for a new system for which classical force analog is not readily available would typically involve the following steps
It is often the case that the input structure for the system comes in the form of the xyz file. Let us take a concrete example of N3O3- molecule, which we would like to embed in classical solvent and perform QM/MM calculations. Here is the structure of just N3O3- in xyz format (generated in course of gas phase optimizations)
6 \n geometry \n N 1.31562667 0.93574165 -0.42424728 \n O 1.56161766 0.18015298 -1.36827899 \n N 2.36373381 1.02559495 0.48834956 \n O 3.47240000 0.42852552 0.42137570 \n N 1.95804013 1.90608355 1.48799418 \n O 2.81393172 2.06788134 2.36142683\n
We cannot use this file as is in the QM/MM simulations, and it has to be converted into PDB format. This is needed even if we plan to treat this molecule quantum mechanically. There is more than way to do it. For example, we could use Babel http://openbabel.org/wiki/Main_Page, which will generate the PDB file as
COMPND geometry \nAUTHOR GENERATED BY OPEN BABEL 2.3.0 \nHETATM 1 O LIG 1 1.562 0.180 -1.368 1.00 0.00 O \nHETATM 2 N LIG 1 1.316 0.936 -0.424 1.00 0.00 N \nHETATM 3 N LIG 1 2.364 1.026 0.488 1.00 0.00 N \nHETATM 4 O LIG 1 3.472 0.429 0.421 1.00 0.00 O \nHETATM 5 N LIG 1 1.958 1.906 1.488 1.00 0.00 N \nHETATM 6 O LIG 1 2.814 2.068 2.361 1.00 0.00 O \nCONECT 1 2 \nCONECT 2 1 3 \nCONECT 3 2 4 5 \nCONECT 4 3 \nCONECT 5 3 6 \nCONECT 6 5 \nMASTER 0 0 0 0 0 0 0 0 6 0 6 0 \nEND\n
which after stripping nonessential information becomes
HETATM 1 O LIG 1 1.562 0.180 -1.368 1.00 0.00 O \n HETATM 2 N LIG 1 1.316 0.936 -0.424 1.00 0.00 N \n HETATM 3 N LIG 1 2.364 1.026 0.488 1.00 0.00 N \n HETATM 4 O LIG 1 3.472 0.429 0.421 1.00 0.00 O \n HETATM 5 N LIG 1 1.958 1.906 1.488 1.00 0.00 N \n HETATM 6 O LIG 1 2.814 2.068 2.361 1.00 0.00 O \n END\n
This is not yet the format we want. So what we need to do is
I would typically use sed for this purpose
sed 's/HETATM/ATOM /' n3o3-bad.pdb > n3o3-step1.pdb\n
where n3o3-bad.pdb
is the original pdb file from Babel and n3o3-step1.pdb
is the converted one as shown below
ATOM 1 O LIG 1 1.562 0.180 -1.368 1.00 0.00 O \nATOM 2 N LIG 1 1.316 0.936 -0.424 1.00 0.00 N \nATOM 3 N LIG 1 2.364 1.026 0.488 1.00 0.00 N \nATOM 4 O LIG 1 3.472 0.429 0.421 1.00 0.00 O \nATOM 5 N LIG 1 1.958 1.906 1.488 1.00 0.00 N \nATOM 6 O LIG 1 2.814 2.068 2.361 1.00 0.00 O \nEND\n
In our case Babel did this for us and the entire system is defined as one residue with the name LIG (see columns 4 and 5). We can leave it as, but I will redefine residue name to NN3 (keep it to 3 characters !). Again running sed 's/LIG/NN3/' n3o3-step1.pdb > n3o3-step2.pdb
ATOM 1 O NN3 1 1.562 0.180 -1.368 1.00 0.00 O \nATOM 2 N NN3 1 1.316 0.936 -0.424 1.00 0.00 N \nATOM 3 N NN3 1 2.364 1.026 0.488 1.00 0.00 N \nATOM 4 O NN3 1 3.472 0.429 0.421 1.00 0.00 O \nATOM 5 N NN3 1 1.958 1.906 1.488 1.00 0.00 N \nATOM 6 O NN3 1 2.814 2.068 2.361 1.00 0.00 O \nEND\n
You could have also broken it up into several residues as
ATOM 1 O NN2 1 1.562 0.180 -1.368 1.00 0.00 O \nATOM 2 N NN2 1 1.316 0.936 -0.424 1.00 0.00 N \nATOM 3 N NN2 1 2.364 1.026 0.488 1.00 0.00 N \nATOM 4 O NN2 1 3.472 0.429 0.421 1.00 0.00 O \nATOM 5 N NN1 2 1.958 1.906 1.488 1.00 0.00 N \nATOM 6 O NN1 2 2.814 2.068 2.361 1.00 0.00 O \nEND\n
where I defined two residues NN2 and NN1 (note changes in columns 4 and 5). To keep things simple I will stay with one residue version for now
This has to do with the requirement that all atoms names have to be unique within a given residue. So if we take our one residue version it could be modified as (notice column 3)
ATOM 1 O1 NN3 1 1.562 0.180 -1.368 1.00 0.00 O \nATOM 2 N1 NN3 1 1.316 0.936 -0.424 1.00 0.00 N \nATOM 3 N2 NN3 1 2.364 1.026 0.488 1.00 0.00 N \nATOM 4 O2 NN3 1 3.472 0.429 0.421 1.00 0.00 O \nATOM 5 N3 NN3 2 1.958 1.906 1.488 1.00 0.00 N \nATOM 6 O3 NN3 2 2.814 2.068 2.361 1.00 0.00 O \nEND\n
Now we have a PDB file for our system in \u201cproper\u201d PDB format. Before we move to next step, I should mention that the last 3 columns are not necessary and could have been removed at any point leading to n3o3.pdb
ATOM 1 O1 NN3 1 1.562 0.180 -1.368 \nATOM 2 N1 NN3 1 1.316 0.936 -0.424 \nATOM 3 N2 NN3 1 2.364 1.026 0.488 \nATOM 4 O2 NN3 1 3.472 0.429 0.421 \nATOM 5 N3 NN3 2 1.958 1.906 1.488 \nATOM 6 O3 NN3 2 2.814 2.068 2.361 \nEND\n
"},{"location":"QMMM_Appendix.html#generation-of-new-fragment-files","title":"Generation of new fragment files","text":"While setting up QM/MM calculations is often necessary to generate new fragment files for the molecules that are not available as part of standard set. The IMPORTANT assumption here is that these new molecules/residues will be part of OQM region, and as a result only minimum information needs to be provided to include them in QM/MM calculations.
First we must ensure that we have a proper PDB format for our as discussed in the Generation of the proper PDB file section. As a concrete example we will start with N3O3 example that was discussed there as well
ATOM 1 O1 NN3 1 1.562 0.180 -1.368 \nATOM 2 N1 NN3 1 1.316 0.936 -0.424 \nATOM 3 N2 NN3 1 2.364 1.026 0.488 \nATOM 4 O2 NN3 1 3.472 0.429 0.421 \nATOM 5 N3 NN3 1 1.958 1.906 1.488 \nATOM 6 O3 NN3 1 2.814 2.068 2.361 \nEND\n
We have residue named NN3 and therefore looking to construct fragment file NN3.frg
. The best way to do it is to run a simple prepare job
start n3o3 \n\nprepare \nsource n3o3.pdb \nnew_top new_seq \nnew_rst \nmodify segment 1 quantum \nupdate lists \nignore \nwrite n3o3_ref.pdb \nwrite n3o3_ref.rst \nend \n\ntask prepare\n
This prepare job will necessarily fail because NN3.frg is not yet available:
Created fragment ./NN3.frg_TMP \n\nUnresolved atom types in fragment NN3 \n\n\n ********** \n * 0: pre_mkfrg failed 9999 \n **********\n
As part of this process skeleton fragment file (NN3.frg_TMP
) will be generated that can be modified into the final correct form. Let us take a look at NN3.frg_TMP
# This is an automatically generated fragment file \n# Atom types and connectivity were derived from coordinates \n# Atomic partial charges are crude estimates \n# 00/00/00 00:00:00 \n# \n$NN3 \n 6 1 1 0 \nNN3 \n 1 O1 0 0 0 1 1 0.000000 0.000000 \n 2 N1 0 0 0 1 1 0.000000 0.000000 \n 3 N2 0 0 0 1 1 0.000000 0.000000 \n 4 O2 0 0 0 1 1 0.000000 0.000000 \n 5 N3 0 0 0 1 1 0.000000 0.000000 \n 6 O3 0 0 0 1 1 0.000000 0.000000 \n 1 2 \n 2 3 \n 3 4 \n 3 5 \n 5 6\n
The main problem with this fragment file is that there are no atom types to be found in column 12. What atom type does is to identify what classical parameters should be assigned to it. Since, as mentioned in the beginning, we are planing to treat this residue/molecule as part of QM region, the only classical information needed is VDW parameters. We will assume that all nitrogens atoms in our molecule can use the same set of parameters, and the same for oxygens. Therefore we will define two atom types NX and OX
$NN3 \n 6 1 1 0 \nNN3 \n 1 O1 OX 0 0 0 1 1 0.000000 0.000000 \n 2 N1 NX 0 0 0 1 1 0.000000 0.000000 \n 3 N2 NX 0 0 0 1 1 0.000000 0.000000 \n 4 O2 OX 0 0 0 1 1 0.000000 0.000000 \n 5 N3 NX 0 0 0 1 1 0.000000 0.000000 \n 6 O3 OX 0 0 0 1 1 0.000000 0.000000 \n 1 2 \n 2 3 \n 3 4 \n 3 5 \n 5 6\n
and rename resulting file as NN3.frg. Please note that the overall format of the fragment file was preserved and atom types were entered starting at column 12. Rerunning the same prepare job moves as a bit further this time
modify segment 1 set 0 quantum \n Parameter file /Users/marat/opt/codes/nwchem-new/src/data/amber_s/amber.par \n Parameter file /Users/marat/opt/codes/nwchem-new/src/data/amber_q/amber.par \n Parameter file /Users/marat/opt/codes/nwchem-new/src/data/amber_x/amber.par \n Parameter file /Users/marat/opt/codes/nwchem-new/src/data/amber_u/amber.par\n\n Undetermined force field parameters\n\n Parameters could not be found for atom type OX Q \n Parameters could not be found for atom type NX Q\n\n ********** \n * 0: pre_check failed 9999 \n **********\n
complaining now that atom types OX and NX are not defined. This brings us to the next step of defining new parameter file for our calculation.
"},{"location":"QMMM_Appendix.html#generation-of-new-parameter-files","title":"Generation of new parameter files","text":"Continuing with our fragment construction in Generation of new fragment files section, we now need to define VDW parameters for our new atom types NX and OX. The best way to do it is to create amber.par
file in the directory where you plan to rerun final prepare
Electrostatic 1-4 scaling factor 0.833333 \nRelative dielectric constant 1.000000 \nParameters epsilon R* \n# \nAtoms \nNX 14.01000 7.11280E-01 1.82400E-01 1 1111111111 \n Q 7 3.55640E-01 1.82400E-01 \nOX 16.00000 6.35968E-01 1.76830E-01 1 1111111111 \n Q 8 3.17984E-01 1.76830E-01 \nEnd\n
The format of this file is documented in Format of NWChem parameter file. How to actually choose the appropriate values for VDW parameters is a whole new subject, which I do not think anybody yet fully addressed. The practical strategy is to copy from known atom types, which are chemically similar to the ones in your system. In the case above I copied parameters from standard AMBER atom types N and OW.
"},{"location":"QMMM_Appendix.html#format-of-nwchem-parameter-file","title":"Format of NWChem parameter file","text":"The format of NWChem parameter is illustrated on the figure below and also available as pdf file.
"},{"location":"QMMM_Appendix.html#conversion-of-standard-amber-program-parameter-files","title":"Conversion of standard AMBER program parameter files","text":"Fortran code that performs conversion from AMBER program parameter file format to NWChem can be found here. It works by parsing out free format AMBER style parameter file contained in amber.in
MASS \nC 12.01 \nCA 12.01 \nBOND \n#this is a comment \nC -CA 469.0 1.409 this is also a comment \nC - CB 447.0 1.419 \nANGLE \nC -CA-CA 63.0 120.00 another comment \nC -CB-NB 70.0 130.00 \nDIHEDRAL \nX -C -CA-X 4 14.50 180.0 2. intrpol.bsd.on C6H6 \n X - C - CB -X 4 12.00 180.0 2. intrpol.bsd.on C6H6 \nIMPROPER \nX -CT-N -CT 1.0 180. 2. JCC,7,(1986),230 \nCT -O - C -OH 10.5 180. 2. \nNONBOND \n CA 1.9080 0.0860 \nC 1.9080 0.0860\n
to fixed format NWChem style amber.par file
#Generated amber.par file \nElectrostatic 1-4 scaling factor 0.833333 \nRelative dielectric constant 1.000000 \nParameters epsilon R* \n# \nAtoms \nCA 12.01000 3.59824E-01 1.90800E-01 1 1111111111 \n 6 1.79912E-01 1.90800E-01 \nC 12.01000 3.59824E-01 1.90800E-01 1 1111111111 \n 6 1.79912E-01 1.90800E-01 \nBonds \nC -CA 0.14090 3.92459E+05 \nC -CB 0.14190 3.74050E+05 \nAngles \nC -CA -CA 2.09440 5.27184E+02 \nC -CB -NB 2.26893 5.85760E+02 \nProper dihedrals \n -C -CA - 3.14159 1.51670E+01 2 \n -C -CB - 3.14159 1.25520E+01 2 \nImproper dihedrals \n -CT -N -CT 3.14159 4.18400E+00 2 \nCT -O -C -OH 3.14159 4.39320E+01 2 \nEnd\n
"},{"location":"QMMM_Dynamics.html","title":"QMMM Dynamics","text":"Dynamical simulations within QM/MM framework can be initiated using
task\u00a0qmmm\u00a0 <qmtheory> \u00a0dynamics \n
directive. User has to specify the region for which simulation will performed. If dynamics is performed only for the classical parts of the system (QM region is fixed) then ESP point charge representation (density espfit) is recommended to speed up simulations. If this option is utilized then wavefunction file (.movecs) has to be available and present in the permanent directory (this can be most easily achieved by running energy calculation prior to dynamics)."},{"location":"QMMM_ESP.html","title":"QMMM ESP Charge Analysis","text":"
The example below illustrates dipole property QM/MM DFT/B3LYP calculation for quantum water molecule embedded into 20 angstrom box of classical SPCE/E water molecules.
The preparation stage that involves definition of the QM region and solvation is performed as part of the calculation. Note that water fragment file wtr.frg is required in this calculation. Prepare run will generate restart file (wtr_ref.rst) and topology file (wtr.top)
In the QM/MM interface block the use of bq_zone value of 3.0 Angstrom is specified.
start wtr\n\n permanent_dir ./perm \n scratch_dir ./data\n\n prepare \n source wtr0.pdb \n new_top new_seq \n new_rst \n modify segment 1 quantum \n center \n orient \n solvate box 3.0 \n update lists \n ignore \n write wtr_ref.rst \n write wtr_ref.pdb \n end\n\n task prepare\n\n md \n system wtr_ref \n end\n\n basis \n * library \"6-31G\" \n end\n\n dft \n xc b3lyp \n end\n\n qmmm \n bq_zone 3.0 \n end\n\n property \n dipole \n end\n\n task qmmm dft property\n
"},{"location":"QMMM_Excited_States.html","title":"QMMM Excited State Energy","text":"The excited state QM/MM energy calculations can be performed with TCE
task\u00a0qmmm\u00a0tce\u00a0energy
or TDDFT
task\u00a0qmmm\u00a0tddft\u00a0energy
levels of theory. The excited state QM/MM gradient energy calculations can be performed only numerically.
"},{"location":"QMMM_FEP_Example.html","title":"Example of QM/MM solvation free energy calculation input file","text":"A total of two sampling cycles will be performed with 1000 samples per each cycle
memory total 2000 Mb\n\n start clfoh\n\n permanent_dir ./perm\n scratch_dir /scratch\n\n\n md\n #this will require topology [clfoh.top](clfoh.top) and restart [clfoh_neb.rst](clfoh_neb.rst) files \n system clfoh_neb\n cutoff 1.5 qmmm 1.5\n noshake solute\n isotherm\n end\n\n qmmm\n print low\n nsamples 1000\n ncycles 2\n end\n\n set qmmm:fep_geom [clfoh_neb-s.xyzi](clfoh_neb-s.xyzi) [clfoh_neb-e.xyzi](clfoh_neb-e.xyzi)\n set qmmm:fep_esp [clfoh_neb-s.esp](clfoh_neb-s.esp.md) [clfoh_neb-e.esp](clfoh_neb-e.esp.md)\n set qmmm:fep_lambda 0.0 0.1\n set qmmm:fep_deriv .true.\n\n task qmmm fep\n
"},{"location":"QMMM_Free_Energy.html","title":"QMMM Free Energy","text":""},{"location":"QMMM_Free_Energy.html#overview","title":"Overview","text":"Free energy capabilities of QM/MM module are at this point restricted to calculations of free energy differences between two fixed configurations of the QM region.
Users must be warned that this the least automated QM/MM functionality containing several calculation stages. Solid understanding of free energy calculations is required to achieve a meaningful calculation.
Description of the implemented methodology can be found in the following paper. In this approach the free energy difference between the two configurations of the QM region (e.g. A and B):
is approximated as a sum of internal QM contribution and solvation:
It is presumed that structures of A and B configurations are available as restart files sharing common topology file.
"},{"location":"QMMM_Free_Energy.html#internal-contribution","title":"Internal contribution","text":"The internal QM contribution is given by the differences in the internal QM energies evaluated at the optimized MM environment:
The internal QM energy is nothing more but a gas phase expression total energy but evaluated with the wavefunction obtained in the presence of the environment. To calculate internal QM contribution to free energy difference one has to
Note that internal QM energy can be found in the QM/MM output file under \u201cquantum energy internal\u201d name.
"},{"location":"QMMM_Free_Energy.html#solvation-contribution","title":"Solvation contribution","text":"The solvation contribution is evaluated by averaging energy difference between A and B configurations of the QM system represented by a set of ESP charges.
where is the total energy of the system where QM region is replaced by a set of fixed point ESP charges.
In majority of cases the A and B configuration are \u201ctoo far apart\u201d and one step free energy calculation as shown above will not lead to meaningful results. One solution is to introduce intermediate points that bridge A and B configurations by linear interpolation
where
The solvation free energy difference can be then written as sum of differences for the subintervals :
To expedite the calculation it is convenient to use a double wide sampling strategy where the free energy differences for the intervals and are calculated simultaneously by sampling around point. In the simplest case where we use two subintervals (n=2)
or
The following items are necessary:
Both .esp and .xyzi files would be typically obtained during the calculation of internal free energy (see above). ESP charges would be generated in the perm directory during optimization of the MM region. The xyzi is basically xyz structure file with an extra column that allows to map coordinates of QM atoms to the overall system. The xyzi file can also be obtained as part of calculation of internal free energy by inserting
set qmmm:region_print .true.\n
anywhere in the input file during energy calculation. Both xyzi and esp files should be placed into the perm directory!!!
In the input file the restart file is specified in the MD block following the standard notation
md\n system < name of rst file without extension>\n ...\nend\n
while coordinates of QM region (xyzi files) and ESP charges (esp files) are set using the following directives (at the top level outside of any input blocks)
set qmmm:fep_geom xxx_A.xyzi xxx_B.xyzi\nset qmmm:fep_esp xxx_A.esp xxx_B.esp\n
The current interpolation interval for which free energy difference is calculated is defined as
set qmmm:fep_lambda lambda_i lambda_i+1\n
To enable double wide sampling use the following directive
set qmmm:fep_deriv .true.\n
If set, the above directive will perform both and calculations, where
The calculation proceeds in cycles, each cycle consisting of two phases. First phase is generation of classical MD trajectory around point. Second phase is processing of the generated trajectory to calculate averages of relevant energy differences. The number of MD steps in the first phase is controlled by the QM/MM directive
This is a required directive for QM/MM free energy calculations.
Number of overall cycles is defined by the QM/MM directive
In most cases explicit definition of QM/MM density and region should not be required. The QM/MM density will automatically default to espfit and region to mm.
Prior to data collection for free energy calculations user may want to prequilibrate the system, which can be achieved by equil keyword in the MD block:
md\n ... \n equil <number of equilibration steps>\n end\n
Other parameters (e.g. temperature and pressure can be also set in the MD block.
The actual QM/MM solvation free energy calculation is invoked through the following task directive
task qmmm fep\n
The current value of solvation free energy differences may be tracked though
grep free <name of the output file>\n
The first number is a forward () free energy difference and second number is backward () free energy difference, both in kcal/mol. The same numbers can also be found in the 4th and 6th columns of .thm file but this time in atomic units.
The same .thm file can also be used to continue from the prior calculation. This will require the presence of
set qmmm:extend .true.\n
directive, the .thm file, and the appropriate rst file.
Here is an example of the input file for QM/MM solvation free energy calculation.
"},{"location":"QMMM_Input_File.html","title":"QM/MM Input file","text":"The input file for QM/MM calculations contains definition of molecular mechanics parameters, quantum mechanical parameters, and QM/MM interface parameters.
The molecular mechanics parameters are given in the form of standard MD input block as used by the MD module. At the basic level the molecular mechanics input block specifies the restart and topology file that were generated during QM/MM preparation stage. It also contains information relevant to the calculation of the classical region (e.g. cutoff distances, constraints, optimization and dynamics parameters, etc) in the system. In this input block one can also set fixed atom constraints on classical atoms. Continuing with our prepare example for ethanol molecule here is a simple input block that may be used for this system.
\u00a0md \n#\u00a0this\u00a0specifies\u00a0that\u00a0etl_md.rst\u00a0will\u00a0be\u00a0used\u00a0as\u00a0a\u00a0restart\u00a0file \n#\u00a0\u00a0and\u00a0etl.top\u00a0will\u00a0be\u00a0a\u00a0topology\u00a0file \n\u00a0\u00a0system\u00a0etl_md \n#\u00a0if\u00a0we\u00a0ever\u00a0wanted\u00a0to\u00a0fix\u00a0C1\u00a0atom\u00a0 \n\u00a0\u00a0fix\u00a0solute\u00a01\u00a0_C1 \n\u00a0\u00a0noshake\u00a0solute \n\u00a0end\n
The noshake solute, shown in the above example is a recommended directive for QM/MM simulations that involve optimizations. Otherwise user has to ensure that the optimization method for classical solute atoms is a steepest descent
"},{"location":"QMMM_Parameters.html","title":"QMMM Parameters","text":"The QM/MM interface parameters define the interaction between classical and quantum regions.
qmmm \n [ [eref] <double precision default 0.0d0>] \n [ [bqzone] <double precision default 9.0d0>] \n [ [mm_charges] [exclude <(none||all||linkbond||linkbond_H) default none>] \n [ expand <none||all||solute||solvent> default none] \n [ update <integer default 0>] \n [ [link_atoms] <(hydrogen||halogen) default hydrogen>] \n [ [link_ecp] <(auto||user) default auto>] \n [ [region] < [region1] [region2] [region3] > ] \n [ [method] [method1] [method2] [method3] ] \n [ [maxiter] [maxiter1] [maxiter2] [maxiter3] ] \n [ [ncycles] < [number] default 1 > ] \n [ [density] [espfit] [static] [dynamical] ] \n [ [xyz] ] \n [ [convergence] <double precision default 1.0d-4>] ] \n [ [rename] ] <filename> \n [ [nsamples] ] \n end\n
Detailed explanation of the subdirectives in the QM/MM input block is given below:
"},{"location":"QMMM_Parameters.html#qmmm-eref","title":"QM/MM eref","text":"eref\u00a0<double\u00a0precision\u00a0default\u00a00.0d0>\n
This directive sets the relative zero of energy for the QM component of the system. The need for this directive arises from different definitions of zero energy for QM and MM methods. In QM methods the zero of energy for the system is typically vacuum. The zero of energy for the MM system is by definition of most parameterized force fields the separated atom energy. Therefore in many cases the energetics of the QM system will likely overshadow the MM component of the system. This imbalance can be corrected by suitably chosen value of eref
. In most cases IT IS OK to leave eref
at its default value of zero.
bqzone <double precision default 9.0d0>\n
This directive defines the radius of the zone (in angstroms) around the quantum region where classical residues/segments will be allowed to interact with quantum region both electrostatically and through Van der Waals interactions. It should be noted that classical atoms interacting with quantum region via bonded interactions are always included (this is true even if bqzone is set to 0). In addition, even if one atom of a given charged group is in the bqzone (residues are typically treated as one charged group) then the whole group will be included.
"},{"location":"QMMM_Parameters.html#qmmm-mm_charges","title":"QM/MM mm_charges","text":"mm_charges [exclude <(none||all||linkbond||linkbond_H) default none>]\n [expand <none||all||solute||solvent> default none]\n [update <integer default 0>]\n
This directive controls treatment of classical point (MM) charges that are interacting with QM region. For most QM/MM applications the use of directive will be not be necessary. Its absence would be simply mean that all MM charges within the cuttof distance ( as specified by cutoff ) as well those belonging to the charges groups directly bonded to QM region will be allowed to interact with QM region.
Keyword exclude
specifies the subset MM charges that will be specifically excluded from interacting with QM region.
none
default value reverts to the original set of MM charges as described above.all
excludes all MM charges from interacting with QM region (\u201cgas phase\u201d calculation).linkbond
excludes MM charges that are connected to a quantum region by at most two bonds,linkbond_H
similar to linkbond
but excludes only hydrogen atoms.Keyword expand
expands the set MM charges interacting with QM region beyond the limits imposed by cutoff value.
none
default value reverts to the original set of MM chargessolute
expands electrostatic interaction to all solute MM chargessolvent
expands electrostatic interaction to all solvent MM chargesall
expands electrostatic interaction to all MM chargesKeyword update
specifies how often list of MM charges will be updated in the course of the calculation. Default behavior is not to update.
link_atoms <(hydrogen||halogen) default halogen>\n
This directive controls the treatment of bonds crossing the boundary between quantum and classical regions. The use of hydrogen keyword will trigger truncation of such bonds with hydrogen link atoms. The position of the hydrogen atom will be calculated from the coordinates of the quantum and classical atom of the truncated bond using the following expression
where g is the scale factor set at 0.709
Setting link_atoms
to halogen
will result in the modification of the quantum atom of the truncated bond to the fluoride atom. This fluoride atom will typically carry an effective core potential (ECP) basis set as specified in link_ecp
directive.
link_ecp <(auto||user)default auto> \n
This directive specifies ECP basis set on fluoride link atoms. If set to auto
the ECP basis set given by Zhang, Lee, Yang1 for 6-31G basis will be used. Strictly speaking, this implies the use of 6-31G spherical basis as the main basis set. If other choices are desired then keyword user should be used and ECP basis set should be entered separatelly following the format given in section dealing with ECPs . The name tag for fluoride link atoms is F_L
.
region\u00a0\u00a0<\u00a0[region1]\u00a0\u00a0[region2]\u00a0\u00a0[region3]\u00a0>\n
This directive specifies active region(s) for optimization, dynamics, frequency, and free energy calculations. Up to three regions can be specified, those are limited to
qm
- all quantum atoms qmlink
- quantum and link atoms mm_solute
- all classical solute atoms excluding link atomssolute
- all solute atoms including quantumsolvent
all solvent atomsmm
all classical solute and solvent atoms, excluding link atomsall
all atomsOnly the first region will be used in dynamics, frequency, and free energy calculations. In the geometry optimizations, all three regions will be optimized using the following optimization methods
\u00a0\u00a0\u00a0\u00a0if\u00a0(region.eq.\"qm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"qmlink\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm_solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"lbfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solvent\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"all\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0end\u00a0if\n
where \u201cbfgs\u201d stands for Broyden\u2013Fletcher\u2013Goldfarb\u2013Shanno (BFGS) optimization method, \u201clbfgs\u201d limited memory version of quasi-newton, and \u201csd\u201d simple steepest descent algorithm. These assignments can be potentially altered using method directive.
"},{"location":"QMMM_Parameters.html#qmmm-method","title":"QM/MM method","text":" method [method1] [method2] [method3]\n
This directive controls which optimization algorithm will be used for the regions as defined by [[qmmm_region|Qmmm_region]] directive. The allowed values are bfgs
aka DRIVER, lbfgs
limited memory version of quasi-newton, and sd
simple steepest descent algorithm. The use of this directive is not recommended in all but special cases. In particular, bfgs
should be used for QM region if there are any constraints, sd
method should always be used for classical solute and solvent atoms with shake constraints.
maxiter [maxiter1] [maxiter2] [maxiter3]\n
This directive controls maximum number of iterations for the optimizations of regions as defined by by regions directive. User is strongly encouraged to set this directive explicitly as the default value shown below may not be appropriate in all the cases:
if(region.eq.\"qm\") then\n maxiter = 20\n else if (region.eq.\"qmlink\") then\n maxiter = 20\n else if (region.eq.\"mm\") then\n maxiter = 100\n else if (region.eq.\"solvent\") then\n maxiter = 100\n else\n maxiter = 50\n end if\n
"},{"location":"QMMM_Parameters.html#qmmm-ncycles","title":"QM/MM ncycles","text":" ncycles < [number] default 1 >\n
This directive controls the number of optimization cycles where the defined regions will be optimized in succession, or number of sampling cycles in free energy calculations.
"},{"location":"QMMM_Parameters.html#qmmm-density","title":"QM/MM density","text":"density\u00a0\u00a0[espfit]\u00a0[static]\u00a0[dynamical]\u00a0default\u00a0dynamical\n
This directive controls the electrostatic representation of fixed QM region during optimization/dynamics of classical regions. It has no effect when position of QM atoms are changing.
dynamical is an option where QM region is treated the standard way, through the recalculation of the wavefunction calculated and the resulting electron density is used to compute electrostatic interactions with classical atoms. This option is the most expensive one and becomes impractical for large scale optimizations.
static option will not recalculate QM wavefunction but will still use full electron density in the computations of electrostatic interactions.
espfit option will not recalculate QM wavefunction nor it will use full electron density. Instead, a set of ESP charges for QM region will be calculated and used to compute electrostatic interactions with the MM regions. This option is the most efficient and is strongly recommended for large systems.
Note that both \u201cstatic\u201d and \u201cespfit\u201d options do require the presence of the movecs file. It is typically available as part as part of calculation process. Otherwise it can be generated by running qmmm energy calculation.
In most calculations default value for density would dynamical, with the exception of free energy calculations where default setting espfit will be used.
"},{"location":"QMMM_Parameters.html#qmmm-rename","title":"QM/MM rename","text":"This directive is allows to rename atoms in the QM region, based on the external file which specifies desired name( (1st column) and its PDB index (2nd column). The file is assumed to be located in the current run directory.
For example, if we need to rename atoms CB and OG that are part of our QM region
... \n ATOM 13 N SER 2 0.211 0.284 -1.377 0.00 N \n ATOM 14 H SER 2 0.886 1.158 -1.257 0.00 H \n ATOM 15 CA SER 2 -0.320 -0.351 -0.166 0.00 C \n ATOM 16 HA SER 2 -1.405 -0.183 -0.132 0.00 H \n ATOM 17 CB SER 2 -0.001 -1.879 -0.106 0.00 C \n ATOM 18 2HB SER 2 1.092 -2.012 -0.038 0.00 H \n ATOM 19 3HB SER 2 -0.469 -2.317 0.784 0.00 H \n ATOM 20 OG SER 2 -0.452 -2.678 -1.192 0.00 O \n ATOM 21 HG SER 2 -1.351 -2.421 -1.392 0.00 H \n ATOM 22 C SER 2 0.252 0.338 1.076 0.00 C \n ...\n
the following qmmm block can be used
... \n qmmm \n ... \n rename name.dat \n ... \n end \n\n task qmmm dft energy\n
where name.dat file
C1 17\nOX 20\n
Here atoms are identified by the corresponding PDB atom index and renamed from default element based naming to C1 and OX.
"},{"location":"QMMM_Parameters.html#qmmm-convergence","title":"QM/MM convergence","text":"convergence\u00a0\u00a0<\u00a0double\u00a0precision\u00a0etol\u00a0default\u00a01.0d-4>\n
This directive controls convergence of geometry optimization. The optimization is deemed converged if absolute difference in total energies between consecutive optimization cycles becomes less than etol.
"},{"location":"QMMM_Parameters.html#qmmm-nsamples","title":"QM/MM nsamples","text":"nsamples\n
This directive is required for free energy calculations and defines number of samples for averaging during single cycle.
"},{"location":"QMMM_Parameters.html#references","title":"References","text":"Zhang, Y.; Lee, T.-S.; Yang, W. A Pseudobond Approach to Combining Quantum Mechanical and Molecular Mechanical Methods. The Journal of Chemical Physics 1999, 110 (1), 46\u201354. https://doi.org/10.1063/1.478083.\u00a0\u21a9
The necessary prerequisites for the preparation of topology and restart files for QM/MM simulations are: * Properly formatted PDB file for the system. * Fragment Files (extension .frg) * Parameter Files (extension .par)
A number of fragment files as well as standard Amber type force parameter files are provided with the NWChem distribution. However, user should be prepared to generate additional fragment and parameter files for nonstandard cases
"},{"location":"QMMM_QMMM_Parameters.html","title":"QM/MM parameters","text":"The QM/MM interface parameters define the interaction between classical and quantum regions.
qmmm \n [ [eref] <double precision default 0.0d0>] \n [ [bqzone] <double precision default 9.0d0>] \n [ [mm_charges] [exclude <(none||all||linkbond||linkbond_H) default none>] \n [ expand <none||all||solute||solvent> default none] \n [ update <integer default 0>] \n [ [link_atoms] <(hydrogen||halogen) default hydrogen>] \n [ [link_ecp] <(auto||user) default auto>] \n [ [region] < [region1] [region2] [region3] > ] \n [ [method] [method1] [method2] [method3] ] \n [ [maxiter] [maxiter1] [maxiter2] [maxiter3] ] \n [ [ncycles] < [number] default 1 > ] \n [ [density] [espfit] [static] [dynamical] ] \n [ [xyz] ] \n [ [convergence] <double precision default 1.0d-4>] ] \n [ [load] ] \n [ [nsamples] ] \n end\n
Detailed explanation of the subdirectives in the QM/MM input block is given below:
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-eref","title":"QM/MM eref","text":"eref\u00a0<double\u00a0precision\u00a0default\u00a00.0d0>\n
This directive sets the relative zero of energy for the QM component of the system. The need for this directive arises from different definitions of zero energy for QM and MM methods. In QM methods the zero of energy for the system is typically vacuum. The zero of energy for the MM system is by definition of most parameterized force fields the separated atom energy. Therefore in many cases the energetics of the QM system will likely overshadow the MM component of the system. This imbalance can be corrected by suitably chosen value of eref
. In most cases IT IS OK to leave eref
at its default value of zero.
bqzone <double precision default 9.0d0>\n
This directive defines the radius of the zone (in angstroms) around the quantum region where classical residues/segments will be allowed to interact with quantum region both electrostatically and through Van der Waals interactions. It should be noted that classical atoms interacting with quantum region via bonded interactions are always included (this is true even if bqzone is set to 0). In addition, even if one atom of a given charged group is in the bqzone (residues are typically treated as one charged group) then the whole group will be included.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-mm_charges","title":"QM/MM mm_charges","text":"mm_charges [exclude <(none||all||linkbond||linkbond_H) default none>]\n [expand <none||all||solute||solvent> default none]\n [update <integer default 0>]\n
This directive controls treatment of classical point (MM) charges that are interacting with QM region. For most QM/MM applications the use of directive will be not be necessary. Its absence would be simply mean that all MM charges within the cuttof distance ( as specified by cutoff ) as well those belonging to the charges groups directly bonded to QM region will be allowed to interact with QM region.
Keyword exclude
specifies the subset MM charges that will be specifically excluded from interacting with QM region.
none
default value reverts to the original set of MM charges as described above.all
excludes all MM charges from interacting with QM region (\u201cgas phase\u201d calculation).linkbond
excludes MM charges that are connected to a quantum region by at most two bonds,linkbond_H
similar to linkbond
but excludes only hydrogen atoms.Keyword expand
expands the set MM charges interacting with QM region beyond the limits imposed by cutoff value.
none
default value reverts to the original set of MM chargessolute
expands electrostatic interaction to all solute MM chargessolvent
expands electrostatic interaction to all solvent MM chargesall
expands electrostatic interaction to all MM chargesKeyword update
specifies how often list of MM charges will be updated in the course of the calculation. Default behavior is not to update.
link_atoms <(hydrogen||halogen) default halogen>\n
This directive controls the treatment of bonds crossing the boundary between quantum and classical regions. The use of hydrogen keyword will trigger truncation of such bonds with hydrogen link atoms. The position of the hydrogen atom will be calculated from the coordinates of the quantum and classical atom of the truncated bond using the following expression
where g is the scale factor set at 0.709
Setting link_atoms
to halogen
will result in the modification of the quantum atom of the truncated bond to the fluoride atom. This fluoride atom will typically carry an effective core potential (ECP) basis set as specified in link_ecp
directive.
link_ecp <(auto||user)default auto> \n
This directive specifies ECP basis set on fluoride link atoms. If set to auto
the ECP basis set given by Zhang, Lee, Yang1 for 6-31G basis will be used. Strictly speaking, this implies the use of 6-31G spherical basis as the main basis set. If other choices are desired then keyword user should be used and ECP basis set should be entered separatelly following the format given in section dealing with ECPs . The name tag for fluoride link atoms is F_L
.
region\u00a0\u00a0<\u00a0[region1]\u00a0\u00a0[region2]\u00a0\u00a0[region3]\u00a0>\n
This directive specifies active region(s) for optimization, dynamics, frequency, and free energy calculations. Up to three regions can be specified, those are limited to
qm
- all quantum atoms qmlink
- quantum and link atoms mm_solute
- all classical solute atoms excluding link atomssolute
- all solute atoms including quantumsolvent
all solvent atomsmm
all classical solute and solvent atoms, excluding link atomsall
all atomsOnly the first region will be used in dynamics, frequency, and free energy calculations. In the geometry optimizations, all three regions will be optimized using the following optimization methods
\u00a0\u00a0\u00a0\u00a0if\u00a0(region.eq.\"qm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"qmlink\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm_solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"lbfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solvent\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"all\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0end\u00a0if\n
where \u201cbfgs\u201d stands for Broyden\u2013Fletcher\u2013Goldfarb\u2013Shanno (BFGS) optimization method, \u201clbfgs\u201d limited memory version of quasi-newton, and \u201csd\u201d simple steepest descent algorithm. These assignments can be potentially altered using method directive.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-method","title":"QM/MM method","text":" method [method1] [method2] [method3]\n
This directive controls which optimization algorithm will be used for the regions as defined by [[qmmm_region|Qmmm_region]] directive. The allowed values are bfgs
aka DRIVER, lbfgs
limited memory version of quasi-newton, and sd
simple steepest descent algorithm. The use of this directive is not recommended in all but special cases. In particular, bfgs
should be used for QM region if there are any constraints, sd
method should always be used for classical solute and solvent atoms with shake constraints.
maxiter [maxiter1] [maxiter2] [maxiter3]\n
This directive controls maximum number of iterations for the optimizations of regions as defined by by regions directive. User is strongly encouraged to set this directive explicitly as the default value shown below may not be appropriate in all the cases:
if(region.eq.\"qm\") then\n maxiter = 20\n else if (region.eq.\"qmlink\") then\n maxiter = 20\n else if (region.eq.\"mm\") then\n maxiter = 100\n else if (region.eq.\"solvent\") then\n maxiter = 100\n else\n maxiter = 50\n end if\n
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-ncycles","title":"QM/MM ncycles","text":" ncycles < [number] default 1 >\n
This directive controls the number of optimization cycles where the defined regions will be optimized in succession, or number of sampling cycles in free energy calculations.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-density","title":"QM/MM density","text":"density\u00a0\u00a0[espfit]\u00a0[static]\u00a0[dynamical]\u00a0default\u00a0dynamical\n
This directive controls the electrostatic representation of fixed QM region during optimization/dynamics of classical regions. It has no effect when position of QM atoms are changing.
dynamical is an option where QM region is treated the standard way, through the recalculation of the wavefunction calculated and the resulting electron density is used to compute electrostatic interactions with classical atoms. This option is the most expensive one and becomes impractical for large scale optimizations.
static option will not recalculate QM wavefunction but will still use full electron density in the computations of electrostatic interactions.
espfit option will not recalculate QM wavefunction nor it will use full electron density. Instead, a set of ESP charges for QM region will be calculated and used to compute electrostatic interactions with the MM regions. This option is the most efficient and is strongly recommended for large systems.
Note that both \u201cstatic\u201d and \u201cespfit\u201d options do require the presence of the movecs file. It is typically available as part as part of calculation process. Otherwise it can be generated by running qmmm energy calculation.
In most calculations default value for density would dynamical, with the exception of free energy calculations where default setting espfit will be used.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-load","title":"QM/MM load","text":"load < esp > [<filename>]\n
This directive instructs to load external file (located in permanent directory) containing esp charges for QM region. If filename is not provided it will be constructed from the name of the restart file by replacing \u201c.rst\u201d suffix with \u201c.esp\u201d. Note that file containing esp charges is always generated whenever esp charge calculation is performed
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-convergence","title":"QM/MM convergence","text":"convergence\u00a0\u00a0<\u00a0double\u00a0precision\u00a0etol\u00a0default\u00a01.0d-4>\n
This directive controls convergence of geometry optimization. The optimization is deemed converged if absolute difference in total energies between consecutive optimization cycles becomes less than etol.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-nsamples","title":"QM/MM nsamples","text":"nsamples\n
This directive is required for free energy calculations and defines number of samples for averaging during single cycle.
"},{"location":"QMMM_QMMM_Parameters.html#references","title":"References","text":"Zhang, Y.; Lee, T.-S.; Yang, W. A Pseudobond Approach to Combining Quantum Mechanical and Molecular Mechanical Methods. The Journal of Chemical Physics 1999, 110 (1), 46\u201354. https://doi.org/10.1063/1.478083.\u00a0\u21a9
The parameters defining calculation of the QM region (including basis sets) must be present in the traditional NWChem input format except for the geometry block.
The geometrical information will be constructed automatically using information contained in the restart file.
"},{"location":"QMMM_References.html","title":"QMMM References","text":""},{"location":"QMMM_References.html#qmmm-references","title":"QM/MM References","text":"It is worth citing some papers dealing with the QM/MM method 123, its implementation in NWChem4567 and some more recent discussions of the QM/MM parameters89
"},{"location":"QMMM_References.html#references","title":"References","text":"Warshel, A.; Levitt, M. Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. Journal of Molecular Biology 1976, 103 (2), 227\u2013249. https://doi.org/10.1016/0022-2836(76)90311-9.\u00a0\u21a9
Zhang, Y.; Lee, T.-S.; Yang, W. A Pseudobond Approach to Combining Quantum Mechanical and Molecular Mechanical Methods. The Journal of Chemical Physics 1999, 110 (1), 46\u201354. https://doi.org/10.1063/1.478083.\u00a0\u21a9
Lin, H.; Truhlar, D. G. Redistributed Charge and Dipole Schemes for Combined Quantum Mechanical and Molecular Mechanical Calculations. The Journal of Physical Chemistry A 2005, 109 (17), 3991\u20134004. https://doi.org/10.1021/jp0446332.\u00a0\u21a9
Valiev, M.; Kowalski, K. Hybrid Coupled Cluster and Molecular Dynamics Approach: Application to the Excitation Spectrum of Cytosine in the Native DNA Environment. The Journal of Chemical Physics 2006, 125 (21), 211101. https://doi.org/10.1063/1.2403847.\u00a0\u21a9
Valiev, M.; Garrett, B. C.; Tsai, M.-K.; Kowalski, K.; Kathmann, S. M.; Schenter, G. K.; Dupuis, M. Hybrid Approach for Free Energy Calculations with High-Level Methods: Application to the SN2 Reaction of CHCl3 and OH\u2212 in Water. The Journal of Chemical Physics 2007, 127 (5), 051102. https://doi.org/10.1063/1.2768343.\u00a0\u21a9
Fan, P.-D.; Valiev, M.; Kowalski, K. Large-Scale Parallel Calculations with Combined Coupled Cluster and Molecular Mechanics Formalism: Excitation Energies of Zinc\u2013Porphyrin in Aqueous Solution. Chemical Physics Letters 2008, 458 (1), 205\u2013209. https://doi.org/10.1016/j.cplett.2008.04.071.\u00a0\u21a9
Valiev, M.; Bylaska, E. J.; Dupuis, M.; Tratnyek, P. G. Combined Quantum Mechanical and Molecular Mechanics Studies of the Electron-Transfer Reactions Involving Carbon Tetrachloride in Solution. The Journal of Physical Chemistry A 2008, 112 (12), 2713\u20132720. https://doi.org/10.1021/jp7104709.\u00a0\u21a9
Giudetti, G.; Polyakov, I.; Grigorenko, B. L.; Faraji, S.; Nemukhin, A. V.; Krylov, A. I. How Reproducible Are QM/MM Simulations? Lessons from Computational Studies of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur. Journal of Chemical Theory and Computation 2022, 18 (8), 5056\u20135067. https://doi.org/10.1021/acs.jctc.2c00286.\u00a0\u21a9
Zlobin, A.; Belyaeva, J.; Golovin, A. Challenges in Protein QM/MM Simulations with Intra-Backbone Link Atoms. Journal of Chemical Information and Modeling 2023, 63. https://doi.org/10.1021/acs.jcim.2c01071.\u00a0\u21a9
The structure of the system in QM/MM calculations is provided by the restart file (extension .rst) and not by the geometry block as it would be for pure QM calculations. The parameters of classical interaction are given by the topology file (extension .top). These two files are REQUIRED for QM/MM calculations and can be generated by the prepare module. In a typical setting this \u201cpreparation stage\u201d is performed separately from the main QM/MM simulation.
- [Prerequisites](QMMM_Preparation_Prerequisites.md)\n - [QM region definition](Qmmm_preparation_basic.md)\n - [Solvation](Qmmm_preparation_solvation.md)\n - [Permanent Constraints](Qmmm_preparation_constraints.md)\n
"},{"location":"QMMM_Transition_States.html","title":"QMMM Transition States","text":"QM/MM transition states calculations for qm or qmlink regions can be performed using
task\u00a0qmmm
saddle
The overall algorithm is very similar to QM/MM optimization calculations, but instead of optimization, transition state search will be performed for qm or qmlink region for specified number of steps ( as defined by maxiter keyword). The remaining classical regions (if any) will be optimized following the standard optimization protocol, which may involve, if specified, ESP charge representation of the QM atoms (a recommended option).
The success transition state calculations is strongly dependent on the initial guess. User may consider generation of the latter using QM/MM reaction pathway calculation. Another useful strategy involves precalculation of the Hessian. Following the example presented above one could have precalculated numerical Hessian for the qm region
...
qmmm
region\u00a0qm
end
freq
animate
end
task\u00a0qmmm\u00a0dft\u00a0freq
and then used this information in the TS calculation
...
driver
clear
inhess\u00a02\u00a0\u00a0#read\u00a0in\u00a0hessian\u00a0from\u00a0perm\u00a0directory
moddir\u00a01\u00a0\u00a0#follow\u00a01st\u00a0mode
end
qmmm
bqzone\u00a015.0
region\u00a0\u00a0qm\u00a0solvent
xyz\u00a0\u00a0ts
maxiter\u00a010\u00a01000
ncycles\u00a02
density\u00a0espfit
end
task\u00a0qmmm\u00a0dft\u00a0saddle
The parameters defining calculation of the QM region (including basis sets) must be present in the traditional NWChem input format except for the geometry block.
The geometrical information will be constructed automatically using information contained in the restart file.
"},{"location":"Qmmm_NEB_Calculations.html","title":"QMMM Reaction Pathway Calculations with NEB","text":"Experimental implementation of Nudged Elastic Band (NEB) method is available for reaction pathway calculations with QM/MM. The actual pathway/beads construction involves (by default) only the region containing QM and link atoms (referred to as qmlink). The rest of the system plays a passive role and is quenched/optimized each time a gradient on a bead is calculated.
The initial guess for NEB pathway can be generated using geometries of the starting and ending point provided by the .rst files. These are set in the input using the following directive
set\u00a0qmmm:neb_path_limits\u00a0xxx_start.rst\u00a0xxx_end.rst\n
where xxx_start.rst xxx_end.rst refers to starting and ending point of the NEB pathway. Both rst files have to be present at the top level directory. It should be noted that only coordinates of qmlink region will be used from these two files. The initial coordinates for the rest of the system come from reference rst file provided in the MD block
md\n\u00a0\u00a0system\u00a0xxx_ref\n\u00a0\u00a0...\nend\n
Typically this reference restart file ( xxx_ref.rst ) would be a copy of a restart file for starting or ending point.
The number of beads in the NEB pathway, initial optimization step size, and number of optimization steps are set using the following directives
set\u00a0neb:nbeads\u00a010\nset\u00a0neb:stepsize\u00a010\nset\u00a0neb:steps\u00a020\n
The calculation starts by constructing initial guess for the pathway (consisting of a sequence of numbered rst files) by combining linearly interpolated coordinates of the qmlink regions from starting and ending rst files and classical coordinates from the reference file. Next phase involves calculation of the gradients on qmlink region atoms for each of the beads. This involves two steps. First classical region around the qmlink region is relaxed following standard QM/MM optimization protocol. Aside the fact that optimization region cannot be qmlink, all other optimization directives apply and should be set in the QM/MM block following standard convention, e.g.
qmmm\n\u00a0region\u00a0\u00a0solvent\n\u00a0maxiter\u00a01000\n\u00a0ncycles\u00a01\n\u00a0density\u00a0espfit\nend\n
or
qmmm\n\u00a0region\u00a0\u00a0mm_solute\u00a0solvent\n\u00a0maxiter\u00a0300\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01000\n\u00a0ncycles\u00a03\n\u00a0density\u00a0espfit\nend\n
In both examples presented above we utilized espfit option for density to speed up calculations. Note that optimization region cannot be qmlink!
After the optimization has been performed the gradient on qmlink region is calculated. The procedure is repeated for all the beads. After that the bead coordinates will be advanced following NEB protocol and the entire cycle will be repeated again.
In addition to interpolated initial guess, one can also specify custom initial path represented by numbered sequence of restart files stored in the perm directory. This behavior will be triggered automatically in the absence of qmmm:neb_path_limits directive. The default naming of the custom initial path is of the form XXX.rst, where is the prefix of reference restart file as defined in MD block and XXX is the 3-digit integer counter with zero blanks (001,002, \u2026, 010, 011, ..). If needed the prefix for the custom initial path can be adjusted using
set\u00a0qmmm:neb_path
The progress of NEB calculation can be monitored by
grep\u00a0gnorm\u00a0<output file>\n
Experience shows that the value of gnorm less or around O(10^-2) indicates converged pathway. The current pathway in the XYZ format can be found in the output file (look for XYZ FILE string) and viewed as animation in some of the molecular viewers (e.g. JMOL)
"},{"location":"Qmmm_convergence.html","title":"Qmmm convergence","text":"convergence\u00a0\u00a0<\u00a0double\u00a0precision\u00a0etol\u00a0default\u00a01.0d-4>\n
This directive controls convergence of geometry optimization. The optimization is deemed converged if absolute difference in total energies between consecutive optimization cycles becomes less than etol.
"},{"location":"Qmmm_density.html","title":"Qmmm density","text":"density\u00a0\u00a0[espfit]\u00a0[static]\u00a0[dynamical]\u00a0default\u00a0dynamical\n
This directive controls the electrostatic representation of fixed QM region during optimization/dynamics of classical regions. It has no effect when position of QM atoms are changing.
dynamical is an option where QM region is treated the standard way, through the recalculation of the wavefunction calculated and the resulting electron density is used to compute electrostatic interactions with classical atoms. This option is the most expensive one and becomes impractical for large scale optimizations.
static option will not recalculate QM wavefunction but will still use full electron density in the computations of electrostatic interactions.
espfit option will not recalculate QM wavefunction nor it will use full electron density. Instead, a set of ESP charges for QM region will be calculated and used to compute electrostatic interactions with the MM regions. This option is the most efficient and is strongly recommended for large systems.
Note that both \u201cstatic\u201d and \u201cespfit\u201d options do require the presence of the movecs file. It is typically available as part as part of calculation process. Otherwise it can be generated by running qmmm energy calculation.
In most calculations default value for density would dynamical, with the exception of free energy calculations where default setting espfit will be used.
"},{"location":"Qmmm_freq.html","title":"QM/MM hessian and frequency calculations","text":""},{"location":"Qmmm_freq.html#setup","title":"Setup","text":"QM/MM hessian and frequency calculations are invoked though the following task directives
task qmmm `<qmtheory>` hessian\n
or
task qmmm `<qmtheory>` freq\n
Only numerical implementation are supported at this point and will be used even in the absence of \u201cnumerical\u201d keyword. Other than standard QM/MM directives no additional QM/MM input is required for default hessian/frequency for all the QM atoms. Using region keyword(first region only), hessian/frequency calculations can also be performed for classical solute atoms. If only classical atoms are involved density keyword can be utilized to enable frozen density or ESP charge representation for fixed QM region. Hessian/frequency calculations for solvent are not possible.
"},{"location":"Qmmm_freq.html#examples","title":"Examples","text":""},{"location":"Qmmm_freq.html#example-of-qmmm-frequency-calculation-for-classical-region","title":"Example of QM/MM frequency calculation for classical region","text":"This example illustrates QM/MM frequency calculation for Ala-Ser-Ala system. In this case instead of default QM region (see prepare block), the calculation is performed on classical solute part of the system as defined by region directive in QM/MM block. The electrostatic field from fixed QM region is represented by point ESP charges (see density directive). These ESP charges are calculated from wavefunction generated as a result of energy calculation.
memory total 800 Mb \n\n start asa \n\n permanent_dir ./perm \n scratch_dir ./data \n\n #this will generate topology file ([asa.top](asa.top)), restart ([asa_ref.rst](asa_ref.rst)), and pdb ([asa_ref.pdb](asa_ref.pdb)) files. \n prepare \n source [asa.pdb](asa.pdb) \n new_top new_seq \n new_rst \n modify atom 2:_CB quantum \n modify atom 2:2HB quantum \n modify atom 2:3HB quantum \n modify atom 2:_OG quantum \n modify atom 2:_HG quantum \n center \n orient \n solvate \n update lists \n ignore \n write [asa_ref.rst](asa_ref.rst) \n write [asa_ref.pdb](asa_ref.pdb) # Write out PDB file to check structure \n end \n task prepare\n\n md \n system asa_ref \n end \n\n basis \"ao basis\" \n * library \"6-31G*\" \n end \n\n dft \n print low \n iterations 500 \n end \n\n qmmm \n region mm_solute \n density espfit \n end \n\n # run energy calculation to generate wavefunction file for subsequent ESP charge generation \n task qmmm dft energy \n task qmmm dft freq\n
"},{"location":"Qmmm_maxiter.html","title":"Qmmm maxiter","text":" maxiter [maxiter1] [maxiter2] [maxiter3]\n
This directive controls maximum number of iterations for the optimizations of regions as defined by by regions directive. User is strongly encouraged to set this directive explicitly as the default value shown below may not be appropriate in all the cases:
if(region.eq.\"qm\") then\n maxiter = 20\n else if (region.eq.\"qmlink\") then\n maxiter = 20\n else if (region.eq.\"mm\") then\n maxiter = 100\n else if (region.eq.\"solvent\") then\n maxiter = 100\n else\n maxiter = 50\n end if\n
"},{"location":"Qmmm_ncycles.html","title":"Qmmm ncycles","text":" ncycles < [number] default 1 >\n
This directive controls the number of optimization cycles where the defined regions will be optimized in succession, or number of sampling cycles in free energy calculations.
"},{"location":"Qmmm_nsamples.html","title":"Qmmm nsamples","text":"nsamples\n
This directive is required for free energy calculations and defines number of samples for averaging during single cycle.
"},{"location":"Qmmm_optimization.html","title":"QMMM Optimization","text":"QM/MM optimization is based on multi-region optimization methodology and is invoked by
task\u00a0qmmm\u00a0<qmtheory>\u00a0optimize\n
The overall algorithm involves alternating optimizations of QM and MM regions until convergence is achieved. This type of approach offers substantial savings compared to direct optimization of the entire system as a whole. In the simplest case of two regions (QM and MM) the algorithm is comprised of the following steps:
The optimization process is controlled by the following keywords:
Here is an example QM/MM block that provides practical illustration of all these keywords for a generic optimization case where QM molecule(s) are embedded in the solvent
qmmm\n\u00a0\u00a0[region]\u00a0qm\u00a0\u00a0\u00a0solvent\n\u00a0\u00a0[maxiter]\u00a010\u00a0\u00a0\u00a03000\n\u00a0\u00a0[ncycles]\u00a05\n\u00a0\u00a0[density]\u00a0espfit\n\u00a0\u00a0[xyz]\u00a0foo\nend\n
We have two regions in the system \u201cqm\u201d and \u201csolvent\u201d and we would like to optimize them both, thus the line
\u00a0[region]\u00a0qm\u00a0\u00a0\u00a0solvent\n
Our QM region is presumably small and the maximum number of iterations (within a single optimization pass) is set to 10. The solvent region is typically much larger (thousands of atoms) and the maximum number of iterations is set to a much large number 3000:
[maxiter]\u00a010\u00a0\u00a0\u00a03000\n
We would like to perform a total of 5 optimization passes, giving us a total of 5*10=50 optimization steps for QM region and 5*3000=15000 optimization steps for solvent region:
\u00a0[ncycles]\u00a05\n
We are requesting QM region to be represented by point ESP charges during the solvent optimization:
[density]\u00a0espfit\n
Finally we are requesting that the coordinates of the first region to be saved in the form of numbered xyz files:
[xyz]\u00a0foo\n
"},{"location":"Qmmm_preparation_basic.html","title":"Qmmm preparation basic","text":"One of major required pieces of information that has to be provided in the prepare block for QM/MM simulations is the definition of the QM region. This can be accomplished using modify directive used either per atom
modify atom <integer isgm>:<string atomname> quantum\n
or per segment/residue basis
modify segment <integer isgm> quantum\n
Here isgm and atomname refer to the residue number and atom name record as given in the PDB file. It is important to note that that the leading blanks in atom name record should be indicated with underscores. Per PDB format guidelines the atom name record starts at column 13. If, for example, the atom name record \u201cOW\u201d starts in the 14th column in PDB file, it will appear as \u201c_OW\u201d in the modify atom directive in the prepare block.
In the current implementation only solute atoms can be declared as quantum. If part of the solvent has to be treated quantum mechanically then it has to redeclared to be solute. The definition of QM region should be accompanied by update lists and ignore directives. Here is an example input file that will generate QM/MM restart and topology files for the ethanol molecule:
title \"Prepare QM/MM calculation of ethanol\" \nstart etl \n\n[prepare](Prepare) \n#--*name of the pdbfile* \n source [etl0.pdb](etl0.pdb) \n#--*generate new topology and sequence file* \n new_top new_seq \n#--*generate new restart file* \n new_rst \n#--*define quantum region (note the use of underscore)* \n modify atom 1:_C1 quantum \n modify atom 1:2H1 quantum \n modify atom 1:3H1 quantum \n modify atom 1:4H1 quantum \n update lists \n ignore \n#--*save restart file* \n write etl_ref.rst \n#--*generate pdb file* \n write [etl_ref.pdb](etl_ref.pdb) \nend \ntask prepare\n
Running the input shown above will produce (among other things) the topology file (etl.top), the restart file (etl_ref.rst), and the pdb file etl_ref.pdb. The prefix for the topology file follows after the rtdb name specified in the start directive in the input (i.e. \u201cstart etl\u201d), while the names for the restart and pdb files were specified explicitly in the input file. In the absence of the explicit write statement for the restart file, it would be generated under the name \u201cetl_md.rst\u201d. The pdb file would only be written in the presence of the explicit write statement.
Tip: It is strongly recommended to check the correctness of the generated pdb file versus the original \u201csource\u201d pdb file to catch possible errors in the formatting of the pdb and fragment files.
"},{"location":"Qmmm_preparation_constraints.html","title":"Qmmm preparation constraints","text":"Fixing atoms outside a certain distance from the QM region can also be accomplished using prepare module. These constraints will then be permanently embedded in the resulting restart file, which may be advantageous for certain types of QM/MM simulations. The actual format for the constraint directive to fix whole residues is
fix segments beyond <real radius> <integer residue number>:<string atom name>\n
or to fix on atom basis
fix atoms beyond <real radius> <integer residue number>:<string atom name>\n
This example illustrates the use of permanent fix directives during preparation stage
start etl\nprepare\nsource etl0.pdb\nnew_top new_seq\nnew_rst\ncenter\norient\n#solvation in 40 A cubic box\nsolvate cube 4.0\nmodify segment 1 quantum\n#fix residues more than 20 A away from ethanol oxygen atom\nfix segments beyond 2.0 1:_O\nupdate lists\nignore\nwrite etl_ref.rst\nwrite etl_ref.pdb\nend\ntask prepare\n
"},{"location":"Qmmm_preparation_solvation.html","title":"Qmmm preparation solvation","text":"During the preparation stage of QM/MM calculations the system may also be solvated using solvate directive of the prepare module. It is recommended that solvation is performed in conjunction with center and orient directives.
Here is an example where the ethanol molecule is declared quantum and solvated in a box of spce waters:
title \"Prepare QM/MM calculation of solvated ethanol\"\nstart etl\nprepare\nsource etl0.pdb\nnew_top new_seq\nnew_rst\n#center and orient prior to solvation\ncenter\norient\n#solvation in 1 nm by 2 nm by 3 nm box\nsolvate box 1.0 2.0 3.0\n#the whole ethanol is declared quantum now\nmodify segment 1 quantum\nupdate lists\nignore\nwrite etl_ref.rst\nwrite etl_ref.pdb\nend\ntask prepare\n
"},{"location":"Qmmm_region.html","title":"Qmmm region","text":"region\u00a0\u00a0<\u00a0[region1]\u00a0\u00a0[region2]\u00a0\u00a0[region3]\u00a0>\n
This directive specifies active region(s) for optimization, dynamics, frequency, and free energy calculations. Up to three regions can be specified, those are limited to
Only the first region will be used in dynamics, frequency, and free energy calculations. In the geometry optimizations, all three regions will be optimized using the following optimization methods
\u00a0\u00a0\u00a0\u00a0if\u00a0(region.eq.\"qm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"qmlink\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm_solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"lbfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solvent\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"all\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0end\u00a0if\n
where \u201cbfgs\u201d stands for Broyden\u2013Fletcher\u2013Goldfarb\u2013Shanno (BFGS) optimization method, \u201clbfgs\u201d limited memory version of quasi-newton, and \u201csd\u201d simple steepest descent algorithm. These assignments can be potentially altered using method directive.
"},{"location":"Qmmm_rename.html","title":"Qmmm rename","text":"This directive is allows to rename atoms in the QM region, based on the external file which specifies desired name( (1st column) and its PDB index (2nd column). The file is assumed to be located in the current run directory.
For example, if we need to rename atoms CB and OG that are part of our QM region
... \n ATOM 13 N SER 2 0.211 0.284 -1.377 0.00 N \n ATOM 14 H SER 2 0.886 1.158 -1.257 0.00 H \n ATOM 15 CA SER 2 -0.320 -0.351 -0.166 0.00 C \n ATOM 16 HA SER 2 -1.405 -0.183 -0.132 0.00 H \n ATOM 17 CB SER 2 -0.001 -1.879 -0.106 0.00 C \n ATOM 18 2HB SER 2 1.092 -2.012 -0.038 0.00 H \n ATOM 19 3HB SER 2 -0.469 -2.317 0.784 0.00 H \n ATOM 20 OG SER 2 -0.452 -2.678 -1.192 0.00 O \n ATOM 21 HG SER 2 -1.351 -2.421 -1.392 0.00 H \n ATOM 22 C SER 2 0.252 0.338 1.076 0.00 C \n ...\n
the following qmmm block can be used
... \n qmmm \n ... \n rename name.dat \n ... \n end \n\n task qmmm dft energy\n
where name.dat file
C1 17\nOX 20\n
Here atoms are identified by the corresponding PDB atom index and renamed from default element based naming to C1 and OX.
"},{"location":"Qmmm_xyz.html","title":"Qmmm xyz","text":"xyz\u00a0\u00a0\u00a0[filename1]\u00a0\u00a0[filename2]\u00a0\u00a0[filename3]\n
This directive triggers generation for numbered xyz files during QM/MM optimization. Files are saved into the permanent directory in the following form
system_nnn_kkk.xyz\n
where nnn is a optimization cycle number and kkk is the iteration counter. No xyz output will be performed for solvent region.
"},{"location":"Quantum-Mechanical-Methods.html","title":"Quantum Mechanical Methods","text":""},{"location":"Quantum-Mechanical-Methods.html#hartree-fock-hf-theory","title":"Hartree-Fock (HF) Theory","text":""},{"location":"Quantum-Mechanical-Methods.html#density-functional-theory-dft","title":"Density Functional Theory (DFT)","text":""},{"location":"Quantum-Mechanical-Methods.html#excited-state-calculations-cis-tdhf-tddft","title":"Excited-State Calculations (CIS, TDHF, TDDFT)","text":""},{"location":"Quantum-Mechanical-Methods.html#real-time-tddft","title":"Real-time TDDFT","text":""},{"location":"Quantum-Mechanical-Methods.html#plane-wave-density-functional-theory-plane-wave-dft","title":"Plane-Wave Density Functional Theory (plane-wave DFT)","text":""},{"location":"Quantum-Mechanical-Methods.html#tensor-contraction-engine-ci-mbpt-and-cc","title":"Tensor Contraction Engine: CI, MBPT, and CC","text":""},{"location":"Quantum-Mechanical-Methods.html#mp2","title":"MP2","text":""},{"location":"Quantum-Mechanical-Methods.html#coupled-cluster-calculations","title":"Coupled Cluster Calculations","text":""},{"location":"Quantum-Mechanical-Methods.html#multiconfiguration-scf","title":"Multiconfiguration SCF","text":""},{"location":"Quantum-Mechanical-Methods.html#gw-calculations","title":"GW calculations","text":""},{"location":"Quantum-Molecular-Dynamics.html","title":"Quantum Molecular Dynamics","text":""},{"location":"Quantum-Molecular-Dynamics.html#plane-wave-basis","title":"Plane-Wave Basis","text":""},{"location":"Quantum-Molecular-Dynamics.html#gaussian-basis-aimd","title":"Gaussian Basis AIMD","text":""},{"location":"Quantum.html","title":"Quantum","text":"The quantum features are routines for printing out one- and two-electron integrals that can be utilized in quantum algorithms. The outputs can be interpreted and formatted in YAML files that include the integrals and basic information including initial wavefunction guesses for quantum algorithms. There are currently two options for integrals:
"},{"location":"Quantum.html#bare-hamiltonian","title":"Bare Hamiltonian","text":"To print the bare Hamiltonian, you must set up a CCSD calculation with the following parameters: The symmetry must be declared as \u2018C1\u2019 In the TCE block, you must include the following:
2eorb\n 2emet 13\n nroots ### (Optional, but will include leading excitations for excited-state quantum calculations)\n
You must set the printing parameters at the end of the input file:
set tce:print_integrals T\n set tce:qorb ### (Total number of orbitals you wish to be printed)\n set tce:qela ### (Number of alpha electrons)\n set tce:qelb ### (number of beta electrons)\n
Notes:
The double unitary coupled-cluster (DUCC) Hamiltonian is a way of incorporating correlation effects (mainly dynamical) into a reduced dimensionality Hamiltonian based on a defined active space. The procedure currently only reduces the virtual space and all occupied orbitals are considered active. Only the ground-state implementation is available in the current NWChem release.
To print the DUCC Hamiltonian, you must set up a CCSD calculation with the following parameters:
2eorb\n 2emet 13\n
You must set the printing parameters at the end of the input file:
set tce:qducc T\n set tce:nactv ### (The number of active virtual orbitals. \n Remember that all occupied orbitals are active as well)\n set tce:nonhf F/T (If a non-RHF reference is used, set to T. Otherwise, keep as F.)\n set tce:ducc_model ### (Determines how the similarity transformed Hamiltonian is truncated. See note below.)\n
Notes:
(IJ|KL) = (JI|LK) = (KL|IJ) = (LK|JI) \n Separately, (IJ|LK) = (JI|KL) = (KL|JI) = (LK|IJ) \n But (IJ|KL) /= (IJ|LK) \n
Once the calculation is completed, the integrals and basic information including initial wavefunction guesses for quantum algorithms can be extracted into a YAML file. To generate the YAML file, executed the following command:
python $NWCHEM_TOP/contrib/quasar/export_chem_library_yaml.py < {NWChem output file} > {YAML file name}\n
Note: * the \u2018fci_energy\u2019 in the YAML file is taken to be the energy of the correlated method, which, in either case, is the CCSD energy.
"},{"location":"Quantum.html#example-input-file-for-bare-hamiltonian","title":"Example input file for Bare Hamiltonian","text":"echo\n\nstart Lih\n\ngeometry units angstroms\nsymmetry C1\n Li 0 0 0.000\n H 0 0 1.600\nend\n\nbasis spherical\n * library sto-3g\nend\n\nscf\n singlet\n rhf\n thresh 1e-10\nend\n\ntce\n 2eorb\n 2emet 13\n ccsd\n thresh 1.0d-8\n maxiter 150\n nroots 2\nend\n\nset tce:print_integrals T\nset tce:qorb 6\nset tce:qela 2\nset tce:qelb 2\n\ntask tce energy\n
"},{"location":"Quantum.html#example-input-file-for-ducc","title":"Example input file for DUCC","text":"echo\n\nstart Lih\n\ngeometry units angstroms\nsymmetry C1\n Li 0 0 0.000\n H 0 0 1.600\nend\n\nbasis spherical\n * library sto-3g\nend\n\nscf\n singlet\n rhf\n thresh 1e-10\nend\n\ntce\n 2eorb\n 2emet 13\n ccsd\n thresh 1.0d-8\n maxiter 150\nend\n\nset tce:qducc T\nset tce:nactv 4\nset tce:nonhf F\nset tce:ducc_model 3\n\ntask tce energy\n
"},{"location":"R-3.html","title":"R 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0148\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a018\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n-x+2/3,-y+1/3,-z+1/3\n+y+2/3,-x+y+1/3,-z+1/3\n+x-y+2/3,+x+1/3,-z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n-x+1/3,-y+2/3,-z+2/3\n+y+1/3,-x+y+2/3,-z+2/3\n+x-y+1/3,+x+2/3,-z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a018\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0148\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n-x,-y,-z\n-z,-x,-y\n-y,-z,-x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"R-3c.html","title":"R 3c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0167\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a036\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z+1/2\n+x-y,-y,-z+1/2\n-x,-x+y,-z+1/2\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n+y+2/3,+x+1/3,-z+5/6\n+x-y+2/3,-y+1/3,-z+5/6\n-x+2/3,-x+y+1/3,-z+5/6\n-x+2/3,-y+1/3,-z+1/3\n+y+2/3,-x+y+1/3,-z+1/3\n+x-y+2/3,+x+1/3,-z+1/3\n-y+2/3,-x+1/3,+z+5/6\n-x+y+2/3,+y+1/3,+z+5/6\n+x+2/3,+x-y+1/3,+z+5/6\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n+y+1/3,+x+2/3,-z+7/6\n+x-y+1/3,-y+2/3,-z+7/6\n-x+1/3,-x+y+2/3,-z+7/6\n-x+1/3,-y+2/3,-z+2/3\n+y+1/3,-x+y+2/3,-z+2/3\n+x-y+1/3,+x+2/3,-z+2/3\n-y+1/3,-x+2/3,+z+7/6\n-x+y+1/3,+y+2/3,+z+7/6\n+x+1/3,+x-y+2/3,+z+7/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a021\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a023\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a024\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a026\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a028\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.16666666667\n\n=\u00a0operator\u00a029\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.16666666667\n\n=\u00a0operator\u00a030\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.16666666667\n\n=\u00a0operator\u00a031\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a033\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\n=\u00a0operator\u00a035\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\n=\u00a0operator\u00a036\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0167\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n-y+1/2,-x+1/2,-z+1/2\n-x+1/2,-z+1/2,-y+1/2\n-z+1/2,-y+1/2,-x+1/2\n-x,-y,-z\n-z,-x,-y\n-y,-z,-x\n+y+1/2,+x+1/2,+z+1/2\n+x+1/2,+z+1/2,+y+1/2\n+z+1/2,+y+1/2,+x+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"R-3m.html","title":"R 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0166\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a036\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n+y+2/3,+x+1/3,-z+1/3\n+x-y+2/3,-y+1/3,-z+1/3\n-x+2/3,-x+y+1/3,-z+1/3\n-x+2/3,-y+1/3,-z+1/3\n+y+2/3,-x+y+1/3,-z+1/3\n+x-y+2/3,+x+1/3,-z+1/3\n-y+2/3,-x+1/3,+z+1/3\n-x+y+2/3,+y+1/3,+z+1/3\n+x+2/3,+x-y+1/3,+z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n+y+1/3,+x+2/3,-z+2/3\n+x-y+1/3,-y+2/3,-z+2/3\n-x+1/3,-x+y+2/3,-z+2/3\n-x+1/3,-y+2/3,-z+2/3\n+y+1/3,-x+y+2/3,-z+2/3\n+x-y+1/3,+x+2/3,-z+2/3\n-y+1/3,-x+2/3,+z+2/3\n-x+y+1/3,+y+2/3,+z+2/3\n+x+1/3,+x-y+2/3,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a021\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a023\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a024\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a026\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a028\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a029\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a030\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a031\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a033\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a035\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a036\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0166\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n-y,-x,-z\n-x,-z,-y\n-z,-y,-x\n-x,-y,-z\n-z,-x,-y\n-y,-z,-x\n+y,+x,+z\n+x,+z,+y\n+z,+y,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"R3.html","title":"R3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0146\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a09\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0146\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a03\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"R32.html","title":"R32","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0155\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R32\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a018\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n+y+2/3,+x+1/3,-z+1/3\n+x-y+2/3,-y+1/3,-z+1/3\n-x+2/3,-x+y+1/3,-z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n+y+1/3,+x+2/3,-z+2/3\n+x-y+1/3,-y+2/3,-z+2/3\n-x+1/3,-x+y+2/3,-z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0155\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R32\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n-y,-x,-z\n-x,-z,-y\n-z,-y,-x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"R3c.html","title":"R3c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0161\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a018\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n-y+2/3,-x+1/3,+z+5/6\n-x+y+2/3,+y+1/3,+z+5/6\n+x+2/3,+x-y+1/3,+z+5/6\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n-y+1/3,-x+2/3,+z+7/6\n-x+y+1/3,+y+2/3,+z+7/6\n+x+1/3,+x-y+2/3,+z+7/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\n=\u00a0operator\u00a017\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\n=\u00a0operator\u00a018\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0161\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n+y+1/2,+x+1/2,+z+1/2\n+x+1/2,+z+1/2,+y+1/2\n+z+1/2,+y+1/2,+x+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"R3m.html","title":"R3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0160\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a018\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n-y+2/3,-x+1/3,+z+1/3\n-x+y+2/3,+y+1/3,+z+1/3\n+x+2/3,+x-y+1/3,+z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n-y+1/3,-x+2/3,+z+2/3\n-x+y+1/3,+y+2/3,+z+2/3\n+x+1/3,+x-y+2/3,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a017\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a018\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0160\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n+y,+x,+z\n+x,+z,+y\n+z,+y,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"RT-TDDFT.html","title":"Real-time TDDFT","text":""},{"location":"RT-TDDFT.html#overview","title":"Overview","text":"Real-time time-dependent density functional theory (RT-TDDFT) is a DFT-based approach to electronic excited states based on integrating the time-dependent Kohn-Sham (TDKS) equations in time. The theoretical underpinnings, strengths, and limitations are similar to traditional linear-response (LR) TDDFT methods, but instead of a frequency domain solution to the TDKS equations, RT-TDDFT yields a full time-resolved, potentially non-linear solution. Real-time simulations can be used to compute not only spectroscopic properties (e.g., absorption spectra, polarizabilites, etc), but also the time and space-resolved electronic response to arbitrary external stimuli (e.g., electron charge dynamics after laser excitation). For theoretical and computational details, please refer to the following paper:
This functionality is built on the Gaussian basis set DFT module, and will work for closed-shell (spin-restricted) and open-shell (spin unrestricted) calculations with essentially any combination of basis set and exchange-correlation functional in NWChem. The current implementation assumes frozen nuclei (Born-Oppenheimer approximation).
In a nutshell, running a RT-TDDFT calculation takes the following form:
Unless specified otherwise, all inputs and outputs are in atomic units. Some useful conversions are:
Quantity Conversion Time 1 au = 0.02419 fs Length 1 au = 0.5292 A Energy 1 au = 27.2114 eV Electric field 1 au = 514.2 V/nm Dipole moment 1 au = 2.542 D"},{"location":"RT-TDDFT.html#syntax","title":"Syntax","text":"The charge, geometry, basis set, and DFT options are all specified as normal, using their respective syntax. Real-time TDDFT parameters are supplied in the RT_TDDFT
block (note, nothing is case-sensitive), with all possible options summarized below, and each discussed in detail afterwards.
RT_TDDFT \n [TMAX <double default 1000>] \n [DT <double default 0.1>] \n [TAG <string default \"<rt_tddft>: \"] \n [LOAD (scf || vectors <string>)] \n [NCHECKS <integer default 10>] \n [NPRINTS (* || <integer>)] \n [NRESTARTS (* || <integer>)] \n [TOLERANCES (zero <double default 1e-8> || series <double default 1e-10> || interpol <double default 1e-7>)] \n [PROPAGATOR (euler || rk4 || magnus) default magnus] \n [EXP (diag || pseries)] \n [PROF] \n [NOPROP] \n [STATIC] \n [PRINT (*, dipole, quadrupole, field, moocc, field, energy, cputime, charge, convergence, s2)] \n [EXCITE <string geomname>` with <string fieldname>] \n [FIELD] \n ... \n [END] \n [VISUALIZATION] \n ... \n [END] \n [LOAD RESTART]\nEND\n
"},{"location":"RT-TDDFT.html#tmax-simulation-time","title":"TMAX: Simulation time","text":"This option specifies the maximum time (in au) to run the simulation before stopping, which must be a positive real number. In practice, you can just stop the simulation early, so in most cases it is simplest to just set this to a large value to ensure you capture all the important dynamics (see the example of resonant ultraviolet excitation of water). For most valence excitations, for example, 1000 au is overkill so you might want to automatically stop at 500 au:
rt_tddft\n ... \n tmax 500.0 \n ... \nend\n
"},{"location":"RT-TDDFT.html#dt-time-step","title":"DT: Time step","text":"This specifies the electronic time step for time integration. A larger time step results in a faster simulation, but there are two issues which limit the size of the time step. First, the integration algorithm can become unstable and/or inaccurate for larger time steps, which depends on the integrator used. Very roughly speaking, the second order Magnus integrator should be reliable for time steps up to 0.2 au. Second, you must choose a time step small enough to capture the oscillations of interest, i.e., to resolve an excitation of energy \u03c9, your time step needs to be smaller than \u03c0/\u03c9, and typically a tenth of that for accuracy. For example, to capture high energy oscillations such as core-level excitations (e.g., \u03c9 = 50au) you might want a relative small time step:
rt_tddft\n ...\n dt 0.01\n ...\nend\n
It is always good practice to check that your results are independent of time step.
"},{"location":"RT-TDDFT.html#tag-output-label","title":"TAG: Output label","text":"This option sets a label for the output for convenient parsing (e.g., with \u201cgrep\u201d). Every output line with time-dependent data will begin with this string (set to <rt_tddft>:
by default). For example setting:
rt_tddft\n ...\n tag \"nameofrun\"\n ...\nend\n
will result in outputs that look like:
...\nnameofrun 2.20000 -7.589146713114E+001 # Etot\n...\n
"},{"location":"RT-TDDFT.html#nchecks-number-of-run-time-check-points","title":"NCHECKS: Number of run-time check points","text":"This option takes an integer number (default 10), or *
which means every step, which sets the total of number of run-time checkpoints, where various sanity checks are made such as symmetries, idempotency, traces, etc. These checks are not terribly efficient (e.g., involve re-building the TD Fock matrix) so excessive checking will slow down execution.
rt_tddft\n ...\n nchecks 10\n ...\nend\n
"},{"location":"RT-TDDFT.html#nprints-number-of-print-points","title":"NPRINTS: Number of print points","text":"This sets the number of print points, i.e., the total number of time-dependent observables (e.g., dipole, charge, energy) that are computed and printed. It either takes an integer number or *
which means every time step (this is the default). Since there is no appreciable cost to computing and printing these quantities, there is usually no need to change this from *
.
rt_tddft\n ...\n nprints *\n ...\nend\n
"},{"location":"RT-TDDFT.html#nrestarts-number-of-restart-checkpoints","title":"NRESTARTS: Number of restart checkpoints","text":"This sets the number of run-time check points where the time-dependent complex density matrix is saved to file, allowing the simulation to be restarted) from that point. By default this is set to 0. There is no significant computational cost to restart checkpointing, but of course there is some disk I/O cost (which may become somewhat significant for larger systems). For example, in the following example there will be 100 restart points, which corresponds to 1 backup every 100 time steps.
rt_tddft\n ...\n tmax 1000.0\n dt 0.1\n nrestarts 100\n ...\nend\n
"},{"location":"RT-TDDFT.html#tolerances-controlling-numerical-tolerances","title":"TOLERANCES: Controlling numerical tolerances","text":"This option controls various numerical tolerances:
zero
: threshold for checks that quantities are zero, e.g., in symmetry checks (default 1e-8)series
: numerical convergence for series, e.g., matrix exponentiation (default 1e-10)interpol
: numerical convergence for interpolation, e.g., in Magnus propagator (default 1e-7)Occasionally it is useful to loosen the interpolation tolerances if the Magnus interpolator requires an excessive amount of steps; usually this will not impact accuracy. For example, this sets the tolerances to their defaults with a looser interpolation tolerance:
rt_tddft\n ...\n tolerances zero 1d-8 series 1d-10 interpol 1e-5\nend\n
"},{"location":"RT-TDDFT.html#propagator-selecting-the-integrator-method","title":"PROPAGATOR: Selecting the integrator method","text":"This selects the propagator (i.e., time integrator) method. Possible choices include euler
for Euler integration (terrible, you should never use this), rk4
for 4th order Runge-Kutta, and magnus
for 2nd order Magnus with self-consistent interpolation. In virtually all cases Magnus is superior in terms of stability. Euler or rk4 are perhaps only useful for debugging or simplicity (e.g., for code development).
rt_tddft\n ...\n propagator magnus\n ...\nend\n
"},{"location":"RT-TDDFT.html#exp-selecting-the-matrix-exponentiation-method","title":"EXP: Selecting the matrix exponentiation method","text":"This selects the method for exponentiation matrices. For now this can either be pseries
for a contractive power series or diag
for diagonalization. In general the power series (default) is faster.
rt_tddft\n ...\n exp diag\n ...\nend\n
"},{"location":"RT-TDDFT.html#prof-run-time-profiling","title":"PROF: Run-time profiling","text":"This turns on run-time profiling, which will display time spent in each component of the code (e.g., building components of the TD Fock matrix, properites, etc). This slows code down slightly and results in very verbose output.
rt_tddft\n ...\n prof\n ...\nend\n
"},{"location":"RT-TDDFT.html#noprop-skipping-propagation","title":"NOPROP: Skipping propagation","text":"This options causes the RT-TDDFT module skip propagation, i.e., to initialize and finalize. For now this is largely useful for skipping to visualization post-processing without having to re-run a simulation.
rt_tddft\n ...\n noprop\n ...\nend\n
"},{"location":"RT-TDDFT.html#static-force-static-fock-matrix","title":"STATIC: Force static Fock matrix","text":"This option sets the static Fock matrix flag, meaning the time-dependent Fock matrix will not be recalculated at each time, but instead use the t=0 value. This will drastically increase the simulation speed since the bulk of the work is spent rebuilding the TD Fock matrix, but will give non-physical results. For example, using static
to compute an absorption spectrum will result in excitations corresponding to the raw eigenvalue differences without electron-hole relaxation. This option has few uses besides dry-runs and debugging.
rt_tddft\n ...\n static\n ...\nend\n
"},{"location":"RT-TDDFT.html#print-selecting-time-dependent-quantities-to-be-printed","title":"PRINT: Selecting time-dependent quantities to be printed","text":"This sets the various time-dependent properties that are to be computed and printed at each print point. Note that for many of these options, the values are computed and printed for each geometry specified in the input deck, not only the active one (i.e., the one set using set geometry ...
in the input deck). Possible choices are:
dipole
: Dipole momentquadrupole
: Quadrupole momentfield
: External (applied) electric fieldmoocc
: Molecular orbital occupationsenergy
: Components of system energy (e.g., core, XC, total, etc)cputime
: CPU time taken in simulation so far (useful for checking scaling)charge
: Electronic charge (computed from density matrix, not from the XC grid)convergence
: Convergence information (e.g., from Magnus)s2
: value (openshell only) *
: Print all quantitiesThe defaults correspond to:
rt_tddft\n ...\n print dipole field energy convergence\n ...\nend\n
"},{"location":"RT-TDDFT.html#field-sub-block-for-specifying-external-electric-fields","title":"FIELD: Sub-block for specifying external electric fields","text":"This sub-block is used to specify external electric fields, each of which must be given a unique name. Numerous fields can be specified, but each will applied to the system only if an appropriate excitation rule is set. There are a few preset field types; others would have to be manually coded. Note the names are arbitrary, but chosen here to be descriptive:
field \"kick\"\n type delta # E(t=0) = max; E(t>0) = 0\n polarization x # = x, y, z\n max 0.0001 # maximum value of electric field\n spin total # = alpha, beta, total (only valid for open-shell)\nend\n
field \"gpulse\"\n type gaussian # Gaussian enveloped quasi-monochromatic pulse: E(t) = max * exp( -(t-t0)^2 / 2s^2) * sin(w0*t + phi0)\n polarization x # = x, y, z\n frequency 0.12 # frequency of laser pulse in au (e.g., 0.12 au = 3.27 eV)\n phase 0.0 # phase shift of laser pulse (in rad)\n center 200.0 # center of Gaussian envelope (in au time)\n width 50.0 # width of Gaussian pulse (in au time)\n max 0.0001 # maximum value of electric field\n spin total # = alpha, beta, total (only valid for open-shell)\nend\n
field \"hpulse\"\n type hann # sin^2 (Hann) enveloped quasi-monochromatic pulse\n polarization x # = x, y, z\n frequency 0.12 # frequency of laser pulse in au (e.g., 0.12 au = 3.27 eV)\n center 200.0 # center of Hann envelope (in au time)\n width 50.0 # width of Hann pulse (in au time)\n max 0.0001 # maximum value of electric field\n spin total # = alpha, beta, total (only valid for open-shell)\nend\n
field \"resonant\"\n type cw # monochromatic continuous wave\n frequency 0.12 # frequency of laser pulse in au (e.g., 0.12 au = 3.27 eV)\n polarization x # = x, y, z\n max 0.0001 # maximum value of electric field\n spin total # = alpha, beta, total (only valid for open-shell)\nend\n
"},{"location":"RT-TDDFT.html#excite-excitation-rules","title":"EXCITE: Excitation rules","text":"This sets the rules for applying external fields to the system. It takes the form excite <geom> with <field>
, where <geom>
is the name of a geometry fragment (defaults to \u201cgeometry\u201d which is the default geometry name), and <field>
is the name of a field structure. Assuming, for example, you have defined a field name kick
this option takes the form (note that quotes are optional and shown for clarity):
rt_tddft\n ...\n excite \"geometry\" with \"kick\"\n ...\nend\n
"},{"location":"RT-TDDFT.html#visualization-sub-block-for-controlling-3d-visualization","title":"VISUALIZATION: Sub-block for controlling 3D visualization","text":"This block is used to control visualization of the electronic charge density, which is typically used during a resonant excitation. This is a two stage process. During the propagation, a series of density matrices will be dumped to file (see options below). After propagation, if the dplot
option is set, the code will read in options from a separate DPLOT
block and convert the density matrix snapshots to a corresponding series of real-space charge density cube
files.
visualization\n tstart 0.0 # start visualization at this time\n tend 100.0 # stop visualization at this time\n treference 0.0 # subtract density matrix at this time (useful for difference densities)\n dplot # post-process density matrices into cube files after propagation\nend\n
"},{"location":"RT-TDDFT.html#load-restart","title":"LOAD RESTART","text":"This keyword needs to be added to restart a calculation. In the following example, the calculation will restart from the previous calculation and extend the run to the new tmax
rt_tddft\n ...\n tmax 10.0 # new end time\n load restart\nend\n
"},{"location":"RT-TDDFT.html#mocap-sub-block-for-molecular-orbital-complex-absorbing-potential","title":"MOCAP: Sub-block for molecular orbital complex absorbing potential","text":"The K. Lopata and N. Govind, \u201cNear and Above Ionization Electronic Excitations with Non-Hermitian Real-Time Time-Dependent Density Functional Theory\u201d, Journal of Chemical Theory and Computation 9 (11), 4939-4946 (2013) DOI:10.1021/ct400569s
mocap\n maxval 100.0 # clamp CAP at this value (in Ha)\n emin 0.5 # any MO with eigenvalue >= 0.5 Ha will have CAP applied to it\n prefac 1.0 # prefactor for exponential\n expconst 1.0 # exponential constant for CAP\n on # turn on/off CAP\n nochecks # disable checks for speed\n noprint # don't print CAP value\n end\n
"},{"location":"RT-TDDFT.html#maxval-exponential-maximum-value","title":"MAXVAL: Exponential Maximum Value","text":""},{"location":"RT-TDDFT.html#emin-vacuum-energy-level","title":"EMIN: Vacuum Energy Level","text":""},{"location":"RT-TDDFT.html#onoff-turn-onoff-cap","title":"ON/OFF: Turn on/off CAP","text":"The default value is off
, i.e. no complex absorbing potential is applied.
Here, we compute the 6-31G/TD-PBE0 absorption spectrum of gas-phase water using RT-TDDFT. In the weak-field limit, these results are essentially identical to those obtained via traditional linear-response TDDFT. Although it involves significantly more work do use RT-TDDFT in this case, for very large systems with many roots a real-time approach becomes advantageous computationally and also does not suffer from algorithm stability issues.
To compute the absorption, we find the ground state of the system and then subject it to three delta-function excitations (x,y,z), which simultaneously excites all electronic modes of that polarization. The three resulting dipole moments are then Fourier transformed to give the frequency-dependent linear polarizability, and thus the absorption spectrum. The full input deck is RT_TDDFT_h2o_abs.nw and the corresponding output is RT_TDDFT_h2o_abs.nwo.gz.
title \"Water TD-PBE0 absorption spectrum\"\necho\n\n\nstart water\n\n## \n## aug-cc-pvtz / pbe0 optimized \n## \n## Note: you are required to explicitly name the geometry \n## \ngeometry \"system\" units angstroms nocenter noautoz noautosym\n O 0.00000000 -0.00001441 -0.34824012\n H -0.00000000 0.76001092 -0.93285191\n H 0.00000000 -0.75999650 -0.93290797\nend\n\n## Note: We need to explicitly set the \"active\" geometry even though there is only one geom. \nset geometry \"system\"\n\n## All DFT and basis parameters are inherited by the RT-TDDFT code \nbasis\n * library 6-31G\nend\n\ndft\n xc pbe0\nend\n\n## Compute ground state of the system \ntask dft energy\n\n## \n## Now, we compute an x, y, and z kick simulation, which we give separate \"tags\" for post-processing. \n## \n\nunset rt_tddft:*\nrt_tddft\n tmax 200.0\n dt 0.2\n\n tag \"kick_x\"\n\n field \"kick\"\n type delta\n polarization x\n max 0.0001\n end\n\n excite \"system\" with \"kick\"\n end\ntask dft rt_tddft\n\nunset rt_tddft:*\nrt_tddft\n tmax 200.0\n dt 0.2\n\n tag \"kick_y\"\n\n field \"kick\"\n type delta\n polarization y\n max 0.0001\n end\n\n excite \"system\" with \"kick\"\n end\ntask dft rt_tddft\n\nunset rt_tddft:*\nrt_tddft\n tmax 200.0\n dt 0.2\n\n tag \"kick_z\"\n\n field \"kick\"\n type delta\n polarization z\n max 0.0001\n end\n\n excite \"system\" with \"kick\"\n end\ntask dft rt_tddft\n
After running the simulation, we extract the x-dipole moment for the x-kick and similarly for the y and z-kicks (see \u201ccontrib/parsers\u201d directory for this script or download here: RT_TDDFT_scripts.tgz ).
nw_rtparse.py -xdipole -px -tkick_x h2o_abs.nwo > x.dat\nnw_rtparse.py -xdipole -py -tkick_y h2o_abs.nwo > y.dat\nnw_rtparse.py -xdipole -pz -tkick_z h2o_abs.nwo > z.dat\n
Note, the syntax for extracting the x polarization for the x-kick, etc. Alternatively, we could grep and cut, or whatnot. This will give use the resulting time-dependent dipole moments:
Now, we need to take the Fourier transforms of these dipole moments to yield the the x,x element of the 3x3 linear polarizability tensor, and similarly for the y,y and z,z elements. Here I am using an FFT utility, although any discrete Fourier transform will do. To accelerate convergence of the FFT, I have damped the time signals by exp(-t /\u03c4) which results in Lorentzians with FWHM of 2 / \u03c4 and have also \u201czero padded\u201d the data with 50000 points. This is not critical for extracting frequencies, but creates \u201ccleaner\u201d spectra, although care must be taken to damp sufficiently if padding to avoid artifacts (see small ripples around 23 eV in plot below). After Fourier transform, I \u201cpaste\u201d the three files together to easily plot the absorption, which is constructed from the trace of the polarizability matrix, i.e., the sum of the imaginary parts of the FFTs of the dipole moments.
S (\u03c9) = (4\u03c0\u03c9)/(3c\u03ba)Tr[Im \u03b1(\u03c9)]
where c is the speed of light (137 in atomic units), \u03ba is the kick electric field strength, and \u03b1(\u03c9) is the linear polarizabilty tensor computed from the Fourier transforms of the time-dependent dipole moments. For example,
fft1d -d50 -z -p50000 < x.dat | rotate_fft > xw.dat\nfft1d -d50 -z -p50000 < y.dat | rotate_fft > yw.dat\nfft1d -d50 -z -p50000 < z.dat | rotate_fft > zw.dat\npaste xw.dat yw.dat zw.day > s.dat\n
Here, you can just use your favorite Fourier transform utility or analysis software, but for convenience there is also a simple GNU Octave fft1d.m utility in the \u201ccontrib/parsers\u201d directory of the trunk or download here: RT_TDDFT_scripts.tgz Note, options are hardcoded at the moment, so the switches above are not correct instead edit the file and run (also it reads file rather than redirect from stdin). Assuming the FFT output takes the form (w, Re, Im, Abs), to plot using gnuplot we would do:
gnuplot> plot \"s.dat\" u ($1*27.2114):($1*($3+$7+$11))\n
where we have scaled by 27.2114 to output in eV instead of atomic units, and we have not properly scaled to get the absolute oscillator strengths (thus our magnitudes are in \u201carbitrary units\u201d). The real-time spectrum is shown below, along with the corresponding linear-response TDDFT excitations are shown in orange for comparison. Since we are in the weak field regime, the two are identical. Note the oscillator strengths are arbitrary and scaled, if not scaled the area under each RT-TDDFT curve should integrate to the linear response oscillator strength.
"},{"location":"RT-TDDFT.html#resonant-ultraviolet-excitation-of-water","title":"Resonant ultraviolet excitation of water","text":"
In this example we compute the time-dependent electron response to a quasi-monochromatic laser pulse tuned to a particular transition. We will use the results of the previous example (6-31G/PBE0 gas-phase water). First, we consider the absorption spectrum (computed previously) but plotted for the three polarizations (x,y,z) rather then as a sum. Say we are interested in the excitation near 10 eV. We can clearly see this is a z-polarized transition (green on curve). To selectively excite this we could use a continuous wave E-field, which has a delta-function, i.e., single frequency, bandwidth but since we are doing finite simulations we need a suitable envelope. The broader the envelope in time the narrower the excitation in frequency domain, but of course long simulations become costly so we need to put some thought into the choice of our envelope. In this case the peak of interest is spectrally isolated from other z-polarized peaks, so this is quite straightforward. The procedure is outlined below, and the corresponding frequency extent of the pulse is shown on the absorption figure in orange. Note that it only covers one excitation, i.e., the field selectively excites one mode. The full input deck is RT_TDDFT_h2o_resonant.nw and the output is RT_TDDFT_h2o_resonant.nwo.gz.
title \"Water TD-PBE0 resonant excitation\" \necho\nscratch_dir ./scratch\npermanent_dir ./perm\n\nstart water\n\n##\n## aug-cc-pvtz / pbe0 optimized\n##\n## Note: you are required to explicitly name the geometry\n##\ngeometry \"system\" units angstroms nocenter noautoz noautosym\n O 0.00000000 -0.00001441 -0.34824012\n H -0.00000000 0.76001092 -0.93285191\n H 0.00000000 -0.75999650 -0.93290797\nend\n\n## Note: We need to explicitly set the \"active\" geometry even though there is only one geom.\nset geometry \"system\" \n\n## All DFT and basis parameters are inherited by the RT-TDDFT code\nbasis\n * library 6-31G\nend\n\ndft\n xc pbe0\nend\n\n## Compute ground state of the system\ntask dft energy\n\n##\n## We excite the system with a quasi-monochromatic\n## (Gaussian-enveloped) z-polarized E-field tuned to a transition at\n## 10.25 eV. The envelope takes the form:\n##\n## G(t) = exp(-(t-t0)^2 / 2s^2)\n##\n## The target excitation has an energy (frequency) of w = 0.3768 au\n## and thus an oscillation period of T = 2 pi / w = 16.68 au\n##\n## Since we are doing a Gaussian envelope in time, we will get a\n## Gaussian envelope in frequency (Gaussians are eigenfunctions of a\n## Fourier transform), with width equal to the inverse of the width in\n## time. Say, we want a Gaussian in frequency with FWHM = 1 eV\n## (recall FWHM = 2 sqrt (2ln2) s_freq) we want an s_freq = 0.42 eV =\n## 0.0154 au, thus in time we need s_time = 1 / s_time = 64.8 au.\n##\n## Now we want the envelope to be effectively zero at t=0, say 1e-8\n## (otherwise we get \"windowing\" effects). Reordering G(t):\n##\n## t0 = t - sqrt(-2 s^2 ln G(t))\n##\n## That means our Gaussian needs to be centered at t0 = 393.3 au.\n##\n## The total simulation time will be 1000 au to leave lots of time to\n## see oscillations after the field has passed.\n##\nrt_tddft\n tmax 1000.0\n dt 0.2\n\n field \"driver\"\n type gaussian\n polarization z\n frequency 0.3768 # = 10.25 eV\n center 393.3\n width 64.8\n max 0.0001\n end\n\n excite \"system\" with \"driver\"\n end\ntask dft rt_tddft\n
From the time-dependent dipole moment you can see the field driving the system into a superposition of the ground state and the one excited state, which manifests as monochromatic oscillations. After the field has passed the dipole oscillations continue forever as there is no damping in the system.
"},{"location":"RT-TDDFT.html#charge-transfer-between-a-tcne-dimer","title":"Charge transfer between a TCNE dimer","text":"Here we compute the time-dependent charge oscillations between a TCNE (tetracyanoethylene) dimer separated by 3 Angstroms, where the top molecule starts neutral and the bottom one starts with a -1 charge. This somewhat non-physical starting point will lead to far-from-equilibrium dynamics as the charge violently sloshes between the two molecules, with the oscillation period a function of the molecular separation. The trick here is to use fragments by have multiple geometries in the input deck, where each fragment is converged separately, then assembled together without SCF to use as a starting point. We use a small but diffuse basis and a range-separated functional (CAM-B3LYP). The input deck is RT_TDDFT_tcne_dimer.nw and the full output is RT_TDDFT_tcne_dimer.nwo.gz.
title \"Tetracyanoethylene dimer charge transfer\"\n\necho\nscratch_dir ./scratch\npermanent_dir ./perm\n\nstart tcne\necho\n\n##\n## Each fragment optimized with cc-pvdz/B3LYP\n##\ngeometry \"bottom\" units angstroms noautosym nocenter noautoz\n C -1.77576486 0.66496556 0.00004199\n N -2.94676621 0.71379797 0.00004388\n C -0.36046718 0.62491168 0.00003506\n C 0.36049301 -0.62492429 -0.00004895\n C 1.77579907 -0.66504145 -0.00006082\n N 2.94680364 -0.71382258 -0.00006592\n C -0.31262746 -1.87038951 -0.00011201\n N -0.85519492 -2.90926164 -0.00016331\n C 0.31276207 1.87031662 0.00010870\n N 0.85498782 2.90938919 0.00016857\nend\n\ngeometry \"top\" units angstroms noautosym nocenter noautoz\n C -1.77576486 0.66496556 3.00004199\n N -2.94676621 0.71379797 3.00004388\n C -0.36046718 0.62491168 3.00003506\n C 0.36049301 -0.62492429 2.99995105\n C 1.77579907 -0.66504145 2.99993918\n N 2.94680364 -0.71382258 2.99993408\n C -0.31262746 -1.87038951 2.99988799\n N -0.85519492 -2.90926164 2.99983669\n C 0.31276207 1.87031662 3.00010870\n N 0.85498782 2.90938919 3.00016857\nend\n\n\n## dimer geometry is the union of bottom and top geometry\ngeometry \"dimer\" units angstroms noautosym nocenter noautoz\n C -1.77576486 0.66496556 0.00004199\n N -2.94676621 0.71379797 0.00004388\n C -0.36046718 0.62491168 0.00003506\n C 0.36049301 -0.62492429 -0.00004895\n C 1.77579907 -0.66504145 -0.00006082\n N 2.94680364 -0.71382258 -0.00006592\n C -0.31262746 -1.87038951 -0.00011201\n N -0.85519492 -2.90926164 -0.00016331\n C 0.31276207 1.87031662 0.00010870\n N 0.85498782 2.90938919 0.00016857\n#---\n C -1.77576486 0.66496556 3.00004199\n N -2.94676621 0.71379797 3.00004388\n C -0.36046718 0.62491168 3.00003506\n C 0.36049301 -0.62492429 2.99995105\n C 1.77579907 -0.66504145 2.99993918\n N 2.94680364 -0.71382258 2.99993408\n C -0.31262746 -1.87038951 2.99988799\n N -0.85519492 -2.90926164 2.99983669\n C 0.31276207 1.87031662 3.00010870\n N 0.85498782 2.90938919 3.00016857\nend\n\n\n##\n## C, N: 3-21++G\n##\nbasis spherical\nC S\n 172.2560000 0.0617669 \n 25.9109000 0.3587940 \n 5.5333500 0.7007130 \nC SP\n 3.6649800 -0.3958970 0.2364600 \n 0.7705450 1.2158400 0.8606190 \nC SP\n 0.1958570 1.0000000 1.0000000 \nC SP\n 0.0438000 1.0000000 1.0000000 \nN S\n 242.7660000 0.0598657 \n 36.4851000 0.3529550 \n 7.8144900 0.7065130 \nN SP\n 5.4252200 -0.4133010 0.2379720 \n 1.1491500 1.2244200 0.8589530 \nN SP\n 0.2832050 1.0000000 1.0000000 \nN SP\n 0.0639000 1.0000000 1.0000000 \nend\n\n\n##\n## Charge density fitting basis.\n##\nbasis \"cd basis\"\nC S\n 5.91553927E+02 0.31582020\n 1.72117940E+02 0.87503863\n 5.47992590E+01 2.30760524\nC S\n 1.89590940E+01 1.0000000\nC S\n 7.05993000E+00 1.0000000\nC S\n 2.79484900E+00 1.0000000\nC S\n 1.15863400E+00 1.0000000\nC S\n 4.94324000E-01 1.0000000\nC S\n 2.12969000E-01 1.0000000\nC P\n 3.27847358E-01 1.0000000\nC P\n 7.86833659E-01 1.0000000\nC P\n 1.97101832E+00 1.0000000\nC D\n 4.01330100E+00 1.0000000\nC D\n 1.24750500E+00 1.0000000\nC D\n 4.08148000E-01 1.0000000\nC F\n 9.00000000E-01 1.0000000\nN S\n 7.91076935E+02 0.41567506\n 2.29450184E+02 1.14750694\n 7.28869600E+01 3.01935767\nN S\n 2.51815960E+01 1.0000000\nN S\n 9.37169700E+00 1.0000000\nN S\n 3.71065500E+00 1.0000000\nN S\n 1.53946300E+00 1.0000000\nN S\n 6.57553000E-01 1.0000000\nN S\n 2.83654000E-01 1.0000000\nN P\n 4.70739194E-01 1.0000000\nN P\n 1.12977407E+00 1.0000000\nN P\n 2.83008403E+00 1.0000000\nN D\n 5.83298650E+00 1.0000000\nN D\n 1.73268650E+00 1.0000000\nN D\n 5.45242500E-01 1.0000000\nN F\n 1.82648000E+00 1.0000000\nend\n\n\n##\n## Universal DFT parameters. Note, we are doing open-shell even for\n## the neutral fragment so the movecs have the correct size. \n##\n## We are using the CAM-B3LYP functional (no need to use \"direct\"\n## since we are doing CD fitting).\n##\ndft\n xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00\n cam 0.33 cam_alpha 0.19 cam_beta 0.46\n odft\n convergence density 1d-9\n grid fine\n maxiter 1000\nend\n\n\n##\n## Converge bottom fragment with extra electron and top fragment as\n## neutral.\n##\ncharge -1\nset geometry \"bottom\"\ndft\n mult 2\n vectors input atomic output \"bottom.movecs\"\nend\ntask dft energy\n\ncharge 0\nset geometry \"top\"\ndft\n mult 1\n vectors input atomic output \"top.movecs\"\nend\ntask dft energy\n\n\n##\n## Assemble the two fragments but don't do SCF--this keeps the system\n## in a far-from-equilibrium state from which we will watch the\n## dynamics.\n##\ncharge -1\nset geometry \"dimer\"\ndft\n mult 2\n vectors input fragment \"bottom.movecs\" \"top.movecs\" output \"dimer.movecs\"\n noscf\nend\ntask dft energy\n\n\n##\n## Now do RT-TDDFT from this crazy state without any electric fields.\n##\nrt_tddft\n tmax 500.0\n dt 0.2\n load vectors \"dimer.movecs\"\n\n print dipole field energy s2 charge\nend\ntask dft rt_tddft\n
The time-dependent charge shows that the excess electron starts on the \u201cbottom\u201d molecule (i.e., a total electronic charge of -65), then swings to completely occupy the \u201ctop\u201d molecule then oscillates back and forth. The frequency of this oscillation is dependent on the separation, with larger separations leading to lower frequencies. It is important to note, however, this starting point is highly non-physical, specifically converging the two fragments together and \u201cgluing\u201d them together introduces an indeterminate amount of energy to the system, but this simulation shows how charge dynamics simulations can be done.
"},{"location":"RT-TDDFT.html#mo-cap-example","title":"MO CAP example","text":"## aug-cc-pvtz/PBE0 optimized\ngeometry \"system\" units angstroms noautosym noautoz nocenter\n O 0.00000043 0.11188833 0.00000000\n H 0.76000350 -0.47275229 0.00000000\n H -0.76000393 -0.47275063 0.00000000\nend\n\nset geometry \"system\"\n\nbasis spherical\n * library 6-31G*\nend\n\ndft\n xc pbe0\n convergence density 1d-9\nend\ntask dft\n\nrt_tddft\n dt 0.2\n tmax 250.0\n\n print dipole field energy charge\n\n mocap\n expconst 1.0 # exponential constant for CAP\n emin 0.5 # any MO with eigenvalue >= 0.5 Ha will have CAP applied to it\n prefac 1.0 # prefactor for exponential\n maxval 100.0 # clamp CAP at this value (in Ha)\n on # turn on CAP\n nochecks # disable checks for speed\n noprint # don't print CAP value\n end\n\n field \"kick\"\n type delta\n max 0.0001\n polarization z\n end\n\n excite \"system\" with \"kick\"\nend\ntask dft rt_tddft\n
After running the parser script on the output files from the input above using either with the on
or off
keywords, the following plot can be produced from the data file obtained with the command nw_rtparse.py -xdipole -pz -t\"<rt_tddft>\"
All methods which include treatment of relativistic effects are ultimately based on the Dirac equation, which has a four component wave function. The solutions to the Dirac equation describe both positrons (the \u201cnegative energy\u201d states) and electrons (the \u201cpositive energy\u201d states), as well as both spin orientations, hence the four components. The wave function may be broken down into two-component functions traditionally known as the large and small components; these may further be broken down into the spin components.
The implementation of approximate all-electron relativistic methods in quantum chemical codes requires the removal of the negative energy states and the factoring out of the spin-free terms. Both of these may be achieved using a transformation of the Dirac Hamiltonian known in general as a Foldy-Wouthuysen (FW) transformation. Unfortunately this transformation cannot be represented in closed form for a general potential, and must be approximated. One popular approach is that originally formulated by Douglas and Kroll1 and developed by Hess23. This approach decouples the positive and negative energy parts to second order in the external potential (and also fourth order in the fine structure constant, \u03b1). Other approaches include the Zeroth Order Regular Approximation (ZORA)4567 and modification of the Dirac equation by Dyall8, and involves an exact FW transformation on the atomic basis set level910.
Since these approximations only modify the integrals, they can in principle be used at all levels of theory. At present the Douglas-Kroll and ZORA implementations can be used at all levels of theory whereas Dyall\u2019s approach is currently available at the Hartree-Fock level. The derivatives have been implemented, allowing both methods to be used in geometry optimizations and frequency calculations.
"},{"location":"Relativistic-All-electron-Approximations.html#relativistic-directive","title":"RELATIVISTIC directive","text":"The RELATIVISTIC
directive provides input for the implemented relativistic approximations and is a compound directive that encloses additional directives specific to the approximations:
RELATIVISTIC\n [DOUGLAS-KROLL [<string (ON||OFF) default ON> \\ \n <string (FPP||DKH||DKFULL||DK3||DK3FULL) default DKH>] || \n ZORA [ (ON || OFF) default ON ] || \n DYALL-MOD-DIRAC [ (ON || OFF) default ON ] ||\n [ (NESC1E || NESC2E) default NESC1E ] ] ||\n X2C [ (ON || OFF) default ON ]\n [CLIGHT <real clight default 137.0359895>] \n END\n
Only one of the methods may be chosen at a time. If both methods are found to be on in the input block, NWChem will stop and print an error message. There is one general option for both methods, the definition of the speed of light in atomic units:
CLIGHT <real clight default 137.0359895>\n
The following sections describe the optional sub-directives that can be specified within the RELATIVISTIC
block.
The spin-free and spin-orbit one-electron Douglas-Kroll approximation have been implemented. The use of relativistic effects from this Douglas-Kroll approximation can be invoked by specifying:
DOUGLAS-KROLL [<string (ON||OFF) default ON> \\ \n <string (FPP||DKH||DKFULL|DK3|DK3FULL) default DKH>]\n
The ON|OFF string is used to turn on or off the Douglas-Kroll approximation. By default, if the DOUGLAS-KROLL
keyword is found, the approximation will be used in the calculation. If the user wishes to calculate a non-relativistic quantity after turning on Douglas-Kroll, the user will need to define a new RELATIVISTIC
block and turn the approximation OFF
. The user could also simply put a blank RELATIVISTIC
block in the input file and all options will be turned off.
The FPP
is the approximation based on free-particle projection operators11 whereas the DKH
and DKFULL
approximations are based on external-field projection operators12. The latter two are considerably better approximations than the former. DKH
is the Douglas-Kroll-Hess approach and is the approach that is generally implemented in quantum chemistry codes. DKFULL
includes certain cross-product integral terms ignored in the DKH
approach (see for example H\u00e4berlen and R\u00f6sch13). The third-order Douglas-Kroll approximation has been implemented by T. Nakajima and K. Hirao1415. This approximation can be called using DK3
(DK3 without cross-product integral terms) or DK3FULL
(DK3 with cross-product integral terms).
The contracted basis sets used in the calculations should reflect the relativistic effects, i.e. one should use contracted basis sets which were generated using the Douglas-Kroll Hamiltonian. Basis sets that were contracted using the non-relativistic (Sch\u00f6dinger) Hamiltonian WILL PRODUCE ERRONEOUS RESULTS for elements beyond the first row. See appendix A for available basis sets and their naming convention.
NOTE: we suggest that spherical basis sets are used in the calculation. The use of high quality cartesian basis sets can lead to numerical inaccuracies.
In order to compute the integrals needed for the Douglas-Kroll approximation the implementation makes use of a fitting basis set (see literature given above for details). The current code will create this fitting basis set based on the given ao basis
by simply uncontracting that basis. This again is what is commonly implemented in quantum chemistry codes that include the Douglas-Kroll method. Additional flexibility is available to the user by explicitly specifying a Douglas-Kroll fitting basis set. This basis set must be named D-K basis
(see Basis Sets).
The spin-free and spin-orbit one-electron zeroth-order regular approximation (ZORA) have been implemented. ZORA can be accessed only via the DFT and SO-DFT modules. The use of relativistic effects with ZORA can be invoked by specifying:
ZORA [<string (ON||OFF) >\n
The ON
|OFF
string is used to turn on or off ZORA. No default is present, therefore ZORA
keyword need to be followed by ON
in order for the approximation to be used in the calculation. If the user wishes to calculate a non-relativistic quantity after turning on ZORA, the user will need to define a new RELATIVISTIC
block and turn the approximation OFF. The user can also simply put a blank RELATIVISTIC
block in the input file and all options will be turned off.
To increase the accuracy of ZORA calculations, the following settings may be used in the relativistic block
relativistic\n zora on\n zora:cutoff 1d-30\n end\n
To invoke the relativistic ZORA model potential approach due to van Wullen (references 16 and 17).
For model potentials constructed from 4-component densities:
relativistic\n zora on\n zora:cutoff 1d-30\n modelpotential 1\n end\n
For model potentials constructed from 2-component densities:
relativistic\n zora on\n zora:cutoff 1d-30\n modelpotential 2\n end\n
Both approaches are comparable in accuracy and depends on the system.
"},{"location":"Relativistic-All-electron-Approximations.html#dyalls-modified-dirac-hamitonian-approximation","title":"Dyall\u2019s Modified Dirac Hamitonian approximation","text":"The approximate methods described in this section are all based on Dyall\u2019s modified Dirac Hamiltonian. This Hamiltonian is entirely equivalent to the original Dirac Hamiltonian, and its solutions have the same properties. The modification is achieved by a transformation on the small component, extracting out \u03c3\u22c5p/2mc. This gives the modified small component the same symmetry as the large component, and in fact it differs from the large component only at order \u03b12. The advantage of the modification is that the operators now resemble the operators of the Breit-Pauli Hamiltonian, and can be classified in a similar fashion into spin-free, spin-orbit and spin-spin terms. It is the spin-free terms which have been implemented in NWChem, with a number of further approximations.
The first is that the negative energy states are removed by a normalized elimination of the small component (NESC), which is equivalent to an exact Foldy-Wouthuysen (EFW) transformation. The number of components in the wave function is thereby effectively reduced from 4 to 2. NESC on its own does not provide any advantages, and in fact complicates things because the transformation is energy-dependent. The second approximation therefore performs the elimination on an atom-by-atom basis, which is equivalent to neglecting blocks which couple different atoms in the EFW transformation. The advantage of this approximation is that all the energy dependence can be included in the contraction coefficients of the basis set. The tests which have been done show that this approximation gives results well within chemical accuracy. The third approximation neglects the commutator of the EFW transformation with the two-electron Coulomb interaction, so that the only corrections that need to be made are in the one-electron integrals. This is the equivalent of the Douglas-Kroll(-Hess) approximation as it is usually applied.
The use of these approximations can be invoked with the use of the DYALL-MOD-DIRAC
directive in the RELATIVISTIC
directive block. The syntax is as follows.
DYALL-MOD-DIRAC [ (ON || OFF) default ON ] \n [ (NESC1E || NESC2E) default NESC1E ]\n
The ON
|OFF
string is used to turn on or off the Dyall\u2019s modified Dirac approximation. By default, if the DYALL-MOD-DIRAC
keyword is found, the approximation will be used in the calculation. If the user wishes to calculate a non-relativistic quantity after turning on Dyall\u2019s modified Dirac, the user will need to define a new RELATIVISTIC
block and turn the approximation OFF
. The user could also simply put a blank RELATIVISTIC
block in the input file and all options will be turned off.
Both one- and two-electron approximations are available NESC1E
|| NESC2E
, and both have analytic gradients. The one-electron approximation is the default. The two-electron approximation specified by NESC2E
has some sub options which are placed on the same logical line as the DYALL-MOD-DIRAC
directive, with the following syntax:
NESC2E [ (SS1CENT [ (ON || OFF) default ON ] || SSALL) default SSALL ]\n [ (SSSS [ (ON || OFF) default ON ] || NOSSSS) default SSSS ]\n
The first sub-option gives the capability to limit the two-electron corrections to those in which the small components in any density must be on the same center. This reduces the (LL|SS) contributions to at most three-center integrals and the (SS|SS) contributions to two centers. For a case with only one relativistic atom this option is redundant. The second controls the inclusion of the (SS|SS) integrals which are of order \u03b14. For light atoms they may safely be neglected, but for heavy atoms they should be included.
In addition to the selection of this keyword in the RELATIVISTIC
directive block, it is necessary to supply basis sets in addition to the ao basis
. For the one-electron approximation, three basis sets are needed: the atomic FW basis set, the large component basis set and the small component basis set. The atomic FW basis set should be included in the ao basis
. The large and small components should similarly be incorporated in basis sets named large component
and small component
, respectively. For the two-electron approximation, only two basis sets are needed. These are the large component and the small component. The large component should be included in the ao basis
and the small component is specified separately as small component
, as for the one-electron approximation. This means that the two approximations can not be run correctly without changing the ao basis
, and it is up to the user to ensure that the basis sets are correctly specified.
There is one further requirement in the specification of the basis sets. In the ao basis, it is necessary to add the rel
keyword either to the basis directive or the library tag line (See below for examples). The former marks the basis functions specified by the tag as relativistic, the latter marks the whole basis as relativistic. The marking is actually done at the unique shell level, so that it is possible not only to have relativistic and nonrelativistic atoms, it is also possible to have relativistic and nonrelativistic shells on a given atom. This would be useful, for example, for diffuse functions or for high angular momentum correlating functions, where the influence of relativity was small. The marking of shells as relativistic is necessary to set up a mapping between the ao basis and the large and/or small component basis sets. For the one-electron approximation the large and small component basis sets MUST be of the same size and construction, i.e. differing only in the contraction coefficients.
It should also be noted that the relativistic code will NOT work with basis sets that contain sp shells, nor will it work with ECPs. Both of these are tested and flagged as an error.
"},{"location":"Relativistic-All-electron-Approximations.html#examples-for-dyall-mod-dirac","title":"Examples for DYALL-MOD-DIRAC","text":"Some examples follow. The first example sets up the data for relativistic calculations on water with the one-electron approximation and the two-electron approximation, using the library basis sets.
start h2o-dmd\n geometry units bohr\n symmetry c2v\n O 0.000000000 0.000000000 -0.009000000\n H 1.515260000 0.000000000 -1.058900000\n H -1.515260000 0.000000000 -1.058900000\n end\n basis \"fw\" rel\n oxygen library cc-pvdz_pt_sf_fw\n hydrogen library cc-pvdz_pt_sf_fw\n end\n basis \"large\"\n oxygen library cc-pvdz_pt_sf_lc\n hydrogen library cc-pvdz_pt_sf_lc\n end\n basis \"large2\" rel\n oxygen library cc-pvdz_pt_sf_lc\n hydrogen library cc-pvdz_pt_sf_lc\n end\n basis \"small\"\n oxygen library cc-pvdz_pt_sf_sc\n hydrogen library cc-pvdz_pt_sf_sc\n end\n set \"ao basis\" fw\n set \"large component\" large\n set \"small component\" small\n relativistic\n dyall-mod-dirac\n end\n task scf\n set \"ao basis\" large2\n unset \"large component\"\n set \"small component\" small\n relativistic\n dyall-mod-dirac nesc2e\n end\n task scf\n
The second example has oxygen as a relativistic atom and hydrogen nonrelativistic.
start h2o-dmd2\n geometry units bohr\n symmetry c2v\n O 0.000000000 0.000000000 -0.009000000\n H 1.515260000 0.000000000 -1.058900000\n H -1.515260000 0.000000000 -1.058900000\n end\n basis \"ao basis\"\n oxygen library cc-pvdz_pt_sf_fw rel\n hydrogen library cc-pvdz\n end\n basis \"large component\"\n oxygen library cc-pvdz_pt_sf_lc\n end\n basis \"small component\"\n oxygen library cc-pvdz_pt_sf_sc\n end\n relativistic\n dyall-mod-dirac\n end\n task scf\n
"},{"location":"Relativistic-All-electron-Approximations.html#x2c-exact-two-component-relativistic-hamiltonian","title":"X2C: exact two-component relativistic Hamiltonian","text":"The exact two-component Hamiltonian1819 has been implemented in NWChem202122.
X2C [<string (ON||OFF) default ON>\n
The ON
|OFF
string is used to turn on or off X2C. By default, if the X2C
keyword is found, the approximation will be used in the calculation. If the user wishes to calculate a non-relativistic quantity after turning on X2C, the user will need to define a new RELATIVISTIC
block and turn the approximation OFF. The user can also simply put a blank RELATIVISTIC
block in the input file and all options will be turned off.
To increase the accuracy of X2C calculations, the following settings may be used in the relativistic block
relativistic\n x2c on\n x2c:cutoff 1d-15\n end\n
"},{"location":"Relativistic-All-electron-Approximations.html#references","title":"References","text":"Douglas, M.; Kroll, N.M. (1974). \u201cQuantum electrodynamical corrections to the fine structure of helium\u201d. Annals of Physics 82: 89-155. DOI:10.1016/0003-4916(74)90333-9.\u00a0\u21a9
Hess, B.A. (1985). \u201cApplicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations\u201d. Physical Review A 32: 756-763. DOI:10.1103/PhysRevA.32.756.\u00a0\u21a9
Hess, B.A. (1986). \u201cRelativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators\u201d. Physical Review A 33: 3742-3748. DOI:10.1103/PhysRevA.33.3742.\u00a0\u21a9
Chang, C; Pelissier, M; Durand, M (1986). \u201cRegular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory\u201d. Physica Scripta 34: 394. DOI:10.1088/0031-8949/34/5/007.\u00a0\u21a9
van Lenthe, E (1996). \u201cThe ZORA Equation\u201d (in English).\u00a0\u21a9
Faas, S.; Snijders, J.G.; van Lenthe, J.H.; van Lenthe, E.; Baerends, E.J. (1995). \u201cThe ZORA formalism applied to the Dirac-Fock equation\u201d. Chemical Physics Letters 246: 632-640. DOI:10.1016/0009-2614(95)01156-0.\u00a0\u21a9
Nichols, P.; Govind, N.; Bylaska, E.J.; de Jong, W.A. (2009). \u201cGaussian Basis Set and Planewave Relativistic Spin-Orbit Methods in NWChem\u201d. Journal of Chemical Theory and Computation 5: 491-499. DOI:10.1021/ct8002892.\u00a0\u21a9
Dyall, K.G. (1994). \u201cAn exact separation of the spin-free and spin-dependent terms of the Dirac\u2013Coulomb\u2013Breit Hamiltonian\u201d. The Journal of Chemical Physics 100: 2118-2127. DOI:10.1063/1.466508.\u00a0\u21a9
Dyall, K.G. (1997). \u201cInterfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation\u201d. The Journal of Chemical Physics 106: 9618-9626. DOI:10.1063/1.473860.\u00a0\u21a9
Dyall, K.G.; Enevoldsen, T. (1999). \u201cInterfacing relativistic and nonrelativistic methods. III. Atomic 4-spinor expansions and integral approximations\u201d. The Journal of Chemical Physics 111: 10000-10007. DOI:10.1063/1.480353.\u00a0\u21a9
Hess, B.A. (1985). \u201cApplicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations\u201d. Physical Review A 32: 756-763. DOI:10.1103/PhysRevA.32.756.\u00a0\u21a9
Hess, B.A. (1986). \u201cRelativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators\u201d. Physical Review A 33: 3742-3748. DOI:10.1103/PhysRevA.33.3742.\u00a0\u21a9
Haeberlen, O.D.; Roesch, N. (1992). \u201cA scalar-relativistic extension of the linear combination of Gaussian-type orbitals local density functional method: application to AuH, AuCl and Au2\u201d. Chemical Physics Letters 199: 491-496. DOI:10.1016/0009-2614(92)87033-L.\u00a0\u21a9
Nakajima, T.; Hirao, K. (2000). \u201cNumerical illustration of third-order Douglas-Kroll method: atomic and molecular properties of superheavy element 112\u201d. Chemical Physics Letters 329: 511-516. DOI:10.1016/S0009-2614(00)01035-6.\u00a0\u21a9
Nakajima, T.; Hirao, K. (2000). \u201cThe higher-order Douglas\u2013Kroll transformation\u201d. The Journal of Chemical Physics 113: 7786-7789. DOI:10.1063/1.1316037.\u00a0\u21a9
van Wullen, C. (1998). \u201cMolecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations\u201d. The Journal of Chemical Physics 109: 392-399 DOI:10.1063/1.476576 \u21a9
van Wullen, C.; Michauk, C. (2005). \u201cAccurate and efficient treatment of two-electron contributions in quasirelativistic high-order Douglas-Kroll density-functional calculations\u201d. The Journal of Chemical Physics 123, 204113 DOI:10.1063/1.2133731 \u21a9
Liu, W.; Peng, D. (2009). J. Chem. Phys. 2009, 131, 031104 DOI:10.1063/1.3159445 \u21a9
Saue, T. (2011). \u201cRelativistic Hamiltonians for Chemistry: A Primer\u201d. ChemPhysChem, 12, 3077\u20133094 DOI:10.1002/cphc.201100682 \u21a9
Autschbach, J.; Peng, D; Reiher, M. (2012). J. Chem. Theory Comput. 2012, 8, 4239\u20134248 DOI:10.1021/ct300623j \u21a9
Peng, D.; Reiher, M. (2012). Theor. Chem. Acc. 131, 1081 DOI:10.1007/s00214-011-1081-y \u21a9
Autschbach, J. (2021). Quantum Theory for Chemical Applications:From Basic Concepts to Advanced Topics, Oxford, University Press, Chapter 24 DOI:10.1093/oso/9780190920807.001.0001 \u21a9
The command required to invoke NWChem is machine dependent, whereas most of the NWChem input is machine independent.
"},{"location":"Running.html#sequential-execution","title":"Sequential execution","text":"To run NWChem sequentially on nearly all UNIX-based platforms simply use the command nwchem and provide the name of the input file as an argument. This does assume that either nwchem is in your path or you have set an alias of nwchem to point to the appropriate executable.
Output is to standard output, standard error and Fortran unit 6 (usually the same as standard output). Files are created by default in the current directory, though this may be overridden in the input.
Generally, one will run a job with the following command:
nwchem input.nw >& input.out &\n
"},{"location":"Running.html#parallel-execution-on-unix-based-parallel-machines-including-workstation-clusters-using-mpi","title":"Parallel execution on UNIX-based parallel machines including workstation clusters using MPI","text":"To run with MPI, parallel should not be used. The way we usually run nwchem under MPI are the following
mpirun -np 8 $NWCHEM_TOP/bin/$NWCHEM_TARGET/nwchem input.nw
were $NWCHEM_TARGET
values are described in the Compiling section.
The selected CI module is integrated into NWChem but as yet no input module has been written [1]. The input thus consists of setting the appropriate variables in the database.
It is assumed that an initial SCF/MCSCF calculation has completed, and that MO vectors are available. These will be used to perform a four-index transformation, if this has not already been performed.
"},{"location":"SELCI.html#background","title":"Background","text":"This is a general spin-adapted, configuration-driven CI program which can perform arbitrary CI calculations, the only restriction being that all spin functions are present for each orbital occupation. CI wavefunctions may be specified using a simple configuration generation program, but the prime usage is intended to be in combination with perturbation correction and selection of new configurations. The second-order correction (Epstein-Nesbet) to the CI energy may be computed, and at the same time configurations that interact greater than a certain threshold with the current CI wavefunction may be chosen for inclusion in subsequent calculations. By repeating this process (typically twice is adequate) with the same threshold until no new configurations are added, the CI expansion may be made consistent with the selection threshold, enabling tentative extrapolation to the full-CI limit.
A typical sequence of calculations is as follows:
To illustrate this, below is some abbreviated output from a calculation on water in an augmented cc-PVDZ basis set with one frozen core orbital. The SCF was converged to high precision in C2v symmetry with the following input
\u00a0start h2o \n geometry; symmetry c2v \n O 0 0 0; H 0 1.43042809 -1.10715266 \n end \n basis \n H library aug-cc-pvdz; O library aug-cc-pvdz \n end \n task scf \n scf; thresh 1d-8; end\n
The following input restarts from the SCF to perform a sequence of selected CI calculations with the specified tolerances, starting with the SCF reference.
restart h2o \n set fourindex:occ_frozen 1 \n set selci:mode select \n set \"selci:selection thresholds\" \\ \n 0.001 0.001 0.0001 0.0001 0.00001 0.00001 0.000001 \n task selci\n
The table below summarizes the output from each of the major computational steps that were performed.
CI Step Description dimension Energy 1 Four-index, one frozen-core 2 Config. generator, SCF default 1 3+4 CI diagonalization 1 ECI = -76.041983 5 PT selection T=0.001 1 ECI+PT = -76.304797 6+7 CI diagonalization 75 ECI = -76.110894 8 PT selection T=0.001 75 ECI+PT = -76.277912 9+10 CI diagonalization 75 ECI(T=0.001) = -76.110894 11 PT selection T=0.0001 75 ECI+PT(T=0.001) = -76.277912 12+13 CI diagonalization 823 ECI = -76.228419 14 PT selection T=0.0001 823 ECI+PT = -76.273751 15+16 CI diagonalization 841 ECI(T=0.0001) = -76.2300544 17 PT selection T=0.00001 841 ECI+PT(T=0.0001) = -76.274073 18+19 CI diagonalization 2180 ECI = -76.259285 20 PT selection T=0.00001 2180 ECI+PT = -76.276418 21+22 CI diagonalization 2235 ECI(T=0.00001) = -76.259818 23 PT selection T=0.000001 2235 ECI+PT(T=0.00001) = -76.276478 24 CI diagonalization 11489Summary of steps performed in a selected CI calculation on water.
"},{"location":"SELCI.html#files","title":"Files","text":"Currently, no direct control is provided over filenames. All files are prefixed with the standard file-prefix, and any files generated by all nodes are also postfixed with the processor number. Thus, for example the molecular integrals file, used only by process zero, might be called h2o.moints whereas the off-diagonal Hamiltonian matrix element file used by process number eight would be called h2o.hamil.8.
If no configuration is explicitly specified then the previous SCF/MCSCF wavefunction is used, adjusting for any orbitals frozen in the four-index transformation. The four-index transformation must have completed successfully before this can execute. Orbital configurations for use as reference functions may also be explicitly specified.
Once the default/user-input reference configurations have been determined additional reference functions may be generated by applying multiple sets of creation-annihilation operators, permitting for instance, the ready specification of complete or restricted active spaces.
Finally, a uniform level of excitation from the current set of configurations into all orbitals may be applied, enabling, for instance, the simple creation of single or single+double excitation spaces from an MCSCF reference.
"},{"location":"SELCI.html#specifying-the-reference-occupation","title":"Specifying the reference occupation","text":"A single orbital configuration or occupation is specified by
ns (socc(i),i=1,ns) (docc(i),i=1,nd)\n
where ns specifies the number of singly occupied orbitals, socc() is the list of singly occupied orbitals, and docc() is the list of doubly occupied orbitals (the number of doubly occupied orbitals, nd, is inferred from ns and the total number of electrons). All occupations may be strung together and inserted into the database as a single integer array with name \u201cselci:conf\u201d. For example, the input
set \"selci:conf\" \\ \n 0 1 2 3 4 \\ \n 0 1 2 3 27 \\ \n 0 1 3 4 19 \\ \n 2 11 19 1 3 4 \\ \n 2 8 27 1 2 3 \\ \n 0 1 2 4 25 \\ \n 4 3 4 25 27 1 2 \\ \n 4 2 3 19 20 1 4 \\ \n 4 2 4 20 23 1 3\n
specifies the following nine orbital configurations
1(2) 2(2) 3(2) 4(2) \n 1(2) 2(2) 3(2) 27(2) \n 1(2) 3(2) 4(2) 19(2) \n 1(2) 3(2) 4(2) 11(1) 19(1) \n 1(2) 2(2) 3(2) 8(1) 27(1) \n 1(2) 2(2) 4(2) 25(2) \n 1(2) 2(2) 3(1) 4(1) 25(1) 27(1) \n 1(2) 2(1) 3(1) 4(2) 19(1) 20(1) \n 1(2) 2(1) 3(2) 4(1) 20(1) 23(1)\n
The optional formatting of the input is just to make this arcane notation easier to read. Relatively few configurations can be currently specified in this fashion because of the input line limit of 1024 characters.
"},{"location":"SELCI.html#applying-creation-annihilation-operators","title":"Applying creation-annihilation operators","text":"Up to 10 sets of creation-annihilation operator pairs may be specified, each set containing up to 255 pairs. This suffices to specify complete active spaces with up to ten electrons.
The number of sets is specified as follows,
set selci:ngen 4
which indicates that there will be four sets. Each set is then specified as a separate integer array
set \"selci:refgen 1\" 5 4 6 4 5 3 6 3 \n set \"selci:refgen 2\" 5 4 6 4 5 3 6 3 \n set \"selci:refgen 3\" 5 4 6 4 5 3 6 3 \n set \"selci:refgen 4\" 5 4 6 4 5 3 6 3\n
In the absence of friendly, input note that the names \u201cselci:refgen n\u201d must be formatted with n in I2 format. Each set specifies a list of creation-annihilation operator pairs (in that order). So for instance, in the above example each set is the same and causes the excitations
4->5 4->6 3->5 3->6\n
If orbitals 3 and 4 were initially doubly occupied, and orbitals 5 and 6 initially unoccupied, then the application of this set of operators four times in succession is sufficient to generate the four electron in four orbital complete active space.
The precise sequence in which operators are applied is
By default no excitation is applied to the reference configurations. If, for instance, you wanted to generate a single excitation CI space from the current configuration list, specify
set selci:exci 1\n
Any excitation level may be applied, but since the list of configurations is explicitly generated, as is the CI Hamiltonian matrix, you will run out of disk space if you attempt to use more than a few tens of thousands of configurations.
"},{"location":"SELCI.html#number-of-roots","title":"Number of roots","text":"By default, only one root is generated in the CI diagonalization or perturbation selection. The following requests that 2 roots be generated
set selci:nroot 2\n
There is no imposed upper limit. If many roots are required, then, to minimize root skipping problems, it helps to perform an initial approximate diagonalization with several more roots than required, and then resetting this parameter once satisfied that the desired states are obtained.
"},{"location":"SELCI.html#accuracy-of-diagonalization","title":"Accuracy of diagonalization","text":"By default, the CI wavefunctions are converged to a residual norm of 10-6 which provides similar accuracy in the perturbation corrections to the energy, and much higher accuracy in the CI eigenvalues. This may be adjusted with
set \"selci:diag tol\" 1d-3\n
the example setting much lower precision, appropriate for the approximate diagonalization discussed in the preceding section.
"},{"location":"SELCI.html#selection-thresholds","title":"Selection thresholds","text":"When running in the selected-CI mode the program will loop through a list of selection thresholds (T), performing the CI diagonalization, computing the perturbation correction, and augmenting the CI expansion with configurations that make an energy lowering to any root greater than T. The list of selection thresholds is specified as follows
set \"selci:selection thresholds\" \\ \n 0.001 0.001 0.0001 0.0001 0.00001 0.00001 0.000001\n
There is no default for this parameter.
"},{"location":"SELCI.html#mode","title":"Mode","text":"By default the program runs in \u201cci+davids\u201d mode and just determines the CI eigenvectors/values in the current configuration space. To perform a selected-CI with perturbation correction use the following
set selci:mode select\n
and remember to define the selection thresholds.
"},{"location":"SELCI.html#memory-requirements","title":"Memory requirements","text":"No global arrays are used inside the selected-CI, though the four-index transformation can be automatically invoked and it does use GAs. The selected CI replicates inside each process
These large data structures are allocated on the local stack. A fatal error will result if insufficient memory is available.
"},{"location":"SELCI.html#forcing-regeneration-of-the-mo-integrals","title":"Forcing regeneration of the MO integrals","text":"When scanning a potential energy surface or optimizing a geometry the MO integrals need to be regenerated each time. Specify
set selci:moints:force logical .true.\n
to accomplish this.
"},{"location":"SELCI.html#disabling-update-of-the-configuration-list","title":"Disabling update of the configuration list","text":"When computing CI+PT energy the reference configuration list is normally updated to reflect all configurations that interact more than the specified threshold. This is usually desirable. But when scanning a potential energy surface or optimizing a geometry the reference list must be kept fixed to keep the potential energy surface continuous and well defined. To do this specify
set selci:update logical .false.\n
"},{"location":"SELCI.html#orbital-locking-in-ci-geometry-optimization","title":"Orbital locking in CI geometry optimization","text":"The selected CI wavefunction is not invariant to orbital rotations or to swapping two or more orbitals. Orbitals could be swapped or rotated when the geometry is changed in a geometry optimization step. The keyword lock has to be set in the SCF/MCSCF (vectors) input block to keep the orbitals in the same order throughout the geometry optimization.
"},{"location":"SELCI.html#references","title":"References","text":"This top-level directive allows the user to enter data directly into the run-time database. The format of the directive is as follows:
SET <string name> [<string type default automatic>] <type data>\n
The entry for variable is the name of data to be entered into the database. This must be specified; there is no default. The variable , which is optional, allows the user to define a string specifying the type of data in the array . The data type can be explicitly specified as integer, real, double, logical, or string. If no entry for is specified on the directive, its value is inferred from the data type of the first datum. In such a case, floating-point data entered using this directive must include either an exponent or a decimal point, to ensure that the correct default type will be inferred. The correct default type will be inferred for logical values if logical-true values are specified as .true., true, or t, and logical-false values are specified as .false., false, or f. One exception to the automatic detection of the data type is that the data type must be explicitly stated to input integer ranges, unless the first element in the list is an integer that is not a range. For example,
set atomid 1 3:7 21\n
will be interpreted as a list of integers. However,
set atomid 3:7 21 \n
will not work since the first element will be interpreted as a string and not an integer. To work around this feature, use instead
set atomid integer 3:7 21\n
which says to write three through seven, as well as twenty-one.
The SET directive is useful for providing indirection by associating the name of a basis set or geometry with the standard object names (such as \u201cao basis\u201d or geometry) used by NWChem. The following input file shows an example using the SET directive to direct different tasks to different geometries. The required input lines are as follows:
title \"Ar dimer BSSE corrected MP2 interaction energy\" \ngeometry \"Ar+Ar\" \n Ar1 0 0 0 \n Ar2 0 0 2 \nend \ngeometry \"Ar+ghost\" \n Ar1 0 0 0 \n Bq2 0 0 2 \nend \nbasis \n Ar1 library aug-cc-pvdz \n Ar2 library aug-cc-pvdz \n Bq2 library Ar aug-cc-pvdz \nend \nset geometry \"Ar+Ar\" task mp2 \nscf; vectors atomic; end \nset geometry \"Ar+ghost\" task mp2 \n
This input tells the code to perform MP2 energy calculations on an argon dimer in the first task, and then on the argon atom in the presence of the \u201cghost\u201d basis of the other atom.
The SET directive can also be used as an indirect means of supplying input to a part of the code that does not have a separate input module (e.g., the atomic SCF). Additional examples of applications of this directive can be found in the sample input files, and its usage with basis sets and geometries. Also see database section for an example of how to store an array in the database.
"},{"location":"SMD-Model.html","title":"Solvation Models","text":""},{"location":"SMD-Model.html#overview","title":"Overview","text":"Two solvation models are available in NWChem: COSMO and SMD. Since some of the COSMO parameters are used for SMD, we suggest to read the COSMO section before the SMD one.
"},{"location":"SMD-Model.html#cosmo","title":"COSMO","text":""},{"location":"SMD-Model.html#overview_1","title":"Overview","text":"COSMO is the continuum solvation \u2018COnductor-like Screening MOdel\u2019 of A. Klamt and G. Sch\u00fc\u00fcrmann to describe dielectric screening effects in solvents1. This model has been enhanced by D.M. York and M. Karplus2 to create a smooth potential energy surface. The latter facilitates geometry optimization and dynamics and the implementation has been adapted to take advantage of those ideas.
The NWChem COSMO module implements algorithm for calculation of the energy for the following methods:
by determining the solvent reaction field self-consistently with the solute charge distribution from the respective methods. Note that COSMO for unrestricted Hartree-Fock (UHF) method can also be performed by invoking the DFT module with appropriate keywords.
Correlation energy of solvent molecules may also be evaluated at
levels of theory. It is cautioned, however, that these correlated COSMO calculations determine the solvent reaction field using the HF charge distribution of the solute rather than the charge distribution of the correlation theory and are not entirely self consistent in that respect. In other words, these calculations assume that the correlation effect and solvation effect are largely additive, and the combination effect thereof is neglected. COSMO for MCSCF has not been implemented yet.
In the current implementation the code calculates the gas-phase energy of the system followed by the solution-phase energy, and returns the electrostatic contribution to the solvation free energy. At the present gradients are calculated analytically, but frequencies are calculated by finite difference of the gradients. The non-electrostatic contributions can be calculated by turning on the SMD model. It should be noted that one must in general take into account the standard state correction besides the electrostatic and cavitation/dispersion contribution to the solvation free energy, when a comparison to experimental data is made.
"},{"location":"SMD-Model.html#cosmo-input-parameters","title":"COSMO Input Parameters","text":"Invoking the COSMO solvation model is done by specifying the input COSMO input block with the input options as:
cosmo \n [off] \n [dielec <real dielec default 78.4>] \n [parameters <filename>] \n [radius <real atom1> \n <real atom2> \n . . . \n <real atomN>] \n [iscren <integer iscren default 0>] \n [minbem <integer minbem default 2>] \n [ificos <integer ificos default 0>] \n [lineq <integer lineq default 1>] \n [zeta <real zeta default 0.98>] \n [gamma_s <real gammas default 1.0>] \n [sw_tol <real swtol default 1.0e-4>] \n [do_gasphase <logical do_gasphase default True>] \n [do_cosmo_ks]\n [do_cosmo_yk]\n [do_cosmo_smd]\nend\n
followed by the task directive specifying the wavefunction and type of calculation, e.g., task scf energy
, task mp2 energy
, task dft optimize
, etc.
off
can be used to turn off COSMO in a compound (multiple task) run. By default, once the COSMO solvation model has been defined it will be used in subsequent calculations. Add the keyword off
if COSMO is not needed in subsequent calculations.
dielec
is the value of the dielectric constant of the medium, with a default value of 78.4 (the dielectric constant for water).
parameters
specifies COSMO radii parameters file that stores custom setting for COSMO parameters. The format for such file consists of the atom or element name followed by the radii. The program will first attempt to match based on atom name and only then the element name. Otherwise radius will be set based on default parameters. The file has to present in one of the three location ( in the order of preference) - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, and run directory.
radius
is an array that specifies the radius of the spheres associated with each atom and that make up the molecule-shaped cavity. These values will override default radii setting including those specified in the COSMO parameter file (if any) Default values are Van der Waals radii. Values are in units of angstroms. The codes uses the following Van der Waals radii by default:
Default radii provided by Andreas Klamt (Cosmologic)
vdw radii: 1.17 (\u00b1 0.02) * Bondi radius3
optimal vdw radii for H, C, N, O, F, S, Cl, Br, I4
for heavy elements: 1.17*1.9
data (vander(i),i=1,102) \n 1 / 1.300,1.638,1.404,1.053,2.0475,2.00, \n 2 1.830,1.720,1.720,1.8018,1.755,1.638, \n 3 1.404,2.457,2.106,2.160,2.05,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.160,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 8 2.223,2.223,2.223,2.223,2.223,2.223, \n 9 2.223,2.223,2.223,2.223,2.320,2.223, \n 1 2.223,2.223,2.223,2.223,2.223,2.223, \n 2 2.223,2.223,2.223,2.223,2.223,2.223, \n 3 2.223,2.223,2.223,2.223,2.223,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223/\n
For examples see Stefanovich et al.5 and Barone et al.6
\u201cRsolv\u201d is no longer used.
"},{"location":"SMD-Model.html#cosmo-iscreen-keyword","title":"COSMO: ISCREEN keyword","text":"iscren
is a flag to define the dielectric charge scaling option. iscren 1
implies the original scaling from Klamt and Sch\u00fc\u00fcrmann, mainly \u201c(\u03b5-1)/(\u03b5+1/2)\u201d, where \u03b5 is the dielectric constant. iscren 0
implies the modified scaling suggested by Stefanovich and Truong5, mainly \u201c(\u03b5-1)/\u03b5\u201c. Default is to use the modified scaling. For high dielectric the difference between the scaling is not significant.
The next two parameters define the tesselation of the unit sphere. The approach still follows the original proposal by Klamt and Sch\u00fc\u00fcrmann to some degree. Basically a tesselation is generated from minbem
refining passes starting from either an octahedron or an icosahedron. Each level of refinement partitions the triangles of the current tesselation into four triangles. This procedure is repeated recursively until the desired granularity of the tesselation is reached. The induced point charges from the polarization of the medium are assigned to the centers of the tesselation. The default value is minbem 2
. The flag ificos
serves to select the original tesselation, ificos 0
for an octahedron (default) and ificos 1
for an icoshedron. Starting from an icosahedron yields a somewhat finer tesselation that converges somewhat faster. Solvation energies are not really sensitive to this choice for sufficiently fine tesselations. The old \u201cmaxbem\u201d directive is no longer used.
The lineq
parameter serves to select the numerical algorithm to solve the linear equations yielding the effective charges that represent the polarization of the medium. lineq 0
selects a dense matrix linear equation solver (default), lineq 1
selects an iterative method. For large molecules where the number of effective charges is large, the code selects the iterative method.
zeta
sets the width of the Gaussian charge distributions that were suggested by York and Karplus to avoid singularities when two surface charges coincide. The default value is zeta 0.98
this value was chosen to ensure that the results of the current implementation are as close as possible to those of the original Klamt and Sch\u00fc\u00fcrmann based implementation.
gamma_s
modifies the width of the smooth switching function that eliminates surface charges when their positions move into the sphere of a neighboring atom. gamma_s 0.0
leads to a heavyside or abrupt switching function, whereas gamma_s 1.0
maximizes the width of the switching function. The default value is gamma_s 1.0
.
sw_tol
specifies the cutoff of the switching function below which a surface charge at a particular point is eliminated. The values of the switching function lie in the domain from 0 to 1. This value should not be set too small as that leads to instabilities in the linear system solvers. The default value is sw_tol 1.0e-4
.
do_gasphase
is a flag to control whether the calculation of the solvation energy is preceded by a gas phase calculation. The default is to always perform a gas phase calculation first and then calculate the solvation starting from the converged gas phase electron density. However, in geometry optimizations this approach can double the cost. In such a case setting do_gasphase false
suppresses the gas phase calculations and only the solvated system calculations are performed. This option needs to be used with care as in some cases starting the COSMO solvation from an unconverged electron density can generate unphysical charges that lock the calculation into strange electron distributions.
do_cosmo_ks
is a flag to turn on the Klamt-Sch\u00fc\u00fcrmann model
do_cosmo_yk
is a flag to turn on the York-Karplus model (default)
do_cosmo_smd
is a flag to turn on the SMD model. More details can be found at the SMD Model documentation
The following example is for a water molecule in \u2018water\u2019, using the HF/6-31G** level of theory:
start \n\ngeometry \n o .0000000000 .0000000000 -.0486020332 \n h .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n o library 6-31g** \n h library 6-31g** \nend \ncosmo \n dielec 78.0 \n radius 1.40 \n 1.16 \n 1.16 \n lineq 0 \nend \ntask scf energy\n
Alternatively, instead of listing COSMO radii parameters in the input, the former can be loaded using an external file through the parameters
directive
start \n\ngeometry \n ow .0000000000 .0000000000 -.0486020332 \n hw .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n * library 6-31g** \nend\n\ncosmo \n dielec 78.0 \n lineq 0 \n parameters water.par \nend\n\ntask scf energy\n
where the water.par
file has the following form:
O 1.40\nH 1.16\n
This will set radii of all oxygen atoms to 1.4 and all hydrogen atoms to 1.16. More fine grained control may be achieved using specific atom names. For example, the following parameter file
O 1.40\nH 1.16\nHW 1.06\n
will set a different radii of 1.06 to hydrogen atoms named HW. Note that, as per general rule in NWChem, all names are case insensitive.
and placed in one of the these locations - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, or run directory.
SMD denotes \u201csolvation model based on density\u201d and it is described in detail in the 2009 paper by Marenich, Cramer and Truhlar7.
The SMD model is a universal continuum solvation model where \u201cuniversal\u201d denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known. The word \u201ccontinuum\u201d denotes that the solvent is not represented explicitly as a collection of discrete solvent molecules but rather as a dielectric medium with surface tensions at the solute-solvent interface.
SMD directly calculates the free energy of solvation of an ideal solvation process that occurs at fixed concentration (for example, from an ideal gas at a concentration of 1 mol/L to an ideal solution at a liquid-phase concentration of 1 mol/L) at 298 K, but this may converted by standard thermodynamic formulas to a standard-state free energy of solvation, which is defined as the transfer of molecules from an ideal gas at 1 bar to an ideal 1 molar solution.
The SMD model separates the fixed-concentration free energy of solvation into two components. The first component is the bulk-electrostatic contribution arising from a self-consistent reaction field (SCRF) treatment. The SCRF treatment involves an integration of the nonhomogeneous-dielectric Poisson equation for bulk electrostatics in terms of the COSMO model of Klamt and Sch\u00fc\u00fcrmann with the modified COSMO scaling factor suggested by Stefanovich and Truong and by using the SMD intrinsic atomic Coulomb radii. These radii have been optimized for H, C, N, O, F, Si, P, S, Cl, and Br. For any other atom the current implementation of the SMD model uses scaled values of the van der Waals radii of Mantina et al8.
The scaling factor equals 1.52 for group 17 elements heavier than Br (i.e., for I and At) and 1.18 for all other elements for which there are no optimized SMD radii.
The second contribution to the fixed-concentration free energy of solvation is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is called the cavity\u2013dispersion\u2013solvent-structure (CDS) term, and it is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas (SASAs) of the individual atoms of the solute.
"},{"location":"SMD-Model.html#smd-input-parameters","title":"SMD Input Parameters","text":"The SMD model requires additional parameters in the COSMO input block
cosmo \n [do_cosmo_smd <logical>]\n [solvent (keyword)]\n [icds <integer>]\n [sola <real>]\n [solb <real>]\n [solc <real>]\n [solg <real>]\n [solh <real>]\n [soln <real>]\nend \n
At the moment the SMD model is available in NWChem only with the DFT block
The SMD input options are as follows:
do_cosmo_smd <logical>\n
The do_cosmo_smd
keyword instructs NWChem to perform a ground-state SMD calculation when set to a true
value.
solvent (keyword)\n
a solvent
keyword from the short name entry in the list of available SMD solvent names.
When a solvent is specified by name, the descriptors for the solvent are based on the Minnesota Solvent Descriptor Database9.
The user can specify a solvent (by using a string using up to eight characters) that is not on the list by using a new solvent keyword and introducing user-provided values for the following solvent descriptors:
"},{"location":"SMD-Model.html#smd-dielec-keyword","title":"SMD: DIELEC keyword","text":"dielec (real input)\n
dielectric constant at 298 K
"},{"location":"SMD-Model.html#smd-sola-keyword","title":"SMD: SOLA keyword","text":"sola (real input) \n
Abraham\u2019s hydrogen bond acidity
"},{"location":"SMD-Model.html#smd-solb-keyword","title":"SMD: SOLB keyword","text":"solb (real input) \n
Abraham\u2019s hydrogen bond basicity
"},{"location":"SMD-Model.html#smd-solc-keyword","title":"SMD: SOLC keyword","text":"solc (real input)\n
aromaticity as a fraction of non-hydrogenic solvent atoms that are aromatic carbon atoms
"},{"location":"SMD-Model.html#smd-solg-keyword","title":"SMD: SOLG keyword","text":"solg (real input)\n
macroscopic surface tension of the solvent at an air/solvent interface at 298 K in units of cal mol\u20131 \u00c5\u20132 (note that 1 dyne/cm = 1.43932 cal mol\u20131 \u00c5\u20132)
"},{"location":"SMD-Model.html#smd-solh-keyword","title":"SMD: SOLH keyword","text":"solh (real input)\n
electronegative halogenicity as the fraction of non-hydrogenic solvent atoms that are F, Cl, or Br
"},{"location":"SMD-Model.html#smd-soln-keyword","title":"SMD: SOLN keyword","text":"soln (real input)\n
index of refraction at optical frequencies at 293 K
"},{"location":"SMD-Model.html#smd-icds-keyword","title":"SMD: ICDS keyword","text":"icds (integer input)\n
icds
should have a value of 1 for water. icds
should have a value of 2 for any nonaqueous solvent. If icds
is set equal to 2, then you need to provide the following solvent descriptors (see the MN solvent descriptor database ):
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in water\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent water\nend\ntask dft energy\n
"},{"location":"SMD-Model.html#smd-example-new-solvent","title":"SMD Example: new solvent","text":"Example using a user defined solvent, not present in the SMD list of solvents
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in my solvent\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent mysolv \n dielec 11.4\n sola 1.887\n solb 0.0\n soln 0.98\n icds 2\nend\ntask dft energy\n
"},{"location":"SMD-Model.html#solvents-list-solvent-keyword","title":"Solvents List - Solvent keyword","text":"The short name for the solvent from the table can be used with the solvent
keyword to define the solvent. Example with acetonitrile.
cosmo\n solvent acetntrl\nend\n
Long name short name dielec acetic acid acetacid 6.2528 acetone acetone 20.493 acetonitrile acetntrl 35.688 acetophenone acetphen 17.440 aniline aniline 6.8882 anisole anisole 4.2247 benzaldehyde benzaldh 18.220 benzene benzene 2.2706 benzonitrile benzntrl 25.592 benzyl chloride benzylcl 6.7175 1-bromo-2-methylpropane brisobut 7.7792 bromobenzene brbenzen 5.3954 bromoethane brethane 9.01 bromoform bromform 4.2488 1-bromooctane broctane 5.0244 1-bromopentane brpentan 6.269 2-bromopropane brpropa2 9.3610 1-bromopropane brpropan 8.0496 butanal butanal 13.450 butanoic acid butacid 2.9931 1-butanol butanol 17.332 2-butanol butanol2 15.944 butanone butanone 18.246 butanonitrile butantrl 24.291 butyl acetate butile 4.9941 butylamine nba 4.6178 n-butylbenzene nbutbenz 2.360 sec-butylbenzene sbutbenz 2.3446 tert-butylbenzene tbutbenz 2.3447 carbon disulfide cs2 2.6105 carbon tetrachloride carbntet 2.2280 chlorobenzene clbenzen 5.6968 sec-butyl chloride secbutcl 8.3930 chloroform chcl3 4.7113 1-chlorohexane clhexane 5.9491 1-chloropentane clpentan 6.5022 1-chloropropane clpropan 8.3548 o-chlorotoluene ocltolue 4.6331 m-cresol m-cresol 12.440 o-cresol o-cresol 6.760 cyclohexane cychexan 2.0165 cyclohexanone cychexon 15.619 cyclopentane cycpentn 1.9608 cyclopentanol cycpntol 16.989 cyclopentanone cycpnton 13.58 cis-decalin declncis 2.2139 trans-decalin declntra 2.1781 decalin (cis/trans mixture) declnmix 2.196 n-decane decane 1.9846 1-decanol decanol 7.5305 1,2-dibromoethane edb12 4.9313 dibromomethane dibrmetn 7.2273 dibutyl ether butyleth 3.0473 o-dichlorobenzene odiclbnz 9.9949 1,2-dichloroethane edc12 10.125 cis-dichloroethylene c12dce 9.200 trans-dichloroethylene t12dce 2.140 dichloromethane dcm 8.930 diethyl ether ether 4.2400 diethyl sulfide et2s 5.723 diethylamine dietamin 3.5766 diiodomethane mi 5.320 diisopropyl ether dipe 3.380 dimethyl disulfide dmds 9.600 dimethylsulfoxide dmso 46.826 N,N-dimethylacetamide dma 37.781 cis-1,2-dimethylcyclohexane cisdmchx 2.060 N,N-dimethylformamide dmf 37.219 2,4-dimethylpentane dmepen24 1.8939 2,4-dimethylpyridine dmepyr24 9.4176 2,6-dimethylpyridine dmepyr26 7.1735 1,4-dioxane dioxane 2.2099 diphenyl ether phoph 3.730 dipropylamine dproamin 2.9112 n-dodecane dodecan 2.0060 1,2-ethanediol meg 40.245 ethanethiol etsh 6.667 ethanol ethanol 24.852 ethyl acetate etoac 5.9867 ethyl formate etome 8.3310 ethylbenzene eb 2.4339 ethylphenyl ether phenetol 4.1797 fluorobenzene c6h5f 5.420 1-fluorooctane foctane 3.890 formamide formamid 108.94 formic acid formacid 51.100 n-heptane heptane 1.9113 1-heptanol heptanol 11.321 2-heptanone heptnon2 11.658 4-heptanone heptnon4 12.257 n-hexadecane hexadecn 2.0402 n-hexane hexane 1.8819 hexanoic acid hexnacid 2.600 1-hexanol hexanol 12.51 2-hexanone hexanon2 14.136 1-hexene hexene 2.0717 1-hexyne hexyne 2.615 iodobenzene c6h5i 4.5470 1-iodobutane iobutane 6.173 iodoethane c2h5i 7.6177 1-iodohexadecane iohexdec 3.5338 iodomethane ch3i 6.8650 1-iodopentane iopentan 5.6973 1-iodopropane iopropan 6.9626 isopropylbenzene cumene 2.3712 p-isopropyltoluene p-cymene 2.2322 mesitylene mesityln 2.2650 methanol methanol 32.613 2-methoxyethanol egme 17.200 methyl acetate meacetat 6.8615 methyl benzoate mebnzate 6.7367 methyl butanoate mebutate 5.5607 methyl formate meformat 8.8377 4-methyl-2-pentanone mibk 12.887 methyl propanoate mepropyl 6.0777 2-methyl-1-propanol isobutol 16.777 2-methyl-2-propanol terbutol 12.470 N-methylaniline nmeaniln 5.9600 methylcyclohexane mecychex 2.024 N-methylformamide (E/Z mixture) nmfmixtr 181.56 2-methylpentane isohexan 1.890 2-methylpyridine mepyrid2 9.9533 3-methylpyridine mepyrid3 11.645 4-methylpyridine mepyrid4 11.957 nitrobenzene c6h5no2 34.809 nitroethane c2h5no2 28.290 nitromethane ch3no2 36.562 1-nitropropane ntrprop1 23.730 2-nitropropane ntrprop2 25.654 o-nitrotoluene ontrtolu 25.669 n-nonane nonane 1.9605 1-nonanol nonanol 8.5991 5-nonanone nonanone 10.600 n-octane octane 1.9406 1-octanol octanol 9.8629 2-octanone octanon2 9.4678 n-pentadecane pentdecn 2.0333 pentanal pentanal 10.000 n-pentane npentane 1.8371 pentanoic acid pentacid 2.6924 1-pentanol pentanol 15.130 2-pentanone pentnon2 15.200 3-pentanone pentnon3 16.780 1-pentene pentene 1.9905 E-2-pentene e2penten 2.051 pentyl acetate pentacet 4.7297 pentylamine pentamin 4.2010 perfluorobenzene pfb 2.029 phenylmethanol benzalcl 12.457 propanal propanal 18.500 propanoic acid propacid 3.440 1-propanol propanol 20.524 2-propanol propnol2 19.264 propanonitrile propntrl 29.324 2-propen-1-ol propenol 19.011 propyl acetate propacet 5.5205 propylamine propamin 4.9912 pyridine pyridine 12.978 tetrachloroethene c2cl4 2.268 tetrahydrofuran thf 7.4257 tetrahydrothiophene-S,S-dioxide sulfolan 43.962 tetralin tetralin 2.771 thiophene thiophen 2.7270 thiophenol phsh 4.2728 toluene toluene 2.3741 tributyl phosphate tbp 8.1781 1,1,1-trichloroethane tca111 7.0826 1,1,2-trichloroethane tca112 7.1937 trichloroethene tce 3.422 triethylamine et3n 2.3832 2,2,2-trifluoroethanol tfe222 26.726 1,2,4-trimethylbenzene tmben124 2.3653 2,2,4-trimethylpentane isoctane 1.9358 n-undecane undecane 1.9910 m-xylene m-xylene 2.3478 o-xylene o-xylene 2.5454 p-xylene p-xylene 2.2705 xylene (mixture) xylenemx 2.3879 water h2o 78.400"},{"location":"SMD-Model.html#usage-tips","title":"Usage Tips","text":"Authors of paper 7 report that \u201d \u2026 the SMD/COSMO/NWChem calculations we employed finer grids (options minbem=3, maxbem=4, ificos=1) because the default NWChem tessellation parameters (options: minbem=2, maxbem=3, ificos=0) produced very large errors in solvation free energies.\u201d Since the maxbem
keyword is no longer in use, this paper\u2019s recommended input translate into
cosmo\n minbem 3\n ificos 1\nend\n
"},{"location":"SMD-Model.html#references","title":"References","text":"Klamt, A.; Sch\u00fc\u00fcrmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, No. 5, 799\u2013805. https://doi.org/10.1039/p29930000799.\u00a0\u21a9
York, D. M.; Karplus, M. A Smooth Solvation Potential Based on the Conductor-Like Screening Model. The Journal of Physical Chemistry A 1999, 103 (50), 11060\u201311079. https://doi.org/10.1021/jp992097l.\u00a0\u21a9
Bondi, A. Van Der Waals Volumes and Radii. The Journal of Physical Chemistry 1964, 68 (3), 441\u2013451. https://doi.org/10.1021/j100785a001.\u00a0\u21a9
Klamt, A.; Jonas, V.; B\u00fcrger, T.; Lohrenz, J. C. W. Refinement and Parametrization of COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 5074\u20135085. https://doi.org/10.1021/jp980017s.\u00a0\u21a9
Stefanovich, E. V.; Truong, T. N. Optimized Atomic Radii for Quantum Dielectric Continuum Solvation Models. Chemical Physics Letters 1995, 244 (1-2), 65\u201374. https://doi.org/10.1016/0009-2614(95)00898-e.\u00a0\u21a9\u21a9
Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. The Journal of Chemical Physics 1997, 107 (8), 3210\u20133221. https://doi.org/10.1063/1.474671.\u00a0\u21a9
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378\u20136396. https://doi.org/10.1021/jp810292n.\u00a0\u21a9\u21a9
Haynes, W. M. CRC Handbook of Chemistry and Physics; Mantina, M., Valero, R., Cramer, C. J., Truhlar, D. G., Eds.; Taylor & Francis Group, 2013; pp 9\u201349.\u00a0\u21a9
Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. Minneapolis, MN: Department of Chemistry and Supercomputer Institute 1999.\u00a0\u21a9
Terminate processing.
This top-level directive provides a convenient way of verifying an input file without actually running the calculation. It consists of the single line,
STOP
As soon as this directive is encountered, all processing ceases and the calculation terminates with an error condition.
"},{"location":"SYMMETRY----Symmetry-Group-Input.html","title":"SYMMETRY Symmetry Group Input","text":""},{"location":"SYMMETRY----Symmetry-Group-Input.html#symmetry-symmetry-group-input","title":"SYMMETRY: Symmetry Group Input","text":"The SYMMETRY directive is used (optionally) within the compound GEOMETRY directive to specify the point group for the molecular geometry or space group for the crystal structure. The general form of the directive, as described above within the general form of the GEOMETRY directive, is as follows:
[SYMMETRY [group] <string group_name>|<integer group number> \\\n [setting <integer setting>] [print] \\ \n [tol <real tol default 1d-2>]]\n
The keyword group is optional, and can be omitted without affecting how the input for this directive is processed. However, if the SYMMETRY directive is used, a group name must be specified by supplying an entry for the string variable <group_name>
or <group number>
. The latter is useful for the space groups discussed in the section below. The group name should be specified as the standard Sch\u00f6flies symbol. Examples of expected input for the variable group_name include such entries as:
The SYMMETRY directive is optional. The default is no symmetry (i.e., C1 point group). Automatic detection of point group symmetry is available through the use of autosym in the GEOMETRY directive main line (discussed in Keywords on the GEOMETRY directive). Note: if the SYMMETRY directive is present the autosym keyword is ignored.
If only symmetry-unique atoms are specified, the others will be generated through the action of the point group operators, but the user if free to specify all atoms. The user must know the symmetry of the molecule being modeled, and be able to specify the coordinates of the atoms in a suitable orientation relative to the rotation axes and planes of symmetry. The section Geometry Examples lists a number of examples of the GEOMETRY
directive input for specific molecules having symmetry patterns recognized by NWChem. The exact point group symmetry will be forced upon the molecule, and atoms within 10\u22123 A.U. of a symmetry element (e.g., a mirror plane or rotation axis) will be forced onto that element. Thus, it is not necessary to specify to a high precision those coordinates that are determined solely by symmetry.
The keyword print gives information concerning the point group generation, including the group generators, a character table, the mapping of centers, and the group operations.
The keyword tol relates to the accuracy with which the symmetry-unique atoms should be specified. When the atoms are generated, those that are within the tolerance, tol, are considered the same.
"},{"location":"SYSTEM----Lattice-parameters-for-periodic-systems.html","title":"SYSTEM Lattice parameters for periodic systems","text":""},{"location":"SYSTEM----Lattice-parameters-for-periodic-systems.html#system-lattice-parameters-for-periodic-systems","title":"SYSTEM \u2013 Lattice parameters for periodic systems","text":"This keyword is needed only for for 1-, 2-, and 3-dimensional periodic systems.
The system keyword can assume the following values
When the system possess translational symmetry, fractional coordinates are used in the directions where translational symmetry exists. This means that for crystals x, y and z are fractional, for surfaces x and y are fractional, whereas for polymers only z is fractional. For example, in the following H2O layer input (a 2-d periodic system), x and y coordinates are fractional, whereas z is expressed in Angstroms.
geometry units angstrom\n\n O 0.353553 0.353553 2.100000000 \n H 0.263094 0.353553 2.663590000 \n H 0.444007 0.353553 2.663590000\n
Since no space group symmetry is available yet other than P1, input of cell parameters is relative to the primitive cell. For example, this is the input required for the cubic face-centered type structure of bulk MgO.
system crystal \n lat_a 2.97692 \n lat_b 2.97692 \n lat_c 2.97692 \n alpha 60.00 \n beta 60.00 \n gamma 60.00 \n end\n
"},{"location":"Sample.html","title":"Sample input files","text":""},{"location":"Sample.html#water-scf-calculation-and-geometry-optimization-in-a-6-31g-basis","title":"Water SCF calculation and geometry optimization in a 6-31g basis","text":"The Getting Started input file performs a geometry optimization in a single task. A single point SCF energy calculation is performed and then restarted to perform the optimization (both could of course be performed in a single task).
"},{"location":"Sample.html#job-1-single-point-scf-energy","title":"Job 1. Single point SCF energy","text":"\u00a0start\u00a0h2o \n\u00a0title\u00a0\"Water\u00a0in\u00a06-31g\u00a0basis\u00a0set\" \n\n\u00a0geometry\u00a0units\u00a0au \n\u00a0\u00a0\u00a0O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.00000000\u00a0\u00a0\u00a0\u00a00.00000000\u00a0\u00a0\u00a0\u00a00.00000000 \n\u00a0\u00a0\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.00000000\u00a0\u00a0\u00a0\u00a01.43042809\u00a0\u00a0\u00a0-1.10715266 \n\u00a0\u00a0\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.00000000\u00a0\u00a0\u00a0-1.43042809\u00a0\u00a0\u00a0-1.10715266 \n\u00a0end \n\u00a0basis \n\u00a0\u00a0\u00a0H\u00a0library\u00a06-31g \n\u00a0\u00a0\u00a0O\u00a0library\u00a06-31g \n\u00a0end\n\u00a0task\u00a0scf\n
The final energy should be -75.983998.
"},{"location":"Sample.html#job-2-restarting-and-perform-a-geometry-optimization","title":"Job 2. Restarting and perform a geometry optimization","text":"\u00a0restart\u00a0h2o\n\u00a0title\u00a0\"Water\u00a0geometry\u00a0optimization\"\n\u00a0\n\u00a0task\u00a0scf\u00a0optimize\n
There is no need to specify anything that has not changed from the previous input deck, though it will do no harm to repeat it.
"},{"location":"Sample.html#compute-the-polarizability-of-ne-using-finite-field","title":"Compute the polarizability of Ne using finite field","text":""},{"location":"Sample.html#job-1-compute-the-atomic-energy","title":"Job 1. Compute the atomic energy","text":"\u00a0start\u00a0ne\n\u00a0title\u00a0\"Neon\"\n\u00a0geometry;\u00a0ne\u00a00\u00a00\u00a00;\u00a0end\n\u00a0basis\u00a0spherical\u00a0\n\u00a0\u00a0\u00a0ne\u00a0library\u00a0aug-cc-pvdz\n\u00a0end\n\u00a0scf;\u00a0thresh\u00a01e-10;\u00a0end\n\u00a0task\u00a0scf\n
The final energy should be -128.496350.
"},{"location":"Sample.html#job-2-compute-the-energy-with-applied-field","title":"Job 2. Compute the energy with applied field","text":"An external field may be simulated with point charges. The charges here apply a field of magnitude 0.01 atomic units to the atom at the origin. Since the basis functions have not been reordered by the additional centers we can also restart from the previous vectors, which is the default for a restart job.
\u00a0restart\u00a0ne \n\u00a0title\u00a0\"Neon\u00a0in\u00a0electric\u00a0field\" \n\u00a0geometry\u00a0units\u00a0atomic \n\u00a0\u00a0\u00a0bq1\u00a00\u00a00\u00a0100\u00a0charge\u00a050 \n\u00a0\u00a0\u00a0ne\u00a0\u00a00\u00a00\u00a00 \n\u00a0\u00a0\u00a0bq2\u00a00\u00a00\u00a0-100\u00a0charge\u00a0-50 \n\u00a0end \n\u00a0task\u00a0scf\n
The final energy should be -128.496441, which together with the previous field-free result yields an estimate for the polarizability of 1.83 atomic units. Note that by default NWChem does not include the interaction between the two point charges in the total energy.
"},{"location":"Sample.html#scf-energy-of-h2co-using-ecps-for-c-and-o","title":"SCF energy of H2CO using ECPs for C and O","text":"The following will compute the SCF energy for formaldehyde with ECPs on the Carbon and Oxygen centers.
title\u00a0\"formaldehyde\u00a0ECP\u00a0deck\" \n\nstart\u00a0ecpchho \n\ngeometry\u00a0units\u00a0au \n\u00a0\u00a0C\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.000000\u00a0\u00a00.000000\u00a0-1.025176 \n\u00a0\u00a0O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.000000\u00a0\u00a00.000000\u00a0\u00a01.280289 \n\u00a0\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.000000\u00a0\u00a01.767475\u00a0-2.045628 \n\u00a0\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.000000\u00a0-1.767475\u00a0-2.045628 \nend \n\nbasis\u00a0 \n\u00a0\u00a0C\u00a0\u00a0SP \n\u00a0\u00a0\u00a00.1675097360D+02\u00a0-0.7812840500D-01\u00a0\u00a00.3088908800D-01 \n\u00a0\u00a0\u00a00.2888377460D+01\u00a0-0.3741108860D+00\u00a0\u00a00.2645728130D+00 \n\u00a0\u00a0\u00a00.6904575040D+00\u00a0\u00a00.1229059640D+01\u00a0\u00a00.8225024920D+00 \n\u00a0\u00a0C\u00a0\u00a0SP \n\u00a0\u00a0\u00a00.1813976910D+00\u00a0\u00a00.1000000000D+01\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0C\u00a0\u00a0D \n\u00a0\u00a0\u00a00.8000000000D+00\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0C\u00a0\u00a0F \n\u00a0\u00a0\u00a00.1000000000D+01\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0O\u00a0\u00a0SP \n\u00a0\u00a0\u00a00.1842936330D+02\u00a0-0.1218775590D+00\u00a0\u00a00.5975796600D-01 \n\u00a0\u00a0\u00a00.4047420810D+01\u00a0-0.1962142380D+00\u00a0\u00a00.3267825930D+00 \n\u00a0\u00a0\u00a00.1093836980D+01\u00a0\u00a00.1156987900D+01\u00a0\u00a00.7484058930D+00 \n\u00a0\u00a0O\u00a0\u00a0SP \n\u00a0\u00a0\u00a00.2906290230D+00\u00a0\u00a00.1000000000D+01\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0O\u00a0\u00a0D \n\u00a0\u00a0\u00a00.8000000000D+00\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0O\u00a0\u00a0F \n\u00a0\u00a0\u00a00.1100000000D+01\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0H\u00a0\u00a0S \n\u00a0\u00a0\u00a00.1873113696D+02\u00a0\u00a00.3349460434D-01 \n\u00a0\u00a0\u00a00.2825394365D+01\u00a0\u00a00.2347269535D+00 \n\u00a0\u00a0\u00a00.6401216923D+00\u00a0\u00a00.8137573262D+00 \n\u00a0\u00a0H\u00a0\u00a0S\u00a0\u00a0\u00a0 \n\u00a0\u00a0\u00a00.1612777588D+00\u00a0\u00a00.1000000000D+01 \nend \n\necp \n\u00a0\u00a0C\u00a0nelec\u00a02 \n\u00a0\u00a0C\u00a0ul \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a080.0000000\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.60000000 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a030.0000000\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.40000000 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.5498205\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.03990210 \n\u00a0\u00a0C\u00a0s \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.7374760\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.63810832 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0135.2354832\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a011.00916230 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a08.5605569\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a020.13797020 \n\u00a0\u00a0C\u00a0p \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a010.6863587\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-3.24684280 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a023.4979897\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.78505765 \n\u00a0\u00a0O\u00a0nelec\u00a02 \n\u00a0\u00a0O\u00a0ul \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a080.0000000\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.60000000 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a030.0000000\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.40000000 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01.0953760\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.06623814 \n\u00a0\u00a0O\u00a0s \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.9212952\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.39552179 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a028.6481971\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02.51654843 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a09.3033500\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a017.04478500 \n\u00a0\u00a0O\u00a0p \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a052.3427019\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a027.97790770 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a030.7220233\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-16.49630500 \nend \n\nscf \n\u00a0\u00a0vectors\u00a0input\u00a0hcore \n\u00a0\u00a0maxiter\u00a020 \nend \n\ntask\u00a0scf\n
This should produce the following output:
\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Final\u00a0RHF\u00a0\u00a0results\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0------------------\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Total\u00a0SCF\u00a0energy\u00a0=\u00a0\u00a0\u00a0\u00a0-22.507927218024 \n\u00a0\u00a0\u00a0\u00a0\u00a0One\u00a0electron\u00a0energy\u00a0=\u00a0\u00a0\u00a0\u00a0-71.508730162974 \n\u00a0\u00a0\u00a0\u00a0\u00a0Two\u00a0electron\u00a0energy\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a031.201960019808 \nNuclear\u00a0repulsion\u00a0energy\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a017.798842925142\n
"},{"location":"Sample.html#mp2-optimization-and-ccsdt-on-nitrogen","title":"MP2 optimization and CCSD(T) on nitrogen","text":"The following performs an MP2 geometry optimization followed by a CCSD(T) energy evaluation at the converged geometry. A Dunning correlation-consistent triple-zeta basis is used. The default of Cartesian basis functions must be overridden using the keyword spherical on the BASIS directive. The 1s core orbitals are frozen in both the MP2 and coupled-cluster calculations (note that these must separately specified). The final MP2 energy is -109.383276, and the CCSD(T) energy is -109.399662.
start\u00a0n2\u00a0 \n\ngeometry \n\u00a0\u00a0symmetry\u00a0d2h \n\u00a0\u00a0n\u00a00\u00a00\u00a00.542 \nend \n\nbasis\u00a0spherical \n\u00a0\u00a0n\u00a0library\u00a0cc-pvtz \nend \n\nmp2 \n\u00a0\u00a0freeze\u00a0core \nend \n\ntask\u00a0mp2\u00a0optimize \n\nccsd \n\u00a0\u00a0freeze\u00a0core \nend \n\ntask\u00a0ccsd(t)\n
"},{"location":"Scratch_Dir.html","title":"Scratch Dir","text":""},{"location":"Scratch_Dir.html#scratch_dir","title":"SCRATCH_DIR","text":"This start-up directive allows the user to specify the directory location of scratch files created by NWChem. NWChem distinguishes between permanent (or persistent) files and scratch (or temporary) files, and allows the user the option of putting them in different locations. In most installations, however, permanent and scratch files are all written to the current directory by default. What constitutes \u201clocal\u201d disk space may also differ from machine to machine.
The conventions for file storage are at the discretion of the specific installation, and are quite likely to be different on different machines. When assigning locations for permanent and scratch files, the user must be cognizant of the characteristics of the installation on a particular platform. To consider just a few examples, on clusters, machine-specific or process-specific names must be supplied for both local and shared file systems, while on SMPs it is useful to specify scratch file directories with automated striping across processors with round-robin allocation. On SMP clusters (a.k.a. constellations), both of these specifications are required.
The SCRATCH_DIR enables the user to specify a single directory for all processes or different directories for different processes. The general form of the directive is as follows:
(SCRATCH_DIR)\u00a0[(<string\u00a0host>||<integer process>):]\u00a0\u00a0<string directory>\u00a0\u00a0[...]\n
Directories are extracted from the user input by executing the following steps, in sequence:
If directory allocation directive(s) are not specified in the input file, or if no match is found to the directory names specified by input using these directives, then the steps above are executed using the installation-specific defaults. If the code cannot find a valid directory name based on the input specified in either the directive(s) or the system defaults, files are automatically written to the current working directory (\u201c.\u201d).
The following is a list of examples of specific allocations of scratch directory locations:
scratch_dir\u00a0/localscratch
scratch_dir\u00a0/scratch\u00a00:/piofs/rjh
scratch_dir\u00a0/scr1\u00a0/scr2\u00a0/scr3\u00a0/scr4\u00a0/scr5
scratch_dir\u00a0coho:/xfs1/rjh\u00a0coho:/xfs2/rjh\u00a0coho:/xfs3/rjh\u00a0\u00a0bohr:/disk01/rjh\u00a0bohr:/disk02/rjh\u00a0bohr:/disk13/rjh
While we have done our best to compile an exhaustive list of software using NWChem, we might have missed packages and/or incorrectly described some software features. Please use the Github Issue feature to provide feedback on this page content.
"},{"location":"Software-supporting-NWChem.html#user-interface-software","title":"User interface software","text":"The following programs can display cube files from charge density and ESP and/or use Molden files
NWChem can generate AIM3 wavefunction files (.wfn/.wfx) can be post-processed with a variety of codes, e.g.
No longer been actively developed at PNNL. New development effort at https://github.com/FriendsofECCE/ECCE/releases \u21a9
The WebMo interface might not be compatible with NWChem 6.0 and later versions\u00a0\u21a9
WARNING: Since we have discovered issues in generating .WFN files with this module (e.g. systems with ECPs), the recommended method for generating .WFN file is to first generate a Molden file with the Moldenfile option, then convert the Molden file into a WFN file by using the Molden2AIM program.\u00a0\u21a9
Two solvation models are available in NWChem: COSMO and SMD. Since some of the COSMO parameters are used for SMD, we suggest to read the COSMO section before the SMD one.
"},{"location":"Solvation-Models.html#cosmo","title":"COSMO","text":""},{"location":"Solvation-Models.html#overview_1","title":"Overview","text":"COSMO is the continuum solvation \u2018COnductor-like Screening MOdel\u2019 of A. Klamt and G. Sch\u00fc\u00fcrmann to describe dielectric screening effects in solvents1. This model has been enhanced by D.M. York and M. Karplus2 to create a smooth potential energy surface. The latter facilitates geometry optimization and dynamics and the implementation has been adapted to take advantage of those ideas.
The NWChem COSMO module implements algorithm for calculation of the energy for the following methods:
by determining the solvent reaction field self-consistently with the solute charge distribution from the respective methods. Note that COSMO for unrestricted Hartree-Fock (UHF) method can also be performed by invoking the DFT module with appropriate keywords.
Correlation energy of solvent molecules may also be evaluated at
levels of theory. It is cautioned, however, that these correlated COSMO calculations determine the solvent reaction field using the HF charge distribution of the solute rather than the charge distribution of the correlation theory and are not entirely self consistent in that respect. In other words, these calculations assume that the correlation effect and solvation effect are largely additive, and the combination effect thereof is neglected. COSMO for MCSCF has not been implemented yet.
In the current implementation the code calculates the gas-phase energy of the system followed by the solution-phase energy, and returns the electrostatic contribution to the solvation free energy. At the present gradients are calculated analytically, but frequencies are calculated by finite difference of the gradients. The non-electrostatic contributions can be calculated by turning on the SMD model. It should be noted that one must in general take into account the standard state correction besides the electrostatic and cavitation/dispersion contribution to the solvation free energy, when a comparison to experimental data is made.
"},{"location":"Solvation-Models.html#cosmo-input-parameters","title":"COSMO Input Parameters","text":"Invoking the COSMO solvation model is done by specifying the input COSMO input block with the input options as:
cosmo \n [off] \n [dielec <real dielec default 78.4>] \n [parameters <filename>] \n [radius <real atom1> \n <real atom2> \n . . . \n <real atomN>] \n [iscren <integer iscren default 0>] \n [minbem <integer minbem default 2>] \n [ificos <integer ificos default 0>] \n [lineq <integer lineq default 1>] \n [zeta <real zeta default 0.98>] \n [gamma_s <real gammas default 1.0>] \n [sw_tol <real swtol default 1.0e-4>] \n [do_gasphase <logical do_gasphase default True>] \n [do_cosmo_ks]\n [do_cosmo_yk]\n [do_cosmo_smd]\nend\n
followed by the task directive specifying the wavefunction and type of calculation, e.g., task scf energy
, task mp2 energy
, task dft optimize
, etc.
off
can be used to turn off COSMO in a compound (multiple task) run. By default, once the COSMO solvation model has been defined it will be used in subsequent calculations. Add the keyword off
if COSMO is not needed in subsequent calculations.
dielec
is the value of the dielectric constant of the medium, with a default value of 78.4 (the dielectric constant for water).
parameters
specifies COSMO radii parameters file that stores custom setting for COSMO parameters. The format for such file consists of the atom or element name followed by the radii. The program will first attempt to match based on atom name and only then the element name. Otherwise radius will be set based on default parameters. The file has to present in one of the three location ( in the order of preference) - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, and run directory.
radius
is an array that specifies the radius of the spheres associated with each atom and that make up the molecule-shaped cavity. These values will override default radii setting including those specified in the COSMO parameter file (if any) Default values are Van der Waals radii. Values are in units of angstroms. The codes uses the following Van der Waals radii by default:
Default radii provided by Andreas Klamt (Cosmologic)
vdw radii: 1.17 (\u00b1 0.02) * Bondi radius3
optimal vdw radii for H, C, N, O, F, S, Cl, Br, I4
for heavy elements: 1.17*1.9
data (vander(i),i=1,102) \n 1 / 1.300,1.638,1.404,1.053,2.0475,2.00, \n 2 1.830,1.720,1.720,1.8018,1.755,1.638, \n 3 1.404,2.457,2.106,2.160,2.05,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.160,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 8 2.223,2.223,2.223,2.223,2.223,2.223, \n 9 2.223,2.223,2.223,2.223,2.320,2.223, \n 1 2.223,2.223,2.223,2.223,2.223,2.223, \n 2 2.223,2.223,2.223,2.223,2.223,2.223, \n 3 2.223,2.223,2.223,2.223,2.223,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223/\n
For examples see Stefanovich et al.5 and Barone et al.6
\u201cRsolv\u201d is no longer used.
"},{"location":"Solvation-Models.html#cosmo-iscreen-keyword","title":"COSMO: ISCREEN keyword","text":"iscren
is a flag to define the dielectric charge scaling option. iscren 1
implies the original scaling from Klamt and Sch\u00fc\u00fcrmann, mainly \u201c(\u03b5-1)/(\u03b5+1/2)\u201d, where \u03b5 is the dielectric constant. iscren 0
implies the modified scaling suggested by Stefanovich and Truong5, mainly \u201c(\u03b5-1)/\u03b5\u201c. Default is to use the modified scaling. For high dielectric the difference between the scaling is not significant.
The next two parameters define the tesselation of the unit sphere. The approach still follows the original proposal by Klamt and Sch\u00fc\u00fcrmann to some degree. Basically a tesselation is generated from minbem
refining passes starting from either an octahedron or an icosahedron. Each level of refinement partitions the triangles of the current tesselation into four triangles. This procedure is repeated recursively until the desired granularity of the tesselation is reached. The induced point charges from the polarization of the medium are assigned to the centers of the tesselation. The default value is minbem 2
. The flag ificos
serves to select the original tesselation, ificos 0
for an octahedron (default) and ificos 1
for an icoshedron. Starting from an icosahedron yields a somewhat finer tesselation that converges somewhat faster. Solvation energies are not really sensitive to this choice for sufficiently fine tesselations. The old \u201cmaxbem\u201d directive is no longer used.
The lineq
parameter serves to select the numerical algorithm to solve the linear equations yielding the effective charges that represent the polarization of the medium. lineq 0
selects a dense matrix linear equation solver (default), lineq 1
selects an iterative method. For large molecules where the number of effective charges is large, the code selects the iterative method.
zeta
sets the width of the Gaussian charge distributions that were suggested by York and Karplus to avoid singularities when two surface charges coincide. The default value is zeta 0.98
this value was chosen to ensure that the results of the current implementation are as close as possible to those of the original Klamt and Sch\u00fc\u00fcrmann based implementation.
gamma_s
modifies the width of the smooth switching function that eliminates surface charges when their positions move into the sphere of a neighboring atom. gamma_s 0.0
leads to a heavyside or abrupt switching function, whereas gamma_s 1.0
maximizes the width of the switching function. The default value is gamma_s 1.0
.
sw_tol
specifies the cutoff of the switching function below which a surface charge at a particular point is eliminated. The values of the switching function lie in the domain from 0 to 1. This value should not be set too small as that leads to instabilities in the linear system solvers. The default value is sw_tol 1.0e-4
.
do_gasphase
is a flag to control whether the calculation of the solvation energy is preceded by a gas phase calculation. The default is to always perform a gas phase calculation first and then calculate the solvation starting from the converged gas phase electron density. However, in geometry optimizations this approach can double the cost. In such a case setting do_gasphase false
suppresses the gas phase calculations and only the solvated system calculations are performed. This option needs to be used with care as in some cases starting the COSMO solvation from an unconverged electron density can generate unphysical charges that lock the calculation into strange electron distributions.
do_cosmo_ks
is a flag to turn on the Klamt-Sch\u00fc\u00fcrmann model
do_cosmo_yk
is a flag to turn on the York-Karplus model (default)
do_cosmo_smd
is a flag to turn on the SMD model. More details can be found at the SMD Model documentation
The following example is for a water molecule in \u2018water\u2019, using the HF/6-31G** level of theory:
start \n\ngeometry \n o .0000000000 .0000000000 -.0486020332 \n h .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n o library 6-31g** \n h library 6-31g** \nend \ncosmo \n dielec 78.0 \n radius 1.40 \n 1.16 \n 1.16 \n lineq 0 \nend \ntask scf energy\n
Alternatively, instead of listing COSMO radii parameters in the input, the former can be loaded using an external file through the parameters
directive
start \n\ngeometry \n ow .0000000000 .0000000000 -.0486020332 \n hw .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n * library 6-31g** \nend\n\ncosmo \n dielec 78.0 \n lineq 0 \n parameters water.par \nend\n\ntask scf energy\n
where the water.par
file has the following form:
O 1.40\nH 1.16\n
This will set radii of all oxygen atoms to 1.4 and all hydrogen atoms to 1.16. More fine grained control may be achieved using specific atom names. For example, the following parameter file
O 1.40\nH 1.16\nHW 1.06\n
will set a different radii of 1.06 to hydrogen atoms named HW. Note that, as per general rule in NWChem, all names are case insensitive.
and placed in one of the these locations - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, or run directory.
SMD denotes \u201csolvation model based on density\u201d and it is described in detail in the 2009 paper by Marenich, Cramer and Truhlar7.
The SMD model is a universal continuum solvation model where \u201cuniversal\u201d denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known. The word \u201ccontinuum\u201d denotes that the solvent is not represented explicitly as a collection of discrete solvent molecules but rather as a dielectric medium with surface tensions at the solute-solvent interface.
SMD directly calculates the free energy of solvation of an ideal solvation process that occurs at fixed concentration (for example, from an ideal gas at a concentration of 1 mol/L to an ideal solution at a liquid-phase concentration of 1 mol/L) at 298 K, but this may converted by standard thermodynamic formulas to a standard-state free energy of solvation, which is defined as the transfer of molecules from an ideal gas at 1 bar to an ideal 1 molar solution.
The SMD model separates the fixed-concentration free energy of solvation into two components. The first component is the bulk-electrostatic contribution arising from a self-consistent reaction field (SCRF) treatment. The SCRF treatment involves an integration of the nonhomogeneous-dielectric Poisson equation for bulk electrostatics in terms of the COSMO model of Klamt and Sch\u00fc\u00fcrmann with the modified COSMO scaling factor suggested by Stefanovich and Truong and by using the SMD intrinsic atomic Coulomb radii. These radii have been optimized for H, C, N, O, F, Si, P, S, Cl, and Br. For any other atom the current implementation of the SMD model uses scaled values of the van der Waals radii of Mantina et al8.
The scaling factor equals 1.52 for group 17 elements heavier than Br (i.e., for I and At) and 1.18 for all other elements for which there are no optimized SMD radii.
The second contribution to the fixed-concentration free energy of solvation is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is called the cavity\u2013dispersion\u2013solvent-structure (CDS) term, and it is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas (SASAs) of the individual atoms of the solute.
"},{"location":"Solvation-Models.html#smd-input-parameters","title":"SMD Input Parameters","text":"The SMD model requires additional parameters in the COSMO input block
cosmo \n [do_cosmo_smd <logical>]\n [solvent (keyword)]\n [icds <integer>]\n [sola <real>]\n [solb <real>]\n [solc <real>]\n [solg <real>]\n [solh <real>]\n [soln <real>]\nend \n
At the moment the SMD model is available in NWChem only with the DFT block
The SMD input options are as follows:
do_cosmo_smd <logical>\n
The do_cosmo_smd
keyword instructs NWChem to perform a ground-state SMD calculation when set to a true
value.
solvent (keyword)\n
a solvent
keyword from the short name entry in the list of available SMD solvent names.
When a solvent is specified by name, the descriptors for the solvent are based on the Minnesota Solvent Descriptor Database9.
The user can specify a solvent (by using a string using up to eight characters) that is not on the list by using a new solvent keyword and introducing user-provided values for the following solvent descriptors:
"},{"location":"Solvation-Models.html#smd-dielec-keyword","title":"SMD: DIELEC keyword","text":"dielec (real input)\n
dielectric constant at 298 K
"},{"location":"Solvation-Models.html#smd-sola-keyword","title":"SMD: SOLA keyword","text":"sola (real input) \n
Abraham\u2019s hydrogen bond acidity
"},{"location":"Solvation-Models.html#smd-solb-keyword","title":"SMD: SOLB keyword","text":"solb (real input) \n
Abraham\u2019s hydrogen bond basicity
"},{"location":"Solvation-Models.html#smd-solc-keyword","title":"SMD: SOLC keyword","text":"solc (real input)\n
aromaticity as a fraction of non-hydrogenic solvent atoms that are aromatic carbon atoms
"},{"location":"Solvation-Models.html#smd-solg-keyword","title":"SMD: SOLG keyword","text":"solg (real input)\n
macroscopic surface tension of the solvent at an air/solvent interface at 298 K in units of cal mol\u20131 \u00c5\u20132 (note that 1 dyne/cm = 1.43932 cal mol\u20131 \u00c5\u20132)
"},{"location":"Solvation-Models.html#smd-solh-keyword","title":"SMD: SOLH keyword","text":"solh (real input)\n
electronegative halogenicity as the fraction of non-hydrogenic solvent atoms that are F, Cl, or Br
"},{"location":"Solvation-Models.html#smd-soln-keyword","title":"SMD: SOLN keyword","text":"soln (real input)\n
index of refraction at optical frequencies at 293 K
"},{"location":"Solvation-Models.html#smd-icds-keyword","title":"SMD: ICDS keyword","text":"icds (integer input)\n
icds
should have a value of 1 for water. icds
should have a value of 2 for any nonaqueous solvent. If icds
is set equal to 2, then you need to provide the following solvent descriptors (see the MN solvent descriptor database ):
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in water\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent water\nend\ntask dft energy\n
"},{"location":"Solvation-Models.html#smd-example-new-solvent","title":"SMD Example: new solvent","text":"Example using a user defined solvent, not present in the SMD list of solvents
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in my solvent\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent mysolv \n dielec 11.4\n sola 1.887\n solb 0.0\n soln 0.98\n icds 2\nend\ntask dft energy\n
"},{"location":"Solvation-Models.html#solvents-list-solvent-keyword","title":"Solvents List - Solvent keyword","text":"The short name for the solvent from the table can be used with the solvent
keyword to define the solvent. Example with acetonitrile.
cosmo\n solvent acetntrl\nend\n
Long name short name dielec acetic acid acetacid 6.2528 acetone acetone 20.493 acetonitrile acetntrl 35.688 acetophenone acetphen 17.440 aniline aniline 6.8882 anisole anisole 4.2247 benzaldehyde benzaldh 18.220 benzene benzene 2.2706 benzonitrile benzntrl 25.592 benzyl chloride benzylcl 6.7175 1-bromo-2-methylpropane brisobut 7.7792 bromobenzene brbenzen 5.3954 bromoethane brethane 9.01 bromoform bromform 4.2488 1-bromooctane broctane 5.0244 1-bromopentane brpentan 6.269 2-bromopropane brpropa2 9.3610 1-bromopropane brpropan 8.0496 butanal butanal 13.450 butanoic acid butacid 2.9931 1-butanol butanol 17.332 2-butanol butanol2 15.944 butanone butanone 18.246 butanonitrile butantrl 24.291 butyl acetate butile 4.9941 butylamine nba 4.6178 n-butylbenzene nbutbenz 2.360 sec-butylbenzene sbutbenz 2.3446 tert-butylbenzene tbutbenz 2.3447 carbon disulfide cs2 2.6105 carbon tetrachloride carbntet 2.2280 chlorobenzene clbenzen 5.6968 sec-butyl chloride secbutcl 8.3930 chloroform chcl3 4.7113 1-chlorohexane clhexane 5.9491 1-chloropentane clpentan 6.5022 1-chloropropane clpropan 8.3548 o-chlorotoluene ocltolue 4.6331 m-cresol m-cresol 12.440 o-cresol o-cresol 6.760 cyclohexane cychexan 2.0165 cyclohexanone cychexon 15.619 cyclopentane cycpentn 1.9608 cyclopentanol cycpntol 16.989 cyclopentanone cycpnton 13.58 cis-decalin declncis 2.2139 trans-decalin declntra 2.1781 decalin (cis/trans mixture) declnmix 2.196 n-decane decane 1.9846 1-decanol decanol 7.5305 1,2-dibromoethane edb12 4.9313 dibromomethane dibrmetn 7.2273 dibutyl ether butyleth 3.0473 o-dichlorobenzene odiclbnz 9.9949 1,2-dichloroethane edc12 10.125 cis-dichloroethylene c12dce 9.200 trans-dichloroethylene t12dce 2.140 dichloromethane dcm 8.930 diethyl ether ether 4.2400 diethyl sulfide et2s 5.723 diethylamine dietamin 3.5766 diiodomethane mi 5.320 diisopropyl ether dipe 3.380 dimethyl disulfide dmds 9.600 dimethylsulfoxide dmso 46.826 N,N-dimethylacetamide dma 37.781 cis-1,2-dimethylcyclohexane cisdmchx 2.060 N,N-dimethylformamide dmf 37.219 2,4-dimethylpentane dmepen24 1.8939 2,4-dimethylpyridine dmepyr24 9.4176 2,6-dimethylpyridine dmepyr26 7.1735 1,4-dioxane dioxane 2.2099 diphenyl ether phoph 3.730 dipropylamine dproamin 2.9112 n-dodecane dodecan 2.0060 1,2-ethanediol meg 40.245 ethanethiol etsh 6.667 ethanol ethanol 24.852 ethyl acetate etoac 5.9867 ethyl formate etome 8.3310 ethylbenzene eb 2.4339 ethylphenyl ether phenetol 4.1797 fluorobenzene c6h5f 5.420 1-fluorooctane foctane 3.890 formamide formamid 108.94 formic acid formacid 51.100 n-heptane heptane 1.9113 1-heptanol heptanol 11.321 2-heptanone heptnon2 11.658 4-heptanone heptnon4 12.257 n-hexadecane hexadecn 2.0402 n-hexane hexane 1.8819 hexanoic acid hexnacid 2.600 1-hexanol hexanol 12.51 2-hexanone hexanon2 14.136 1-hexene hexene 2.0717 1-hexyne hexyne 2.615 iodobenzene c6h5i 4.5470 1-iodobutane iobutane 6.173 iodoethane c2h5i 7.6177 1-iodohexadecane iohexdec 3.5338 iodomethane ch3i 6.8650 1-iodopentane iopentan 5.6973 1-iodopropane iopropan 6.9626 isopropylbenzene cumene 2.3712 p-isopropyltoluene p-cymene 2.2322 mesitylene mesityln 2.2650 methanol methanol 32.613 2-methoxyethanol egme 17.200 methyl acetate meacetat 6.8615 methyl benzoate mebnzate 6.7367 methyl butanoate mebutate 5.5607 methyl formate meformat 8.8377 4-methyl-2-pentanone mibk 12.887 methyl propanoate mepropyl 6.0777 2-methyl-1-propanol isobutol 16.777 2-methyl-2-propanol terbutol 12.470 N-methylaniline nmeaniln 5.9600 methylcyclohexane mecychex 2.024 N-methylformamide (E/Z mixture) nmfmixtr 181.56 2-methylpentane isohexan 1.890 2-methylpyridine mepyrid2 9.9533 3-methylpyridine mepyrid3 11.645 4-methylpyridine mepyrid4 11.957 nitrobenzene c6h5no2 34.809 nitroethane c2h5no2 28.290 nitromethane ch3no2 36.562 1-nitropropane ntrprop1 23.730 2-nitropropane ntrprop2 25.654 o-nitrotoluene ontrtolu 25.669 n-nonane nonane 1.9605 1-nonanol nonanol 8.5991 5-nonanone nonanone 10.600 n-octane octane 1.9406 1-octanol octanol 9.8629 2-octanone octanon2 9.4678 n-pentadecane pentdecn 2.0333 pentanal pentanal 10.000 n-pentane npentane 1.8371 pentanoic acid pentacid 2.6924 1-pentanol pentanol 15.130 2-pentanone pentnon2 15.200 3-pentanone pentnon3 16.780 1-pentene pentene 1.9905 E-2-pentene e2penten 2.051 pentyl acetate pentacet 4.7297 pentylamine pentamin 4.2010 perfluorobenzene pfb 2.029 phenylmethanol benzalcl 12.457 propanal propanal 18.500 propanoic acid propacid 3.440 1-propanol propanol 20.524 2-propanol propnol2 19.264 propanonitrile propntrl 29.324 2-propen-1-ol propenol 19.011 propyl acetate propacet 5.5205 propylamine propamin 4.9912 pyridine pyridine 12.978 tetrachloroethene c2cl4 2.268 tetrahydrofuran thf 7.4257 tetrahydrothiophene-S,S-dioxide sulfolan 43.962 tetralin tetralin 2.771 thiophene thiophen 2.7270 thiophenol phsh 4.2728 toluene toluene 2.3741 tributyl phosphate tbp 8.1781 1,1,1-trichloroethane tca111 7.0826 1,1,2-trichloroethane tca112 7.1937 trichloroethene tce 3.422 triethylamine et3n 2.3832 2,2,2-trifluoroethanol tfe222 26.726 1,2,4-trimethylbenzene tmben124 2.3653 2,2,4-trimethylpentane isoctane 1.9358 n-undecane undecane 1.9910 m-xylene m-xylene 2.3478 o-xylene o-xylene 2.5454 p-xylene p-xylene 2.2705 xylene (mixture) xylenemx 2.3879 water h2o 78.400"},{"location":"Solvation-Models.html#usage-tips","title":"Usage Tips","text":"Authors of paper 7 report that \u201d \u2026 the SMD/COSMO/NWChem calculations we employed finer grids (options minbem=3, maxbem=4, ificos=1) because the default NWChem tessellation parameters (options: minbem=2, maxbem=3, ificos=0) produced very large errors in solvation free energies.\u201d Since the maxbem
keyword is no longer in use, this paper\u2019s recommended input translate into
cosmo\n minbem 3\n ificos 1\nend\n
"},{"location":"Solvation-Models.html#references","title":"References","text":"Klamt, A.; Sch\u00fc\u00fcrmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, No. 5, 799\u2013805. https://doi.org/10.1039/p29930000799.\u00a0\u21a9
York, D. M.; Karplus, M. A Smooth Solvation Potential Based on the Conductor-Like Screening Model. The Journal of Physical Chemistry A 1999, 103 (50), 11060\u201311079. https://doi.org/10.1021/jp992097l.\u00a0\u21a9
Bondi, A. Van Der Waals Volumes and Radii. The Journal of Physical Chemistry 1964, 68 (3), 441\u2013451. https://doi.org/10.1021/j100785a001.\u00a0\u21a9
Klamt, A.; Jonas, V.; B\u00fcrger, T.; Lohrenz, J. C. W. Refinement and Parametrization of COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 5074\u20135085. https://doi.org/10.1021/jp980017s.\u00a0\u21a9
Stefanovich, E. V.; Truong, T. N. Optimized Atomic Radii for Quantum Dielectric Continuum Solvation Models. Chemical Physics Letters 1995, 244 (1-2), 65\u201374. https://doi.org/10.1016/0009-2614(95)00898-e.\u00a0\u21a9\u21a9
Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. The Journal of Chemical Physics 1997, 107 (8), 3210\u20133221. https://doi.org/10.1063/1.474671.\u00a0\u21a9
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378\u20136396. https://doi.org/10.1021/jp810292n.\u00a0\u21a9\u21a9
Haynes, W. M. CRC Handbook of Chemistry and Physics; Mantina, M., Valero, R., Cramer, C. J., Truhlar, D. G., Eds.; Taylor & Francis Group, 2013; pp 9\u201349.\u00a0\u21a9
Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. Minneapolis, MN: Department of Chemistry and Supercomputer Institute 1999.\u00a0\u21a9
The START or RESTART directive define the start-up mode and are optional keywords. If one of these two directives is not specified explicitly, the code will infer one, based upon the name of the input file and the availability of the database. When allowing NWChem to infer the start-up directive, the user must be quite certain that the contents of the database will result in the desired action. It is usually more prudent to specify the directive explicitly, using the following format:
(RESTART || START) [<string file_prefix default input_file_prefix>] \\ \n [rtdb <string rtdb_file_name default file_prefix.db>]\n
The START directive indicates that the calculation is one in which a new database is to be created. Any relevant information that already exists in a previous database of the same name is destroyed. The string variable file_prefix
will be used as the prefix to name any files created in the course of the calculation.
E.g., to start a new calculation on water, one might specify
start water\n
which will make all files begin with \u201cwater.\u201d.
If the user does not specify an entry for file_prefix
on the START directive (or omits the START directive altogether), the code uses the base-name of the input file as the file prefix. That is, the variable file_prefix
is assigned the name of the input file (not its full pathname), but without the last \u201cdot-suffix\u201d. For example, the input file name /home/dave/job.2.nw yields job.2 as the file prefix, if a name is not assigned explicitly using the START
directive.
The user also has the option of specifying a unique name for the database, using the keyword rtdb. When this keyword is entered, the string entered for rtdb_file_name
is used as the database name. If the keyword rtdb is omitted, the name of the database defaults to file_prefix.db
in the directory for permanent files.
If a calculation is to start from a previous calculation and go on using the existing database, the RESTART directive must be used. In such a case, the previous database must already exist. The name specified for file_prefix
usually should not be changed when restarting a calculation. If it is changed, NWChem will not be able to find needed files when going on with the calculation.
In the most common situation, the previous calculation was completed (with or without an error condition), and it is desired to perform a new task or restart the previous one, perhaps with some input changes. In these instances, the RESTART directive should be used. This re-uses the previous database and associated files, and reads the input file for new input and task information.
The RESTART directive looks immediately for new input and task information, deleting information about previous incomplete tasks. For example, when doing a RESTART there is no need to specify geometry or basis set declaration because the program will detect this information since it is stored in the run-time database.
If a calculation runs out of time, for example because it is on a queuing system, this is another instance where doing a RESTART
is advisable. Simply include nothing after the RESTART
directive except those tasks that are unfinished.
To summarize the default options for this start-up directive, if the input file does not contain a START or a RESTART directive, then
file_prefix
is assigned the name of the input file for the job, without the suffix (which is usually .nw)rtdb_file_name
is assigned the default name, file_prefix.db
If the database with name file_prefix.db does not already exist, the calculation is carried out as if a START
directive had been encountered. If the database with name file_prefix.db does exist, then the calculation is performed as if a RESTART
directive had been encountered.
For example, NWChem can be run using an input file with the name water.nw by typing the UNIX command line,
nwchem water.nw\n
If the NWChem input file water.nw does not contain a START or RESTART directive, the code sets the variable file_prefix
to water. Files created by the job will have this prefix, and the database will be named water.db. If the database water.db does not exist already, the code behaves as if the input file contains the directive,
start water\n
If the database water.db does exist, the code behaves as if the input file contained the directive,
restart water\n
"},{"location":"Start_Restart.html#use-of-permanent_dir","title":"Use of permanent_dir","text":"We suggest the user to add the permanent directory line to the input file. This allows to store files in a specific directory for easy re-use between start and restart stages. The start file then becomes
start water\npermanent_dir /home/doe/nwchem_files\n
while the restart file becomes
restart water\npermanent_dir /home/doe/nwchem_files\n
"},{"location":"Supplementary-Information.html","title":"Supplementary Information","text":""},{"location":"Supplementary-Information.html#global-arrays","title":"Global Arrays","text":""},{"location":"Supplementary-Information.html#choosing-the-right-armci-library","title":"Choosing the right ARMCI library","text":""},{"location":"Supplementary-Information.html#software-supporting-nwchem","title":"Software supporting NWChem","text":""},{"location":"System-Description.html","title":"System Description","text":"The TASK directive is used to tell the code what to do. The input directives are parsed sequentially until a TASK directive is encountered, as described in Input File Structure. At that point, the calculation or operation specified in the TASK directive is performed. When that task is completed, the code looks for additional input to process until the next TASK directive is encountered, which is then executed. This process continues to the end of the input file. NWChem expects the last directive before the end-of-file to be a TASK directive. If it is not, a warning message is printed. Since the database is persistent, multiple tasks within one job behave exactly the same as multiple restart jobs with the same sequence of input.
There are four main forms of the the TASK directive. The most common form is used to tell the code at what level of theory to perform an electronic structure calculation, and which specific calculations to perform. The second form is used to specify tasks that do not involve electronic structure calculations or tasks that have not been fully implemented at all theory levels in NWChem, such as simple property evaluations. The third form is used to execute UNIX commands on machines having a Bourne shell. The fourth form is specific to combined quantum-mechanics and molecular-mechanics (QM/MM) calculations.
By default, the program terminates when a task does not complete successfully. The keyword ignore can be used to prevent this termination, and is recognized by all forms of the TASK directive. When a TASK directive includes the keyword ignore, a warning message is printed if the task fails, and code execution continues with the next task. An example of this feature is given in the sample input file.
The input options, keywords, and defaults for each of these four forms for the TASK directive are discussed in the following sections.
"},{"location":"TASK.html#task-directive-for-electronic-structure","title":"TASK Directive for Electronic Structure","text":"This is the most commonly used version of the TASK directive, and it has the following form:
TASK <string theory> [<string operation default energy>] [ignore]\n
The string specifies the level of theory to be used in the calculations for this task. NWChem currently supports ten different options. These are listed below, with the corresponding entry for the variable :
The string specifies the calculation that will be performed in the task. The default operation is a single point energy evaluation. The following list gives the selection of operations currently available in NWChem:
NOTE: See PSPW Tasks for the complete list of operations that accompany the NWPW module.
The user should be aware that some of these operations (gradient, optimize, dynamics, thermodynamics) require computation of derivatives of the energy with respect to the molecular coordinates. If analytical derivatives are not available (Capabilities), they must be computed numerically, which can be very computationally intensive.
Here are some examples of the TASK directive, to illustrate the input needed to specify particular calculations with the code. To perform a single point energy evaluation using any level of theory, the directive is very simple, since the energy evaluation is the default for the string operation. For an SCF energy calculation, the input line is simply
task scf\n
Equivalently, the operation can be specified explicitly, using the directive
task scf energy\n
Similarly, to perform a geometry optimization using density functional theory, the TASK directive is
task dft optimize\n
The optional keyword ignore can be used to allow execution to continue even if the task fails, as discussed above. An example with the keyword ignore can be found in the DFT example.
"},{"location":"TASK.html#task-directive-for-special-operations","title":"TASK Directive for Special Operations","text":"This form of the TASK directive is used in instances where the task to be performed does not fit the model of the previous version (such as execution of a Python program), or if the operation has not yet been implemented in a fashion that applies to a wide range of theories (e.g., property evaluation). Instead of requiring theory and operation as input, the directive needs only a string identifying the task. The form of the directive in such cases is as follows:
TASK <string task> [ignore]\n
The supported tasks that can be accessed with this form of the TASK directive are listed below, with the corresponding entries for the string variable <task>
This directive also recognizes the keyword ignore, which allows execution to continue after a task has failed.
"},{"location":"TASK.html#task-directive-for-bourne-shell","title":"TASK Directive for Bourne Shell","text":"This form of the TASK directive is supported only on machines with a fully UNIX-style operating system. This directive causes specified processes to be executed using the Bourne shell. This form of the task directive is:
TASK shell [(<integer-range process = 0>||all)] <string command>\n
The keyword shell is required for this directive. It specifies that the given command will be executed in the Bourne shell. The user can also specify which process(es) will execute this command by entering values for process on the directive. The default is for only process zero to execute the command. A range of processes may be specified, using Fortran triplet notation. Alternatively, all processes can be specified simply by entering the keyword all. The input entered for command must form a single string, and must consist of valid UNIX command(s). If the string includes white space, it must be enclosed in double quotes.
For example, the TASK directive to tell process zero to copy the molecular orbitals file to a backup location /piofs/save
can be input as follows:
task shell \"cp *.movecs /piofs/save\"\n
The TASK directive to tell all processes to list the contents of their /scratch directories is as follows:
task shell all \"ls -l /scratch\"\n
The TASK directive to tell processes 0 to 10 to remove the contents of the current directory is as follows:
task shell 0:10:1 \"/bin/rm -f *\"\n
Note that NWChem\u2019s ability to quote special input characters is very limited when compared with that of the Bourne shell. To execute all but the simplest UNIX commands, it is usually much easier to put the shell script in a file and execute the file from within NWChem.
"},{"location":"TASK.html#task-directive-for-qmmm-simulations","title":"TASK Directive for QM/MM simulations","text":"This is very similar to the most commonly used version of the TASK directive, and it has the following form:
TASK QMMM <string theory> [<string operation default energy>] [ignore]\n
The string specifies the QM theory to be used in the QM/MM simulation. If theory is \u201cmd\u201d this is not a QM/MM simulation and will result in an appropriate error. The level of theory may be any QM method that can compute gradients but those algorithms in NWChem that do not support analytic gradients should be avoided (see Capabilities).
The string is used to specify the calculation that will be performed in the QM/MM task. The default operation is a single point energy evaluation. The following list gives the selection of operations currently available in the NWChem QM/MM module;
Here are some examples of the TASK directive for QM/MM simulations. To perform a single point energy of a QM/MM system using any QM level of theory, the directive is very simple. As with the general task directive, the QM/MM energy evaluation is the default. For a DFT energy calculation the task directive input is,
task qmmm dft
or completely as
task qmmm dft energy
To do a molecular dynamics simulation of a QM/MM system using the SCF level of theory the task directive input would be
task qmmm scf dynamics
The optional keyword ignore can be used to allow execution to continue even if the task fails, as discussed above.
"},{"location":"TASK.html#task-directive-for-bsse-calculations","title":"TASK Directive for BSSE calculations","text":"NWChem computes the basis set superposition error (BSSE) when two or more fragments are interacting by using the counterpoise method. This directive is performed if the BSSE section is present. Single point energies, energy gradients, geometry optimizations, Hessians and frequencies, at the level of theory that allows these tasks, can be obtained with the BSSE correction. The input options for the BSSE section are:
BSSE \n MON <string monomer name> <integer natoms> \n [INPUT [<string input>]] \n [INPUT_WGHOST[<string input>]] \n [CHARGE [<real charge>]] \n [ MULT <integer mult>] \n [OFF] \n [ON] \nEND\n
MON
defines the monomer\u2019s name and its atoms; defines the name of the monomer, is the list of atoms corresponding to the monomer (where such a list is relative to the initial geometry). This information is needed for each monomer. With the tag INPUT
the user can modify any calculation attributes for each monomer without ghost. For example, the iterations number and the grid can be changed in a DFT calculation (see the example of the interaction between Zn2+ and water). INPUT_WGHOST
is the same as INPUT
but for the monomer with ghost. The input changes will be applied within this and for the following calculations, you should be cautious reverting the changes for the next monomers. CHARGE
assigns a charge to a monomer and it must be consistent with the total charge in the whole system (see Section Charge). The options OFF
and ON
turns off and on any BSSE calculation.
The energy evaluation involves 1 + 2N calculations, i.e. one for the supermolecule and two for the N monomers. [S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys., 105, 11024 (1996)] NWChem stores the vector files for each calculation (<string monomer name>.bsse.movecs
), and one hessian file (<string monomer name>.bsse.hess
). The code does not assign automatically the basis set for the ghost atoms, you must assign the corresponding bqX
for each element, instead.
The dimer (FH)2
title dimer \nstart dimer \ngeometry units angstrom \n symmetry c1 \n F 1.47189 2.47463 -0.00000 \n H 1.47206 3.29987 0.00000 \n F 1.46367 -0.45168 0.00000 \n H 1.45804 0.37497 -0.00000 \nend \nbasis \"ao basis\" \n F library 6-31G \n H library 6-31G \n bqF library F 6-31G \n bqH library H 6-31G \nend\ndft; xc slater 1.0 vwn_5 1.0; direct; end \nbsse \n mon first 1 2 \n mon second 3 4 \nend\ntask dft energy\n
Changing maxiter
for a specific monomer: (Zn2+(H2O))
title znwater \nstart znwater \necho \ngeometry noautoz units angstrom \n symmetry c1 \n Zn -1.89334 -0.72741 -0.00000 \n O -0.20798 0.25012 0.00000 \n H -0.14200 1.24982 -0.00000 \n H 0.69236 -0.18874 -0.00000 \nend \nbasis \"ao basis\" \n O library 6-31G \n Zn library 6-31G \n H library 6-31G \n bqO library O 6-31G \n bqZn library Zn 6-31G \n bqH library H 6-31G \nend \ncharge 2 \nscf; direct; end \nmp2; freeze atomic;end \nbsse \n mon metal 1 \n charge 2 \n input_wghost \"scf\\; maxiter 200\\; end\" \n mon water 2 3 4 \nend \ntask mp2 optimize\n
"},{"location":"TCE.html","title":"Tensor Contraction Engine Module: CI, MBPT, and CC","text":""},{"location":"TCE.html#overview","title":"Overview","text":"The Tensor Contraction Engine (TCE) Module of NWChem implements a variety of approximations that converge at the exact solutions of Schr\u00f6dinger equation. They include configuration interaction theory through singles, doubles, triples, and quadruples substitutions, coupled-cluster theory through connected singles, doubles, triples, and quadruples substitutions, and many-body perturbation theory through fourth order in its tensor formulation. Not only optimized parallel programs of some of these high-end correlation theories are new, but also the way in which they have been developed is unique. The working equations of all of these methods have been derived completely automatically by a symbolic manipulation program called a Tensor Contraction Engine (TCE), and the optimized parallel programs have also been computer-generated by the same program, which were interfaced to NWChem. The development of the TCE program and this portion of the NWChem program has been financially supported by the United States Department of Energy, Office of Science, Office of Basic Energy Science, through the SciDAC program.
The capabilities of the module include:
The distributed binary executables do not contain CCSDTQ and its derivative methods, owing to their large volume. The source code includes them, so a user can reinstate them by setenv CCSDTQ yes and recompile TCE module. The following optimizations have been used in the module:
For reviews or tutorials of these highly-accurate correlation methods, the user is referred to:
For background on development of the symbolic algebra tools which help create the code used in this model see:
For details of particular CC implementations, see:
The TCE thoroughly analyzes the working equation of many-electron theory models and automatically generates a program that takes full advantage of these symmetries at the same time. To do so, the TCE first recognizes the index permutation symmetries among the working equations, and perform strength reduction and factorization by carefully monitoring the index permutation symmetries of intermediate tensors. Accordingly, every input and output tensor (such as integrals, excitation amplitudes, residuals) has just two independent but strictly ordered index strings, and each intermediate tensor has just four independent but strictly ordered index strings. The operation cost and storage size of tensor contraction is minimized by using the index range restriction arising from these index permutation symmetries and also spin and spatial symmetry integration.
"},{"location":"TCE.html#runtime-orbital-range-tiling","title":"Runtime orbital range tiling","text":"To maintain the peak local memory usage at a manageable level, in the beginning of the calculation, the orbitals are rearranged into tiles (blocks) that contains orbitals with the same spin and spatial symmetries. So the tensor contractions in these methods are carried out at the tile level; the spin, spatial, and index permutation symmetry is employed to reduce the operation and storage cost at the tile level also. The so-called tile-structure of all tensors used in CC equations is also the key-factor determining the parallel structure of the TCE CC codes . The tiling scheme corresponds to partitioning of the spin-orbital domain into smaller subsets containing the spin-orbitals of the same spin and spatial symmetries (the so-called tiles). This partitioning of the spin-orbital domain entails the blocking of all tensors corresponding to one- and two-electron integrals, cluster amplitudes, and all recursive intermediates, into smaller blocks of the size defined by the size of the tile (or tilesize for short). Since the parallel scheme used in all TCE generated codes is deeply rooted in dynamic load balancing techniques, the tile-structure defines the granularity of the work to be distributed. The size of tiles (tilesize) defines also the local memory requirements in all TCE derived CC implementations. For CI/CC/EOMCC/LR-CC models based on the sinlges and doubles models (CISD,CCSD,EOMCCSD,LR-CCSD) the peak local memory requirement is proportional to the tilesize
4. In approaches accounting for triples, either in iterative or non-iterative fashion, the local memory usage is proportional to tilesize
6. This means that in the CCSD(T), CCSDt, CCSDT, CR-EOMCCSD(T), EOMCCSDt, EOMCCSDT, LR-CCSDT caluclations the tilesize cannot be defined too large.
In a parallel execution, dynamic load balancing of tile-level local tensor index sorting and local tensor contraction (matrix multiplication) will be invoked.
"},{"location":"TCE.html#parallel-io-schemes","title":"Parallel I/O schemes","text":"Each process is assigned a local tensor index sorting and tensor contraction dynamically. It must first retrieve the tiles of input tensors, and perform these local operations, and accumulate the output tensors to the storage. We have developed a uniform interface for these I/O operations to either (1) a global file on a global file system, (2) a global memory on a global or distributed memory system, and (3) semi-replicated files on a distributed file systems. Some of these operations depend on the ParSoft library.
"},{"location":"TCE.html#input-syntax","title":"Input syntax","text":"The keyword to invoke the many-electron theories in the module is TCE. To perform a single-point energy calculation, include
TASK TCE ENERGY\n
in the input file, which may be preceded by the TCE input block that details the calculations:
TCE\n [(DFT||HF||SCF) default HF=SCF]\n [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\\n [virtual <integer nfzv default 0>]]\n [(LCCD||CCD||CCSD||CC2||LR-CCSD||LCCSD||CCSDT||CCSDTA||CCSDTQ|| \\\n CCSD(T)||CCSD[T]||CCSD(2)_T||CCSD(2)||CCSDT(2)_Q|| \\\n CR-CCSD[T]||CR-CCSD(T)|| \\\n LR-CCSD(T)||LR-CCSD(TQ)-1||CREOMSD(T)|| \\\n QCISD||CISD||CISDT||CISDTQ|| \\\n MBPT2||MBPT3||MBPT4||MP2||MP3||MP4) default CCSD]\n [THRESH <double thresh default 1e-6>]\n [MAXITER <integer maxiter default 100>]\n [PRINT (none||low||medium||high||debug)\n <string list_of_names ...>]\n [IO (fortran||eaf||ga||sf||replicated||dra||ga_eaf) default ga]\n [DIIS <integer diis default 5>]\n [LSHIFT <double lshift default is 0.0d0>]\n [NROOTS <integer nroots default 0>]\n [TARGET <integer target default 1>]\n [TARGETSYM <character targetsym default 'none'>]\n [SYMMETRY]\n [2EORB]\n [2EMET <integer fast2e default 1>]\n [T3A_LVL] \n [ACTIVE_OA]\n [ACTIVE_OB]\n [ACTIVE_VA]\n [ACTIVE_VB]\n [DIPOLE]\n [TILESIZE <no default (automatically adjusted)>]\n [(NO)FOCK <logical recompf default .true.>]\n [FRAGMENT <default -1 (off)>]\n END\n
Also supported are energy gradient calculation, geometry optimization, and vibrational frequency (or hessian) calculation, on the basis of numerical differentiation. To perform these calculations, use
TASK TCE GRADIENT\n
or
TASK TCE OPTIMIZE\n
or
TASK TCE FREQUENCIES\n
The user may also specify the parameters of reference wave function calculation in a separate block for either HF (SCF) or DFT, depending on the first keyword in the above syntax.
Since every keyword except the model has a default value, a minimal input file will be
GEOMETRY\n Be 0.0 0.0 0.0\n END\n BASIS\n Be library cc-pVDZ\n END\n TCE\n ccsd\n END\n TASK TCE ENERGY\n
which performs a CCSD/cc-pVDZ calculation of the Be atom in its singlet ground state with a spin-restricted HF reference.
New implementations of the iterative CCSD and EOMCCSD methods based on the improved task scheduling can be enable by the set tce:nts T
command as in the following example:
geometry/basis set specifications \ntce\nfreeze atomic\ncreomccsd(t)\ntilesize 20\n2eorb\n2emet 13\neomsol 2\nend \n\nset tce:nts T\n\ntask tce energy\n
New task scheduling should reduce time to solutions and provide better parallel performance especially in large CCSD/EOMCCSD runs.
"},{"location":"TCE.html#keywords-of-tce-input-block","title":"Keywords of TCE input block","text":""},{"location":"TCE.html#hf-scf-or-dft-the-reference-wave-function","title":"HF, SCF, or DFT: the reference wave function","text":"This keyword tells the module which of the HF (SCF) or DFT module is going to be used for the calculation of a reference wave function. The keyword HF and SCF are one and the same keyword internally, and are default. When these are used, the details of the HF (SCF) calculation can be specified in the SCF input block, whereas if DFT is chosen, DFT input block may be provided.
For instance, RHF-RCCSDT calculation (R standing for spin-restricted) can be performed with the following input blocks:
SCF\n SINGLET\n RHF\n END\n TCE\n SCF\n CCSDT\n END\n TASK TCE ENERGY\n
This calculation (and any correlation calculation in the TCE module using a RHF or RDFT reference for a closed-shell system) skips the storage and computation of all \u03b2 spin blocks of integrals and excitation amplitudes. ROHF-UCCSDT (U standing for spin-unrestricted) for an open-shell doublet system can be requested by
SCF\n DOUBLET\n ROHF\n END\n TCE\n SCF\n CCSDT\n END\n TASK TCE ENERGY\n
and likewise, UHF-UCCSDT for an open-shell doublet system can be specified with
SCF\n DOUBLET\n UHF\n END\n TCE\n SCF\n CCSDT\n END\n TASK TCE ENERGY\n
The operation and storage costs of the last two calculations are identical. To use the KS DFT reference wave function for a UCCSD calculation of an open-shell doublet system,
DFT\n ODFT\n MULT 2\n END\n TCE\n DFT\n CCSD\n END\n TASK TCE ENERGY\n
Note that the default model of the DFT module is LDA.
"},{"location":"TCE.html#ccsdccsdtccsdtqcisdcisdtcisdtq-mbpt2mbpt3mbpt4-etc-the-correlation-models","title":"CCSD,CCSDT,CCSDTQ,CISD,CISDT,CISDTQ, MBPT2,MBPT3,MBPT4, etc.: the correlation models","text":"These keywords stand for the following models:
ACTIVE_OB
) as well as active unoccupied \u03b1 and \u03b2 spinorbitals (ACTIVE_VA
and ACTIVE_VB
).All of these models are based on spin-orbital expressions of the amplitude and energy equations, and designed primarily for spin-unrestricted reference wave functions. However, for a restricted reference wave function of a closed-shell system, some further reduction of operation and storage cost will be made. Within the unrestricted framework, all these methods take full advantage of spin, spatial, and index permutation symmetries to save operation and storage costs at every stage of the calculation. Consequently, these computer-generated programs will perform significantly faster than, for instance, a hand-written spin-adapted CCSD program in NWChem, although the nominal operation cost for a spin-adapted CCSD is just one half of that for spin-unrestricted CCSD (in spin-unrestricted CCSD there are three independent sets of excitation amplitudes, whereas in spin-adapted CCSD there is only one set, so the nominal operation cost for the latter is one third of that of the former. For a restricted reference wave function of a closed-shell system, all \u03b2 spin block of the excitation amplitudes and integrals can be trivially mapped to the all \u03b1 spin block, reducing the ratio to one half).
While the MBPT (MP) models implemented in the TCE module give identical correlation energies as conventional implementation for a canonical HF reference of a closed-shell system, the former are intrinsically more general and theoretically robust for other less standard reference wave functions and open-shell systems. This is because the zeroth order of Hamiltonian is chosen to be the full Fock operator (not just the diagonal part), and no further approximation was invoked. So unlike the conventional implementation where the Fock matrix is assumed to be diagonal and a correlation energy is evaluated in a single analytical formula that involves orbital energies (or diagonal Fock matrix elements), the present tensor MBPT requires the iterative solution of amplitude equations and subsequent energy evaluation and is generally more expensive than the former. For example, the operation cost of many conventional implementation of MBPT(2) scales as the fourth power of the system size, but the cost of the present tensor MBPT(2) scales as the fifth power of the system size, as the latter permits non-canonical HF reference and the former does not (to reinstate the non-canonical HF reference in the former makes it also scale as the fifth power of the system size).
"},{"location":"TCE.html#state-specific-multireference-coupled-cluster-methods-mrcc","title":"State-Specific Multireference Coupled Cluster methods (MRCC)","text":"Several State-Specific MRCC methods have been implemented in 6.3 release of nwchem. These include:
The current implementation can be used in studies of systems composed of an even number of correlated electrons (this limitation will be removed in the next release). This includes typical examples of diradical, open-shell singlets, and bond-forming/breaking processes where the corresponding wavefunctions have strong quasidegenerate character.
To enable the compilation of the MRCC codes one has to set the following variable before the compilation of NWChem
export MRCC_METHODS=y\n
To run MRCC calculations the user has to define two groups in the input file. First, the TCE group and secondly the MRCCDATA group. In the TCE group the iterative level of theory is defined, e.g. BWCCSD or MKCCSD. This implementation was designed for complete model spaces (CMS) which means that the modelspace contains all Slater determinants of all possible (in the context of the spatial and spin symmetry, Ms) distributions of active electrons among active spin orbitals. The user can define the modelspace in two ways. As a first approach the model space can be defined by hand, as shown in the two examples below. The input of the model space starts with the NREF
keyword followed by the number of reference configurations that will be used, which should equal the number of strings for references below. In the input 2
refers to doubly occupied orbitals, a
to alpha electrons, b
to beta electrons and 0
identifies an unoccupied orbital. When the model space is defined by hand the occupation strings have to include the frozen orbitals as well. In the second way the CMS can be generated using the keyword CAS
followed by the number of active electrons and the number of active orbitals. When using the CAS
keyword we strongly recommend that users check the references that are generated.
As the model space typically includes multiple configurations it is possible to use the MRCC method to calculate excited states instead of the ground state. For this reason it is required to specify the root of interest. The ROOT
keyword followed by the root number specifies the state the code calculates. The lowest root, the ground state, is identified as root 1
. If one wants to calculate the third root the keyword ROOT 3
should be used. An example is given below.
echo\n start tce_mrcc_bwcc \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1.0e-10\n tol2e 1.0e-10\n end\n tce\n bwccsd\n thresh 1.0e-7\n targetsym a1\n io ga\n tilesize 18\n end\n mrccdata\n root 1\n nref 4\n 222220\n 222202\n 2222ab\n 2222ba\n end\n task tce energy\n
echo\n start tce_mrcc_mkcc \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1.0e-10\n tol2e 1.0e-10\n end\n tce\n mkccsd\n thresh 1.0e-5\n targetsym a1\n maxiter 100\n io ga\n tilesize 18\n end\n mrccdata\n root 1\n cas 2 2 # Please make sure the references generated are correct.\n end\n task tce energy\n
This version of MRCC works only with GA as specified by the IO GA
option. In addition this code works only with the spin-orbit 4-index transformation, however in all circumstances an RHF Hartree-Fock initial calculation has to be used. In this implementation the effective Hamiltonian operator contains only scalar, one- and two-body many body components. Finally, in our implementation the BWCCSD methods use the energy threshold for the convergence, whereas the MKCCSD method uses the norm of the residual.
In addition to the iterative single-double calculations the code can calculate non-iterative triples corrections. To request these triples corrections the keyword SE4T
should be added to the MRCCDATA block. The implementation details and the from of the triples correction are given in equation 20 [ J. Chem. Phys. 137, 094112 (2012)].
echo\n start tce_mrcc_bwcc \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1.0e-10\n tol2e 1.0e-10\n end\n tce\n bwccsd\n thresh 1.0e-7\n targetsym a1\n io ga\n tilesize 18\n end\n mrccdata\n se4t\n no_aposteriori\n root 1\n nref 4\n 222220\n 222202\n 2222ab\n 2222ba\n end\n task tce ener\n
echo\n start tce_mrcc_mkcc \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1.0e-10\n tol2e 1.0e-10\n end\n tce\n mkccsd\n thresh 1.0e-5\n targetsym a1\n io ga\n tilesize 18\n maxiter 100\n end\n mrccdata\n se4t\n root 1\n nref 4\n 222220\n 222202\n 2222ab\n 2222ba\n end\n task tce ener\n
"},{"location":"TCE.html#implementation-notes-for-reference-level-parallelism-in-mrcc","title":"Implementation notes for reference-level-parallelism in MRCC","text":"The current version of the MRCC codes contains also a pilot implementation of the reference-level-parallelism based on the use of processor groups for BWCCSD and BWCCSD(T) approaches. The main ideas of this approach have been described in
Two essential keywords have to be added to the mrccdata
block of the input:
subgroupsize n\nimprovetiling\n
and
diis 0\n
in tce block. The line subgroupsize n
defines the size of the subgroup and improvetiling
refers to the data representation in the MRCC subgroup algorithm. For example, if user has 4 references and total 32 cores/CPU then n should be defined as 32/4=8. If user has 10 references and 1200 cores/CPU available then the size of the subgroupsize (n) is 120.
echo\n start tce_mrcc_bwcc_subgroups \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1e-12\n tol2e 1e-12\n end\n tce\n bwccsd\n targetsym a1\n io ga\n diis 0\n thresh 1e-7\n tilesize 18\n end\n mrccdata\n subgroupsize 2 # Please read the documentation below.\n improvetiling\n root 1\n cas 2 2\n end\n task tce ener\n
CAUTION: Before using the subgroup-based algorithm the users should perform the GA subgroup test in $NWCHEM_TOP/src/tools/ga-5-6-3/global/testing/pgtest.x
and pg2test.x
in the same location. Additionally it is strongly encouraged to run the NWChem QA tests from the $NWCHEM_TOP/QA/tests/tce_mrcc_bwcc_subgroups directory with various combinations of subgroup size and total number of CPU.
The USS corrections can be enabled by using usspt
directive keyword in the mrccdata
tce\n mkccsd\n thresh 1.0e-10\n targetsym a1\n maxiter 600\n io ga\nend\n\nmrccdata\n usspt\n root 1\n cas 2 2\nend\n
In effect both diagonal and perturbative USS corrections will be calculated after the completion of iterative Mk-MRCCSD or BW-MRCCSD calculations.
"},{"location":"TCE.html#electron-affinity-ionization-potential-eomccsd-methods","title":"Electron affinity, ionization potential EOMCCSD methods","text":"The EA/IP-EOMCCSD methodologies are available in the 6.5 NWChem release. These implementation are available for the RHF type of the reference function. To enable the compilation of the EA/IP-EOMCCSD codes one has to set the following variable before the compilation of NWChem
export EACCSD=y\nexport IPCCSD=y\n
Two input examples for the EA/IP-EOMCCSD calculations are shown below.
start tce_eaccsd_ozone\ntitle \"tce_eaccsd_ozone\"\necho\n\nmemory stack 1000 mb heap 200 mb global 500 mb\n\ngeometry units bohr\nsymmetry c1 \nO 0.0000000000 0.0000000000 0.0000000000\nO 0.0000000000 -2.0473224350 -1.2595211660\nO 0.0000000000 2.0473224350 -1.2595211660\nend\n\nbasis spherical\n * library cc-pvdz\nend\n\nscf\nthresh 1.0e-10\ntol2e 1.0e-10\nsinglet\nrhf\nend\n\ntce\neaccsd\nnroots 2\nfreeze atomic\ntilesize 20\nthresh 1.0d-6\nend\n\ntask tce energy\n
start tce_ipccsd_f2\ntitle \"tce_ipccsd_f2\"\necho\n\nmemory stack 1000 mb heap 200 mb global 500 mb\n\ngeometry units angstroms\nsymmetry c1\n F 0.0000000000 0.0000000000 0.7059650\n F 0.0000000000 0.0000000000 -0.7059650\nend\n\nbasis spherical\n * library cc-pvdz\nend\n\nscf\nthresh 1.0e-10\ntol2e 1.0e-10\nsinglet\nrhf\nend\n\ntce\nipccsd\nnroots 1\nfreeze atomic\nthresh 1.0e-7\nend\n\ntask tce energy\n
As in the EOMCCSD input we can request any number of roots.
In analogy to the EOMCC calculations we can customize the number of initial guesses by using set tce:maxeorb
directive. For example for system with the symmetry with the orbital energy structure shown below ea ip one can use the energy window (in the sense of the absolute value of the HF orbital energies) to pinpoint the initial guesses. If one is interested in calculating one EA-EOMCCSD root of the a1 symmetry the
set tce:maxeorb 0.1\n
should be used. This means that the number of starting vectors will be equal to the number of the unoccupied a1 symmetry orbitals with the corresponding orbital energies less than 0.1 (in our example there will be only one such a vector corresponding to the unoccupied orbital energy 0.072). If one looks for two roots
set tce:maxeorb 0.16\n
option should be used(there are two a1 unoccupied orbitals with energies less than 0.16).
For the IP-EOMCCSD case the set tce:maxeorb
option works in a similar way. For example if one is looks for 1 IP-EOMCCSD root of a1 symmetry ,
set tce:maxeorb 0.24 \n
directive should be used (there is only one occupied orbital of a1 symmetry with the absolute value of orbital energy less than 0.24), etc.
"},{"location":"TCE.html#thresh-the-convergence-threshold-of-iterative-solutions-of-amplitude-equations","title":"THRESH: the convergence threshold of iterative solutions of amplitude equations","text":"This keyword specifies the convergence threshold of iterative solutions of amplitude equations, and applies to all of the CI, CC, and MBPT models. The threshold refers to the norm of residual, namely, the deviation from the amplitude equations. The default value is 1e-6.
"},{"location":"TCE.html#maxiter-the-maximum-number-of-iterations","title":"MAXITER: the maximum number of iterations","text":"It sets the maximum allowed number iterations for the iterative solutions of amplitude equations. The default value is 100.
"},{"location":"TCE.html#io-parallel-io-scheme","title":"IO: parallel I/O scheme","text":"There are five parallel I/O schemes implemented for all the models, which need to be wisely chosen for a particular problem and computer architecture.
The GA algorithm, which is default, stores all input (integrals and excitation amplitudes), output (residuals), and intermediate tensors in the shared memory area across all nodes by virtue of GA library. This fully incore algorithm replaces disk I/O by inter-process communications. This is a recommended algorithm whenever feasible. Note that the memory management through runtime orbital range tiling described above applies to local (unshared) memory of each node, which may be separately allocated from the shared memory space for GA. So when there is not enough shared memory space (either physically or due to software limitations, in particular, shmmax setting), the GA algorithm can crash due to an out-of-memory error. The replicated scheme is the currently the only disk-based algorithm for a genuinely distributed file system. This means that each node keeps an identical copy of input tensors and it holds non-identical overlapping segments of intermediate and output tensors in its local disk. Whenever data coherency is required, a file reconcilation process will take place to make the intermediate and output data identical throughout the nodes. This algorithm, while requiring redundant data space on local disk, performs reasonably efficiently in parallel. For sequential execution, this reduces to the EAF scheme. For a global file system, the SF scheme is recommended. This together with the Fortran77 direct access scheme does not usually exhibit scalability unless shared files on the global file system also share the same I/O buffer. For sequential executions, the SF, EAF, and replicated schemes are interchangeable, while the Fortran77 scheme is appreciably slower.
Two new I/O algorithms dra and ga_eaf combines GA and DRA or EAF based replicated algorithm. In the former, arrays that are not active (e.g., prior T amplitudes used in DIIS or EOM-CC trial vectors) in GA algorithm will be moved to DRA. In the latter, the intermediates that are formed by tensor contractions are initially stored in GA, thereby avoiding the need to accumulate the fragments of the intermediate scattered in EAFs in the original EAF algorithm. Once the intermediate is formed completely, then it will be replicated as EAFs.
The spin-free 4-index transformation algorithms are exclusively compatible with the GA I/O scheme, although out-of-core algorithms for the 4-index transformation are accessible using the 2emet options. See Alternative storage of two-electron integrals for details.
"},{"location":"TCE.html#diis-the-convergence-acceleration","title":"DIIS: the convergence acceleration","text":"It sets the number iterations in which a DIIS extrapolation is performed to accelerate the convergence of excitation amplitudes. The default value is 5, which means in every five iteration, one DIIS extrapolation is performed (and in the rest of the iterations, Jacobi rotation is used). When zero or negative value is specified, the DIIS is turned off. It is not recommended to perform DIIS every iteration, whereas setting a large value for this parameter necessitates a large memory (disk) space to keep the excitation amplitudes of previous iterations. Another tool for convergence acceleration is the level shift option (lshift
keyword) that allows to increase small orbital energy differences used in calculating the up-dates for cluster amplitudes. Typical values for lshift
oscillates between 0.3 and 0.5 for CC calculations for ground states of multi-configurational character. Otherwise, the value of lshift
is by default set equal to 0.
Some of the lowest-lying core orbitals and/or some of the highest-lying virtual orbitals may be excluded in the calculations by this keyword (this does not affect the ground state HF or DFT calculation). No orbitals are frozen by default. To exclude the atom-like core regions altogether, one may request
FREEZE atomic\n
To specify the number of lowest-lying occupied orbitals be excluded, one may use
FREEZE 10\n
which causes 10 lowest-lying occupied orbitals excluded. This is equivalent to writing
FREEZE core 10\n
To freeze the highest virtual orbitals, use the virtual keyword. For instance, to freeze the top 5 virtuals
FREEZE virtual 5\n
"},{"location":"TCE.html#nroots-the-number-of-excited-states","title":"NROOTS: the number of excited states","text":"One can specify the number of excited state roots to be determined. The default value is 1. It is advised that the users request several more roots than actually needed, since owing to the nature of the trial vector algorithm, some low-lying roots can be missed when they do not have sufficient overlap with the initial guess vectors.
"},{"location":"TCE.html#target-and-targetsym-the-target-root-and-its-symmetry","title":"TARGET and TARGETSYM: the target root and its symmetry","text":"At the moment, the first and second geometrical derivatives of excitation energies that are needed in force, geometry, and frequency calculations are obtained by numerical differentiation. These keywords may be used to specify which excited state root is being used for the geometrical derivative calculation. For instance, when TARGET 3
and TARGETSYM a1g
are included in the input block, the total energy (ground state energy plus excitation energy) of the third lowest excited state root (excluding the ground state) transforming as the irreducible representation a1g will be passed to the module which performs the derivative calculations. The default values of these keywords are 1 and none, respectively.
The keyword TARGETSYM
is essential in excited state geometry optimization, since it is very common that the order of excited states changes due to the geometry changes in the course of optimization. Without specifying the TARGETSYM
, the optimizer could (and would likely) be optimizing the geometry of an excited state that is different from the one the user had intended to optimize at the starting geometry. On the other hand, in the frequency calculations, TARGETSYM
must be none
, since the finite displacements given in the course of frequency calculations will lift the spatial symmetry of the equilibrium geometry. When these finite displacements can alter the order of excited states including the target state, the frequency calculation is not be feasible.
By adding this keyword to the input block, the user can request the module to seek just the roots of the specified irreducible representation as TARGETSYM
. By default, this option is not set. TARGETSYM
must be specified when SYMMETRY
is invoked.
The EOMSOL enables the user to switch between two algorithms for solving EOMCCSD eigenproblem. When EOMSOL is set equal to 1 (eomsol 1
directive in the tce group) the old solver is invoked. The advantage of this solver is a possibility of finding states of complicated configurational structure, for example doubly excited states. However, the dimension of the iterative space increases with each iteration and in effect this algorithm requires large memory allocations especially for large systems. In order to address this bottleneck, new algorithm (eomsol 2
directive in the tce group) was designed. In EOMSOL 2 algorithm all iterations are split into microcycles corresponding to diis microiterations (the use of diis
parameter is discussed earlier). This algorithm enables the user to precisely estimate the memory usage in the EOMCCSD calculations, which is equal to diis*nroots*(size_x1+size_x2), where diis is the length of the DIIS cycle, nroots is the number of sought roots, size_x1 corresponds to the size of GA storing singly excited EOMCC almplitudes, and size_x2 is the size of GA with doubly excited EOMCC amplitudes. Generally, larger values of diis parameter lead to a faster convergence, however, this happens at the expense of larger memory requirements. It is recommended not to use in the EOMCCSD calculations with eomsol 2
diis parameter smaller than 5, which is its default value. The EOMSOL 2 algorithm uses the CIS vectors as initial guesses, and for this reason is suited mainly to track singly excited states. By default, the EOMSOL 1 option is called in the EOMCCSD calculations. It should be also stressed that all iterative EOMCC methods with higher than double excitations use EOMSOL 1 approach.
In some situations it is convenient to use separate convergence threshold for the CCSD and EOMCCSD solvers. This can be achieved by setting proper environmetal variables. In the following example
geometry/basis set specifications\ntce \n thresh 1.0d-6\n ccsd\n nroots 2\nend\nset tce:thresheom 1.0d-4\ntask tce energy\n
the CCSD equations will be converged to the 1.0d-6 threshold while the EOMCCSD ones to 1.0d-4. This option shoul dbe used with the eomsol 2
option. In some situations finding several (n) roots to the EOMCCSD equations can be quite challenging. To by-pass this problem one can use the \u201cn+1\u201d model, i.e., we request another root to be converged. Usually, the presence the \u201cbuffer\u201d root can imporve the iterative process for n roots of interest. However, the buffer root does not have to be converged to the same accuracy as n roots of interest. The follwing example, shows how to handle this process (we chose n=2, n+1=3):
geometry/basis set specifications\ntce \n freeze core\n ccsd\n nroots 3\n thresh 1.0d-6\nend\nset tce:thresheom 1.0d-4\nset tce:threshl 1.0d-3\ntask tce energy\n
In this example the CCSD equations are solved with the 1.0d-6 threshold, the first n (2) EOMCCSD roots are determined with the 10d-4 accuracy, while the buffer root is determined with relax conv. criterion 1.0d-3.
"},{"location":"TCE.html#2eorb-alternative-storage-of-two-electron-integrals","title":"2EORB: alternative storage of two-electron integrals","text":"In the 5.0 version a new option has been added in order to provide more economical way of storing two-electron integrals used in CC calculations based on the RHF and ROHF references. The 2EORB
keyword can be used for all CC methods except for those using an active-space (CCSDt) up to NWChem version 6.3. After that, further optimization restricted the use of 2EORB
to CCSD-based methods. Note that the four-index transformation is usually an insignificant amount of the wall time for methods involving iterative triples anyway. With 2EORB, all two-electron integrals are transformed and subsequently stored in a way which is compatible with assumed tiling scheme. The transformation from orbital to spinorbital form of the two-electron integrals is performed on-the-fly during execution of the CC module. This option, although slower, allows to significantly reduce the memory requirements needed by the first half of 4-index transformation and final file with fully transformed two-electron integrals. Savings in the memory requirements on the order of magnitude (and more) have been observed for large-scale open-shell calculations.
Several new computation-intensive algorithms has been added with the purpose of improving scalability and overcoming local memory bottleneck of the 5.0 2EORB
4-index transformation. In order to give the user a full control over this part of the TCE code several keywords were designed to define the most vital parameters that determine the perfromance of 4-index transformation. All new keywords must be used with the 2EORB
keyword, and thus will not work beyond CCSD methods after NWChem 6.3 (see explanation for 2EORB
above). The 2emet keyword (default value 1 or 2emet 1
, refers to the older 4-index transformation), defines the algorithm to be used. By putting 2emet 2
the TCE code will execute the algoritm based on the two step procedure with two intermediate files. In some instances this algorithm is characterized by better timings compared to algorithms 3 and 4, although it is more memory demanding. In contrast to algorithms nr 1,3, and 4 this approach can make use of a disk to store intermediate files. For this purpose one should use the keyword idiskx
(idiskx 0
causes that all intermediate files are stored on global arrays, while idiskx 1
tells the code to use a disk to store intermediates; default value of idiskx
is equal 0). Algorithm nr 3 (2emet 3
) uses only one intermediate file whereas algorithm nr 4 (2emet 4
) is a version of algorithm 3 with the option of reducing the memory requirements. For example, by using the new keyword split 4
we will reduce the size of only intermediate file by factor of 4 (the split
keyword can be only used in the context of algorithm nr 4). All new algorithms (i.e. 2emet 2+) use the attilesize setting to define the size of the atomic tile. By default attilesize
is set equal 30. For larger systems the use of larger values of attilesize
is recommended (typically between 40-60).
Additional algorithms are numbered 5, 6 and 9. Other values of 2emet
are not supported and refer to methods which do not function properly. Algorithms 5 and 6 were written as out-of-core N5 methods (idiskx1
) and are the most efficient algorithms at the present time. The corresponding in-core variants (idiskx 0
) are available but require excessive memory with respect to the methods discussed above, although they may be faster if sufficient memory is available (to get enough memory often requires excessive nodes, which decreases performance in the later stages of the calculation). The difference between 5 and 6 is that 5 writes to a single file (SF or GA) while 6 uses multiple files. For smaller calculations, particularly single-node jobs, 5 is faster than 6, but for more than a handful of processors, algorithm 6 should be used. The perforance discrepancy depends on the hardware used but in algorithm eliminates simulataneous disk access on parallel file systems or memory mutexes for the in-core case. For NFS filesystems attached to parallel clusters, no performance differences have been observed, but for Lustre and PVFS they are signficant. Using algorithm 5 for large parallel file systems will make the file system inaccessible to other users, invoking the wrath of system administrators.
Algorithm 9 is an out-of-core solution to the memory bottleneck of the 2-e integrals. In this approach, the intermediates of the 4-index transformation as well as the MO integrals are stored in an SF file. As before, this requires a shared file system. Because algorithm 9 is based upon algorithm 5, described above, it is not expected to scale. The primary purpose of algorithm 9 is to make the performance of the NWChem coupled-cluster codes competive with fast serial codes on workstations. It succeeds in this purpose when corresponding functionality is compared. A more scalable version of this algorithm is possible, but the utility is limited since large parallel computers do not permit the wall times necessary to use an out-of-core method, which is necessarily slower than the in-core variant. An extensible solution to these issues using complex heterogeneous I/O is in development. Restarting with algorithm 9 is not supported and attempting to use this feature with the present version may produce meaningless results.
New is the inclusion of multiple 2emet
options for the spin-orbital transformations, which are the default when 2eorb is not set and are mandatory for UHF and KS references. The are currently three algorithms 1, 2 and 3 available. The numbering scheme does not correspond in any way to the numbering scheme for the 2eorb case, except that 2emet 1
corresponds to the default algorithm present in previous releases, which uses the user-defined I/O scheme. Algorithm 2 (2emet 2
) writes an SF file for the half-transformed integrals, which is at least an order-of-magnitude larger than the fully-transformed integrals, but stores the fully-transformed integrals in core. Thus, once the 4-index transformation is complete, this algorithm will perform exactly as when algorithm 1 is used. Unfortuntely, the spin-orbital 2-e fully-transformed integrals are still quite large and an algorithm corresponding to 2eorb/2emet=9 is available with 2emet 3
. Algorithm 3 is also limited in its scalability, but it permits relatively large UHF-based calculations using single workstations for patient users.
In cases where the user has access to both shared and local filesystems for parallel calculations, the permanent_dir
setting refers to the location of SF files. The file system for scratch_dir
will not be used for any of the 4-index transformation algorithms which are compatible with io=ga
.
Algorithms 13 and 14 are the N5 variants of algorithms 3 and 4. They are the most efficient in core GA-based algorithms for the RHF and ROHF reference functions. Again, two parameters are needed to define the perfromance of these algorithms: tilesize and attilesize. By default attilesize is set equal to 40. In all runs tilesize is required to be less than attilesize (tilesize < attilesize).
New 4-index transformation for RHF/ROHF references (2emet 15
) is available in NWChem 6.5. In contrast to algorithms 13 and 14 inter-processor communication is significantly reduced resulting in much better performance.
In the later part of this manual several examples illustrate the use of the newly introduced keywords.
An efficient loop-fused four-index transfromations for RHF and ROHF references can be enabled by the sequence 2eorb/2emet 16
.
In 6.5 version of NWChem we have enabled versions of the CCSD(T) and CR-EOMCCSD(T) codes, which by-pass the local memory limitation of previous implementations. For this purpose a sliced versions of the CCSD(T)/CR-EOMCCSD(T) codes have been developed (see K. Kowalski, S. Krishnamoorthy, R. Olson, V. Tipparaju, E. Apra, Supercomputing 2011, Seattle). In order to enable these versions it is enough to add
set tce:xmem 100\n
which defines maximum memory size (in MB) for the slice of 6-dimensional tensors (in the current example 100 MB; for more details see QA tests tce_ccsd_t_xmem and tce_cr_eomccsd_t_xmem).
"},{"location":"TCE.html#dipole-the-ground-and-excited-state-dipole-moments","title":"DIPOLE: the ground- and excited-state dipole moments","text":"When this is set, the ground-state CC calculation will enter another round of iterative step for the so-called \u039b equation to obtain the one-particle density matrix and dipole moments. Likewise, for excited-states (EOM-CC), the transition moments and dipole moments will be computed when (and only when) this option is set. In the latter case, EOM-CC left hand side solutions will be sought incurring approximately three times the computational cost of excitation energies alone (note that the EOM-CC effective Hamiltonian is not Hermitian and has distinct left and right eigenvectors).
"},{"location":"TCE.html#nofock-not-recompute-fock-matrix","title":"(NO)FOCK: (not) recompute Fock matrix","text":"The default is FOCK
meaning that the Fock matrix will be reconstructed (as opposed to using the orbital energies as the diagonal part of Fock). This is essential in getting correct correlation energies with ROHF or DFT reference wave functions. However, currently, this module cannot reconstruct the Fock matrix when one-component relativistic effects are operative. So when a user wishes to run TCE\u2019s correlation methods with DK or other relativistic reference, NOFOCK
must be set and orbital energies must be used for the Fock matrix.
Generate Density Matrix that can be used in the DPLOT module as described in the Example section.
"},{"location":"TCE.html#print-the-verbosity","title":"PRINT: the verbosity","text":"This keyword changes the level of output verbosity. One may also request some particular items in the table below.
Item Print Level Description \u201ctime\u201d vary CPU and wall times \u201ctile\u201d vary Orbital range tiling information \u201ct1\u201d debug T1 excitation amplitude dumping \u201ct2\u201d debug T2 excitation amplitude dumping \u201ct3\u201d debug T3 excitation amplitude dumping \u201ct4\u201d debug T4 excitation amplitude dumping \u201cgeneral information\u201d default General information \u201ccorrelation information\u201d default TCE information \u201cmbpt2\u201d debug Canonical HF MBPT2 test \u201cget_block\u201d debug I/O information \u201cput_block\u201d debug I/O information \u201cadd_block\u201d debug I/O information \u201cfiles\u201d debug File information \u201coffset\u201d debug File offset information \u201cao1e\u201d debug AO one-electron integral evaluation \u201cao2e\u201d debug AO two-electron integral evaluation \u201cmo1e\u201d debug One-electron integral transformation \u201cmo2e\u201d debug Two-electron integral transformation
Printable items in the TCE modules and their default print levels
"},{"location":"TCE.html#sample-input","title":"Sample input","text":"The following is a sample input for a ROHF-UCCSD energy calculation of a water radical cation.
START h2o\nTITLE \"ROHF-UCCSD/cc-pVTZ H2O\"\nCHARGE 1\nGEOMETRY\n O 0.00000000 0.00000000 0.12982363\n H 0.75933475 0.00000000 -0.46621158\n H -0.75933475 0.00000000 -0.46621158\nEND\nBASIS\n * library cc-pVTZ\nEND\nSCF\n ROHF\n DOUBLET\n THRESH 1.0e-10\n TOL2E 1.0e-10\nEND\nTCE\n CCSD\nEND\nTASK TCE ENERGY\n
The same result can be obtained by the following input:
START h2o\nTITLE \"ROHF-UCCSD/cc-pVTZ H2O\"\nCHARGE 1\nGEOMETRY\n O 0.00000000 0.00000000 0.12982363\n H 0.75933475 0.00000000 -0.46621158\n H -0.75933475 0.00000000 -0.46621158\nEND\nBASIS\n * library cc-pVTZ\nEND\nSCF\n ROHF\n DOUBLET\n THRESH 1.0e-10\n TOL2E 1.0e-10\nEND\nTASK UCCSD ENERGY\n
EOMCCSD calculations with EOMSOL 2 algorithm. In these claculations the diis value of 8 will be used both in the CCSD and EOMCCSD iterations.
TITLE \"tce_eomccsd_eomsol2\"\nECHO\nSTART tce_eomccsd_eomsol2\nGEOMETRY UNITS ANGSTROM\nN .034130 -.986909 .000000\nN -1.173397 .981920 .000000\nC -1.218805 -.408164 .000000\nC -.007302 1.702153 .000000\nC 1.196200 1.107045 .000000\nC 1.289085 -.345905 .000000\nO 2.310232 -.996874 .000000\nO -2.257041 -1.026495 .000000\nH .049329 -1.997961 .000000\nH -2.070598 1.437050 .000000\nH -.125651 2.776484 .000000\nH 2.111671 1.674079 .000000\nEND\nBASIS\n * library 6-31G\nEND\nSCF\n THRESH 1.0e-10\n TOL2E 1.0e-10\n SINGLET\n RHF\nEND\nTCE\n FREEZE ATOMIC\n CREOMSD(T)\n EOMSOL 2\n DIIS 8\n TILESIZE 15\n THRESH 1.0d-5\n 2EORB\n 2EMET 13\n NROOTS 1\nEND\nTASK TCE ENERGY\n
EOM-CCSDT calculation for excitation energies, excited-state dipole, and transition moments.
START tce_h2o_eomcc\nGEOMETRY UNITS BOHR\n H 1.474611052297904 0.000000000000000 0.863401706825835\n O 0.000000000000000 0.000000000000000 -0.215850436155089\n H -1.474611052297904 0.000000000000000 0.863401706825835\nEND\nBASIS\n * library sto-3g\nEND\nSCF\n SINGLET\n RHF\nEND\nTCE\n CCSDT\n DIPOLE\n FREEZE CORE ATOMIC\n NROOTS 1\nEND\nTASK TCE ENERGY\n
Active-space CCSDt/EOMCCSDt calculations (version I) of several excited states of the Be3 molecule. Three highest-lying occupied \u03b1 and \u03b2 orbitals (active_oa and active_ob) and nine lowest-lying unoccupied \u03b1 and \u03b2 orbitals (active_va and active_vb) define the active space.
START TCE_ACTIVE_CCSDT\nECHO\nGEOMETRY UNITS ANGSTROM\nSYMMETRY C2V\n BE 0.00 0.00 0.00\n BE 0.00 1.137090 -1.96949\nend\nBASIS spherical\n # --- DEFINE YOUR BASIS SET ---\nEND\nSCF\n THRESH 1.0e-10\n TOL2E 1.0e-10\n SINGLET\n RHF\nEND\nTCE\n FREEZE ATOMIC\n CCSDTA\n TILESIZE 15\n THRESH 1.0d-5\n ACTIVE_OA 3\n ACTIVE_OB 3\n ACTIVE_VA 9\n ACTIVE_VB 9\n T3A_LVL 1\n NROOTS 2\nEND \nTASK TCE ENERGY\n
Completely renormalized EOMCCSD(T) (CR-EOMCCSD(T)) calculations for the ozone molecule as described by the POL1 basis set. The CREOMSD(T) directive automatically initialize three-step procedure: (1) CCSD calculations; (2) EOMCCSD calculations; (3) non-iterative CR-EOMCCSD(T) corrections.
START TCE_CR_EOM_T_OZONE\nECHO\nGEOMETRY UNITS BOHR\nSYMMETRY C2V\n O 0.0000000000 0.0000000000 0.0000000000\n O 0.0000000000 -2.0473224350 -1.2595211660\n O 0.0000000000 2.0473224350 -1.2595211660\nEND\nBASIS SPHERICAL\nO S\n 10662.285000000 0.00079900\n 1599.709700000 0.00615300\n 364.725260000 0.03115700\n 103.651790000 0.11559600\n 33.905805000 0.30155200\nO S\n 12.287469000 0.44487000\n 4.756805000 0.24317200\nO S\n 1.004271000 1.00000000\nO S\n 0.300686000 1.00000000\nO S\n 0.090030000 1.00000000\nO P\n 34.856463000 0.01564800\n 7.843131000 0.09819700\n 2.306249000 0.30776800\n 0.723164000 0.49247000\nO P\n 0.214882000 1.00000000\nO P\n 0.063850000 1.00000000\nO D\n 2.306200000 0.20270000\n 0.723200000 0.57910000\nO D\n 0.214900000 0.78545000\n 0.063900000 0.53387000\nEND\nSCF\n THRESH 1.0e-10\n TOL2E 1.0e-10\n SINGLET\n RHF\nEND\nTCE\n FREEZE ATOMIC\n CREOMSD(T)\n TILESIZE 20\n THRESH 1.0d-6\n NROOTS 2\nEND\nTASK TCE ENERGY\n
The input for the active-space CR-EOMCCSD(T) calculations (the uracil molecule in the 6-31G* basis set). In this example, the model space is specified by defining the number of highest occupied orbitals (noact) and the number of lowest unoccupied orbitals (nuact) that will be considered as the active orbitals. In any type of the active-space CR-EOMCCSD(T) calculatoins based on the RHF and ROHF references more efficient versions of the orbital 4-index transformation can be invoked (i.e., 2emet 13
or 2emet 14
).
title \"uracil-6-31-Gs-act\"\necho\nstart uracil-6-31-Gs-act \nmemory stack 1000 mb heap 100 mb global 1000 mb noverify\ngeometry units angstrom\n N .034130 -.986909 .000000\n N -1.173397 .981920 .000000\n C -1.218805 -.408164 .000000\n C -.007302 1.702153 .000000\n C 1.196200 1.107045 .000000\n C 1.289085 -.345905 .000000\n O 2.310232 -.996874 .000000\n O -2.257041 -1.026495 .000000\n H .049329 -1.997961 .000000\n H -2.070598 1.437050 .000000\n H -.125651 2.776484 .000000\n H 2.111671 1.674079 .000000\nend\nbasis cartesian\n * library 6-31G*\nend\nscf\n thresh 1.0e-10\n tol2e 1.0e-10\n singlet\n rhf\nend\ntce\n freeze atomic\n creom(t)ac\n oact 21\n uact 99\n tilesize 15\n thresh 1.0d-5\n 2eorb\n 2emet 13\n nroots 1\n symmetry\n targetsym a'\nend\ntask tce energy\n
The active-space in the active-space CR-EOMCCSD(T) calculations can be alternatively specified by defining the energy window
[emin_act,emax_act]. All orbitals with orbital energies falling into this widnow will considered as active (the active space in the following example is different from the one used in the previous example).
title \"uracil-6-31-Gs-act\"\necho\nstart uracil-6-31-Gs-act \nmemory stack 1000 mb heap 100 mb global 1000 mb noverify\ngeometry units angstrom\n N .034130 -.986909 .000000\n N -1.173397 .981920 .000000\n C -1.218805 -.408164 .000000\n C -.007302 1.702153 .000000\n C 1.196200 1.107045 .000000\n C 1.289085 -.345905 .000000\n O 2.310232 -.996874 .000000\n O -2.257041 -1.026495 .000000\n H .049329 -1.997961 .000000\n H -2.070598 1.437050 .000000\n H -.125651 2.776484 .000000\n H 2.111671 1.674079 .000000\nend\nbasis cartesian\n * library 6-31G*\nend\nscf\n thresh 1.0e-10\n tol2e 1.0e-10\n singlet\n rhf\nend\ntce\n freeze atomic\n creom(t)ac\n emin_act -0.5\n emax_act 1.0\n tilesize 15\n thresh 1.0d-5\n 2eorbe\n 2emet 13\n nroots 1\n symmetry\n targetsym a'\nend\ntask tce energy \n
The LR-CCSD(T) calculations for the glycine molecule in the aug-cc-pVTZ basis set. Option 2EORB is used in order to minimize memory requirements associated with the storage of two-electron integrals.
START TCE_LR_CCSD_T\nECHO\nGEOMETRY UNITS BOHR\n O -2.8770919486 1.5073755650 0.3989960497\n C -0.9993929716 0.2223265108 -0.0939400216\n C 1.6330980507 1.1263991128 -0.7236778647\n O -1.3167079358 -2.3304840070 -0.1955378962\n N 3.5887721300 -0.1900460352 0.6355723246\n H 1.7384347574 3.1922914768 -0.2011420479\n H 1.8051078216 0.9725472539 -2.8503867814\n H 3.3674278149 -2.0653924379 0.5211399625\n H 5.2887327108 0.3011058554 -0.0285088728\n H -3.0501350657 -2.7557071585 0.2342441831\nEND\nBASIS\n * library aug-cc-pVTZ\nEND\nSCF\n THRESH 1.0e-10\n TOL2E 1.0e-10\n SINGLET\n RHF\nEND\nTCE\n FREEZE ATOMIC\n 2EORB\n TILESIZE 15\n LR-CCSD(T)\n THRESH 1.0d-7\nEND\nTASK TCE ENERGY\n
The CCSD calculations for the triplet state of the C20 molecule. New algorithms for 4-index tranformation are used.
title \"c20_cage\"\necho\nstart c20_cage\nmemory stack 2320 mb heap 180 mb global 2000 mb noverify\ngeometry print xyz units bohr\n symmetry c2\n C -0.761732 -1.112760 3.451966\n C 0.761732 1.112760 3.451966\n C 0.543308 -3.054565 2.168328\n C -0.543308 3.054565 2.168328\n C 3.190553 0.632819 2.242986\n C -3.190553 -0.632819 2.242986\n C 2.896910 -1.982251 1.260270\n C -2.896910 1.982251 1.260270\n C -0.951060 -3.770169 0.026589\n C 0.951060 3.770169 0.026589\n C 3.113776 2.128908 0.076756\n C -3.113776 -2.128908 0.076756\n C 3.012003 -2.087494 -1.347695\n C -3.012003 2.087494 -1.347695\n C 0.535910 -2.990532 -2.103427\n C -0.535910 2.990532 -2.103427\n C 3.334106 0.574125 -2.322563\n C -3.334106 -0.574125 -2.322563\n C -0.764522 -1.081362 -3.453211\n C 0.764522 1.081362 -3.453211\nend\nbasis spherical\n * library cc-pvtz\nend\nscf\n triplet\n rohf\n thresh 1.e-8\n maxiter 200\nend\ntce\n ccsd\n maxiter 60\n diis 5\n thresh 1.e-6\n 2eorb\n 2emet 3\n attilesize 40\n tilesize 30\n freeze atomic\nend\ntask tce energy\n
"},{"location":"TCE.html#tce-response-properties","title":"TCE Response Properties","text":""},{"location":"TCE.html#introduction","title":"Introduction","text":"Response properties can be calculated within the TCE. Ground-state dipole polarizabilities can be performed at the CCSD, CCSDT and CCSDTQ levels of theory. Neither CCSDT-LR nor CCSDTQ-LR are compiled by default. Like the rest of the TCE, properties can be calculated with RHF, UHF, ROHF and DFT reference wavefunctions.
Specific details for the implementation of CCSD-LR and CCSDT-LR can be found in the following papers:
An appropriate background on coupled-cluster linear response (CC-LR) can be found in the references of those papers.
"},{"location":"TCE.html#performance","title":"Performance","text":"The coupled-cluster response codes were generated in the same manner as the rest of the TCE, thus all previous comments on performance apply here as well. The improved offsets available in the CCSD and EOM-CCSD codes is now also available in the CCSD-\u039b and CCSD-LR codes. The bottleneck for CCSD-LR is the same as EOM-CCSD, likewise for CCSDT-LR and EOM-CCSDT. The CCSD-LR code has been tested on as many as 1024 processors for systems with more than 2000 spin-orbitals, while the CCSDT-LR code has been run on as many as 1024 processors. The CCSDTQ-LR code is not particularly useful due to the extreme memory requirements of quadruples amplitudes, limited scalability and poor convergence in the CCSDTQ equations in general.
"},{"location":"TCE.html#input","title":"Input","text":"The input commands for TCE response properties exclusively use set directives (see SET) instead of TCE input block keywords. There are currently only three commands available:
set tce:lineresp <logical lineresp default: F>\nset tce:afreq <double precision afreq(9) default: 0.0> \nset tce:respaxis <logical respaxis(3) default: T T T>\n
The boolean variable lineresp invokes the linear response equations for the corresponding coupled-cluster method (only CCSD and CCSDT possess this feature) and evaluates the dipole polarizability. When lineresp is true, the \u039b-equations will also be solved, so the dipole moment is also calculated. If no other options are set, the complete dipole polarizability tensor will be calculated at zero frequency (static). Up to nine real frequencies can be set; adding more should not crash the code but it will calculate meaningless quantities. If one desires to calculate more frequencies at one time, merely change the line double precision afreq(9)
in $NWCHEM_TOP/src/tce/include/tce.fh
appropriately and recompile.
The user can choose to calculate response amplitudes only for certain axis, either because of redundancy due to symmetry or because of memory limitations. The boolean vector of length three respaxis is used to determine whether or not a given set of response amplitudes are allocated, solved for, and used in the polarizability tensor evaluation. The logical variables represent the X, Y, Z axes, respectively. If respaxis is set to T F T, for example, the responses with respect to the X and Z dipoles will be calculated, and the four (three unique) tensor components will be evaluated. This feature is also useful for conserving memory. By calculating only one axis at a time, memory requirements can be reduced by 25% or more, depending on the number of DIIS vectors used. Reducing the number of DIIS vectors also reduces the memory requirements.
It is strongly advised that when calculating polarizabilities at high-frequencies, that user set the frequencies in increasing order, preferably starting with zero or other small value. This approach is computationally efficient (the initial guess for subsequent responses is the previously converged value) and mitigates starting from a zero vector for the response amplitudes.
"},{"location":"TCE.html#examples","title":"Examples","text":"This example runs in-core on a large workstation.
geometry units angstrom\n symmetry d2h\n C 0.000 1.390 0.000\n H 0.000 2.470 0.000\n C 1.204 0.695 0.000\n H 2.139 1.235 0.000\n C 0.000 -1.390 0.000\n H 0.000 -2.470 0.000\n C -1.204 -0.695 0.000\n H -2.139 -1.235 0.000\n C 1.204 -0.695 0.000\n H 2.139 -1.235 0.000\n C -1.204 0.695 0.000\n H -2.139 1.235 0.000\nend\nbasis spherical\n * library aug-cc-pvdz\nend\ntce\n freeze atomic\n ccsd\n io ga\n 2eorb\n tilesize 16\nend\nset tce:lineresp T\nset tce:afreq 0.000 0.072\nset tce:respaxis T T T\ntask tce energy\n
This is a relatively simple example for CCSDT-LR.
geometry units au\n symmetry c2v\n H 0 0 0\n F 0 0 1.7328795\nend\nbasis spherical\n * library aug-cc-pvdz\nend\ntce\n ccsdt\n io ga\n 2eorb\nend\nset tce:lineresp T\nset tce:afreq 0.0 0.1 0.2 0.3 0.4\nset tce:respaxis T F T\ntask tce energy\n
"},{"location":"TCE.html#tce-restart-capability","title":"TCE Restart Capability","text":""},{"location":"TCE.html#overview_1","title":"Overview","text":"Check-pointing and restart are critical for computational chemistry applications of any scale, but particularly those done on supercomputers, or run for an extended period on workstations and clusters. The TCE supports parallel check-pointing and restart using the Shared Files (SF) library in the Global Arrays Tools. The SF library requires that the file system be accessible by every node, so reading and writing restart files can only be performed on a shared file system. For workstations, this condition is trivially met. Restart files must be persistent to be useful, so volatile file systems or those which are periodicly erased should not be used for check-pointing.
Restart is possible for all ground-state amplitudes (T, \u039b and T(1) but not for excited-state amplitudes, as in an EOM-CC calculation. The latter functionality is under development.
Restart capability is useful in the following situations:
At the present time, restarting the amplitudes during a potential energy surface scan or numerical geometry optmization/frequency calculation is not advised due to the phase issue in the molecular orbital coefficients. If the phase changes, the amplitudes will no longer be a useful guess and may lead to nonsense results. Expert users may be able to use restart when the geometry varies using careful choices in the SCF input by using the rotate
and lock
options but this use of restart is not supported.
If SF encounters a failure during restart I/O, the job will fail. The capability to ignore a subset of failures, such as when saving the amplitudes prior to convergence, will be available in the future. This is useful on some large machines when the filesystem is being taxed by another job and may be appear unavailable at the moment a check-point write is attempted.
The performance of SF I/O for restart is excellent and the wall time for reading and writing integrals and amplitudes is negligible, even on a supercomputer (such systems have very fast parallel file systems in most cases). The only platform for which restart may cause I/O problems is BlueGene, due to ratio of compute to I/O nodes (64 on BlueGene/P).
"},{"location":"TCE.html#input_1","title":"Input","text":"set tce:read_integrals <logical read_integrals default: F F F F F>\nset tce:read_t <logical read_t default: F F F F>\nset tce:read_l <logical read_l default: F F F F>\nset tce:read_tr <logical read_tr default: F F F F>\nset tce:save_integrals <logical save_integrals default: F F F F F>\nset tce:save_t <logical save_t default: F F F F>\nset tce:save_l <logical save_l default: F F F F>\nset tce:save_tr <logical save_tr default: F F F F>\nset tce:save_interval <integer save_interval default: 100000>\n
The boolean variables read_integrals and save_integrals control which integrals are read/saved. The first location is the 1-e integrals, the second is for the 2-e integrals, and the third is for dipole integrals. The fourth and fifth positions are reserved for quadrupole and octupole integrals but this functionality is not available. The read_t
, read_l
, read_tr
, save_t
, save_l
and save_tr
variables control the reading/saving of the T, \u039b and T(1) (response) amplitudes. Restart control on the response amplitudes is implicitly controlled by the value of respaxis (see above). Requesting amplitudes that are beyond the scope of a given calculation, such as T3 in a CCSD calculation, does not produce an error as these commands will never be processed.
Attempting to restart with a set of amplitudes without the corresponding integrals is ill-advised, due to the phase issue discussed above. For the same reason, one cannot save a subset of the integrals, so if it is even remotely possible that the dipole moment or polarizabilities will be desired for a given molecule, the dipole integrals should be saved as well. It is possible to save the dipole integrals without setting dipole in the TCE input block; setting save_integrals(3) true is sufficient for this to occur.
The save_interval variable controls the frequency with which amplitudes are saved. By default, the amplitudes are saved only when the iterative process has converged, meaning that if the iterations do not converge in less than the maximum, one must start the calculation again from scratch. The solution is to set save_interval to a smaller value, such as the number of DIIS cycles being used.
The user shall not change the tilesize when reading in saved amplitudes. The results of this are catastrophic and under no circumstance will this lead to physically meaningful results. Restart does not work for 2eorb and 2emet 9
; no error will be produced but the results may be meaningless.
geometry units au\n symmetry c2v\n H 0 0 0\n F 0 0 1.7328795\nend\nbasis spherical\n * library aug-cc-pvdz\nend\ntce\n ccsdt\n io ga\nend\nset tce:lineresp T\nset tce:afreq 0.0 0.1 0.2 0.3 0.4\nset tce:respaxis T F T\ntask tce energy\n
"},{"location":"TCE.html#maximizing-performance","title":"Maximizing performance","text":"The following are recommended parameters for getting the best performance and efficiency for common methods on various hardware configurations. The optimal settings are far from extensible and it is extremely important that users take care in how they apply these recommendations. Testing a variety of settings on a simple example is recommended when optimal settings are desired. Nonetheless, a few guiding principles will improve the performance of TCE jobs markedly, including making otherwise impossible jobs possible.
"},{"location":"TCE.html#memory-considerations","title":"Memory considerations","text":"The default memory settings for NWChem are not optimal for TCE calculations. When 2 GB of memory is available per process, the following settings are close to optimal for CCSD jobs
memory stack 800 mb heap 100 mb global 1000 mb\n
for property jobs, which require more amplitudes to be stored, it is wise to favor the global allocation
memory stack 500 mb heap 100 mb global 1300 mb\n
If you get an error for ga_create during the iterative steps, reduce the number of DIIS vectors. If this error occurs during the four-index transformation (after d_v2 filesize appears) you need more GA space, a different 2emet, or more nodes.
The memory requirements for CCSD(T) are quite different because the triples are generated in local memory. The value of tilesize should not be larger than 30 in most cases and one should set something similar to the following
memory stack 1200 mb heap 100 mb global 600 mb\n
The local memory requires will be tilesizeN where N=4 for CCSD, N=6 for CCSD(T) and CCSDT, and N=8 for CCSDTQ. One should set tilesize to 16 or less for CCSDT and CCSDTQ, although symmetry will affect the local memory use significantly. The local memory usage of the CR-EOMCCSD(T) approach has recently been significantly reduced to the level of the CCSD(T) approach (2*tilesize6).
"},{"location":"TCE.html#using-openmp-in-tce","title":"Using OpenMP in TCE","text":"TCE compute kernels are both floating-point and bandwidth intensive, hence are amenable to multithreading. However, not all TCE kernels support OpenMP, and therefore performance may be limited by Amdahl\u2019s law. Furthermore, Global Arrays communication is not yet thread-safe and must be called outside of threaded regions, potentially limiting performance. However, even partial OpenMP is likely to improve performance relative to idle cores, in the case where memory limitations or other considerations (see below for the case of Xeon Phi coprocessors) force the user to run NWChem on a subset of the available CPU cores.
Currently, OpenMP threading is available in the following kernels:
The development version of NWChem (post-6.6) supports OpenMP more kernels, including:
In most cases, NWChem runs best on CPU-only systems without OpenMP threads. However, modest OpenMP has been found to improve performance of CCSD(T) jobs. We expect the benefits of OpenMP to be more visible with time, as NWChem achieves more complete coverage with OpenMP and as platforms evolve to have more and more cores per node.
"},{"location":"TCE.html#how-to-run-large-ccsdeomccsd-calculations","title":"How to run large CCSD/EOMCCSD calculations","text":"When running large CCSD or EOMCCSD calculations for large systems (number of orbitals larger than 400) and using large number of cores it is recommended to switch to workflow based implementation of CCSD/EOMCCSD methods.
The original CCSD/EOMCCSD TCE implementations are aggregates of a large number of subroutines, which calculate either recursive intermediates or contributions to residual vector. The dimensionalities of the tensors involved in a given subroutine greatly impact the memory, computation, and communication characteristics of each subroutine, which can lead to pronounced problems with load balancing. For example, for the most computationally intensive part of the CCSD/EOMCCSD approaches associated with the inclusion of 4-particle integrals, the corresponding task pool (the number of tasks in a subroutine) can easily be 2 orders of magnitude larger than the task pool for subroutines calculating one-body intermediates. To address this problem and improve the scalability of the CCSD/EOMCCSD implementations, we exploited the dependencies exposed between the task pools into classes (C) characterized by a collective task pool. This was done in such a way as to ensure sufficient parallelism in each class while minimizing the total number of such classes. This procedure enabled us to reduce the number of synchronization steps from nearly 80, in the EOMCCSD case, down to 4. Optimized versions of the CCSD/EOMCCSD codes are enabled once the
set tce:nts T\n
directive is used in the input file. Compared to the original CCSD/EOMCCSD implementations the new approaches requires more global memory. The new CCSD/EOMCCSD implementations provides significant improvements in the parallel performance and average time per iteration.
References:
H.S. Hu, K. Bhaskaran-Nair, E. Apra, N. Govind, K. Kowalski, J. Phys. Chem. A 118, 9087 (2014).
K. Kowalski, S. Krishnamoorthy, R.M. Olson, V. Tipparaju, E. Apra, K. Kowalski, High Performance Computing, Networking, Storage and Analysis (SC), 2011 International Conference 1 (2011).
"},{"location":"TCE.html#scf-options","title":"SCF options","text":"For parallel jobs on clusters with poor disk performance on the filesystem used for scratch_dir, it is a good idea to disable disk IO during the SCF stage of the calculation. This is done by adding semidirect memsize N filesize 0, where N is 80% of the stack memory divided by 8, as the value in this directive is the number of dwords, rather than bytes. With these settings, if the aggregate memory is sufficient to store the integrals, the SCF performance will be excellent, and it will be better than if direct is set in the SCF input block. If scratch_dir is set to a local disk, then one should use as much disk as is permissible, controlled by the value of filesize. On many high-performance computers, filling up the local scratch disk will crash the node, so one cannot be careless with these settings. In addition, on many such machines, the shared file system performance is better than that of the local disk (this is true for many NERSC systems).
"},{"location":"TCE.html#convergence-criteria","title":"Convergence criteria","text":"It makes no sense to converge a calculation to a precision not relevant to experiment. However, the relationship between convergence criteria and calculated quantities is not fully known for some properties. For example, the effect of the convergence criteria on the polarizability is significant in some cases. In the case of CN, convergence of 10-11 is necessary to resolve the polarizability tensor components to 10-2. However, for many systems 10-7 convergence is sufficient to get accurate results for all properties. It is important to calibrate the effect of convergence on property calculations, particularly for open-shell and post-CCSD methods, on a modest basis set before relaxing the convergence criteria too much.
"},{"location":"TCE.html#io-schemes-and-integral-transformation-algorithms","title":"IO schemes and integral transformation algorithms","text":"The effect on memory use of using the 2eorb keyword is huge. However, this option can only be used with IO=GA and an RHF/ROHF reference. There are a number of choices for the integral transformation algorithm when using spin-free integrals. The fastest algorithm is 2EMET=5, but significant disk IO is required for this algorithm. One must set permanent_dir to a fast, shared file system for this algorithm to work. If disk performance is not good, one should use either 2EMET=3 or 2EMET=4 depending on how much memory is available. If one sees a ga_create error with 2EMET=3, then switch to algorithm 4 and add split 8 to the TCE input block.
"},{"location":"TCE.html#using-coprocessor-architectures","title":"Using coprocessor architectures","text":""},{"location":"TCE.html#ccsdt-and-mrccsdt-implementations-for-intel-mic-architectures","title":"CCSD(T) and MRCCSD(T) implementations for Intel MIC architectures","text":"This option is no longer available from version 7.0.0
NWChem 6.5 and 6.6 offer the possibility of using Intel Xeon Phi hardware to perform the most computationally intensive part of the CCSD(T) and MRCCSD(T) (only in NWChem 6.6) calculations (non-iterative triples corrections). The form of input is the same as used in standard TCE CCSD(T) and MRCCSD(T) runs. To enable new implementations please follow compilation directives described below.
Required for compilation: Intel Composer XE version 14.0.3 (or later versions)
Environmental variables required for compilation:
% setenv USE_OPENMP 1\n\n % setenv USE_OFFLOAD 1\n
When using MKL and Intel Composer XE version 14 (or later versions), please use the following settings
% setenv BLASOPT \"-mkl -openmp -lpthread -lm\"\n % setenv SCALAPACK \"-mkl -openmp -lmkl_scalapack_ilp64 -lmkl_blacs_intelmpi_ilp64 -lpthread -lm\"\n
The command require for compilation is
make FC=ifort \n
From our experience using the CCSD(T) and MRCCSD(T) TCE modules, we have determined that the optimal configuration is to use a single Global Arrays ranks for offloading work to each Xeon Phi card.
On the EMSL cascade system, each node is equipped with two coprocessors, and NWChem can allocate one GA ranks per coprocessor. In the job scripts, we recommend spawning just 6 GA ranks for each node, instead of 16 (number that would match the number of physical cores). Therefore, 2 out 6 GA ranks assigned to a particular compute node will offload to the coprocessors, while the remaining 6 cores while be used for traditional CPU processing duties. Since during offload the host core is idle, we can double the number of OpenMP threads for the host (OMP_NUM_THREADS=4
) in order to fill the idle core with work from another GA rank (4 process with 4 threads each will total 16 threads on each node).
NWChem itself automatically detects the available coprocessors in the system and properly partitions them for optimal use, therefore no action is required other than specifying the number of processes on each node (using the appropriate mpirun/mpiexec options) and setting the value of OMP_NUM_THREADS
as in the example above.
Environmental variables useful at run-time:
OMP_NUM_THREADS
is needed for the thread-level parallelization on the Xeon CPU hosts
% setenv OMP_NUM_THREADS 4\n
MIC_USE_2MB_BUFFER greatly improve communication between host and Xeon Phi card
% setenv MIC_USE_2MB_BUFFER 16K\n
Very important: when running on clusters equipped with Xeon Phi and Infiniband network hardware (requiring ARMCI_NETWORK=OPENIB
), the following env. variable is required, even in the case when the Xeon Phi hardware is not utilized.
% setenv ARMCI_OPENIB_DEVICE mlx4_0\n
"},{"location":"TCE.html#ccsdt-method-with-cuda","title":"CCSD(T) method with CUDA","text":"NWChem 6.3 offers a possibility of using GPU accelerators to perform the most computationally intensive part of the CCSD(T) calculations (non-iterative triples corrections). To enable this option one has to enable compilation options described below and add the cuda n
directive to the tce block of input, where n
refers to number of CUDA devices per node.
geometry/basis set specifications
tce \n io ga\n freeze atomic\n thresh 1.0d-6\n tilesize 15\n ccsd(t)\n cuda 1\nend\n
In the example above the number of CUDA devises is set equal to 1, which means that user will use 1 GPU per node.
To enable the compilation of CUDA code one has to set the follwoing variables before the compilation of NWChem.
export TCE_CUDA=Y \nexport CUDA_LIBS=\"-L<Your Path to cuda>/lib64 -L<Your Path to cuda>/lib -lcudart\"\nexport CUDA_FLAGS=\"-arch <Your Cuda architecture>\" \nexport CUDA_INCLUDE=\"-I. -I<Your Path to cuda>/include\"\n
For example:
export TCE_CUDA=Y\nexport CUDA_LIBS=\"-L/usr/local/cuda-5.0/lib64 -L/usr/local/cuda-5.0/lib -lcudart\"\nexport CUDA_FLAGS=\"-arch sm_20 \"\nexport CUDA_INCLUDE=\"-I. -I/usr/local/cuda-5.0/include\"\n
In addition the code needs to be compiled with the following make command
make FC=<fortran compiler> CUDA=nvcc\n
Before running production style calculations we strongly suggest the users to perform QA test from the /nwchem/QA/tests/tce_cuda directory. A full example of a TCE CUDA input file is given below:
start tce_cuda\necho\nmemory stack 1000 mb heap 100 mb global 500 mb verify\ngeometry units bohr\n O 0.00000000 0.00000000 0.22138519\n H 0.00000000 -1.43013023 -0.88554075\n H 0.00000000 1.43013023 -0.88554075\nend\nbasis spherical\n H library cc-pVDZ\n O library cc-pVDZ\nend\ncharge 0\nscf\n thresh 1.0e-10\n tol2e 1.0e-10\n singlet\n rhf\nend\ntce\n ccsd(t)\n io ga\n cuda 1\n tilesize 18\nend\ntask tce energy\n
"},{"location":"TITLE.html","title":"TITLE","text":""},{"location":"TITLE.html#title","title":"TITLE","text":"Specify job title.
This top-level directive allows the user to identify a job or series of jobs that use a particular database. It is an optional directive, and if omitted, the character string containing the input title will be empty. Multiple TITLE directives may appear in the input file (e.g., the water example file) in which case a task will use the one most recently specified. The format for the directive is as follows:
TITLE
The character string
is assigned to the contents of the string following the TITLE directive. If the string contains white space, it must be surrounded by double quotes. For example,
title\u00a0\"This\u00a0is\u00a0the\u00a0title\u00a0of\u00a0my\u00a0NWChem\u00a0job\"
The title is stored in the database and will be used in all subsequent tasks/jobs until redefined in the input.
"},{"location":"Top-level.html","title":"Top-level Directives","text":""},{"location":"Top-level.html#overview","title":"Overview","text":"Top-level directives are directives that can affect all modules in the code. Some specify molecular properties or other data that should apply to all subsequent calculations with the current database. However, most top-level directives provide the user with the means to manage the resources for a calculation and to start computations. As the first step in the execution of a job, NWChem scans the entire input file looking for start-up directives, which NWChem must process before all other input. The input file is then rewound and processed sequentially, and each directive is processed in the order in which it is encountered. In this second pass, start-up directives are ignored.
The following sections describe each of the top-level directives in detail, noting all keywords, options, required input, and defaults.
START/RESTART
PERMANENT_DIR
SCRATCH_DIR
MEMORY
ECHO
TITLE
PRINT / NOPRINT
SET
UNSET
STOP
TASK
ECCE_PRINT
Slides presented at V\u0399-SEEM NAT-GR LS+ : 2018 NWChem Workshop 10-11 September 2018 National Hellenic Research Foundation (NHRF)
Introduction
SCF and DFT
TD-DFT
Correlated Methods
Arrows
Relativity and Spectroscopy
Plane-Wave
Potential Energy Surfaces
QMD
"},{"location":"Tutorial-Slides.html","title":"Tutorial Slides","text":"Introduction
DFT and TDDFT
Correlated Methods
Relativity and Spectroscopy
Plane-Wave
Properties
Potential Energy Surfaces
"},{"location":"Tutorials.html","title":"Tutorials","text":""},{"location":"Tutorials.html#links-to-material-of-past-nwchem-tutorials","title":"Links to material of past NWChem Tutorials","text":"EMSL Integration 2018 meeting Tutorial EMSL 2018
V\u0399-SEEM NAT-GR LS+ : 2018 NWChem Workshop (10-11 September 2018, Athens, Greece) Tutorial Athens 2018
Tutorial 2019 EMSL/ARM Aerosol Summer School
Tutorial 2012 Singapore A*STAR
PRACE Spring School in Computational Chemistry 2019 https://web.archive.org/web/20221103195703/https://events.prace-ri.eu/event/786/attachments/840/1256/QC-workshop-advanced.pdf
Introduction To NWChem by B.J. Lynch (UMN) 2006 https://www.msi.umn.edu/sites/default/files/IntroNWChem.pdf
Quantum Chemistry Course at Radboud University - Nijmegen https://www.theochem.ru.nl/quantumchemistry
Delete data in the RTDB.
This directive gives the user a way to delete simple entries from the database. The general form of the directive is as follows:
UNSET\u00a0<string name>[*]\n
This directive cannot be used with complex objects such as geometries and basis sets. Complex objects are stored using a structured naming convention that is not matched by a simple wild card. A wild-card (*)
specified at the end of the string <name>
will cause all entries whose name begins with that string to be deleted. This is very useful as a way to reset modules to their default behavior, since modules typically store information in the database with names that begin with module:. For example, the SCF program can be restored to its default behavior by deleting all database entries beginning with scf:, using the directive
unset\u00a0scf:*\n
The section on fragment guess has an example using unset on a water dimer calculation.
The following example makes an entry in the database using the SET directive, and then immediately deletes it using the UNSET directive:
set\u00a0mylist\u00a01\u00a02\u00a03\u00a04\u00a0 \nunset\u00a0mylist\n
"},{"location":"VEM-Model.html","title":"VEM (Vertical Excitation or Emission) Model","text":""},{"location":"VEM-Model.html#overview","title":"Overview","text":"The VEM is a model for calculating the vertical excitation (absorption) or vertical emission (fluorescence) energy in solution according to a two-time-scale model of solvent polarization. The model is described in reference1.
The current implementation is based on the VEM(d,RD) algorithm as described in the above paper. The method is available only at the TDDFT level of theory, including both full-linear response TDDFT (sometimes called LR-TDDFT or regular TDDFT) and the Tamm\u2013Dancoff approximation, TDDFT-TDA (sometimes just called TDA). The configuration interaction singles (CIS) wave function method can also be used along with VEM by considering CIS to be a special case of TDDFT-TDA.
The abbreviation VEM originally referred to the vertical excitation model of reference2, but the current implementation of VEM extends to both excitation and emission calculations in solution, and the E in VEM now stands for excitation/emission. Furthermore, the current version of VEM (based on the Marenich et al. paper1) does not reduce to the original VEM of Li et al., but is improved as described in reference1.
The VEM model is based on a nonequilibrium dielectric-continuum approach in terms of two-time-scale solvent response. The solvent\u2019s bulk-electrostatic polarization is described by using the reaction field partitioned into slow and fast components, and only the fast component is self-consistently (iteratively) equilibrated with the charge density of the solute molecule in its final state. During the VEM calculation, the slow component is kept in equilibrium with the initial state\u2019s solute charge density but not with the final state\u2019s one. In the case of vertical absorption the initial state is the ground electronic state of the solute molecule in solution and the final state is an excited electronic state in solution (and vice versa in the case of an emission spectrum). Both the ground- and excited-state calculations involve an integration of the nonhomogeneous-dielectric Poisson equation for bulk electrostatics in terms of the COSMO model as implemented in NWChem with the modified COSMO scaling factor (iscren 0
) and by using the SMD intrinsic atomic Coulomb radii (by default; see the section of the manual describing SMD). The excited-state electron density is calculated using the Z-Vector \u201crelaxed density\u201d approach.
The VEM excitation or emission energy includes only a bulk-electrostatic contribution without any cavity\u2013dispersion\u2013solvent-structure (CDS) contributions (such contributions are used in SMD ground-state calculations as described in the SMD section of this manual, but are not used in VEM calculations). When one considers solvatochromic shifts, the main contributions beyond bulk electrostatics are solute\u2013solvent dispersion interactions, hydrogen bonding (the latter is most important in protic solvents), and perhaps charge transfer between the solute and the solvent. To explicitly account for solute\u2013solvent charge transfer and hydrogen bonding, the user can run a VEM calculation on a supersolute that involves a solute\u2013solvent molecular cluster with one or a few solvent molecules added explicitly to a bare solute. The solute\u2013solvent dispersion contribution to the solvatochromic shift, if desired, can be estimated by the solvation model with state-specific polarizability (SMSSP) described in reference3.
In this case, the user needs to provide values of ground- and excited-state spherically averaged molecular polarizabilities of the solvent.
"},{"location":"VEM-Model.html#syntax","title":"Syntax","text":"The VEM-specific input options are as follows:
"},{"location":"VEM-Model.html#do_cosmo_vem","title":"DO_COSMO_VEM:","text":" do_cosmo_vem <integer do_cosmo_vem default 0>\n
The do_cosmo_vem
can be set to the following values: - 0
(do not do any VEM calculation even if the task tddft gradient line is present; default). - 1
(do a nonequilibrium VEM excitation energy calculation; in this case the task tddft gradient
line should be present, too) - 2
(do an equilibrium VEM excitation energy calculation followed by a nonequilibrium emission energy calculation; task tddft gradient
line should be present)
The VEM solvent (which is water by default) can be specified by using the solvent keyword described in the SMD section of this manual or by specifying the VEM solvent descriptors such as
dielec (real input)
static dielectric constant
dielecinf (real input)
optical dielectric constant which is set (by default) to the squared value of the solvent\u2019s index of refraction (see the keyword soln
, but note that if the solvent is specified with the solvent keyword, the refractive index is set by the program without needing the user to supply it.)
Solvent descriptors set by the program are based on the Minnesota Solvent Descriptor Database4:
If the option do_cosmo_vem 1
or do_cosmo_vem 2
is specified the program will run VEM ground- and excited-state bulk-electrostatic calculations using the COSMO algorithm with the SMD Coulomb radii by default. If the user wants to use the default COSMO radii in such calculations (this is not recommended) the option do_cosmo_smd .false.
should be specified.
If the SMSSP estimate of a solute\u2013solvent dispersion contribution to the solvatochromic shift is desired, the following options should be used:
polgs_cosmo_vem (real input)
user-provided value of the spherically-averaged molecular polarizability of the solute in the ground state (in \u00c53)
poles_cosmo_vem (real input)
user-provided value of the spherically-averaged molecular polarizability of the solute in an exited state of interest (in \u00c53)
An example of the VEM input file is provided below.
echo \ntitle 'VEM/TDDFT-B3LYP/6-311+G(d) vertical excitation energy + SMSSP for formaldehyde in methanol' \nstart \ngeometry nocenter \n O 0.0000000000 0.0000000000 0.6743110000 \n C 0.0000000000 0.0000000000 -0.5278530000 \n H 0.0000000000 0.9370330000 -1.1136860000 \n H 0.0000000000 -0.9370330000 -1.1136860000 \nsymmetry c1 \nend \nbasis \n* library 6-311+G* \nend \ndft \n XC b3lyp \nend \ncosmo \n do_cosmo_smd true \n do_cosmo_vem 1 \n solvent methanol \n polgs_cosmo_vem 2.429 \n poles_cosmo_vem 3.208 \nend \ntddft \n nroots 10 \n target 1 \n singlet \n notriplet \n algorithm 1 \n civecs \nend \ngrad \n root 1 \n solve_thresh 1d-05 \nend \ntask tddft gradient\n
"},{"location":"VEM-Model.html#references","title":"References","text":"Marenich, A. V.; Cramer, C. J.; Truhlar, D. G.; Guido, C. A.; Mennucci, B.; Scalmani, G.; Frisch, M. J. Practical Computation of Electronic Excitation in Solution: Vertical Excitation Model. Chemical Science 2011, 2 (11), 2143. https://doi.org/10.1039/c1sc00313e.\u00a0\u21a9\u21a9\u21a9
Li, J.; Cramer, C. J.; Truhlar, D. G. Two-Response-Time Model Based on CM2/INDO/S2 Electrostatic Potentials for the Dielectric Polarization Component of Solvatochromic Shifts on Vertical Excitation Energies. International Journal of Quantum Chemistry 2000, 77 (1), 264\u2013280. https://doi.org/10.1002/(sici)1097-461x(2000)77:1<264::aid-qua24>3.0.co;2-j.\u00a0\u21a9
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Uniform Treatment of Solute-Solvent Dispersion in the Ground and Excited Electronic States of the Solute Based on a Solvation Model with State-Specific Polarizability. Journal of Chemical Theory and Computation 2013, 9 (8), 3649\u20133659. https://doi.org/10.1021/ct400329u.\u00a0\u21a9
Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. Minneapolis, MN: Department of Chemistry and Supercomputer Institute 1999.\u00a0\u21a9
The VSCF module can be used to calculate the anharmonic contributions to the vibrational modes of the molecule of interest. Energies are calculated on a one-dimensional grid along each normal mode, on a two-dimensional grid along each pair of normal modes, and optionally on a three-dimensional grid along each triplet of normal modes. These energies are then used to calculate the vibrational nuclear wavefunction at an SCF- (VSCF) and MP2-like (cc-VSCF) level of theory.
VSCF can be used at all levels of theory, SCF and correlated methods, and DFT. For correlated methods, only the SCF level dipole is evaluated and used to calculate the IR intensity values.
The VSCF module is started when the task directive TASK <theory> vscf
is defined in the user input file. The input format has the form:
\u00a0VSCF\n\u00a0\u00a0\u00a0[coupling\u00a0<string\u00a0couplelevel\u00a0default\u00a0\"pair\">] \n\u00a0\u00a0\u00a0[ngrid\u00a0\u00a0\u00a0\u00a0<integer\u00a0default\u00a016\u00a0>] \n\u00a0\u00a0\u00a0[iexcite\u00a0\u00a0<integer\u00a0default\u00a01\u00a0\u00a0>] \n\u00a0\u00a0\u00a0[vcfct\u00a0\u00a0\u00a0\u00a0<real\u00a0\u00a0\u00a0\u00a0default\u00a01.0>] \n\u00a0END\n
The order of coupling of the harmonic normal modes included in the calculation is controlled by the specifying:
\u00a0\u00a0\u00a0coupling\u00a0<string\u00a0couplelevel\u00a0default\u00a0\"pair\">\n
For coupling=diagonal
a one-dimensional grid along each normal mode is computed. For coupling=pair
a two-dimensional grid along each pair of normal modes is computed. For coupling=triplet
a three-dimensional grid along each triplet of normal modes is computed.
The number of grid points along each normal mode, or pair of modes can be defined by specifying:
\u00a0\u00a0\u00a0ngrid\u00a0<integer\u00a0default\u00a016>\n
This VSCF module by default calculates the ground state (\u03bd=0), but can also calculate excited states (such as \u03bd=1). The number of excited states calculated is defined by specifying:
\u00a0\u00a0\u00a0iexcite\u00a0<integer\u00a0default\u00a01>\n
With iexcite=1
the fundamental frequencies are calculated. With iexcite=2
the first overtones are calculated. With iexcite=3
the second overtones are calculated.
In certain cases the pair coupling potentials can become larger than those for a single normal mode. In this case the pair potentials need to be scaled down. The scaling factor used can be defined by specifying:
\u00a0\u00a0\u00a0vcfct\u00a0<real\u00a0default\u00a01.0>\n
References
The nuclear hessian which is used to compute the vibrational frequencies can be computed by finite difference for any ab initio wave-function that has analytic gradients or by analytic methods for SCF and DFT (see Hessians for details). The appropriate nuclear hessian generation algorithm is chosen based on the user input when TASK frequencies is the task directive.
The vibrational package was integrated from the Utah Messkit and can use any nuclear hessian generated from the driver routines, finite difference routines or any analytic hessian modules. There is no required input for the \u201cVIB\u201d package. VIB computes the Infra Red frequencies and intensities for the computed nuclear hessian and the \u201cprojected\u201d nuclear hessian. The VIB module projects out the translations and rotations of the nuclear hessian using the standard Eckart projection algorithm. It also computes the zero point energy for the molecular system based on the frequencies obtained from the projected hessian.
The default mass of each atom is used unless an alternative mass is provided via the geometry input or redefined using the vibrational module input. The default mass is the mass of the most abundant isotope of each element. If the abundance was roughly equal, the mass of the isotope with the longest half life was used.
In addition, the vibrational analysis is given at the default standard temperature of 298.15 degrees.
"},{"location":"Vibration.html#vibrational-module-input","title":"Vibrational Module Input","text":"All input for the Vibrational Module is optional since the default definitions will compute the frequencies and IR intensities. The generic module input can begin with vib, freq, frequency and has the form:
{freq || vib || frequency} \n [reuse [<string hessian_filename>]] \n [mass <integer lexical_index> <real new_mass>] \n [mass <string tag_identifier> <real new_mass>] \n [{temp || temperature} <integer number_of_temperatures> \\ \n <real temperature1 temperature2 ...>] \n [animate [<real step_size_for_animation>]] \n end\n
"},{"location":"Vibration.html#hessian-file-reuse","title":"Hessian File Reuse","text":"By default the task frequencies directive will recompute the hessian. To reuse the previously computed hessian you need only specify reuse in the module input block. If you have stored the hessian in an alternate place you may redirect the reuse directive to that file by specifying the path to that file.
reuse /path_to_hessian_file\n
This will reuse your saved Hessian data but one caveat is that the geometry specification at the point where the hessian is computed must be the default \u201cgeometry\u201d on the current run-time-data-base for the projection to work properly.
"},{"location":"Vibration.html#redefining-masses-of-elements","title":"Redefining Masses of Elements","text":"You may also modify the mass of a specific center or a group of centers via the input.
To modify the mass of a specific center you can simply use:
mass 3 4.00260324\n
which will set the mass of center 3 to 4.00260324 AMUs. The lexical index of centers is determined by the geometry object.
To modify all Hydrogen atoms in a molecule you may use the tag based mechanism:
mass hydrogen 2.014101779\n
The mass redefinitions always start with the default masses and change the masses in the order given in the input. Care must be taken to change the masses properly. For example, if you want all hydrogens to have the mass of Deuterium and the third hydrogen (which is the 6th atomic center) to have the mass of Tritium you must set the Deuterium masses first with the tag based mechanism and then set the 6th center\u2019s mass to that of Tritium using the lexical center index mechanism.
The mass redefinitions are not fully persistent on the run-time-data-base. Each input block that redefines masses will invalidate the mass definitions of the previous input block. For example,
freq \n reuse \n mass hydrogen 2.014101779 \nend \ntask scf frequencies \nfreq \n reuse \n mass oxygen 17.9991603 \nend \ntask scf frequencies\n
will use the new mass for all hydrogens in the first frequency analysis. The mass of the oxygen atoms will be redefined in the second frequency analysis but the hydrogen atoms will use the default mass. To get a modified oxygen and hydrogen analysis you would have to use:
freq \n reuse \n mass hydrogen 2.014101779 \nend \ntask scf frequencies \nfreq \n reuse \n mass hydrogen 2.014101779 \n mass oxygen 17.9991603 \nend \ntask scf frequencies\n
"},{"location":"Vibration.html#temp-or-temperature","title":"Temp or Temperature","text":"The \u201cVIB\u201d module can generate the vibrational analysis at various temperatures other than at standard room temperature. Either temp or temperature can be used to initiate this command.
To modify the temperature of the computation you can simply use:
temp 4 298.15 300.0 350.0 400.0\n
At this point, the temperatures are persistant and so the user must \u201creset\u201d the temperature if the standard behavior is required after setting the temperatures in a previous \u201cVIB\u201d command, i.e.
temp 1 298.15\n
"},{"location":"Vibration.html#animation","title":"Animation","text":"The \u201cVIB\u201d module also can generate mode animation input files in the standard xyz file format for graphics packages like RasMol or XMol There are scripts to automate this for RasMol in $NWCHEM_TOP/contrib/rasmolmovie. Each mode will have 20 xyz files generated that cycle from the equilibrium geometry to 5 steps in the positive direction of the mode vector, back to 5 steps in the negative direction of the mode vector, and finally back to the equilibrium geometry. By default these files are not generated. To activate this mechanism simply use the following input directive
animate\n
anywhere in the frequency/vib input block.
"},{"location":"Vibration.html#controlling-the-step-size-along-the-mode-vector","title":"Controlling the Step Size Along the Mode Vector","text":"By default, the step size used is 0.15 a.u. which will give reliable animations for most systems. This can be changed via the input directive
animate real <step_size>\n
where is the real number that is the magnitude of each step along the eigenvector of each nuclear hessian mode in atomic units."},{"location":"Vibration.html#an-example-input-deck","title":"An Example Input Deck","text":"
This example input deck will optimize the geometry for the given basis set, compute the frequencies for H2O, H2O at different temperatures, D2O, HDO, and TDO.
start h2o \ntitle Water \ngeometry units au autosym \n O 0.00000000 0.00000000 0.00000000 \n H 0.00000000 1.93042809 -1.10715266 \n H 0.00000000 -1.93042809 -1.10715266 \nend \nbasis noprint \n H library sto-3g \n O library sto-3g \nend \nscf; thresh 1e-6; end \ndriver; tight; end \ntask scf optimize \n\nscf; thresh 1e-8; print none; end \ntask scf freq \n\nfreq \n reuse; temp 4 298.15 300.0 350.0 400.0 \nend \ntask scf freq \n\nfreq \n reuse; mass H 2.014101779 \n temp 1 298.15 \nend \ntask scf freq \n\nfreq \n reuse; mass 2 2.014101779 \nend \ntask scf freq \n\nfreq \n reuse; mass 2 2.014101779 ; mass 3 3.01604927 \nend \ntask scf freq\n
"},{"location":"ZCOORD-Forcing-internal-coordinates.html","title":"ZCOORD Forcing internal coordinates","text":""},{"location":"ZCOORD-Forcing-internal-coordinates.html#zcoord-forcing-internal-coordinates","title":"ZCOORD: Forcing internal coordinates","text":"By default redundant internal coordinates are generated for use in geometry optimizations. Connectivity is inferred by comparing inter-atomic distances with the sum of the van der Waals radii of the two atoms involved in a possible bond, times a scaling factor. The scaling factor is an input parameter of ZCOORD which maybe changed from its default value of 1.3. Under some circumstances (unusual bonding, bond dissociation, \u2026) it will be necessary to augment the automatically generated list of internal coordinates to force some specific internal coordinates to be included in among the internal coordinates. This is accomplished by including the optional directive ZCOORD within the geometry directive. The general form of the ZCOORD directive is as follows:
ZCOORD \n CVR_SCALING <real value> \n BOND <integer i> <integer j> \\ \n [<real value>] [<string name>] [constant] \n ANGLE <integer i> <integer j> <integer k> \\ \n [<real value>] [<string name>] [constant]` \n TORSION <integer i> <integer j> <integer k> <integer l> \\ \n [<real value>] [<string name>] [constant] \n END\n
The centers i, j, k and l must be specified using the numbers of the centers, as supplied in the input for the Cartesian coordinates. The ZCOORD
input parameters are defined as follows:
cvr_scaling
\u2013 scaling factor applied to van der Waals radii.bond
\u2013 a bond between the two centers.angle
\u2013 an angle among the three atoms i, j and k.torsion
\u2013 a torsion (or dihedral) angle. The angle between the planes i-j-k and j-k-l.A value may be specified for a user-defined internal coordinate, in which case it is forced upon the input Cartesian coordinates while attempting to make only small changes in the other internal coordinates. If no value is provided the value implicit in the input coordinates is kept. If the keyword constant is specified, then that internal variable is not modified during a geometry optimization with DRIVER. Each internal coordinate may also be named either for easy identification in the output, or for the application of constraints (Applying constraints in geometry optimizations).
If the keyword adjust is specified on the main GEOMETRY directive, only ZCOORD data may be specified and it can be used to change the user-defined internal coordinates, including adding/removing constraints and changing their values.
"},{"location":"ZCOORD-Forcing-internal-coordinates.html#applying-constraints-in-geometry-optimizations","title":"Applying constraints in geometry optimizations","text":"Internal coordinates specified as constant in a ZCOORD directive or in the constants section of a ZMATRIX directive, will be frozen at their initial values if a geometry optimization is performed with DRIVER (Section 20).
If internal coordinates have the same name (give or take an optional sign for torsions) then they are forced to have the same value. This may be used to force bonds or angles to be equal even if they are not related by symmetry.
When atoms have been specified by their Cartesian coordinates, and internal coordinates are not being used, it is possible to freeze the cartesian position of selected atoms. This is useful for such purposes as optimizing a molecule absorbed on the surface of a cluster with fixed geometry. Only the gradients associated with the active atoms are computed. This can result in a big computational saving, since gradients associated with frozen atoms are forced to zero (Note, however, that this destroys the translational and rotational invariance of the gradient. This is not yet fully accommodated by the STEPPER geometry optimization software, and can sometimes result in slower convergence of the optimization. The DRIVER optimization package does not suffer from this problem).
The SET directive is used to freeze atoms, by specifying a directive of the form:
set geometry:actlist <integer list_of_center_numbers>\n
This defines only the centers in the list as active. All other centers will have zero force assigned to them, and will remain frozen at their starting coordinates during a geometry optimization.
For example, the following directive specifies that atoms numbered 1, 5, 6, 7, 8, and 15 are active and all other atoms are frozen:
set geometry:actlist 1 5:8 15\n
or equivalently,
set geometry:actlist 1 5 6 7 8 15\n
If this option is not specified by entering a SET directive, the default behavior in the code is to treat all atoms as active. To revert to this default behavior after the option to define frozen atoms has been invoked, the UNSET directive must be used. The form of the UNSET directive is as follows:
unset geometry:actlist\n
"},{"location":"ZMATRIX-Z-matrix-input.html","title":"ZMATRIX Z matrix input","text":""},{"location":"ZMATRIX-Z-matrix-input.html#zmatrix-z-matrix-input","title":"ZMATRIX: Z-matrix input","text":"The ZMATRIX
directive is an optional directive that can be used within the compound GEOMETRY
directive to specify the structure of the system with a Z-matrix, which can include both internal and Cartesian coordinates. The ZMATRIX
directive is itself a compound directive that can include the VARIABLES
and CONSTANTS
directives, depending on the options selected. The general form of the compound ZMATRIX
directive is as follows:
[ZMATRIX || ZMT || ZMAT \n <string tagn> <list_of_zmatrix_variables> \n ... \n [VARIABLES \n <string symbol> <real value> \n ... ] \n [CONSTANTS \n <string symbol> <real value> \n ... ] \n (END || ZEND)]\n
The input module recognizes three possible spellings of this directive name. It can be invoked with ZMATRIX
, ZMT
, or ZMAT
. The user can specify the molecular structure using either Cartesian coordinates or internal coordinates (bond lengths, bond angles and dihedral angles. The Z-matrix input for a center defines connectivity, bond length, and bond or torsion angles. Cartesian coordinate input for a center consists of three real numbers defining the x,y,z coordinates of the atom.
Within the Z-matrix input, bond lengths and Cartesian coordinates must be input in the user-specified units, as defined by the value specified for the variable units
on the first line of the GEOMETRY directive. All angles are specified in degrees.
The individual centers (denoted as i, j, and k below) used to specify Z-matrix connectivity may be designated either as integers (identifying each center by number) or as tags (If tags are used, the tag must be unique for each center.) The use of dummy atoms is possible, by using X or BQ at the start of the tag.
Bond lengths, bond angles and dihedral angles (denoted below as R, alpha, and beta, respectively) may be specified either as numerical values or as symbolic strings that must be subsequently defined using the VARIABLES
or CONSTANTS
directives. The numerical values of the symbolic strings labeled VARIABLES
may be subject to changes during a geometry optimization say, while the numerical values of the symbolic strings labeled CONSTANTS
will stay frozen to the value given in the input. The same symbolic string can be used more than once, and any mixture of numeric data and symbols is acceptable. Bond angles (\u03b1) must be in the range 0 < \u03b1 < 180.
The Z-matrix input is specified sequentially as follows:
tag1 \n tag2 i R \n tag3 i R j alpha \n tag4 i R j alpha k beta [orient] \n ...\n
The structure of this input is described in more detail below. In the following discussion, the tag or number of the center being currently defined is labeled as C (C for current). The values entered for these tags for centers defined in the Z-matrix input are interpreted in the same way as the tag
entries for Cartesian coordinates described above (see Cartesian coordinate input). Figures 1, 2 and 3 display the relationships between the input data and the definitions of centers and angles.
Figure 1: Relationships between the centers, bond angle and dihedral angle in Z-matrix input.
Figure 2: Relationships between the centers and two bond angles in Z-matrix input with optional parameter specified as +1.
Figure 3: Relationships between the centers and two bond angles in Z-matrix input with optional parameter specified as -1.
The Z-matrix input shown above is interpreted as follows:
tag1
Only a tag is required for the first center.tag2 i R
The second center requires specification of its tag and the bond length (RCi) distance to a previous atom, which is identified by i.tag3 i R j alpha
The third center requires specification of its tag, its bond length distance (RCi) to one of the two previous centers (identified by the value of i), and the bond angle .tag i R j alpha k beta [<integer orient default 0>]
The fourth, and all subsequent centers, require the tag, a bond length (RCi) relative to center i, the bond angle with centers i and j ( ), and either the dihedral angle (\u03b2) between the current center and centers i, j, and k (Figure 1), or a second bond angle and an orientation to the plane containing the other three centers (Figure 2 and 3).By default, \u03b2 is interpreted as a dihedral angle (see Figure 1), but if the optional final parameter (orient
) is specified with the value \u00b11, then \u03b2 is interpreted as the angle . The sign of orient
specifies the direction of the bond angle relative to the plane containing the three reference atoms. If orient
is +1, then the new center (C) is above the plane (Figure 2); and if orient
is -1, then C is below the plane (Figure 3).
Following the Z-matrix center definitions described above, the user can specify initial values for any symbolic variables used to define the Z-matrix tags. This is done using the optional VARIABLES
directive, which has the general form:
VARIABLES \n <string symbol> <real value> \n ...\n
Each line contains the name of a variable followed by its value. Optionally, an equals sign (=) can be included between the symbol and its value, for clarity in reading the input file.
Following the VARIABLES
directive, the CONSTANTS
directive may be used to define any Z-matrix symbolic variables that remain unchanged during geometry optimizations. To freeze the Cartesian coordinates of an atom, refer to Applying constraints in geometry optimizations. The general form of this directive is as follows:
CONSTANTS \n <string symbol> <real value> \n ...\n
Each line contains the name of a variable followed by its value. As with the VARIABLES
directive, an equals sign (=) can be included between the symbol and its value.
The end of the Z-matrix input using the compound ZMATRIX
directive is signaled by a line containing either END
or ZEND
, following all input for the directive itself and its associated optional directives.
A simple example is presented for water. All Z-matrix parameters are specified numerically, and symbolic tags are used to specify connectivity information. This requires that all tags be unique, and therefore different tags are used for the two hydrogen atoms, which may or may not be identical.
geometry \n zmatrix \n O \n H1 O 0.95 \n H2 O 0.95 H1 108.0 \n end \n end\n
The following example illustrates the Z-matrix input for the molecule CH3CF3. This input uses the numbers of centers to specify the connectivity information (i, j, and k), and uses symbolic variables for the Z-matrix parameters R, alpha, and beta, which are defined in the inputs for the VARIABLES
and CONSTANTS
directives.
geometry \n zmatrix \n C \n C 1 CC \n H 1 CH1 2 HCH1 \n H 1 CH2 2 HCH2 3 TOR1 \n H 1 CH3 2 HCH3 3 -TOR2 \n F 2 CF1 1 CCF1 3 TOR3 \n F 2 CF2 1 CCF2 6 FCH1 \n F 2 CF3 1 CCF3 6 -FCH1 \n variables \n CC 1.4888 \n CH1 1.0790 \n CH2 1.0789 \n CH3 1.0789 \n CF1 1.3667 \n CF2 1.3669 \n CF3 1.3669 \n constants \n HCH1 104.28 \n HCH2 104.74 \n HCH3 104.7 \n CCF1 112.0713 \n CCF2 112.0341 \n CCF3 112.0340 \n TOR1 109.3996 \n TOR2 109.3997 \n TOR3 180.0000 \n FCH1 106.7846 \n end \nend\n
The input for any centers specified with Cartesian coordinates must be specified using the format of the tag
lines described in Cartesian coordinate input above. However, in order to correctly specify these Cartesian coordinates within the Z-matrix, the user must understand the orientation of centers specified using internal coordinates. These are arranged as follows:
The ZMATRIX
directive is an optional directive that can be used within the compound GEOMETRY
directive to specify the structure of the system with a Z-matrix, which can include both internal and Cartesian coordinates. The ZMATRIX
directive is itself a compound directive that can include the VARIABLES
and CONSTANTS
directives, depending on the options selected. The general form of the compound ZMATRIX
directive is as follows:
[ZMATRIX || ZMT || ZMAT \n <string tagn> <list_of_zmatrix_variables> \n ... \n [VARIABLES \n <string symbol> <real value> \n ... ] \n [CONSTANTS \n <string symbol> <real value> \n ... ] \n (END || ZEND)]\n
The input module recognizes three possible spellings of this directive name. It can be invoked with ZMATRIX
, ZMT
, or ZMAT
. The user can specify the molecular structure using either Cartesian coordinates or internal coordinates (bond lengths, bond angles and dihedral angles. The Z-matrix input for a center defines connectivity, bond length, and bond or torsion angles. Cartesian coordinate input for a center consists of three real numbers defining the x,y,z coordinates of the atom.
Within the Z-matrix input, bond lengths and Cartesian coordinates must be input in the user-specified units, as defined by the value specified for the variable units
on the first line of the GEOMETRY
directive. All angles are specified in degrees.
The individual centers (denoted as i, j, and k below) used to specify Z-matrix connectivity may be designated either as integers (identifying each center by number) or as tags (If tags are used, the tag must be unique for each center.) The use of dummy atoms is possible, by using X or BQ at the start of the tag.
Bond lengths, bond angles and dihedral angles (denoted below as R, alpha, and beta, respectively) may be specified either as numerical values or as symbolic strings that must be subsequently defined using the VARIABLES
or CONSTANTS
directives. The numerical values of the symbolic strings labeled VARIABLES
may be subject to changes during a geometry optimization say, while the numerical values of the symbolic strings labeled CONSTANTS
will stay frozen to the value given in the input. The same symbolic string can be used more than once, and any mixture of numeric data and symbols is acceptable. Bond angles (\u03b1) must be in the range 0 < \u03b1 < 180.
The Z-matrix input is specified sequentially as follows:
tag1 \n tag2 i R \n tag3 i R j alpha \n tag4 i R j alpha k beta [orient] \n ...\n
The structure of this input is described in more detail below. In the following discussion, the tag or number of the center being currently defined is labeled as C (C for current). The values entered for these tags for centers defined in the Z-matrix input are interpreted in the same way as the tag
entries for Cartesian coordinates described above (see Cartesian coordinate input). Figures 1, 2 and 3 display the relationships between the input data and the definitions of centers and angles.
Figure 1: Relationships between the centers, bond angle and dihedral angle in Z-matrix input.
Figure 2: Relationships between the centers and two bond angles in Z-matrix input with optional parameter specified as +1.
Figure 3: Relationships between the centers and two bond angles in Z-matrix input with optional parameter specified as -1.
The Z-matrix input shown above is interpreted as follows:
tag1
Only a tag is required for the first center.tag2 i R
The second center requires specification of its tag and the bond length (RCi) distance to a previous atom, which is identified by i.tag3 i R j alpha
The third center requires specification of its tag, its bond length distance (RCi) to one of the two previous centers (identified by the value of i), and the bond angle \u03b1 = \u2220C i j.tag i R j alpha k beta [<integer orient default 0>]
The fourth, and all subsequent centers, require the tag, a bond length (RCi) relative to center i, the bond angle with centers i and j (\u03b1 = \u2220C i j), and either the dihedral angle (\u03b2) between the current center and centers i, j, and k (Figure 1), or a second bond angle \u03b2 = \u2220 C i k and an orientation to the plane containing the other three centers (Figure 2 and 3).By default, \u03b2 is interpreted as a dihedral angle (see Figure 1), but if the optional final parameter (orient
) is specified with the value \u00b11, then \u03b2 is interpreted as the angle \u2220 C i k. The sign of orient
specifies the direction of the bond angle relative to the plane containing the three reference atoms. If orient
is +1, then the new center (C) is above the plane (Figure 2); and if orient
is -1, then C is below the plane (Figure 3).
Following the Z-matrix center definitions described above, the user can specify initial values for any symbolic variables used to define the Z-matrix tags. This is done using the optional VARIABLES
directive, which has the general form:
VARIABLES \n <string symbol> <real value> \n ...\n
Each line contains the name of a variable followed by its value. Optionally, an equals sign (=) can be included between the symbol and its value, for clarity in reading the input file.
Following the VARIABLES
directive, the CONSTANTS
directive may be used to define any Z-matrix symbolic variables that remain unchanged during geometry optimizations. To freeze the Cartesian coordinates of an atom, refer to the section Applying constraints in geometry optimizations. The general form of this directive is as follows:
CONSTANTS \n <string symbol> <real value> \n ...\n
Each line contains the name of a variable followed by its value. As with the VARIABLES
directive, an equals sign (=) can be included between the symbol and its value.
The end of the Z-matrix input using the compound ZMATRIX
directive is signaled by a line containing either END
or ZEND
, following all input for the directive itself and its associated optional directives.
A simple example is presented for water. All Z-matrix parameters are specified numerically, and symbolic tags are used to specify connectivity information. This requires that all tags be unique, and therefore different tags are used for the two hydrogen atoms, which may or may not be identical.
geometry \n zmatrix \n O \n H1 O 0.95 \n H2 O 0.95 H1 108.0 \n end \n end\n
The following example illustrates the Z-matrix input for the molecule CH3CF3. This input uses the numbers of centers to specify the connectivity information (i, j, and k), and uses symbolic variables for the Z-matrix parameters R, alpha, and beta, which are defined in the inputs for the VARIABLES
and CONSTANTS
directives.
geometry \n zmatrix \n C \n C 1 CC \n H 1 CH1 2 HCH1 \n H 1 CH2 2 HCH2 3 TOR1 \n H 1 CH3 2 HCH3 3 -TOR2 \n F 2 CF1 1 CCF1 3 TOR3 \n F 2 CF2 1 CCF2 6 FCH1 \n F 2 CF3 1 CCF3 6 -FCH1 \n variables \n CC 1.4888 \n CH1 1.0790 \n CH2 1.0789 \n CH3 1.0789 \n CF1 1.3667 \n CF2 1.3669 \n CF3 1.3669 \n constants \n HCH1 104.28 \n HCH2 104.74 \n HCH3 104.7 \n CCF1 112.0713 \n CCF2 112.0341 \n CCF3 112.0340 \n TOR1 109.3996 \n TOR2 109.3997 \n TOR3 180.0000 \n FCH1 106.7846 \n end \nend\n
The input for any centers specified with Cartesian coordinates must be specified using the format of the tag
lines described in Cartesian coordinate input above. However, in order to correctly specify these Cartesian coordinates within the Z-matrix, the user must understand the orientation of centers specified using internal coordinates. These are arranged as follows:
Fork the github wiki repository, modify it and send a pull request.
"},{"location":"_Sidebar.html","title":"Sidebar","text":""},{"location":"_Sidebar.html#nwchem-user-documentation","title":"NWChem User Documentation","text":"The MEPGS module performs a search for the two critical points on the potential energy surface connected to a saddle point of the molecule defined by input using the GEOMETRY
directive (see Section geometry ). The algorithm programmed in MEPGS is a constrained trust region quasi-newton optimization and approximate energy Hessian updates.
Optional input for this module is specified within the compound directive,
MEPGS \n OPTTOL <real opttol default 3e-4>\n EPREC <real eprec default 1e-7>\n STRIDE <real stride default 0.1>\n EVIB <real evib default 1e-4>\n MAXMEP <integer maxiter default 250>\n MAXITER <integer maxiter default 20>\n INHESS <integer inhess default 2>\n (BACKWARD || FORWARD) <string default both>\n (MSWG || NOMSWG) <string default NOMSWG>\n (XYZ || NOXYZ) \n END\n
"},{"location":"mepgs.html#convergence-criteria","title":"Convergence criteria","text":"The user may request a specific value for the tolerance with the keyword OPTTOL
which will couple all the convergence criteria in the following way:
GRMS 1.0*OPTTOL\n GMAX 1.5*OPTTOL\n XRMS 4.0*OPTTOL\n XMAX 6.0*OPTTOL\n
"},{"location":"mepgs.html#available-precision","title":"Available precision","text":" EPREC <real eprec default 1e-7>\n
In performing a constrained trust region optimization the precision of the energy is coupled to the convergence criteria (see Section TROPT ). Note that the default EPREC for DFT calculations is 5e-6 instead of 1e-7.
"},{"location":"mepgs.html#controlling-the-step-length","title":"Controlling the step length","text":" STRIDE <real stride default 0.1>\n
A dynamic stride (stride
) is used to control the step length during the minimum energy path walking when taking the Euler step as starting point.
EVIB <real evib default 1e-4>\n
The expected decrease in energy (evib
) assuming a quadratic approximation around the saddle structure to be obtained.
MAXMEP <integer maxmep default 250>\n
By default at most 250 minimum energy path steps will be taken, but this may be modified with this directive.
"},{"location":"mepgs.html#maximum-number-of-steps","title":"Maximum number of steps","text":" MAXITER <integer maxiter default 20>\n
By default at most 20 constrained geometry optimization steps will be taken, but this may be modified with this directive.
"},{"location":"mepgs.html#initial-hessian","title":"Initial Hessian","text":" INHESS <integer inhess default 2>\n
With this option the MEPGS module will be able to transform Cartesian Hessian from previous frequency calculation.
"},{"location":"mepgs.html#selecting-the-side-to-traverse","title":"Selecting the side to traverse","text":" (BACKWARD || FORWARD) <string default both>\n
With this option the MEPGS module will select which side of the minimum energy path to explore. By default both sides are explored for a MEPGS run.
"},{"location":"mepgs.html#using-mass","title":"Using mass","text":" (MSWG || NOMSWG) <string default NOMSWG>\n
With this option the MEPGS will trigger the use of mass when following the minimum energy path. Mass is not used as default, if mass is used then this formally becomes an intrinsic reaction coordinate.
"},{"location":"mepgs.html#minimum-energy-path-saved-xyz-file","title":"Minimum energy path saved XYZ file","text":" XYZ [<string xyz default $fileprefix>]\n NOXYZ\n
The XYZ
directive causes the geometry at each calculated structure on the minimum energy path to be output into file in the permanent directory in XYZ format. The optional string will prefix the filename. The NOXYZ
directive turns this off.
For example, the input
mepgs; xyz ; end\n
will cause a trajectory file filename.xyz to be created in the permanent directory.
"},{"location":"mepgs.html#mepgs-usage","title":"MEPGS usage","text":" start somename\n geometry; <saddle point body > ; end \n task theory freq\n freq; reuse somename.hess ; end\n mepgs; <mepgs options> ; end\n task theory mepgs\n
In the above example, after performing a frequency analysis for the saddle point, the information of the force constant matrix is reused (freq directive) in order to be able to follow the transition state mode.
Example input and output files can be find at https://github.com/nwchemgit/nwchem/blob/master/QA/tests/mep-test/mep-test.nw https://github.com/nwchemgit/nwchem/blob/master/QA/tests/mep-test/mep-test.out
"},{"location":"projects.html","title":"Projects","text":""},{"location":"projects.html#ongoing-projects-and-future-directions","title":"Ongoing Projects and Future Directions","text":"\u2019\u2018\u2019Density functional theory (DFT), time-dependent DFT (TD-DFT) and properties \u2018\u2019\u2018
Future projects: Dynamics on excited-state surfaces, surface hopping, GW/BSE for molecular systems, Spin-flip TDDFT, Non-collinear DFT, spin-orbit TDDFT, interface to QWalk Quantum Monte-Carlo Program (w/ Lucas Wagner University of Illinois, Urbana-Champaign)
Plane-Wave Density Functional Theory (DFT), Ab Initio Molecular Dynamics, and NWPhys
Future projects: New NWPhys module development (w/ John Rehr University of Washington) which will include new methods to calculate XPS and XANES spectra. Interface to QWalk Quantum Monte-Carlo Program (w/ Lubos Mitas University of North Carolina).
High-level Coupled-Cluster methods
Future projects: CC/EOMCC analytical gradients, Intel MIC implementations for iterative CC methods, Multi-reference CC formulations employing incomplete model spaces.
Other Correlated methods
\u2019\u2018\u2019Long-term NWChem development plans: \u2018\u2019\u2018
bqzone <double precision default 9.0d0>\n
This directive defines the radius of the zone (in angstroms) around the quantum region where classical residues/segments will be allowed to interact with quantum region both electrostatically and through Van der Waals interactions. It should be noted that classical atoms interacting with quantum region via bonded interactions are always included (this is true even if bqzone is set to 0). In addition, even if one atom of a given charged group is in the bqzone (residues are typically treated as one charged group) then the whole group will be included.
"},{"location":"qmmm_eref.html","title":"QM/MM eref","text":"eref\u00a0<double\u00a0precision\u00a0default\u00a00.0d0>\n
This directive sets the relative zero of energy for the QM component of the system. The need for this directive arises from different definitions of zero energy for QM and MM methods. In QM methods the zero of energy for the system is typically vacuum. The zero of energy for the MM system is by definition of most parameterized force fields the separated atom energy. Therefore in many cases the energetics of the QM system will likely overshadow the MM component of the system. This imbalance can be corrected by suitably chosen value of eref
. In most cases IT IS OK to leave eref
at its default value of zero.
The example below illustrates single point energy calculation at DFT/B3LYP level for ethanol molecule embedded into 20 angstrom box of SPCE/E water molecules.
start etl\n\n permanent_dir ./perm\n scratch_dir ./data\n\n prepare\n source etl0.pdb\n new_top new_seq\n new_rst\n modify atom 1:_C1 quantum\n modify atom 1:2H1 quantum\n modify atom 1:3H1 quantum\n modify atom 1:4H1 quantum\n center\n orient\n solvate box 3.0\n update lists\n ignore\n write etl_ref.rst\n write etl_ref.pdb\n end\n task prepare\n\n md\n system etl_ref\n end\n\n basis\n * library \"6-31G\"\n end\n dft\n xc b3lyp\n end\n\n qmmm\n link_atoms hydrogen\n end\n\n task qmmm dft energy\n
"},{"location":"qmmm_example6.html","title":"Qmmm example6","text":"The example below illustrates QM/MM calculation of ElectroStatic Potential (ESP) charges at DFT/B3LYP level of theory for quantum water molecule embedded into 20 angstrom box of classical SPCE/E water molecules.
The preparation stage that involves definition of the QM region and solvation is performed as part of the calculation. Note that water fragment file wtr.frg is required in this calculation. Prepare run will generate restart file (wtr_ref.rst) and topology file (wtr.top).
In the QM/MM interface block the use of bq_zone value of 3.0 Angstrom is specified.
Important: ESP module relies on the availability of movecs (wavefunction) file. In this example, movecs file was generated by performing energy calculation.
\u00a0\u00a0start\u00a0wtr \n\n\u00a0\u00a0permanent_dir\u00a0./perm \n\u00a0\u00a0scratch_dir\u00a0./data \n\n\u00a0\u00a0prepare \n\u00a0\u00a0source\u00a0wtr0.pdb \n\u00a0\u00a0new_top\u00a0new_seq \n\u00a0\u00a0new_rst \n\u00a0\u00a0modify\u00a0segment\u00a01\u00a0\u00a0quantum \n\u00a0\u00a0center \n\u00a0\u00a0orient \n\u00a0\u00a0solvate\u00a0box\u00a03.0 \n\u00a0\u00a0update\u00a0lists \n\u00a0\u00a0ignore \n\u00a0\u00a0write\u00a0wtr_ref.rst \n\u00a0\u00a0write\u00a0wtr_ref.pdb \n\u00a0\u00a0end \n\n\u00a0\u00a0task\u00a0prepare \n\n\u00a0\u00a0md \n\u00a0\u00a0system\u00a0wtr_ref \n\u00a0\u00a0end \n\n\u00a0\u00a0basis \n\u00a0\u00a0*\u00a0library\u00a0\"6-31G\" \n\u00a0\u00a0end \n\n\u00a0\u00a0dft \n\u00a0\u00a0xc\u00a0b3lyp \n\u00a0\u00a0end \n\n\u00a0\u00a0qmmm \n\u00a0\u00a0bq_zone\u00a03.0 \n\u00a0\u00a0end \n\n\u00a0\u00a0task\u00a0qmmm\u00a0dft\u00a0energy \n\u00a0\u00a0task\u00a0qmmm\u00a0esp\n
"},{"location":"qmmm_example7.html","title":"Qmmm example7","text":""},{"location":"qmmm_example7.html#example-of-qmmm-optimization","title":"Example of QM/MM optimization","text":"The example below illustrates QM/MM optimization at DFT/B3LYP level of theory for quantum water molecule embedded into 20 angstrom box of classical SPCE/E water molecules.
The restart (wtr_ref.rst) and topology (wtr.top) files are assumed to be generated elsewhere.
\u00a0\u00a0start\u00a0wtr \n\n\u00a0\u00a0permanent_dir\u00a0./perm \n\u00a0\u00a0scratch_dir\u00a0./data \n\n\u00a0\u00a0md \n\u00a0\u00a0system\u00a0wtr_ref \n\u00a0\u00a0end \n\n\u00a0\u00a0basis \n\u00a0\u00a0*\u00a0library\u00a0\"6-31G\" \n\u00a0\u00a0end \n\n\u00a0\u00a0dft \n\u00a0\u00a0xc\u00a0b3lyp \n\u00a0\u00a0end \n\n\u00a0\u00a0qmmm \n\u00a0\u00a0region\u00a0\u00a0qm\u00a0\u00a0\u00a0solvent \n\u00a0\u00a0maxiter\u00a010\u00a0\u00a0\u00a01000 \n\u00a0\u00a0ncycles\u00a05 \n\u00a0\u00a0density\u00a0espfit \n\u00a0\u00a0xyz\u00a0\u00a0\u00a0\u00a0foo \n\u00a0\u00a0end \n\n\u00a0\u00a0task\u00a0qmmm\u00a0dft\u00a0optimize\n
"},{"location":"qmmm_introduction.html","title":"QMMM Introduction","text":"The combined quantum mechanical molecular mechanics (QM/MM) approach provides a simple and effective tool to study localized molecular transformations in large scale systems such as those encountered in solution chemistry or enzyme catalysis. In this method an accurate but computationally intensive quantum mechanical (QM) description is only used for the regions where electronic structure transformations are occurring (e.g. bond making and breaking). The rest of the system, whose chemical identity remains essentially the same, is treated at the approximate classical molecular mechanics (MM) level.
The QM/MM module in NWChem is built as a top level interface between the classical MD module and various QM modules,managing initialization, data transfer, and various high level operations. The size of the system (10^3 - 10^5 atoms) and the need for classical force field parameters precludes description of the system through just the geometry input block as would be done in pure QM simulations. Instead a separate preparation stage is required. In a typical setting this preparation run will be done separately from the main QM/MM simulations resulting in the generation of topology and restart files. The topology file contains a list of all relevant force field interactions encountered in the system but has no information about the actual atom positions. Typically the topology file will be generated once and reused throughout the entire simulation. The actual structural information about the system is contained in the restart file, which will be changing as the system coordinates are updated during the course of the simulation.
Once restart and topology files are generated, the QM/MM simulation can be initiated by defining the specifics of the QM and MM descriptions, and if necessary QM/MM interface parameters.
The actual QM/MM calculation is invoked with the following task directive.
task qmmm <string qmtheory> <string operation> [numerical] [ignore]\n
where qmtheory specifies quantum method for the calculation of the quantum region. It is expected that most of QM/MM simulations will be performed with with HF, DFT. or CC theories, but any other QM theory supported by NWChem should also work. NWChem supports wide range of QM/MM tasks including
link_atoms <(hydrogen||halogen) default halogen>\n
This directive controls the treatment of bonds crossing the boundary between quantum and classical regions. The use of hydrogen keyword will trigger truncation of such bonds with hydrogen link atoms. The position of the hydrogen atom will be calculated from the coordinates of the quantum and classical atom of the truncated bond using the following expression
where g is the scale factor set at 0.709
Setting link_atoms
to halogen
will result in the modification of the quantum atom of the truncated bond to the fluoride atom. This fluoride atom will typically carry an effective core potential (ECP) basis set as specified in link_ecp
directive.
link_ecp <(auto||user)default auto> \n
This directive specifies ECP basis set on fluoride link atoms. If set to auto the ECP basis set given by Zhang, Lee, Yang for 6-31G basis will be used. Strictly speaking, this implies the use of 6-31G spherical basis as the main basis set. If other choices are desired then keyword user should be used and ECP basis set should be entered separatelly following the format given in section dealing with ECPs . The name tag for fluoride link atoms is F_L
.
load\u00a0\u00a0<\u00a0esp\u00a0>\u00a0[<filename>]\n
This directive instructs to load external file (located in permanent directory) containing esp charges for QM region. If filename is not provided it will be constructed from the name of the restart file by replacing \u201c.rst\u201d suffix with \u201c.esp\u201d. Note that file containing esp charges is always generated whenever esp charge calculation is performed
"},{"location":"qmmm_method.html","title":"Qmmm method","text":" method [method1] [method2] [method3]\n
This directive controls which optimization algorithm will be used for the regions as defined by [[qmmm_region|Qmmm_region]] directive. The allowed values are bfgs
aka DRIVER, lbfgs
limited memory version of quasi-newton, and sd
simple steepest descent algorithm. The use of this directive is not recommended in all but special cases. In particular, bfgs
should be used for QM region if there are any constraints, sd
method should always be used for classical solute and solvent atoms with shake constraints.
mm_charges [exclude <(none||all||linkbond||linkbond_H) default none>]\n [expand <none||all||solute||solvent> default none]\n [update <integer default 0>]\n
This directive controls treatment of classical point (MM) charges that are interacting with QM region. For most QM/MM applications the use of directive will be not be necessary. Its absence would be simply mean that all MM charges within the cuttof distance ( as specified by cutoff ) as well those belonging to the charges groups directly bonded to QM region will be allowed to interact with QM region.
Keyword exclude specifies the subset MM charges that will be specifically excluded from interacting with QM region.
Keyword expand expands the set MM charges interacting with QM region beyond the limits imposed by cutoff value.
Keyword update specifies how often list of MM charges will be updated in the course of the calculation. Default behavior is not to update.
"},{"location":"qmmm_sp_energy.html","title":"QMMM Single Point Calculations","text":"The task directive for QM/MM single point energy and gradient calculations is given by
task qmmm <qmtheory> energy\n
or
task qmmm <qmtheory> gradient [numerical]\n
where qmtheory
refers to the level of QM theory (e.g. dft, tce, mp2, \u2026).
The ground state QM/MM energy calculations should be possible with all QM descriptions available in NWChem, however most of testing was performed using core QM methods (scf,dft,mp2,tce). The ground state QM/MM gradient calculations can be performed analytically with scf,dft,mp2 levels of theory and numerically for all the others.
The relevant settings for QM/MM interface block for energy and gradient calculations include
qmmm_example3
"},{"location":"qmmm_sp_property.html","title":"QM/MM properties","text":"A number of electronic structure properties can be calculated with QM/MM using capabilities provided by property, esp, and dplot modules.
The example below illustrates dipole property QM/MM DFT/B3LYP calculation for quantum water molecule embedded into 20 angstrom box of classical SPCE/E water molecules.
The preparation stage that involves definition of the QM region and solvation is performed as part of the calculation. Note that water fragment file wtr.frg is required in this calculation. Prepare run will generate restart file (wtr_ref.rst) and topology file (wtr.top)
In the QM/MM interface block the use of bq_zone
value of 3.0 Angstrom is specified.
start wtr\n\n permanent_dir ./perm \n scratch_dir ./data\n\n prepare \n source wtr0.pdb \n new_top new_seq \n new_rst \n modify segment 1 quantum \n center \n orient \n solvate box 3.0 \n update lists \n ignore \n write wtr_ref.rst \n write wtr_ref.pdb \n end\n\n task prepare\n\n md \n system wtr_ref \n end\n\n basis \n * library \"6-31G\" \n end\n\n dft \n xc b3lyp \n end\n\n qmmm \n bq_zone 3.0 \n end\n\n property \n dipole \n end\n\n task qmmm dft property\n
"},{"location":"stub.html","title":"Stub","text":"test file
"},{"location":"tropt.html","title":"Tropt","text":""},{"location":"tropt.html#tropt","title":"TROPT","text":"The TROPT module is one of three drivers (see Section Stepper for documentation on STEPPER and Section Driver module for documentation on DRIVER) to perform a geometry optimization function on the molecule defined by input using the GEOMETRY
directive (see Section Geometry). Geometry optimization is either an energy minimization or a transition state optimization. The algorithm programmed in TROPT is a trust region quasi-newton optimization and approximate energy Hessian updates.
TROPT is not selected by default out of the two available modules to perform geometry optimization. In order to force use of TROPT (e.g., because a previous optimization used STEPPER or DRIVER) provide a TROPT input block (below) \u2014 even an empty block will force use of TROPT.
Optional input for this module is specified within the compound directive,
TROPT \n (LOOSE || DEFAULT || TIGHT)\n GMAX <real value>\n GRMS <real value>\n XMAX <real value>\n XRMS <real value>\n\n OPTTOL <real opttol default 3e-4>\n\n EPREC <real eprec default 1e-7>\n\n TRUST <real trust default 0.3>\n\n CLEAR\n REDOAUTOZ\n\n INHESS <integer inhess default 0>\n\n (MODDIR || VARDIR) <integer dir default 0>\n (FIRSTNEG || NOFIRSTNEG)\n\n MAXITER <integer maxiter default 20>\n\n BSCALE <real BSCALE default 1.0>\n ASCALE <real ASCALE default 0.25>\n TSCALE <real TSCALE default 0.1>\n HSCALE <real HSCALE default 1.0>\n\n PRINT ...\n\n XYZ [<string xyz default $file_prefix$>]\n NOXYZ\n\n END\n
"},{"location":"tropt.html#convergence-criteria","title":"Convergence criteria","text":" (LOOSE || DEFAULT || TIGHT)\n GMAX <real value>\n GRMS <real value>\n XMAX <real value>\n XRMS <real value>\n\n OPTTOL <real value>\n
The defaults may be used, or the directives LOOSE
, DEFAULT
, or TIGHT
specified to use standard sets of values, or the individual criteria adjusted. All criteria are in atomic units. GMAX
and GRMS
control the maximum and root mean square gradient in the coordinates being used (Z-matrix, redundant internals, or Cartesian). XMAX
and XRMS
control the maximum and root mean square of the Cartesian step.
LOOSE DEFAULT TIGHT\n GMAX 0.0045d0 0.00045 0.000015 \n GRMS 0.0030d0 0.00030 0.00001\n XMAX 0.0054d0 0.00180 0.00006\n XRMS 0.0036d0 0.00120 0.00004\n
Additionally the user may request a specific value for the tolerance with the keyword OPTTOL
which will couple all the convergence criteria in the following way:
GRMS 1.0*OPTTOL\n GMAX 1.5*OPTTOL\n XRMS 4.0*OPTTOL\n XMAX 6.0*OPTTOL\n
Note that GMAX and GRMS used for convergence of geometry may significantly vary in different coordinate systems such as Z-matrix, redundant internals, or Cartesian. The coordinate system is defined in the input file (default is Z-matrix). Therefore the choice of coordinate system may slightly affect converged energy. Although in most cases XMAX and XRMS are last to converge which are always done in Cartesian coordinates, which insures convergence to the same geometry in different coordinate systems.
The old criterion may be recovered with the input
gmax 0.0008; grms 1; xrms 1; xmax 1\n
"},{"location":"tropt.html#available-precision","title":"Available precision","text":" EPREC <real eprec default 1e-7>\n
In performing a trust region optimization the precision of the energy is coupled to the convergence criteria. As mentioned above in most cases XMAX and XRMS are last to converge, thus, an accelerated converge is triggered in TROPT when GMAX and GRMS are already converged and the corresponding energy change with respect to the previous point is below the EPREC threshold, then, the structure is treated as optimized. This is used as an accelerated convergence criteria to avoid long tail in the optimization process. This will increase the speed of an optimization in most of the cases but it will be somehow cumbersome when dealing with flat energy surfaces, in this case a more tight EPREC value is recommended. Note that the default EPREC for DFT calculations is 5e-6 instead of 1e-7.
"},{"location":"tropt.html#controlling-the-step-length","title":"Controlling the step length","text":" TRUST <real trust default 0.3>\n
A dynamic trust radius (trust
) is used to control the step during optimization processes both minimization and saddle-point searches. It defaults to 0.3 for minimizations and 0.1 for saddle-point searches.
If a step taken during the optimization is too large or in the wrong direction (e.g., the step causes the energy to go up for a minimization), the TROPT optimizer will automatically \u201cbackstep\u201d and reduce the current value of the trust radius in order to avoid a permanent \u201cbacksteping\u201d.
"},{"location":"tropt.html#maximum-number-of-steps","title":"Maximum number of steps","text":" MAXITER <integer maxiter default 20>\n
By default at most 20 geometry optimization steps will be taken, but this may be modified with this directive.
"},{"location":"tropt.html#discard-restart-information","title":"Discard restart information","text":" CLEAR\n
By default TROPT reuses Hessian information from a previous optimization, and, to facilitate a restart also stores which mode is being followed for a saddle-point search. This option deletes all restart data.
"},{"location":"tropt.html#regenerate-internal-coordinates","title":"Regenerate internal coordinates","text":" REDOAUTOZ\n
Deletes Hessian data and regenerates internal coordinates at the current geometry. Useful if there has been a large change in the geometry that has rendered the current set of coordinates invalid or non-optimal.
"},{"location":"tropt.html#initial-hessian","title":"Initial Hessian","text":" INHESS <integer inhess default 0>\n
0 = Default \u2026 use restart data if available, otherwise use diagonal guess.
1 = Use diagonal initial guess.
2 = Use restart data if available, otherwise transform Cartesian Hessian from previous frequency calculation.
In addition, the diagonal elements of the initial Hessian for internal coordinates may be scaled using separate factors for bonds, angles and torsions with the following
BSCALE <real bscale default 1.0>\n ASCALE <real ascale default 0.25>\n TSCALE <real tscale default 0.1>\n
These values typically give a two-fold speedup over unit values, based on about 100 test cases up to 15 atoms using 3-21g and 6-31g* SCF. However, if doing many optimizations on physically similar systems it may be worth fine tuning these parameters.
Finally, the entire Hessian from any source may be scaled by a factor using the directive
HSCALE <real hscale default 1.0>\n
It might be of utility, for instance, when computing an initial Hessian using SCF to start a large MP2 optimization. The SCF vibrational modes are expected to be stiffer than the MP2, so scaling the initial Hessian by a number less than one might be beneficial.
"},{"location":"tropt.html#mode-or-variable-to-follow-to-saddle-point","title":"Mode or variable to follow to saddle point","text":" (MODDIR || VARDIR) <integer dir default 0>\n (FIRSTNEG || NOFIRSTNEG)\n
When searching for a transition state the program, by default, will take an initial step uphill and then do mode following using a fuzzy maximum overlap (the lowest eigen-mode with an overlap with the previous search direction of 0.7 times the maximum overlap is selected). Once a negative eigen-value is found, that mode is followed regardless of overlap.
The initial uphill step is appropriate if the gradient points roughly in the direction of the saddle point, such as might be the case if a constrained optimization was performed at the starting geometry. Alternatively, the initial search direction may be chosen to be along a specific internal variable (using the directive VARDIR
) or along a specific eigen-mode (using MODDIR
). Following a variable might be valuable if the initial gradient is either very small or very large. Note that the eigen-modes in the optimizer have next-to-nothing to do with the output from a frequency calculation. You can examine the eigen-modes used by the optimizer with
tropt; print hvecs; end\n
The selection of the first negative mode is usually a good choice if the search is started in the vicinity of the transition state and the initial search direction is satisfactory. However, sometimes the first negative mode might not be the one of interest (e.g., transverse to the reaction direction). If NOFIRSTNEG
is specified, the code will not take the first negative direction and will continue doing mode-following until that mode goes negative.
XYZ [<string xyz default $fileprefix>]\n NOXYZ\n
The XYZ
directive causes the geometry at each step to be output into file in the permanent directory in XYZ format. The optional string will prefix the filename. The NOXYZ
directive turns this off.
For example, the input
tropt; xyz ; end\n
will cause a trajectory file filename.xyz to be created in the permanent directory.
"},{"location":"tropt.html#print-options","title":"Print options","text":"The UNIX command \"egrep '^@' < output\"
will extract a pretty table summarizing the optimization.
If you specify the NWChem input
scf; print none; end\n tropt; print low; end\n task scf optimize\n
you\u2019ll obtain a pleasantly terse output.
For more control, these options for the standard print directive are recognized
debug
- prints a large amount of data. Don\u2019t use in parallel.
high
- print the search direction in internals
default
- prints geometry for each major step (not during the line search), gradient in internals (before and after application of constraints)
low
- prints convergence and energy information. At convergence prints final geometry, change in internals from initial geometry
and these specific print options
finish
(low) - print geometry data at end of calculation
bonds
(default) - print bonds at end of calculation
angles
(default) - print angles at end of calculation
hvecs
(never) - print eigen-values/vectors of the Hessian
searchdir
(high) - print the search direction in internals
\u2018internal gradient
\u2019 (default) - print the gradient in internals
sadmode
(default) - print the mode being followed to the saddle point
https://pnnl.cvent.com/events/aerosol-summer-school/agenda-a5619d0658f24e799567a97dbb6ef20d.aspx
This webpage can be reached by using the following URL
https://tinyurl.com/nwaero19
The Arrows webpage can be reached by using the following URL
https://arrows.emsl.pnnl.gov/api/aerosol
"},{"location":"tut2019/index.html#instruction-for-installing-nwchem-on-mac-with-homebrew","title":"Instruction for installing NWChem on Mac with Homebrew","text":"In Terminal App, either use the script https://github.com/nwchemgit/nwchem-wiki/blob/master/tut2019/macinstall.bash or follow these instructions If Homebrew is not installed yet, type
/usr/bin/ruby -e \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)\"\n
type
brew install nwchem\n
"},{"location":"tut2019/index.html#instruction-for-installing-nwchem-on-ubuntu-18-bionic","title":"Instruction for installing NWChem on Ubuntu 18 Bionic","text":"Open terminal and type
sudo apt -y install mpi-default-bin libgfortran4 libopenblas-base \\\nlibopenmpi2 libscalapack-openmpi2.0 openmpi-bin libquadmath0 \\\nlibfabric1 libhwloc5 libibverbs1 libpsm-infinipath1 \\\nopenmpi-common libhwloc-plugins libnl-route-3-200 \\\nocl-icd-libopencl1 librdmacm1\n
Download NWChem install file by typing
wget https://github.com/nwchemgit/nwchem/releases/download/6.8.1-release/nwchem-data_6.8.1+133+gitge032219-2_all.ubuntu_bionic.deb\nwget https://github.com/nwchemgit/nwchem/releases/download/6.8.1-release/nwchem_6.8.1+133+gitge032219-2_amd64.ubuntu_bionic.deb\n
Install the NWChem packages
sudo dpkg -i nwchem_6.8.1+133+gitge032219-2_amd64.ubuntu_bionic.deb \\ \nnwchem-data_6.8.1+133+gitge032219-2_all.ubuntu_bionic.deb\n
Alternative: use the script https://github.com/nwchemgit/nwchem-wiki/blob/master/tut2019/ubuntu18install.bash
"},{"location":"tutorial_singapore2012/index.html","title":"Index","text":""},{"location":"tutorial_singapore2012/index.html#material-from-the-nwchem-tutorial-at-astar-in-singapore-on-october-23-25-2012","title":"Material from the NWChem tutorial at A*STAR in Singapore on October 23-25, 2012","text":"Introduction
SCF, DFT and TDDFT
Correlated Methods
Relativity and Spectroscopy
MD and QM/MM tar file with QM/MM hands-on exercises available at https://rawgit.com/nwchemgit/nwchem-wiki/master/tutorial_singapore2012/tutorialqmm_new.tar.bz2 https://rawgit.com/nwchemgit/nwchem-wiki/master/tutorial_singapore2012/prepare-0.tar.bz2
Plane-Wave
Applications
Parallelization and Benchmarks
tar file with hands-on exercises for all sessions available at https://rawgit.com/nwchemgit/nwchem-wiki/master/tutorial_singapore2012/tutorial.tar.bz2
The NWChem software contains computational chemistry tools that are scalable both in their ability to efficiently treat large scientific problems, and in their use of available computing resources from high-performance parallel supercomputers to conventional workstation clusters.
NWChem can handle:
NWChem is actively developed by a consortium of developers and maintained by The Environmental Molecular Sciences Laboratory (EMSL) located at the Pacific Northwest National Laboratory (PNNL) in Washington State. Researchers interested in contributing to NWChem should review the Developers page. The code is distributed as open-source under the terms of the Educational Community License version 2.0 (ECL 2.0).
The NWChem development strategy is focused on providing new and essential scientific capabilities to its users in the areas of kinetics and dynamics of chemical transformations, chemistry at interfaces and in the condensed phase, and enabling innovative and integrated research at EMSL. At the same time continued development is needed to enable NWChem to effectively utilize architectures of tens of petaflops and beyond.
"},{"location":"index.html#latest-nwchem-release","title":"Latest NWChem release","text":"NWChem version 7.2.0 is the latest release available for download from the link https://github.com/nwchemgit/nwchem/releases.
"},{"location":"index.html#emsl-arrows","title":"EMSL Arrows","text":"Are you just learning how to use NWChem and would like to have an easy way to generate input decks, check your output decks against a large database of calculations, perform simple thermochemistry calculations, calculate the NMR and IR spectra of a modest size molecule, or just try out nwchem before installing it? EMSL Arrows scientific service can help. A web api to EMSL Arrows is now available for alpha testing.
for more information see EMSL Arrows - an easier way to use nwchem and EMSL Arrows
EMSL Arrows API
"},{"location":"index.html#nwchem-documentation","title":"NWChem Documentation","text":""},{"location":"index.html#nwchem-citation","title":"NWChem Citation","text":"Please cite the following reference when publishing results obtained with NWChem:
E. Apr\u00e0, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cau\u00ebt, Y. Chen, G. N. Chuev, C. J. Cramer, J. Daily, M. J. O. Deegan, T. H. Dunning Jr., M. Dupuis, K. G. Dyall, G. I. Fann, S. A. Fischer, A. Fonari, H. Fr\u00fcchtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann, A. W. G\u00f6tz, J. Hammond, V. Helms, E. D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B. G. Johnson, H. J\u00f3nsson, R. A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logsdail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin, T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J. Nichols, J. Nieplocha, A. Otero-de-la-Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M. Richard, P. Sadayappan, G. C. Schatz, W. A. Shelton, D. W. Silverstein, D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S. Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman, T. Van Voorhis, \u00c1. V\u00e1zquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis, D. Wang, J. H. Weare, M. J. Williamson, T. L. Windus, K. Woli\u0144ski, A. T. Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, and R. J. Harrison, \u201cNWChem: Past, present, and future\u201d, The Journal of Chemical Physics 152, 184102 (2020). DOI: 10.1063/5.0004997
"},{"location":"1D-RISM.html","title":"1-D RISM","text":""},{"location":"1D-RISM.html#overview","title":"Overview","text":"The 1D-RISM module in NWChem provides description of solvated systems following one-dimensional reference interaction site of model of Chandler and Anderson. Similar to ab-initio density-functional theory, 1D-RISM can be thought of as an approach where discrete particle representation of solvent degrees of freedom is replaced by average density field. Unlike traditional continuum solvation model, this density based representation is inherently inhomogenous and incorporates specific molecular features of the solvent. In the current implementation, 1D-RISM is not directly coupled to QM calculations but presumed to be used as a post processing step after QM calculations which provide ESP point charges for a given solute geometry.
Then parameters for 1D-RISM calculations are defined in the rism input block
rism\n\u00a0\u00a0solute\u00a0configuration\u00a0<filename>\n\u00a0\u00a0vdw\u00a0[rule\u00a0<arithmetic|geometric>\u00a0]\u00a0parameters\u00a0<filename>\n\u00a0\u00a0[temp\u00a0<float\u00a0default\u00a0298.15>]\n\u00a0\u00a0[closure\u00a0<hnc|kh>]\nend\n
At this point energy task is supported, which is invoked using standard directive
task\u00a0rism\u00a0energy\n
7\n\nO1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.092111\u00a0\u00a0\u00a0\u00a00.733461\u00a0\u00a0\u00a0\u00a01.237573\u00a0\u00a0-1.104415\u00a0O\nO2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.758765\u00a0\u00a0\u00a0-0.201687\u00a0\u00a0\u00a0\u00a00.473908\u00a0\u00a0-1.043019\u00a0O\nC1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.212954\u00a0\u00a0\u00a0\u00a01.568653\u00a0\u00a0\u00a0-0.833617\u00a0\u00a0-0.474263\u00a0C1\nC2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.174205\u00a0\u00a0\u00a0\u00a00.630432\u00a0\u00a0\u00a0\u00a00.357135\u00a0\u00a0\u00a01.276672\u00a0C2\nH1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.360636\u00a0\u00a0\u00a0\u00a01.160405\u00a0\u00a0\u00a0-1.668859\u00a0\u00a0\u00a00.102898\u00a0H\nH2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.242419\u00a0\u00a0\u00a0\u00a02.521128\u00a0\u00a0\u00a0-0.531952\u00a0\u00a0\u00a00.118979\u00a0H\nH3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.243967\u00a0\u00a0\u00a0\u00a01.772778\u00a0\u00a0\u00a0-1.139547\u00a0\u00a0\u00a00.123148\u00a0H\n
#Van\u00a0der\u00a0Waals\u00a0parameters\u00a0file\u00a0for\u00a0RISM\u00a0\n#\u00a0type\u00a0\u00a0\u00a0sigma(Angstrom)\u00a0epsilon\u00a0(kj/mol)\nC\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.3400E+01\u00a0\u00a00.3601E+00\nH\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.2600E+01\u00a0\u00a00.0628E-00\n
Upon completion of the run, the resulting radial distribution functions are saved into rdf_out.data file.
The computed chemical potentials in both HNC and gaussian approximations are written in the output file.
Here is the complete example input file for solvated calculation of acetic acid.
echo\nstart\u00a0rism\n\nmemory\u00a0global\u00a040\u00a0mb\u00a0stack\u00a023\u00a0mb\u00a0heap\u00a05\u00a0mb\n\nrism\n\u00a0\u00a0closure\u00a0kh\n\u00a0\u00a0temp\u00a0298\n\u00a0\u00a0vdw\u00a0rule\u00a0arithmetic\u00a0parameters\u00a0vdw.par\n\u00a0\u00a0solute\u00a0configuration\u00a0solute2.data\nend\n\ntask\u00a0energy\u00a0rism\n
solute2.data file
\u00a08\n\u00a0\n\u00a0O1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.15566663\u00a0\u00a0\u00a0\u00a0-0.86069508\u00a0\u00a0\u00a0\u00a0\u00a01.9256322\u00a0\u00a0\u00a0-0.7323104568123959\u00a0O1\n\u00a0O2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02.31302544\u00a0\u00a0\u00a0\u00a0-0.61550520\u00a0\u00a0\u00a0\u00a0\u00a01.32869265\u00a0\u00a0-0.7721248369124809\u00a0O2\n\u00a0C1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.69252260\u00a0\u00a0\u00a0\u00a0-1.26942616\u00a0\u00a0\u00a0\u00a0-0.34814880\u00a0\u00a0-0.4444201659837397\u00a0C1\n\u00a0C2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01.15967680\u00a0\u00a0\u00a0\u00a0-0.88531805\u00a0\u00a0\u00a0\u00a0\u00a01.02642840\u00a0\u00a0\u00a01.004561861052242\u00a0\u00a0C2\n\u00a0H1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.22862001\u00a0\u00a0\u00a0\u00a0-2.26160688\u00a0\u00a0\u00a0\u00a0-0.31011132\u00a0\u00a0\u00a00.1303963270585546\u00a0H\n\u00a0H2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.08170478\u00a0\u00a0\u00a0\u00a0-0.56654621\u00a0\u00a0\u00a0\u00a0-0.67834692\u00a0\u00a0\u00a00.1513209389506027\u00a0H\n\u00a0H3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01.53138139\u00a0\u00a0\u00a0\u00a0-1.28351200\u00a0\u00a0\u00a0\u00a0-1.04644134\u00a0\u00a0\u00a00.1454517042730594\u00a0H\n\u00a0H4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.48680931\u00a0\u00a0\u00a0\u00a0-0.66362820\u00a0\u00a0\u00a0\u00a0\u00a02.83551288\u00a0\u00a0\u00a00.5171246283741536\u00a0H4\n
vdw.par file
O1\u00a0\u00a03.0660\u00a0\u00a00.8809\nO2\u00a0\u00a02.9600\u00a0\u00a00.8792\nC1\u00a0\u00a03.4000\u00a0\u00a00.4580\nC2\u00a0\u00a03.4000\u00a0\u00a00.3601\nH\u00a0\u00a0\u00a02.1150\u00a0\u00a00.0657\nH4\u00a0\u00a00.8000\u00a0\u00a00.1926\n
"},{"location":"ARMCI.html","title":"Choosing the ARMCI Library","text":""},{"location":"ARMCI.html#overview","title":"Overview","text":"The Global Arrays parallel environment relies upon a one-sided communication runtime system. There are at least three options currently available:
By default, Global Arrays will choose ARMCI or ComEx, based upon the environment variables selected by the user (see GA documentation for details). When a native implementation is available and works reliably, this is the best option for the NWChem user. However, in cases where an native implementation of ARMCI is not available or is not reliable, the user should consider using one of the MPI-based implementations.
There are many different ways to use MPI as the communication runtime of Global Arrays:
ARMCI_NETWORK Result NotesMPI-PR
ARMCI with progress rank Recommended, except on Blue Gene/Q. MPI-PT
ARMCI with progress thread Appropriate for Blue Gene/Q. MPI-MT
ARMCI over multi-threaded MPI Do not use Open-MPI 1.x. MPI-TS
ARMCI over MPI without data server MPI-SPAWN
ARMCI using MPI dynamic processes Requires MPI_Comm_spawn support. ARMCI
Uses ARMCI-MPI See the ARMCI-MPI NWChem page for details. (please use mpi3rma branch) requires EXTERNAL_ARMCI_PATH
It is difficult to provide complete guidance to the user as to which option to choose. However, we observe the following:
ARMCI_NETWORK=MPI-PR
is stable and performs well on many platforms (including Cray XC platforms, e.g. NERSC Cori). This port will use one processes on each node for communication, therefore subtracting one process (again on each node) for NWChem. Therefore, when executing on a single node (i.e. the case of desktop execution) you would need to ask for n+1 processes; in other words, a serial execution would require the following mpirun invocation mpirun -np 2 ...
MPI-PR
is more reliable than OPENIB
or MPI-SPAWN
. ARMCI-MPI
with Casper and Intel MPI is also recommended. See this page for details. Contact Jeff Hammond for assistance.ARMCI-MPI
because MPI-3 is not fully supported. On all other platforms, the ARMCI-MPI
branch mpi3rma is recommended.ARMCI-MPI
is greatly enhanced by Casper. See this link for design details and this page for instructions on how to use it.When using ARMCI-MPI, please make sure to use the most recent version of MPI (MPICH 3.2+, Cray MPI 7.2+, MVAPICH2 2.0+, Intel MPI 5.1+, Open-MPI 2.0+). Older versions of MPI are known to have bugs in the MPI-3 RMA features that affect the correctness of NWChem.
"},{"location":"ARMCI.html#support","title":"Support","text":"Global Arrays, ARMCI and ComEx are developed and supported by PNNL. The user list for support is hpctools@googlegroups.com.
ARMCI-MPI is developed by Argonne and Intel. All ARMCI-MPI questions should be directed to armci-discuss@lists.mpich.org. ARMCI-MPI is not an Intel product.
"},{"location":"ARMCI.html#automated-installation-of-armci-mpi","title":"Automated installation of ARMCI-MPI","text":"If you wish to use ARMCI-MPI, a script is available to automatically install it:
cd\u00a0$NWCHEM_TOP/tools\u00a0&&\u00a0./install-armci-mpi\n
"},{"location":"Aba2.html","title":"Aba2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a041\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Aba2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Abm2.html","title":"Abm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a039\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Abm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y+1/2,+z\n-x,+y+1/2,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x,-y+1,+z+1/2\n-x,+y+1,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ama2.html","title":"Ama2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a040\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ama2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y,+z\n-x+1/2,+y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Amm2.html","title":"Amm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a038\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Amm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z\n-x,+y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Analysis.html","title":"Analysis","text":"The analysis module is used to analyze molecular trajectories generated by the NWChem molecular dynamics module, or partial charges generated by the NWChem electrostatic potential fit module. This module should not de run in parallel mode.
Directives for the analysis module are read from an input deck,
analysis\n ...\nend\n
The analysis is performed as post-analysis of trajectory files through using the task directive
task analysis\n
or
task analyze\n
"},{"location":"Analysis.html#system-specification","title":"System specification","text":"system <string systemid>_<string calcid>\n
where the strings systemid and calcid are user defined names for the chemical system and the type of calculation to ber performed, respectively. These names are used to derive the filenames used for the calculation. The topoly file used will be systemid.top, while all other files are named systemid_calcid.ext.
"},{"location":"Analysis.html#reference-coordinates","title":"Reference coordinates","text":"Most analyses require a set of reference coordinates. These coordinates are read from a NWChem restart file by the directive,
reference <string filename>\n
where filename is the name of an existing restart file. This input directive is required.
"},{"location":"Analysis.html#file-specification","title":"File specification","text":"The trajectory file(s) to be analyzed are specified with
file <string filename> [ <integer firstfile> <integer lastfile> ]\n
where filename is an existing trj trajectory file. If firstfile and lastfile are specified, the specified filename needs to have a ?
wildcard character that will be substituted by the 3-character integer number from firstfile to lastfile, and the analysis will be performed on the series of files. For example,
file tr_md?.trj 3 6\n
will instruct the analysis to be performed on files tr_md003.trj, tr_md004.trj, tr_md005.trj and tr_md006.trj.
From the specified files the subset of frames to be analyzed is specified by
frames [ <integer firstframe default 1> ] <integer lastframe> \\\n\n [ <integer frequency default 1> ]\n
For example, to analyze the first 100 frames from the specified trajectory files, use
frames 100\n
To analyze every 10-th frame between frames 200 and 400 recorded on the specified trajectory files, use
frames 200 400 10\n
A time offset can be specified with
time <real timoff>\n
Solute coordinates of the reference set and ech subsequent frame read from a trajectory file are translated to have the center of geometry of the specified solute molecule at the center of the simulation box. After this translation all molecules are folded back into the box according to the periodic boundary conditions. The directive for this operation is
center <integer imol> [ <integer jmol default imol> ]\n
Coordinates of each frame read from a trajectory file can be rotated using
rotate ( off | x | y | z ) <real angle units degrees>\n
If center was defined, rotation takes place after the system has been centered. The rotate directives only apply to frames read from the trajectory files, and not to the reference coordinates. Up to 100 rotate directives can be specified, which will be carried out in the order in which they appear in the input deck. rotate off cancels all previously defined rotate directives.
To perform a hydrogen bond analysis:
hbond [distance [[<real rhbmin default 0.0>] <real rhbmin>]] \\\n [angle [<real hbdmin> [ <real hbdmax default pi>]]] \\\n [solvent [<integer numwhb>]]\n
"},{"location":"Analysis.html#selection","title":"Selection","text":"Analyses can be applied to a selection of solute atoms and solvent molecules. The selection is determined by
select ( [ super ] [ { <string atomlist> } ] |\n solvent <real range> | save <string filename> | read <string filename> )\n
where {atomlist} is the set of atom names selected from the specified residues. By default all solute atoms are selected. When keyword super
is specified the selecion applies to the superimposition option.
The selected atoms are specified by the string atomlist which takes the form
[{isgm [ - jsgm ] [,]} [:] [{aname[,]}]\n
where isgm and jsgm are the first and last residue numbers, and aname is an atom name. In the atomname a question mark may be used as a wildcard character.
For example, all protein backbone atoms are selected by
select _N,_CA,_C\n
To select the backbone atoms in residues 20 to 80 and 90 to 100 only, use
select 20-80,90-100:_N,_CA,_C\n
This selection is reset to apply to all atoms after each file directive.
Solvent molecules within range nm from any selected solute atom are selected by
select solvent <real range>\n
After solvent selection, the solute atom selection is reset to being all selected.
The current selection can be saved to, or read from a file using the save and read keywords, respectively.
Some analysis are performed on groups of atoms. These groups of atoms are defined by
define <integer igroup> [<real rsel>] [solvent] { <string atomlist> }\n
The string atom in this definitions again takes the form
[{isgm [ - jsgm ] [,]} [:] [{aname[,]}]\n
where isgm and jsgm are the first and last residue numbers, and aname is an atom name. In the atomname a question mark may be used as a wildcard character.
Multiple define directive can be used to define a single set of atoms.
"},{"location":"Analysis.html#coordinate-analysis","title":"Coordinate analysis","text":"To analyze the root mean square deviation from the specified reference coordinates:
rmsd\n
To analyze protein \u03c6-\u03c8 and backbone hydrogen bonding:
ramachandran\n
To define a distance:
distance <integer ibond> <string atomi> <string atomj>\n
To define an angle:
angle <integer iangle> <string atomi> <string atomj> <string atomk>\n
To define a torsion:
torsion <integer itorsion> <string atomi> <string atomj> \\\n <string atomk> <string atoml>\n
To define a vector:
vector <integer ivector> <string atomi> <string atomj>\n
The atom string in these definitions takes the form
<integer segment>:<string atomname> | w<integer molecule>:<string atomname>\n
for solute and solvent atom specification, respectively.
To define charge distribution in z-direction:
charge_distribution <integer bins>\n
Analyses on atoms in a predefined group are specified by
group [<integer igroup> [periodic <integer ipbc>] \\\n ( local [<real rsel default 0.0>] [<real rval default rsel>]\n <string function> )\n
where igroup specifies the group of atoms defined with a define directive. Keyword periodic
can be used to specify the periodicity, ipbc=1 for periodicity in z, ipbc=2 for periodicity in x and y, and ipbc=3 for periodicity in x, y and z. Currently the only option is local which prints all selected solute atom with a distance between rsel and rval from the atoms defined in igroup. The actual analysis is done by the scan deirective. A formatted report is printed from group analyses using
report <string filename> local\n
Analyses on pairs of atoms in predefined groups are specified by
groups [<integer igroup> [<integer jgroup>]] [periodic [<integer ipbc default 3>]] \\ \n <string function> [<real value1> [<real value2>]] [<string filename>]\n
where igroup and jgroup are groups of atoms defined with a define directive. Keyword periodic
specifies that periodic boundary conditions need to be applied in ipbc dimensions. The type of analysis is define by function, value1 and value2. If filename is specified, the analysis is applied to the reference coordinates and written to the specified file. If no filename is given, the analysis is applied to the specified trajectory and performed as part of the scan directive. Implemented analyses defined by <string function> [<real value1> [<real value2>]]
include
Coordinate histograms are specified by
histogram <integer idef> [<integer length>] zcoordinate <string filename>\n
where idef is the atom group definition number, length is the size of the histogram, zcoordinate is the currently only histogram option, and filename is the filname to which the histogram is written.
Order parameters are evalated using
order <integer isel> <integer jsel> <string atomi> <string atomj>\n
This is an experimental feature.
To write the average coordinates of a trajectory
average [super] <string filename>\n
To perform the coordinate analysis:
scan [ super ] <string filename>\n
which will create, depending on the specified analysis options files filename.rms and filename.ana. After the scan directive previously defined coordinate analysis options are all reset. Optional keyword super
specifies that frames read from the trajectory file(s) are superimposed to the reference structure before the analysis is performed.
Essential dynamics analysis is performed by
essential\n
This can be followed by one or more
project <integer vector> <string filename>\n
to project the trajectory onto the specified vector. This will create files filename with extensions frm or trj, val, vec, _min.pdb and _max.pdb, with the projected trajectory, the projection value, the eigenvector, and the minimum and maximum projection structure.
For example, an essential dynamics analysis with projection onto the first vector generating files firstvec.{trj, val, vec, _min.pdb, _max.pdb} is generated by
essential\nproject 1 firstvec\n
"},{"location":"Analysis.html#trajectory-format-conversion","title":"Trajectory format conversion","text":"To write a single frame in PDB or XYZ format, use
write [<integer number default 1>] [super] [solute] <string filename>\n
To copy the selected frames from the specified trejctory file(s), onto a new file, use
copy [solute] [rotate <real tangle>] <string filename>\n
To superimpose the selected atoms for each specified frame to the reference coordinates before copying onto a new file, use
super [solute] [rotate <real tangle>] <string filename>\n
The rotate directive specifies that the structure will make a full ratation every tangle ps. This directive only has effect when writing povray files.
The format of the new file is determined from the extension, which can be one of
amb
AMBER formatted trajectory file (obsolete)arc
DISCOVER archive filebam
AMBER unformatted trajectory filecrd
AMBER formatted trajectory filedcd
CHARMM formatted trajectory fileesp
gOpenMol formatted electrostatic potential filesfrm
ecce frames file (obsolete)pov
povray input filestrj
NWChem trajectory filexyz
NWChem trajectory in xyz formatIf no extension is specified, a trj formatted file will be written.
A special tag can be added to frm and pov formatted files using
label <integer itag> <string tag> [ <real rval default 1.0> ] \\\\\n [ <integer iatag> [ <integer jatag default iatag> ] [ <real rtag default 0.0> ] ]\n [ <string anam> ]\n
where tag number itag is set to the string tag for all atoms anam within a distance rtag from segments iatag through jatag. A question mark can be used in anam as a wild card character.
Atom rendering is specified using
render ( cpk | stick ) [ <real rval default 1.0> ] \\\\\n [ <integer iatag> [ <integer jatag default iatag> ] [ <real rtag default 0.0> ] ]\n [ <string anam> ]\n
for all atoms anam within a distance rtag from segments iatag through jatag, and a scaling factor of rval. A question mark can be used in anam as a wild card character.
Atom color is specified using
color ( <string color> | atom ) \\\\\n\n [ <integer iatag> [ <integer jatag default iatag> ] [ <real rtag default 0.0> ] ]\n\n [ <string anam> ]\n
for all atoms anam within a distance rtag from segments iatag through jatag. A question mark can be used in anam as a wildcard character.
For example, to display all carbon atoms in segments 34 through 45 in green and rendered cpk in povray files can be specified with
render cpk 34 45 _C??\ncolor green 34 45 _C??\n
Coordinates written to a pov file can be scaled using
scale <real factor>\n
A zero or negative scaling factor will scale the coordinates to lie within [-1,1] in all dimensions.
The cpk rendering in povray files can be scaled by
cpk <real factor default 1.0>\n
The stick rendering in povray files can be scaled by
stick <real factor default 1.0>\n
The initial sequence number of esp related files is defined by
index <integer index default 1>\n
A sequence of trajectory files with unequal lengths can be converted to files with all nclean frames using
clean <integer nclean>\n
"},{"location":"Analysis.html#electrostatic-potentials","title":"Electrostatic potentials","text":"A file in plt format of the electrostatic potential resulting from partial charges generated by the ESP module is generated by the command
esp [ <integer spacing default 10> ] \\\n [ <real rcut default 1.0> ] [periodic [<integer iper default 3>]] \\\n [ <string xfile> [ <string pltfile> ] ]\n
The input coordinates are taken from the xyzq file that can be generated from a rst by the prepare module. Parameter spacing specifies the number of gridpoints per nm, rcut specifies extent of the charge grid beyond the molecule. Periodic boundaries will be used if periodic is specified. If iper is set to 2, periodic boundary conditions are applied in x and y dimensions only. If periodic is specified, a negative value of rcut will extend the grid in the periodic dimensions by abs(rcut), otherwise this value will be ignored in the periodic dimensions. The resulting plt formatted file pltfile can be viewed with the gOpenMol program. The resulting electrostatic potential grid is in units of . If no files are specified, only the parameters are set. This analysis applies to solute(s) only.
The electrostatic potential at specific point are evaluated using
esp_points [<string filpin> [<string filhol> [<string filpou> [<string filavg>]]]]\n
"},{"location":"Archived-Forum.html","title":"Archived Forum","text":"Clicking the link below will bring you to the archived forum entries from the old NWChem website
NWChem\u2019s Corner
You can use the form below to search the entries of the archived forum
"},{"location":"AvailableBasisSets.html","title":"Gaussian basis sets","text":"NWChem currently supports basis sets consisting of generally contracted Cartesian Gaussian functions up to a maximum angular momentum of six (h functions), and also sp (or L) functions. The BASIS directive is used to define these, and also to specify use of an Effective Core Potential that is associated with a basis set.
The basis functions to be used for a given calculation can be drawn from a standard set in the Basis set library that is included in the release of NWChem. Alternatively, the user can specify particular functions explicitly in the input, to define a particular basis set.
"},{"location":"Basis.html#basis-directive","title":"BASIS directive","text":"The general form of the BASIS directive is as follows:
BASIS [<string name default \"ao basis\">] \\ \n [(spherical || cartesian) default cartesian] \\ \n [(print || noprint) default print] \\\n [rel] [bse] \n <string tag> library [<string tag_in_lib>] \\ \n <string standard_set> [file <filename>] \\ \n [except <string tag list>] [rel] \n ... \n <string tag> <string shell_type> [rel] \n <real exponent> <real list_of_coefficients> \n ... \n END\n
The following sections examine the keywords on the first line of the BASIS
directive:
NAME
: By default, the basis set is stored in the database with the name \u201cao basis\u201d. Another name may be specified in the BASIS directive, thus, multiple basis sets may be stored simultaneously in the database. Also, the DFT and RI-MP2 modules and the Dyall-modified-Dirac relativistic method require multiple basis sets with specific names. The user can associate the \u201cao basis\u201d with another named basis using the SET directive (see SET).
SPHERICAL
|| CARTESIAN
: The keywords spherical
and cartesian
offer the option of using either spherical-harmonic (5 d, 7 f, 9 g, \u2026) or Cartesian (6 d, 10 f, 15 g, \u2026) angular functions. The default is Cartesian. Note that the correlation-consistent basis sets were designed using spherical harmonics and to use these, the spherical
keyword should be present in the BASIS
directive. The use of spherical functions also helps eliminate problems with linear dependence.
Order of functions.
"},{"location":"Basis.html#print-keyword","title":"PRINT keyword","text":"PRINT
or NOPRINT
: The default is for the input module to print all basis sets encountered. Specifying the keyword noprint allows the user to suppress this output.
REL
: This keyword marks the entire basis as a relativistic basis for the purposes of the Dyall-modified-Dirac relativistic integral code. The marking of the basis set is necessary for the code to make the proper association between the relativistic shells in the ao basis and the shells in the large and/or small component basis. This is only necessary for basis sets which are to be used as the ao basis. The user is referred to the section on Dyall\u2019s modified Dirac-Hamiltonian approximation for more details.
BSE
New in NWChem 7.2.0: This keyword loads the basis set library using data in $NWCHEM_TOP/src/basis/libraries.bse
from basisetexchanger.org. CAVEAT: use of this keyword will also use the spherical/cartesian keywords from the basis library files.
Basis sets are associated with centers by using the tag of a center in a geometry that has either been input by the user or is available elsewhere. Each atom or center with the same tag will have the same basis set. All atoms must have basis functions assigned to them \u2013 only dummy centers (X
or Bq
) may have no basis functions. To facilitate the specification of the geometry and the basis set for any chemical system, the matching process of a basis set tag to a geometry tag first looks for an exact match. If no match is found, NWChem will attempt to match, ignoring case, the name or symbol of the element. E.g., all hydrogen atoms in a system could be labeled \u201cH1
\u201d, \u201cH2
\u201d, \u2026, in the geometry but only one basis set specification for \u201cH
\u201d or \u201chydrogen
\u201d is necessary. If desired, a special basis may be added to one or more centers (e.g., \u201cH1
\u201d) by providing a basis for that tag. If the matching mechanism fails then NWChem stops with an appropriate error message.
A special set of tags, \u201c*
\u201d and tags ending with a \u201c*
\u201d (E.g. \u201cH*
\u201d) can be used in combination with the keyword library. These tags facilitate the definition of a certain type of basis set of all atoms, or a group of atoms, in a geometry using only a single or very few basis set entries. The \u201c*
\u201d tag will not place basis sets on dummy atoms, Bq*
can be used for that if necessary.
Examined next is how to reference standard basis sets in the basis set library, and finally, how to define a basis set using exponents and coefficients.
"},{"location":"Basis.html#basis-set-library","title":"Basis set library","text":"The keyword library
associated with each specific tag entry specifies that the calculation will use the standard basis set in NWChem for that center. The string <standard_set>
is the name that identifies the functions in the library. The names of standard basis sets are not case sensitive. For a complete list of basis sets and associated ECPs in the NWChem library see the available basis sets or the Basis Set Exchange for naming conventions and their specifications.
The general form of the input line requesting basis sets from the NWChem basis set library is:
<string tag> library [<string tag_in_lib>] \\ \n <string standard set> [file < filename> \\ \n [except <string tag list>] [rel] \n ...\n
For example, the NWChem basis set library contains the Dunning cc-pvdz basis set. These may be used as follows
basis \n oxygen library cc-pvdz \n hydrogen library cc-pvdz \n end\n
A default path of the NWChem basis set libraries is provided on installation of the code, but a different path can be defined by specifying the keyword file, and one can explicitly name the file to be accessed for the basis functions. For example,
basis \n o library 3-21g file /usr/d3g681/nwchem/library \n si library 6-31g file /usr/d3g681/nwchem/libraries/ \n end\n
This directive tells the code to use the basis set 3-21g in the file /usr/d3g681/nwchem/library for atom o and to use the basis set 6-31g in the directory /usr/d3g681/nwchem/libraries/ for atom si, rather than look for them in the default libraries. When a directory is defined the code will search for the basis set in a file with the name 6-31g.
The \u201c*
\u201d tag can be used to efficiently define basis set input directives for large numbers of atoms. An example is:
basis \n * library 3-21g \n end\n
This directive tells the code to assign the basis sets 3-21g to all the atom tags defined in the geometry. If one wants to place a different basis set on one of the atoms defined in the geometry, the following directive can be used:
basis \n * library 3-21g except H \n end\n
This directive tells the code to assign the basis sets 3-21g to all the atoms in the geometry, except the hydrogen atoms. Remember that the user will have to explicitly define the hydrogen basis set in this directive! One may also define tags that end with a \u201c*
\u201d:
basis \n oxy* library 3-21g \n end\n
This directive tells the code to assign the basis sets 3-21g to all atom tags in the geometry that start with \u201coxy
\u201d.
If standard basis sets are to be placed upon a dummy center, the variable <tag_in_lib>
must also be entered on this line, to identify the correct atom type to use from the basis function library (see the ghost atom example in SET and below). For example: To specify the cc-pvdz basis for a calculation on the water monomer in the dimer basis, where the dummy oxygen and dummy hydrogen centers have been identified as bqo
and bqh
respectively, the BASIS
directive is as follows:
basis \n o library cc-pvdz \n h library cc-pvdz \n bqo library o cc-pvdz \n bqh library h cc-pvdz \n end\n
A special dummy center tag is bq*
, which will assign the same basis set to all bq centers in the geometry. Just as with the *
tag, the except list can be used to assign basis sets to unique dummy centers.
The library basis sets can also be marked as relativistic by adding the rel
keyword to the tag line. See the section on relativistic all-electron approximations for more details. The correlation consistent basis sets have been contracted for relativistic effects and are included in the standard library.
There are also contractions in the standard library for both a point nucleus and a finite nucleus of Gaussian shape. These are usually distinguished by the suffix _pt
and _fi
. It is the user\u2019s responsibility to ensure that the contraction matches the nuclear type specified in the geometry object. The specification of a finite nucleus basis set does NOT automatically set the nuclear type for that atom to be finite. See Geometries for information.
In order to ensure compatibility with the existing basis libraries available in NWChem, we suggest the user to select the \u201cAdvanced Options\u201d menu and tick the boxes \u201cOptimize General Contractions\u201d and \u201cUncontract General\u201d, as in the image below, when downloading basis files from www.basissetexchange.org
As an alternative, basis set files downloaded from the basissetexchange.org website are available in the NWChem source code (after release 7.0.0). In order to switch from the default basis libraries to the library formed by files downloaded from www.basissetexchange.org, the following environment variable setting is required
NWCHEM_BASIS_LIBRARY=$NWCHEM_TOP/src/basis/libraries.bse/\n
"},{"location":"Basis.html#explicit-basis-set-definition","title":"Explicit basis set definition","text":"If the basis sets in the library or available in other external files are not suitable for a given calculation, the basis set may be explicitly defined. A generally contracted Gaussian basis function is associated with a center using an input line of the following form:
<string tag> <string shell_type> [rel] \n <real exponent> <real list_of_coefficients> \n ...\n
The variable identifies the angular momentum of the shell, s, p, d, .... NWChem is configured to handle up to h shells. The keyword rel
marks the shell as relativistic \u2013 see the Section on relativistic all-electron approximations for more details. Subsequent lines define the primitive function exponents and contraction coefficients. General contractions are specified by including multiple columns of coefficients.
The following example defines basis sets for the water molecule:
basis spherical \n oxygen s \n 11720.0000 0.000710 -0.000160 \n 1759.0000 0.005470 -0.001263 \n 400.8000 0.027837 -0.006267 \n 113.7000 0.104800 -0.025716 \n 37.0300 0.283062 -0.070924 \n 13.2700 0.448719 -0.165411 \n 5.0250 0.270952 -0.116955 \n 1.0130 0.015458 0.557368 \n 0.3023 -0.002585 0.572759 \n oxygen s \n 0.3023 1.000000 \n oxygen p \n 17.7000 0.043018 \n 3.8540 0.228913 \n 1.0460 0.508728 \n 0.2753 0.460531 \n oxygen p \n 0.2753 1.000000 \n oxygen d \n 1.1850 1.000000 \n hydrogen s \n 13.0100 0.019685 \n 1.9620 0.137977 \n 0.4446 0.478148 \n 0.1220 0.501240 \n hydrogen s \n 0.1220 1.000000 \n hydrogen p \n 0.7270 1.000000 \n oxygen s \n 0.01 1.0 \n hydrogen s \n 0.02974 1.0 \n hydrogen p \n 0.141 1.0 \n end\n
Explicit basis set specifications are available from the basis set exchange.
"},{"location":"Basis.html#combinations-of-library-and-explicit-basis-set-input","title":"Combinations of library and explicit basis set input","text":"The user can use a mixture of library basis and explicit basis set input to define the basis sets used on the various atoms.
For example, the following BASIS
directive augments the Dunning cc-pvdz basis set for the water molecule with a diffuse s-shell on oxygen and adds the aug-cc-pVDZ diffuse functions onto the hydrogen.
basis spherical \n oxygen library cc-pvdz \n hydrogen library cc-pvdz \n oxygen s \n 0.01 1.0 \n hydrogen library \"aug-cc-pVDZ Diffuse\" \n end\n
The resulting basis set defined is identical to the one defined above in the explicit basis set input.
"},{"location":"Benchmarks.html","title":"Benchmarks performed with NWChem","text":"This page contains a suite of benchmarks performed with NWChem. The benchmarks include a variety of computational chemistry methods on a variety of high performance computing platforms. The list of benchmarks available will evolve continuously as new data becomes available. If you have benchmark information you would like to add for your computing system, please contact one of the developers.
"},{"location":"Benchmarks.html#hybrid-density-functional-calculation-on-the-c240-buckyball","title":"Hybrid density functional calculation on the C240 Buckyball","text":"Performance of the Gaussian basis set DFT module in NWChem. This calculation involved performing a PBE0 calculation (in direct mode) on the on C240 system with the 6-31G* basis set (3600 basis functions) without symmetry. These calculations were performed on the Cascade supercomputer located at PNNL. Input and output files are available.
"},{"location":"Benchmarks.html#parallel-performance-of-ab-initio-molecular-dynamics-using-plane-waves","title":"Parallel performance of Ab initio Molecular Dynamics using plane waves","text":"AIMD Parallel timings for +122O. These calculations were performed on the Franklin Cray-XT4 computer system at NERSC.
AIMD and AIMD/MM Parallel Timings for +64O (unit cell parameters SC=12.4 Angs. and cutoff energy =100Ry). These calculations were performed on the Chinook HP computer system at MSCF EMSL, PNNL. Exact exchange timings \u2013 80 atom cell of hematite (cutoff energy=100Ry). These calculations were performed on the Franklin Cray-XT4 computer system at NERSC. Exact exchange timings \u2013 576 atom cell of water (cutoff energy=100Ry). These calculations were performed on the Hopper Cray-XE6 computer system at NERSC.
"},{"location":"Benchmarks.html#parallel-performance-of-the-cr-eomccsdt-method-triples-part","title":"Parallel performance of the CR-EOMCCSD(T) method (triples part)","text":"An example of the scalability of the triples part of the CR-EOMCCSD(T) approach for Green Fluorescent Protein Chromophore (GFPC) described by cc-pVTZ basis set (648 basis functions) as obtained from NWChem. Timings were determined from calculations on the Franklin Cray-XT4 computer system at NERSC. See the input file for details.
And more recent scalability test of the CR-EOMCCSD(T) formalism (Jaguar Cray XT5 at ORNL, see K. Kowalski, S. Krishnamoorthy, R.M. Olson, V. Tipparaju, E. Apr\u00e0 , SC2011, for details).
"},{"location":"Benchmarks.html#parallel-performance-of-the-multireference-coupled-cluster-mrcc-methods","title":"Parallel performance of the multireference coupled cluster (MRCC) methods","text":"In collaboration with Dr. Jiri Pittner\u2019s group from Heyrovsky Institute of Physical Chemistry implementations of two variants of state-specific MRCC approaches have been developed. During his internship at PNNL Jirka Brabec, using novel processor-group-based algorithms, implemented Brillouin-Wigner and Mukherjee MRCC models with singles and doubles. The scalabililty tests for the Brillouin-Wigner MRCCSD approach have been performed on Jaguar XT5 system at ORNL for -carotene in 6-31 basis set (472 orbitals, 216 correlated electrons, 20 reference functions; see J.Brabec, J. Pittner, H.J.J. van Dam, E. Apr\u00e0, K. Kowalski, JCTC 2012, 8(2), pp 487\u2013497). The input file and output files for runs at 6000 cores, at 12000 cores and at 24000 cores are available.
Former PNNL postdoctoral fellow Dr. Kiran Bhaskaran Nair developed perturbative MRCCSD(T) approaches, which accounts for the effect of triple excitations. Scaling of the triples part of the BW-MRCCSD(T) method for \u201d -carotene in 6-31 basis set (JCP 137, 094112 (2012)). The scalability tests of the BW-MRCCSD(T) implementation of NWChem have been performed on the Jaguar Cray-XK6 computer system of the National Center for Computational Sciences at Oak Ridge National Laboratory.
"},{"location":"Benchmarks.html#timings-of-ccsdeomccsd-for-the-oligoporphyrin-dimer","title":"Timings of CCSD/EOMCCSD for the oligoporphyrin dimer","text":"CCSD/EOMCCSD timings for oligoporphyrin dimer (942 basis functions, 270 correlated electrons, D2h symmetry, excited-state calculations were performed for state of b1g symmetry, in all test calculation convergence threshold was relaxed, 1024 cores were used). See the input file for details.
--------------------------------------------------------\n\u00a0Iter Residuum Correlation Cpu Wall\n --------------------------------------------------------\n 1 0.7187071521175 -7.9406033677717 640.9 807.7\n ......\n MICROCYCLE DIIS UPDATE: 10 5\n 11 0.0009737920958 -7.9953441809574 691.1 822.2\n --------------------------------------------------------\n Iterations converged\n CCSD correlation energy / hartree = -7.995344180957357\n CCSD total energy / hartree = -2418.570838364838890\n\n EOM-CCSD right-hand side iterations\n --------------------------------------------------------------\n Residuum Omega / hartree Omega / eV Cpu Wall\n --------------------------------------------------------------\n......\nIteration 2 using 6 trial vectors\n 0.1584284659595 0.0882389635508 2.40111 865.3 1041.2\nIteration 3 using 7 trial vectors\n 0.0575982107592 0.0810948687618 2.20670 918.0 1042.2\n
"},{"location":"Benchmarks.html#performance-tests-of-the-gpu-implementation-of-non-iterative-part-of-the-ccsdt-approach","title":"Performance tests of the GPU implementation of non-iterative part of the CCSD(T) approach","text":"Recent tests of the GPU CCSD(T) implementation performed on Titan Cray XK7 1 system at ORNL (C22H14, 378 basis set functions, C1 symmetry; 98 nodes: 8 cores per node + 1GPU)
Using 8 CPU cores
Using CUDA CCSD(T) code \nUsing 0 device(s) per node \nCCSD[T] correction energy / hartree = -0.150973754992986 \nCCSD[T] correlation energy / hartree = -3.067917061062492 \nCCSD[T] total energy / hartree = -844.403376796441080 \nCCSD(T) correction energy / hartree = -0.147996460406684 \nCCSD(T) correlation energy / hartree = -3.064939766476190 \nCCSD(T) total energy / hartree = -844.400399501854849 \nCpu & wall time / sec 9229.9 9240.3 \n
Using 7 CPU cores and one GPU
Using CUDA CCSD(T) code \nUsing 1 device(s) per node \nCCSD[T] correction energy / hartree = -0.150973754993019 \nCCSD[T] correlation energy / hartree = -3.067917061062597 \nCCSD[T] total energy / hartree = -844.403376796441307 \nCCSD(T) correction energy / hartree = -0.147996460406693 \nCCSD(T) correlation energy / hartree = -3.064939766476270 \nCCSD(T) total energy / hartree = -844.400399501854963 \nCpu & wall time / sec 1468.0 1630.7 \n
Using 1 CPU core and one GPU
Using CUDA CCSD(T) code\nUsing 1 device(s) per node\nCCSD[T] correction energy / hartree = -0.150973754993069\nCCSD[T] correlation energy / hartree = -3.067917061063028\nCCSD[T] total energy / hartree = -844.***************\nCCSD(T) correction energy / hartree = -0.147996460406749\nCCSD(T) correlation energy / hartree = -3.064939766476708\nCCSD(T) total energy / hartree = -844.400399501861216\nCpu & wall time / sec 1410.9 1756.5\n
Without GPU 9240.3 sec. With GPU 1630.7 sec.
Next release: GPU implementation of non-iterative part of the MRCCSD(T) approach (K. Bhaskarsan-Nair, W. Ma, S. Krishnamoorthy, O. Villa, H. van Dam, E. Apr\u00e0, K. Kowalski, J. Chem. Theory Comput. 9, 1949 (2013))
"},{"location":"Benchmarks.html#performance-tests-of-the-xeon-phi-implementation-of-non-iterative-part-of-the-ccsdt-approach","title":"Performance tests of the Xeon Phi implementation of non-iterative part of the CCSD(T) approach","text":"Tests of the Xeon Phi CCSD(T) implementation performed on the EMSL cascade system at PNNL
Apr\u00e0, E.; Klemm, M.; Kowalski, K., \u201cEfficient Implementation of Many-Body Quantum Chemical Methods on the Intel\u00ae Xeon Phi Coprocessor,\u201d High Performance Computing, Networking, Storage and Analysis, SC14: International Conference for , vol., no., pp.674-684, 16-21 Nov. 2014 http://dx.doi.org/10.1109/SC.2014.60
(Triplet state of Si4C3N2H12, 706 basis set functions, C1 symmetry)
"},{"location":"Benchmarks.html#non-iterative-part-of-the-ccsdt-approach-comparing-xeon-phi-and-nvidia-k20x-performance","title":"Non-iterative part of the CCSD(T) approach: Comparing Xeon Phi and NVidia K20X performance","text":"Wall time to solution (in seconds) of non-iterative triples part of the single-reference CCSD(T) approach for the pentacene molecule using Intel MIC and Nvidia GPU implementations. Tests were performed using 96 compute nodes on the Cascade system at EMSL (Intel\u00ae Xeon\u2122 Phi 5110P) and Titan system at ORNL (NVIDIA Tesla\u00ae K20X).
( input file)
Tilesize Intel Xeon Phi 5110P Nvidia K20X 18 1806.4 1824.9 21 1652.2 1699.3 24 1453.3 1554.4"},{"location":"Benchmarks.html#current-developments-for-high-accuracy-alternative-task-schedulers-ats","title":"Current developments for high accuracy: alternative task schedulers (ATS)","text":"Currently various development efforts are underway for high accuracy methods that will be available in future releases of NWChem. The examples below shows the first results of the performance of the triples part of Reg-CCSD(T) on GPGPUs (left two examples) and of using alternative task schedules for the iterative CCSD and EOMCCSD.
Scalability of the triples part of the Reg-CCSD(T) approach for Spiro cation described by the Sadlej\u2019s TZ basis set (POL1). The calculations were performed using Barracuda cluster at EMSL. Speedup of GPU over CPU of the (T) part of the (T) part of the Reg-CCSD(T) approach as a function of the tile size for the uracil molecule. The calculations were performed using Barracuda cluster at EMSL. *Comparison of the CCSD/EOMCCSD iteration times for BacterioChlorophyll (BChl, Mg O6 N4 C 36 H38) for various tile sizes. Calculations were performed for 3-21G basis set (503 basis functions, C1 symmetry, 240 correlated electrons, 1020 cores).
*Time per CCSD iteration for BChl in 6-311G basis set (733 basis functions, C1 symmetry, 240 correlated electrons, 1020 cores) as a function of tile size. Scalability of the CCSD/EOMCCSD codes for BChl in 6-311G basis set (733 basis functions; tilesize=40, C1 symmetry, 240 correlated electrons).
Other tests:
The impact of the tilesize on the CCSD(ATS) timings: All tests have been performed for uracil trimer (6-31G* basis set; all core electrons frozen) on Hopper using 25 nodes (600 cores). One can observe almost 10-fold speedup of the CCSD(ATS) code for tilesize=40 compared to standard TCE CCSD implementation using tilesize=12.
Performance tests for water clusters
Luciferin (aug-cc-pVDZ basis set; RHF reference; frozen core) - time per CCSD iteration ( input file)
tilesize = 30 \n 256 cores 644 sec.\n 512 378 sec.\n 664 314 sec.\n 1020 278 sec.\n 1300 237 sec.\n
tilesize = 40\n 128 998 sec.\n 256 575 sec.\n
Sucrose (6-311G** basis set; RHF reference; frozen core) - time per CCSD iteration ( input file)
tilesize = 40\n 256 cores 1486 sec. \n 512 910 sec.\n 1024 608 sec.\n
Cytosine-OH (POL1; UHF reference; frozen core) - time per EOMCCSD iteration ( input file)
tilesize = 30\n 256 cores 44.5 sec.\n
tilesize = 40\n 128 cores 55.6 sec.\n
"},{"location":"Benchmarks.html#density-functional-calculation-of-a-zeolite-fragment","title":"Density functional calculation of a zeolite fragment","text":"Benchmark results with NWChem 7.0.0 for LDA calculations (energy plus gradient) on a 533 atoms siosi8 zeolite fragment. The input uses an atomic orbital basis set with 7108 functions and a charge density fitting basis with 16501 functions. The input file is available at this link.
computer # nodes cores/node total # cores Wall time (seconds) cascade 9 16 144 1247 cascade 20 16 320 703 tahoma 4 36 144 927 tahoma 9 36 324 524Hardware used:
The Bq module provides a way to perform QM calculations in the presence of point charges or Bq\u2019s, (as typically referred to in quantum chemistry community). Using Bq module versus geometry block is a recommended way to include point charges in your calculations, in particular if number of charges are big.
The format for including external point charges using the Bq module is shown below, supporting both explicit charge definition in the body of the block and/or loading from external files.
bq [units au|nm|pm|ang...] [namespace] \n [clear] \n [force|noforce] \n [load <file> [charges <chargefile>] [format ix iy iz iq] [units au|nm|pm|ang|...] [ scale <factor> ]] \n x y z q\n ... \nend \n
set bq <namespace>\n
Here is an example that illustrates this
... \n #store point charge in namespace \"foo\" \n bq \"foo\"\n ... \n end \n\n #perform calculation without actually loading charges in foo \n task dft energy \n\n #activate charges in foo \n set bq foo \n # now DFT calculation will performed in the presence of charges in foo \n task dft energy\n
#comment line\n fx fy fz\n ...\n
** format ix iy iz iq - this optional keyword allows to set the fields (separated by blanks) where x,y,z coordinates and respective charge values are to be found. If a specified field doe nor exist or contains no numerical value, the processing will skip to the next line. The default value for format is \u2018\u2019\u20182 3 4 5\u2019\u2018\u2019, which will work for the following example (note that the second line will not be processed here)
#this is a comment\n coordinates are in fields 2,3,4 and charge is field 5\n O 2.384 1.738 1.380 -0.9\n H 2.448 1.608 0.416 0.45\n H 1.560 1.268 1.608 0.45\n
** units au|nm|pm|ang|\u2026 - this optional keyword sets the local coordinate units valid only for this particular load directive. Otherwise global unit definition will apply (see above)
** scale - this optional keyword allows to scale loaded charge values by some factor
start w1 \n\n BASIS \"ao basis\" PRINT \n * library \"3-21G\" \n END \n\n dft \n mult 1 \n XC b3lyp \n iterations 5000 \n end \n\n geometry nocenter noautosym units angstrom noautoz print \n O 2.045 1.011 -1.505 \n H1 1.912 0.062 -1.314 \n H2 1.119 1.318 -1.544 \n end \n\n #example of explicit Bq input\n bq \n 2.384 1.738 1.380 -0.9 \n 2.448 1.608 0.416 0.45 \n 1.560 1.268 1.608 0.45 \n end \n\n task dft energy \n\n #example of implicit Bq input using load directive \n bq \n load bq.xyz format 1 2 3 4 \n end \n task dft energy \n\n #example of loading coordinates and charges separately \n bq \n load bq.xyz charges bq.xyz format 1 2 3 4 \n end \n task dft energy \n\n #example of loading Bq's with default format (1 2 3 4) and scaling charges (to zero) \n bq \n load bq.xyz scale 0.0 \n end \n task dft energy \n\n #example of mixed Bq input \n bq \n load bqO.xyz format 2 3 4 6 \n 2.448 1.608 0.416 0.45 \n 1.560 1.268 1.608 0.45 \n end \n task dft energy \n\n #example of erasing Bq's \n bq \n clear \n end \n task dft energy \n\n #example of storing Bq's in custom namespace (not activated) \n bq marat \n load bq.xyz format 1 2 3 4 \n end \n task dft energy \n\n #example of activating Bq's stored in custom namespace \n set bq marat \n\n task dft energy \n
group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a05\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,+y,-z\n+x+1/2,+y+1/2,+z\n-x+1/2,+y+1/2,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a05\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"C222.html","title":"C222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a021\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"C222_1.html","title":"C222 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a020\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0C222_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"C2Sc.html","title":"C2Sc","text":" group number = 15\n group name = C2/c\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,+y,-z+1/2\n -x,-y,-z\n +x,-y,+z+1/2\n +x+1/2,+y+1/2,+z\n -x+1/2,+y+1/2,-z+1/2\n -x+1/2,-y+1/2,-z\n +x+1/2,-y+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 15\n group name = C2/c\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 8\n\n +x,+y,+z\n -x+1/2,-y,+z\n -x,-y,-z\n +x+1/2,+y,-z\n +x,+y+1/2,+z+1/2\n -x+1/2,-y+1/2,+z+1/2\n -x,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 5 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n
"},{"location":"C2Sm.html","title":"C2Sm","text":" group number = 12\n group name = C2/m\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,+y,-z\n -x,-y,-z\n +x,-y,+z\n +x+1/2,+y+1/2,+z\n -x+1/2,+y+1/2,-z\n -x+1/2,-y+1/2,-z\n +x+1/2,-y+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 12\n group name = C2/m\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -x,-y,-z\n +x,+y,-z\n +x,+y+1/2,+z+1/2\n -x,-y+1/2,+z+1/2\n -x,-y+1/2,-z+1/2\n +x,+y+1/2,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 5 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n
"},{"location":"CCCA_method.html","title":"Correlation consistent Composite Approach (ccCA)","text":"The CCCA module calculates the total energy using the correlation consistent Composite Approach (ccCA). At present the ccCA module is designed for the study of main group species only.
where EMP2/CBS is the complete basis set extrapolation of MP2 energies with the aug-cc-pVnZ (n=T,D,Q) series of basis sets, is the correlation correction,
is the core-valence correction,
where symbolizes that all electrons of first-row atoms are correlated, all electrons of second-row atoms are correlated except the 1s MOs, and all electrons of atoms K\u2013Kr are correlated except the 1s2s2p MOs. is the scalar-relativistic correction,
and is the zero-point energy correction or thermal correction. Geometry optimization and subsequent frequency analysis are performed with B3LYP/cc-pVTZ.
Suggested reference: N.J. DeYonker, B. R. Wilson, A.W. Pierpont, T.R. Cundari, A.K. Wilson, Mol. Phys. 107, 1107 (2009). Earlier variants for ccCA algorithms can also be found in: N. J. DeYonker, T. R. Cundari, A. K. Wilson, J. Chem. Phys. 124, 114104 (2006).
The ccCA module can be used to calculate the total single point energy for a fixed geometry and the zero-point energy correction is not available in this calculation. Alternatively the geometry optimization by B3LYP/cc-pVTZ is performed before the single point energy evaluation. For open shell molecules, the number of unpaired electrons must be given explicitly.
CCCA\n\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(ENERGY||OPTIMIZE)\u00a0\u00a0\u00a0default\u00a0ENERGY] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(DFT||DIRECT)\u00a0\u00a0\u00a0default\u00a0DFT] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(MP2||MBPT2)\u00a0\u00a0\u00a0default\u00a0MP2] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(RHF||ROHF||UHF)\u00a0\u00a0\u00a0default\u00a0RHF] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(CCSD(T)||TCE)\u00a0\u00a0\u00a0default\u00a0CCSD(T)] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[NOPEN\u00a0\u00a0\u00a0<integer\u00a0number\u00a0of\u00a0unpaired\u00a0electrons\u00a0\u00a0\u00a0default\u00a0\u00a0\u00a00\u00a0>] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(THERM||NOTHERM)\u00a0\u00a0\u00a0default\u00a0\u00a0THERM] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(PRINT||NOPRINT)\u00a0default\u00a0NOPRINT] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[BASIS\u00a0<basis name for orbital projection guess>] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[MOVEC\u00a0<file name for orbital projection guess>] \nEND\n
One example of input file for single point energy evaluation is given here:
start h2o_ccca\n\ntitle \"H2O, ccCA test\"\n\ngeometry units au\n\n\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a01.4140780900\u00a0\u00a0-1.1031626600 \n\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0-1.4140780900\u00a0\u00a0-1.1031626600 \n O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0-0.0080100000\nend\n\ntask ccca\n
An input file for the ground state of O2 with geometry optimization is given below:
start o2_ccca\n\ntitle \"O2, ccCA test\"\n\ngeometry units au\n\n\u00a0O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0-2.0000 \n\u00a0O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a00.0000000000\u00a0\u00a0\u00a00.0000\n\nend\n\nccca\n\u00a0optimize\n\u00a0dft \n\u00a0nopen\u00a02\nend\n\ntask ccca\n
"},{"location":"CCSD.html","title":"Coupled Cluster Calculations","text":""},{"location":"CCSD.html#overview","title":"Overview","text":"The NWChem coupled cluster energy module is primarily the work of Alistair Rendell and Rika Kobayashi12, with contributions from Bert de Jong, David Bernholdt and Edoardo Apr\u00e03.
The coupled cluster code can perform calculations with full iterative treatment of single and double excitations and non-iterative inclusion of triple excitation effects. It is presently limited to closed-shell (RHF) references.
Note that symmetry is not used within most of the CCSD(T) code. This can have a profound impact on performance since the speed-up from symmetry is roughly the square of the number of irreducible representations. In the absence of symmetry, the performance of this code is competitive with other programs.
The operation of the coupled cluster code is controlled by the input block
CCSD\n [MAXITER <integer maxiter default 20>]\n [THRESH <real thresh default 1e-6>]\n [TOL2E <real tol2e default min(1e-12 , 0.01**`thresh`*`)>]\n [DIISBAS <integer diisbas default 5>]\n [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\\n [virtual <integer nfzv default 0>]]\n [NODISK]\n [IPRT <integer IPRT default 0>]\n [PRINT ...]\n [NOPRINT ...]\nEND\n
Note that the keyword CCSD is used for the input block regardless of the actual level of theory desired (specified with the TASK directive). The following directives are recognized within the CCSD group.
"},{"location":"CCSD.html#maxiter-maximum-number-of-iterations","title":"MAXITER \u2013 Maximum number of iterations","text":"The maximum number of iterations is set to 20 by default. This should be quite enough for most calculations, although particularly troublesome cases may require more.
MAXITER <integer maxiter default 20>\n
"},{"location":"CCSD.html#thresh-convergence-threshold","title":"THRESH \u2013 Convergence threshold","text":"Controls the convergence threshold for the iterative part of the calculation. Both the RMS error in the amplitudes and the change in energy must be less than thresh.
THRESH <real thresh default 1e-6>\n
"},{"location":"CCSD.html#tol2e-integral-screening-threshold","title":"TOL2E \u2013 integral screening threshold","text":" TOL2E <real tol2e default min(1e-12, 0.01*thresh)>\n
The variable tol2e is used in determining the integral screening threshold for the evaluation of the energy and related quantities.
CAUTION! At the present time, the tol2e parameter only affects the three- and four-virtual contributions, and the triples, all of which are done \u201con the fly\u201d. The transformations used for the other parts of the code currently have a hard-wired threshold of 10-12. The default for tol2e is set to match this, and since user input can only make the threshold smaller, setting this parameter can only make calculations take longer.
"},{"location":"CCSD.html#diisbas-diis-subspace-dimension","title":"DIISBAS \u2013 DIIS subspace dimension","text":"Specifies the maximum size of the subspace used in DIIS convergence acceleration. Note that DIIS requires the amplitudes and errors be stored for each iteration in the subspace. Obviously this can significantly increase memory requirements, and could force the user to reduce DIISBAS for large calculations.
Measures to alleviate this problem, including more compact storage of the quantities involved, and the possibility of disk storage are being considered, but have not yet been implemented.
DIISBAS <integer diisbas default 5>\n
"},{"location":"CCSD.html#freeze-freezing-orbitals","title":"FREEZE \u2013 Freezing orbitals","text":" [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\\n [virtual <integer nfzv default 0>]]\n
This directive is identical to that used in the MP2 module.
"},{"location":"CCSD.html#nodisk-on-the-fly-computation-of-integrals","title":"NODISK \u2013 On-the-fly computation of integrals","text":"The CCSD modules by default computes once and stores on disk the integrals. To avoid this kind of I/O operations, specify the keyword NODISK
This directive controls the level of output from the code, mostly to facilitate debugging and the like. The larger the value, the more output printed. From looking at the source code, the interesting values seem to be IPRT > 5, 10, and 50.
IPRT <integer IPRT default 0>\n
"},{"location":"CCSD.html#print-and-noprint","title":"PRINT and NOPRINT","text":"The coupled cluster module supports the standard NWChem print control keywords, although very little in the code is actually hooked into this mechanism yet.
Item Print Level Description \u201creference\u201d high Wavefunction information \u201cguess pair energies\u201d debug MP2 pair energies \u201cbyproduct energies\u201d default Intermediate energies \u201cterm debugging switches\u201d debug Switches for individual terms
"},{"location":"CCSD.html#methods-tasks-recognized","title":"Methods (Tasks) Recognized","text":"Currently available methods are
The calculation is invoked using the TASK directive, so to perform a CCSD+T(CCSD) calculation, for example, the input file should include the directive
TASK CCSD+T(CCSD)\n
Lower-level results which come as by-products (such as MP3/MP4) of the requested calculation are generally also printed in the output file and stored on the run-time database, but the method specified in the TASK directive is considered the primary result.
"},{"location":"CCSD.html#debugging-and-development-aids","title":"Debugging and Development Aids","text":"The information in this section is intended for use by experts (both with the methodology and with the code), primarily for debugging and development work. Messing with stuff in listed in this section will probably make your calculation quantitatively wrong! Consider yourself warned!
"},{"location":"CCSD.html#switching-on-and-off-terms","title":"Switching On and Off Terms","text":"The /DEBUG/ common block contains a number of arrays which control the calculation of particular terms in the program. These are 15-element integer arrays (although from the code only a few elements actually effect anything) which can be set from the input deck. See the code for details of how the arrays are interpreted.
Printing of this data at run-time is controlled by the \u201cterm debugging switches\u201d print option. The values are checked against the defaults at run-time and a warning is printed to draw attention to the fact that the calculation does not correspond precisely to the requested method.
DOA <integer array default 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2>\nDOB <integer array default 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2>\nDOG <integer array default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1>\nDOH <integer array default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1>\nDOJK <integer array default 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2>\nDOS <integer array default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1>\nDOD <integer array default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1>\n
"},{"location":"CCSD.html#alternative-implementations-of-triples","title":"Alternative Implementations of Triples","text":"There are four customized versions of the CCSD(T) triples driver that may improve performance on some architectures. These are not the default implementation and are not tested regularly. The burden is on the user to evaluate their correctness in comparison to the default triples driver. The triples driver only affects how the (T) energy contribution is evaluated; the CCSD code is the same in all cases.
All of the non-standard triples drivers are activated using RTDB set directives, which are specified outside of the CCSD input block.
"},{"location":"CCSD.html#nonblocking","title":"Nonblocking","text":"The nonblocking variant of the triples driver uses nonblocking Global Arrays get operations. It may improve communication overlap at large node code, provided that nonblocking communication makes asynchronous progress.
set ccsd:use_trpdrv_nb T\n
"},{"location":"CCSD.html#openmp","title":"OpenMP","text":"As of November 2016, the development version of semidirect CCSD(T) uses OpenMP extensively. The OpenMP variant of the triples driver includes OpenMP threaded kernels and attempts to run multiple DGEMM calls simultaneously. The CCSD iteration uses OpenMP threading in kernels with a relatively small number of parallel regions. It also uses nonblocking Global Arrays get operations.
set ccsd:use_ccsd_omp T\nset ccsd:use_trpdrv_omp T\n
If one runs with only the (T) portion of the code using threads, the CCSD code will run slower when using fewer cores. Thus, it may be prudent to run the CCSD portion with a larger number of processes and then run a second job for (T) that restarts the computation on a smaller number of processes and a larger number of threads.
Preliminary evaluation of this implementation indicates that a small number of threads (2 to 4) is optimal, with the assumption that single-threaded execution can utilize all of the cores. It is expected that nodes with a large number of cores may not be able to support process-only parallelism due to memory-capacity constraints, in which case the OpenMP implementation allows the user to make use of more cores than otherwise possible.
Because of the extensive refactoring of the code to maximize OpenMP performance and the intrinsic non-associativity of floating-point arithmetic, the OpenMP variant may not produce the exact same answer as the default one. If there is concern about the numerical fidelity of results, a more stringent numerical threshold for the CCSD equations may be required.
"},{"location":"CCSD.html#offload","title":"Offload","text":"The offload variant of the triples driver supports Intel Xeon Phi coprocessors (Knights Corner family), in addition to the aforementioned OpenMP and nonblocking features. This implementation has not been tested extensively and a recommendation concerning the right number of processes and threads is not available.
set ccsd:use_trpdrv_offload T\n
"},{"location":"CCSD.html#references","title":"References","text":"Rendell, A.P., Lee, T.J., Komornicki, A., and Wilson, S. (1992) \u201cEvaluation of the contribution from triply excited intermediates to the fourth-order perturbation theory energy on Intel distributed memory supercomputers\u201d, Theor. Chem. Acc., 84, 271-287, doi: 10.1007/BF01113267 \u21a9
Kobayashi, R. and Rendell, A.P. (1997) \u201cA direct coupled cluster algorithm for massively parallel computers\u201d, Chem. Phys. Lett., 265, 1-11, doi: 10.1016/S0009-2614(96)01387-5 \u21a9
Apr\u00e0, E., Harrison, R.J., de Jong, W.A., Rendell, A.P., Tipparaju, V. and Xantheas, S.S. (2009) \u201cLiquid Water: Obtaining the Right Answer for the Right Reasons\u201d, Proc. SC\u201809, doi: 10.1145/1654059.1654127 \u21a9
Two solvation models are available in NWChem: COSMO and SMD. Since some of the COSMO parameters are used for SMD, we suggest to read the COSMO section before the SMD one.
"},{"location":"COSMO-Solvation-Model.html#cosmo","title":"COSMO","text":""},{"location":"COSMO-Solvation-Model.html#overview_1","title":"Overview","text":"COSMO is the continuum solvation \u2018COnductor-like Screening MOdel\u2019 of A. Klamt and G. Sch\u00fc\u00fcrmann to describe dielectric screening effects in solvents1. This model has been enhanced by D.M. York and M. Karplus2 to create a smooth potential energy surface. The latter facilitates geometry optimization and dynamics and the implementation has been adapted to take advantage of those ideas.
The NWChem COSMO module implements algorithm for calculation of the energy for the following methods:
by determining the solvent reaction field self-consistently with the solute charge distribution from the respective methods. Note that COSMO for unrestricted Hartree-Fock (UHF) method can also be performed by invoking the DFT module with appropriate keywords.
Correlation energy of solvent molecules may also be evaluated at
levels of theory. It is cautioned, however, that these correlated COSMO calculations determine the solvent reaction field using the HF charge distribution of the solute rather than the charge distribution of the correlation theory and are not entirely self consistent in that respect. In other words, these calculations assume that the correlation effect and solvation effect are largely additive, and the combination effect thereof is neglected. COSMO for MCSCF has not been implemented yet.
In the current implementation the code calculates the gas-phase energy of the system followed by the solution-phase energy, and returns the electrostatic contribution to the solvation free energy. At the present gradients are calculated analytically, but frequencies are calculated by finite difference of the gradients. The non-electrostatic contributions can be calculated by turning on the SMD model. It should be noted that one must in general take into account the standard state correction besides the electrostatic and cavitation/dispersion contribution to the solvation free energy, when a comparison to experimental data is made.
"},{"location":"COSMO-Solvation-Model.html#cosmo-input-parameters","title":"COSMO Input Parameters","text":"Invoking the COSMO solvation model is done by specifying the input COSMO input block with the input options as:
cosmo \n [off] \n [dielec <real dielec default 78.4>] \n [parameters <filename>] \n [radius <real atom1> \n <real atom2> \n . . . \n <real atomN>] \n [iscren <integer iscren default 0>] \n [minbem <integer minbem default 2>] \n [ificos <integer ificos default 0>] \n [lineq <integer lineq default 1>] \n [zeta <real zeta default 0.98>] \n [gamma_s <real gammas default 1.0>] \n [sw_tol <real swtol default 1.0e-4>] \n [do_gasphase <logical do_gasphase default True>] \n [do_cosmo_ks]\n [do_cosmo_yk]\n [do_cosmo_smd]\nend\n
followed by the task directive specifying the wavefunction and type of calculation, e.g., task scf energy
, task mp2 energy
, task dft optimize
, etc.
off
can be used to turn off COSMO in a compound (multiple task) run. By default, once the COSMO solvation model has been defined it will be used in subsequent calculations. Add the keyword off
if COSMO is not needed in subsequent calculations.
dielec
is the value of the dielectric constant of the medium, with a default value of 78.4 (the dielectric constant for water).
parameters
specifies COSMO radii parameters file that stores custom setting for COSMO parameters. The format for such file consists of the atom or element name followed by the radii. The program will first attempt to match based on atom name and only then the element name. Otherwise radius will be set based on default parameters. The file has to present in one of the three location ( in the order of preference) - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, and run directory.
radius
is an array that specifies the radius of the spheres associated with each atom and that make up the molecule-shaped cavity. These values will override default radii setting including those specified in the COSMO parameter file (if any) Default values are Van der Waals radii. Values are in units of angstroms. The codes uses the following Van der Waals radii by default:
Default radii provided by Andreas Klamt (Cosmologic)
vdw radii: 1.17 (\u00b1 0.02) * Bondi radius3
optimal vdw radii for H, C, N, O, F, S, Cl, Br, I4
for heavy elements: 1.17*1.9
data (vander(i),i=1,102) \n 1 / 1.300,1.638,1.404,1.053,2.0475,2.00, \n 2 1.830,1.720,1.720,1.8018,1.755,1.638, \n 3 1.404,2.457,2.106,2.160,2.05,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.160,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 8 2.223,2.223,2.223,2.223,2.223,2.223, \n 9 2.223,2.223,2.223,2.223,2.320,2.223, \n 1 2.223,2.223,2.223,2.223,2.223,2.223, \n 2 2.223,2.223,2.223,2.223,2.223,2.223, \n 3 2.223,2.223,2.223,2.223,2.223,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223/\n
For examples see Stefanovich et al.5 and Barone et al.6
\u201cRsolv\u201d is no longer used.
"},{"location":"COSMO-Solvation-Model.html#cosmo-iscreen-keyword","title":"COSMO: ISCREEN keyword","text":"iscren
is a flag to define the dielectric charge scaling option. iscren 1
implies the original scaling from Klamt and Sch\u00fc\u00fcrmann, mainly \u201c(\u03b5-1)/(\u03b5+1/2)\u201d, where \u03b5 is the dielectric constant. iscren 0
implies the modified scaling suggested by Stefanovich and Truong5, mainly \u201c(\u03b5-1)/\u03b5\u201c. Default is to use the modified scaling. For high dielectric the difference between the scaling is not significant.
The next two parameters define the tesselation of the unit sphere. The approach still follows the original proposal by Klamt and Sch\u00fc\u00fcrmann to some degree. Basically a tesselation is generated from minbem
refining passes starting from either an octahedron or an icosahedron. Each level of refinement partitions the triangles of the current tesselation into four triangles. This procedure is repeated recursively until the desired granularity of the tesselation is reached. The induced point charges from the polarization of the medium are assigned to the centers of the tesselation. The default value is minbem 2
. The flag ificos
serves to select the original tesselation, ificos 0
for an octahedron (default) and ificos 1
for an icoshedron. Starting from an icosahedron yields a somewhat finer tesselation that converges somewhat faster. Solvation energies are not really sensitive to this choice for sufficiently fine tesselations. The old \u201cmaxbem\u201d directive is no longer used.
The lineq
parameter serves to select the numerical algorithm to solve the linear equations yielding the effective charges that represent the polarization of the medium. lineq 0
selects a dense matrix linear equation solver (default), lineq 1
selects an iterative method. For large molecules where the number of effective charges is large, the code selects the iterative method.
zeta
sets the width of the Gaussian charge distributions that were suggested by York and Karplus to avoid singularities when two surface charges coincide. The default value is zeta 0.98
this value was chosen to ensure that the results of the current implementation are as close as possible to those of the original Klamt and Sch\u00fc\u00fcrmann based implementation.
gamma_s
modifies the width of the smooth switching function that eliminates surface charges when their positions move into the sphere of a neighboring atom. gamma_s 0.0
leads to a heavyside or abrupt switching function, whereas gamma_s 1.0
maximizes the width of the switching function. The default value is gamma_s 1.0
.
sw_tol
specifies the cutoff of the switching function below which a surface charge at a particular point is eliminated. The values of the switching function lie in the domain from 0 to 1. This value should not be set too small as that leads to instabilities in the linear system solvers. The default value is sw_tol 1.0e-4
.
do_gasphase
is a flag to control whether the calculation of the solvation energy is preceded by a gas phase calculation. The default is to always perform a gas phase calculation first and then calculate the solvation starting from the converged gas phase electron density. However, in geometry optimizations this approach can double the cost. In such a case setting do_gasphase false
suppresses the gas phase calculations and only the solvated system calculations are performed. This option needs to be used with care as in some cases starting the COSMO solvation from an unconverged electron density can generate unphysical charges that lock the calculation into strange electron distributions.
do_cosmo_ks
is a flag to turn on the Klamt-Sch\u00fc\u00fcrmann model
do_cosmo_yk
is a flag to turn on the York-Karplus model (default)
do_cosmo_smd
is a flag to turn on the SMD model. More details can be found at the SMD Model documentation
The following example is for a water molecule in \u2018water\u2019, using the HF/6-31G** level of theory:
start \n\ngeometry \n o .0000000000 .0000000000 -.0486020332 \n h .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n o library 6-31g** \n h library 6-31g** \nend \ncosmo \n dielec 78.0 \n radius 1.40 \n 1.16 \n 1.16 \n lineq 0 \nend \ntask scf energy\n
Alternatively, instead of listing COSMO radii parameters in the input, the former can be loaded using an external file through the parameters
directive
start \n\ngeometry \n ow .0000000000 .0000000000 -.0486020332 \n hw .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n * library 6-31g** \nend\n\ncosmo \n dielec 78.0 \n lineq 0 \n parameters water.par \nend\n\ntask scf energy\n
where the water.par
file has the following form:
O 1.40\nH 1.16\n
This will set radii of all oxygen atoms to 1.4 and all hydrogen atoms to 1.16. More fine grained control may be achieved using specific atom names. For example, the following parameter file
O 1.40\nH 1.16\nHW 1.06\n
will set a different radii of 1.06 to hydrogen atoms named HW. Note that, as per general rule in NWChem, all names are case insensitive.
and placed in one of the these locations - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, or run directory.
SMD denotes \u201csolvation model based on density\u201d and it is described in detail in the 2009 paper by Marenich, Cramer and Truhlar7.
The SMD model is a universal continuum solvation model where \u201cuniversal\u201d denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known. The word \u201ccontinuum\u201d denotes that the solvent is not represented explicitly as a collection of discrete solvent molecules but rather as a dielectric medium with surface tensions at the solute-solvent interface.
SMD directly calculates the free energy of solvation of an ideal solvation process that occurs at fixed concentration (for example, from an ideal gas at a concentration of 1 mol/L to an ideal solution at a liquid-phase concentration of 1 mol/L) at 298 K, but this may converted by standard thermodynamic formulas to a standard-state free energy of solvation, which is defined as the transfer of molecules from an ideal gas at 1 bar to an ideal 1 molar solution.
The SMD model separates the fixed-concentration free energy of solvation into two components. The first component is the bulk-electrostatic contribution arising from a self-consistent reaction field (SCRF) treatment. The SCRF treatment involves an integration of the nonhomogeneous-dielectric Poisson equation for bulk electrostatics in terms of the COSMO model of Klamt and Sch\u00fc\u00fcrmann with the modified COSMO scaling factor suggested by Stefanovich and Truong and by using the SMD intrinsic atomic Coulomb radii. These radii have been optimized for H, C, N, O, F, Si, P, S, Cl, and Br. For any other atom the current implementation of the SMD model uses scaled values of the van der Waals radii of Mantina et al8.
The scaling factor equals 1.52 for group 17 elements heavier than Br (i.e., for I and At) and 1.18 for all other elements for which there are no optimized SMD radii.
The second contribution to the fixed-concentration free energy of solvation is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is called the cavity\u2013dispersion\u2013solvent-structure (CDS) term, and it is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas (SASAs) of the individual atoms of the solute.
"},{"location":"COSMO-Solvation-Model.html#smd-input-parameters","title":"SMD Input Parameters","text":"The SMD model requires additional parameters in the COSMO input block
cosmo \n [do_cosmo_smd <logical>]\n [solvent (keyword)]\n [icds <integer>]\n [sola <real>]\n [solb <real>]\n [solc <real>]\n [solg <real>]\n [solh <real>]\n [soln <real>]\nend \n
At the moment the SMD model is available in NWChem only with the DFT block
The SMD input options are as follows:
do_cosmo_smd <logical>\n
The do_cosmo_smd
keyword instructs NWChem to perform a ground-state SMD calculation when set to a true
value.
solvent (keyword)\n
a solvent
keyword from the short name entry in the list of available SMD solvent names.
When a solvent is specified by name, the descriptors for the solvent are based on the Minnesota Solvent Descriptor Database9.
The user can specify a solvent (by using a string using up to eight characters) that is not on the list by using a new solvent keyword and introducing user-provided values for the following solvent descriptors:
"},{"location":"COSMO-Solvation-Model.html#smd-dielec-keyword","title":"SMD: DIELEC keyword","text":"dielec (real input)\n
dielectric constant at 298 K
"},{"location":"COSMO-Solvation-Model.html#smd-sola-keyword","title":"SMD: SOLA keyword","text":"sola (real input) \n
Abraham\u2019s hydrogen bond acidity
"},{"location":"COSMO-Solvation-Model.html#smd-solb-keyword","title":"SMD: SOLB keyword","text":"solb (real input) \n
Abraham\u2019s hydrogen bond basicity
"},{"location":"COSMO-Solvation-Model.html#smd-solc-keyword","title":"SMD: SOLC keyword","text":"solc (real input)\n
aromaticity as a fraction of non-hydrogenic solvent atoms that are aromatic carbon atoms
"},{"location":"COSMO-Solvation-Model.html#smd-solg-keyword","title":"SMD: SOLG keyword","text":"solg (real input)\n
macroscopic surface tension of the solvent at an air/solvent interface at 298 K in units of cal mol\u20131 \u00c5\u20132 (note that 1 dyne/cm = 1.43932 cal mol\u20131 \u00c5\u20132)
"},{"location":"COSMO-Solvation-Model.html#smd-solh-keyword","title":"SMD: SOLH keyword","text":"solh (real input)\n
electronegative halogenicity as the fraction of non-hydrogenic solvent atoms that are F, Cl, or Br
"},{"location":"COSMO-Solvation-Model.html#smd-soln-keyword","title":"SMD: SOLN keyword","text":"soln (real input)\n
index of refraction at optical frequencies at 293 K
"},{"location":"COSMO-Solvation-Model.html#smd-icds-keyword","title":"SMD: ICDS keyword","text":"icds (integer input)\n
icds
should have a value of 1 for water. icds
should have a value of 2 for any nonaqueous solvent. If icds
is set equal to 2, then you need to provide the following solvent descriptors (see the MN solvent descriptor database ):
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in water\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent water\nend\ntask dft energy\n
"},{"location":"COSMO-Solvation-Model.html#smd-example-new-solvent","title":"SMD Example: new solvent","text":"Example using a user defined solvent, not present in the SMD list of solvents
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in my solvent\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent mysolv \n dielec 11.4\n sola 1.887\n solb 0.0\n soln 0.98\n icds 2\nend\ntask dft energy\n
"},{"location":"COSMO-Solvation-Model.html#solvents-list-solvent-keyword","title":"Solvents List - Solvent keyword","text":"The short name for the solvent from the table can be used with the solvent
keyword to define the solvent. Example with acetonitrile.
cosmo\n solvent acetntrl\nend\n
Long name short name dielec acetic acid acetacid 6.2528 acetone acetone 20.493 acetonitrile acetntrl 35.688 acetophenone acetphen 17.440 aniline aniline 6.8882 anisole anisole 4.2247 benzaldehyde benzaldh 18.220 benzene benzene 2.2706 benzonitrile benzntrl 25.592 benzyl chloride benzylcl 6.7175 1-bromo-2-methylpropane brisobut 7.7792 bromobenzene brbenzen 5.3954 bromoethane brethane 9.01 bromoform bromform 4.2488 1-bromooctane broctane 5.0244 1-bromopentane brpentan 6.269 2-bromopropane brpropa2 9.3610 1-bromopropane brpropan 8.0496 butanal butanal 13.450 butanoic acid butacid 2.9931 1-butanol butanol 17.332 2-butanol butanol2 15.944 butanone butanone 18.246 butanonitrile butantrl 24.291 butyl acetate butile 4.9941 butylamine nba 4.6178 n-butylbenzene nbutbenz 2.360 sec-butylbenzene sbutbenz 2.3446 tert-butylbenzene tbutbenz 2.3447 carbon disulfide cs2 2.6105 carbon tetrachloride carbntet 2.2280 chlorobenzene clbenzen 5.6968 sec-butyl chloride secbutcl 8.3930 chloroform chcl3 4.7113 1-chlorohexane clhexane 5.9491 1-chloropentane clpentan 6.5022 1-chloropropane clpropan 8.3548 o-chlorotoluene ocltolue 4.6331 m-cresol m-cresol 12.440 o-cresol o-cresol 6.760 cyclohexane cychexan 2.0165 cyclohexanone cychexon 15.619 cyclopentane cycpentn 1.9608 cyclopentanol cycpntol 16.989 cyclopentanone cycpnton 13.58 cis-decalin declncis 2.2139 trans-decalin declntra 2.1781 decalin (cis/trans mixture) declnmix 2.196 n-decane decane 1.9846 1-decanol decanol 7.5305 1,2-dibromoethane edb12 4.9313 dibromomethane dibrmetn 7.2273 dibutyl ether butyleth 3.0473 o-dichlorobenzene odiclbnz 9.9949 1,2-dichloroethane edc12 10.125 cis-dichloroethylene c12dce 9.200 trans-dichloroethylene t12dce 2.140 dichloromethane dcm 8.930 diethyl ether ether 4.2400 diethyl sulfide et2s 5.723 diethylamine dietamin 3.5766 diiodomethane mi 5.320 diisopropyl ether dipe 3.380 dimethyl disulfide dmds 9.600 dimethylsulfoxide dmso 46.826 N,N-dimethylacetamide dma 37.781 cis-1,2-dimethylcyclohexane cisdmchx 2.060 N,N-dimethylformamide dmf 37.219 2,4-dimethylpentane dmepen24 1.8939 2,4-dimethylpyridine dmepyr24 9.4176 2,6-dimethylpyridine dmepyr26 7.1735 1,4-dioxane dioxane 2.2099 diphenyl ether phoph 3.730 dipropylamine dproamin 2.9112 n-dodecane dodecan 2.0060 1,2-ethanediol meg 40.245 ethanethiol etsh 6.667 ethanol ethanol 24.852 ethyl acetate etoac 5.9867 ethyl formate etome 8.3310 ethylbenzene eb 2.4339 ethylphenyl ether phenetol 4.1797 fluorobenzene c6h5f 5.420 1-fluorooctane foctane 3.890 formamide formamid 108.94 formic acid formacid 51.100 n-heptane heptane 1.9113 1-heptanol heptanol 11.321 2-heptanone heptnon2 11.658 4-heptanone heptnon4 12.257 n-hexadecane hexadecn 2.0402 n-hexane hexane 1.8819 hexanoic acid hexnacid 2.600 1-hexanol hexanol 12.51 2-hexanone hexanon2 14.136 1-hexene hexene 2.0717 1-hexyne hexyne 2.615 iodobenzene c6h5i 4.5470 1-iodobutane iobutane 6.173 iodoethane c2h5i 7.6177 1-iodohexadecane iohexdec 3.5338 iodomethane ch3i 6.8650 1-iodopentane iopentan 5.6973 1-iodopropane iopropan 6.9626 isopropylbenzene cumene 2.3712 p-isopropyltoluene p-cymene 2.2322 mesitylene mesityln 2.2650 methanol methanol 32.613 2-methoxyethanol egme 17.200 methyl acetate meacetat 6.8615 methyl benzoate mebnzate 6.7367 methyl butanoate mebutate 5.5607 methyl formate meformat 8.8377 4-methyl-2-pentanone mibk 12.887 methyl propanoate mepropyl 6.0777 2-methyl-1-propanol isobutol 16.777 2-methyl-2-propanol terbutol 12.470 N-methylaniline nmeaniln 5.9600 methylcyclohexane mecychex 2.024 N-methylformamide (E/Z mixture) nmfmixtr 181.56 2-methylpentane isohexan 1.890 2-methylpyridine mepyrid2 9.9533 3-methylpyridine mepyrid3 11.645 4-methylpyridine mepyrid4 11.957 nitrobenzene c6h5no2 34.809 nitroethane c2h5no2 28.290 nitromethane ch3no2 36.562 1-nitropropane ntrprop1 23.730 2-nitropropane ntrprop2 25.654 o-nitrotoluene ontrtolu 25.669 n-nonane nonane 1.9605 1-nonanol nonanol 8.5991 5-nonanone nonanone 10.600 n-octane octane 1.9406 1-octanol octanol 9.8629 2-octanone octanon2 9.4678 n-pentadecane pentdecn 2.0333 pentanal pentanal 10.000 n-pentane npentane 1.8371 pentanoic acid pentacid 2.6924 1-pentanol pentanol 15.130 2-pentanone pentnon2 15.200 3-pentanone pentnon3 16.780 1-pentene pentene 1.9905 E-2-pentene e2penten 2.051 pentyl acetate pentacet 4.7297 pentylamine pentamin 4.2010 perfluorobenzene pfb 2.029 phenylmethanol benzalcl 12.457 propanal propanal 18.500 propanoic acid propacid 3.440 1-propanol propanol 20.524 2-propanol propnol2 19.264 propanonitrile propntrl 29.324 2-propen-1-ol propenol 19.011 propyl acetate propacet 5.5205 propylamine propamin 4.9912 pyridine pyridine 12.978 tetrachloroethene c2cl4 2.268 tetrahydrofuran thf 7.4257 tetrahydrothiophene-S,S-dioxide sulfolan 43.962 tetralin tetralin 2.771 thiophene thiophen 2.7270 thiophenol phsh 4.2728 toluene toluene 2.3741 tributyl phosphate tbp 8.1781 1,1,1-trichloroethane tca111 7.0826 1,1,2-trichloroethane tca112 7.1937 trichloroethene tce 3.422 triethylamine et3n 2.3832 2,2,2-trifluoroethanol tfe222 26.726 1,2,4-trimethylbenzene tmben124 2.3653 2,2,4-trimethylpentane isoctane 1.9358 n-undecane undecane 1.9910 m-xylene m-xylene 2.3478 o-xylene o-xylene 2.5454 p-xylene p-xylene 2.2705 xylene (mixture) xylenemx 2.3879 water h2o 78.400"},{"location":"COSMO-Solvation-Model.html#usage-tips","title":"Usage Tips","text":"Authors of paper 7 report that \u201d \u2026 the SMD/COSMO/NWChem calculations we employed finer grids (options minbem=3, maxbem=4, ificos=1) because the default NWChem tessellation parameters (options: minbem=2, maxbem=3, ificos=0) produced very large errors in solvation free energies.\u201d Since the maxbem
keyword is no longer in use, this paper\u2019s recommended input translate into
cosmo\n minbem 3\n ificos 1\nend\n
"},{"location":"COSMO-Solvation-Model.html#references","title":"References","text":"Klamt, A.; Sch\u00fc\u00fcrmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, No. 5, 799\u2013805. https://doi.org/10.1039/p29930000799.\u00a0\u21a9
York, D. M.; Karplus, M. A Smooth Solvation Potential Based on the Conductor-Like Screening Model. The Journal of Physical Chemistry A 1999, 103 (50), 11060\u201311079. https://doi.org/10.1021/jp992097l.\u00a0\u21a9
Bondi, A. Van Der Waals Volumes and Radii. The Journal of Physical Chemistry 1964, 68 (3), 441\u2013451. https://doi.org/10.1021/j100785a001.\u00a0\u21a9
Klamt, A.; Jonas, V.; B\u00fcrger, T.; Lohrenz, J. C. W. Refinement and Parametrization of COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 5074\u20135085. https://doi.org/10.1021/jp980017s.\u00a0\u21a9
Stefanovich, E. V.; Truong, T. N. Optimized Atomic Radii for Quantum Dielectric Continuum Solvation Models. Chemical Physics Letters 1995, 244 (1-2), 65\u201374. https://doi.org/10.1016/0009-2614(95)00898-e.\u00a0\u21a9\u21a9
Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. The Journal of Chemical Physics 1997, 107 (8), 3210\u20133221. https://doi.org/10.1063/1.474671.\u00a0\u21a9
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378\u20136396. https://doi.org/10.1021/jp810292n.\u00a0\u21a9\u21a9
Haynes, W. M. CRC Handbook of Chemistry and Physics; Mantina, M., Valero, R., Cramer, C. J., Truhlar, D. G., Eds.; Taylor & Francis Group, 2013; pp 9\u201349.\u00a0\u21a9
Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. Minneapolis, MN: Department of Chemistry and Supercomputer Institute 1999.\u00a0\u21a9
NWChem provides many methods for computing the properties of molecular and periodic systems using standard quantum mechanical descriptions of the electronic wavefunction or density. Its classical molecular dynamics capabilities provide for the simulation of macromolecules and solutions, including the computation of free energies using a variety of force fields. These approaches may be combined to perform mixed quantum-mechanics and molecular-mechanics simulations.
The specific methods for determining molecular electronic structure, molecular dynamics, and pseudopotential plane-wave electronic structure and related attributes are listed in the following sections.
"},{"location":"Capabilities.html#molecular-electronic-structure","title":"Molecular Electronic Structure","text":"Methods for determining energies and analytic first derivatives with respect to atomic coordinates include the following:
Analytic second derivatives with respect to atomic coordinates are available for RHF and UHF, and closed-shell DFT with all functionals.
The following methods are available to compute energies only:
For all methods, the following may be performed:
At the SCF and DFT level of theory various (response) properties are available, including NMR shielding tensors and indirect spin-spin coupling.
"},{"location":"Capabilities.html#quantum-mechanicsmolecular-mechanics-qmmm","title":"Quantum Mechanics/Molecular Mechanics (QM/MM)","text":"The QM/MM module in NWChem provides a comprehensive set of capabilities to study ground and excited state properties of large-molecular systems. The QM/MM module can be used with practically any quantum mechanical method available in NWChem. The following tasks are supported
The NWChem Plane-Wave (NWPW) module uses pseudopotentials and plane-wave basis sets to perform DFT calculations. This method\u2019s efficiency and accuracy make it a desirable first principles method of simulation in the study of complex molecular, liquid, and solid-state systems. Applications for this first principles method include the calculation of free energies, search for global minima, explicit simulation of solvated molecules, and simulations of complex vibrational modes that cannot be described within the harmonic approximation.
The NWPW module is a collection of three modules:
These capabilities are available:
The NWChem Molecular Dynamics (MD) module can perform classical simulations using the AMBER and CHARMM force fields, quantum dynamical simulations using any of the quantum mechanical methods capable of returning gradients, and mixed quantum mechanics molecular dynamics simulation and molecular mechanics energy minimization.
Classical molecular simulation functionality includes the following methods:
The classical force field includes the following elements:
The default in NWChem is to specify the geometry information entirely in Cartesian coordinates, and examples of this format have appeared above (e.g, Water Molecule Input). Each center (usually an atom) is identified on a line of the following form:
<string tag> <real x y z> [vx vy vz] \\\n [charge <real charge>] [mass <real mass>] \\\n [(nuc || nucl || nucleus) <string nucmodel>]\n
The string <tag>
is the name of the atom or center, and its case (upper or lower) is important. The tag is limited to 16 characters and is interpreted as follows:
<tag>
begins with either the symbol or name of an element (regardless of case), then the center is treated as an atom of that type. The default charge is the atomic number (adjusted for the presence of ECPs by the ECP NELEC directive). Additional characters can be added to the string, to distinguish between atoms of the same element (For example, the tags oxygen
, O
, o34
, olonepair
, and Oxygen-ether
, will all be interpreted as oxygen atoms.).<tag>
begins with the characters bq
or x
(regardless of case), then the center is treated as a dummy center with a default zero charge (Note: a tag beginning with the characters xe will be interpreted as a xenon atom rather than as a dummy center.). Dummy centers may optionally have basis functions or non-zero charge.It is important to be aware of the following points regarding the definitions and usage of the values specified for the variable <tag>
to describe the centers in a system:
BQ
or X
, then a fatal error is generated.The Cartesian coordinates of the atom in the molecule are specified as real numbers supplied for the variables x
, y
, and z
following the characters entered for the tag. The values supplied for the coordinates must be in the units specified by the value of the variable on the first line of the GEOMETRY
directive input.
After the Cartesian coordinate input, optional velocities may be entered as real numbers for the variables vx
, vy
, and vz
. The velocities should be given in atomic units and are used in QMD and PSPW calculations.
The Cartesian coordinate input line also contains the optional keywords charge
, mass
and nucleus
, which allow the user to specify the charge of the atom (or center) and its mass (in atomic mass units), and the nuclear model. The default charge for an atom is its atomic number, adjusted for the presence of ECPs. In order to specify a different value for the charge on a particular atom, the user must enter the keyword charge, followed by the desired value for the variable <charge>
.
The default mass for an atom is taken to be the mass of its most abundant naturally occurring isotope or of the isotope with the longest half-life. To model some other isotope of the element, its mass must be defined explicitly by specifying the keyword mass, followed by the value (in atomic mass units) for the variable <mass>
.
The default nuclear model is a point nucleus. The keyword nucleus
(or nucl
or nuc
) followed by the model name <nucmodel>
overrides this default. Allowed values of <nucmodel>
are point
or pt
and finite
or fi
. The finite option is a nuclear model with a Gaussian shape. The RMS radius of the Gaussian is determined by the atomic mass number via the formula rRMS = 0.836*A1/3+0.57 fm. The mass number A is derived from the variable <mass>
.
The geometry of the system can be specified entirely in Cartesian coordinates by supplying a <tag>
line of the type described above for each atom or center. The user has the option, however, of supplying the geometry of some or all of the atoms or centers using a Z-matrix description. In such a case, the user supplies the input tag line described above for any centers to be described by Cartesian coordinates, and then specifies the remainder of the system using the optional ZMATRIX
directive described below in Z-matrix input.
group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a09\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n+x,-y,+z+1/2\n+x+1/2,+y+1/2,+z\n+x+1/2,-y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a09\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n+x+1/2,+y,-z\n+x,+y+1/2,+z+1/2\n+x+1/2,+y+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"Ccc2.html","title":"Ccc2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a037\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ccc2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ccca.html","title":"Ccca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a068\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ccca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x,+y,-z\n+x+1/2,-y+1/2,-z\n-x,-y+1/2,-z+1/2\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x+1/2,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1,-y+1,+z\n-x+1/2,+y+1/2,-z\n+x+1,-y+1,-z\n-x+1/2,-y+1,-z+1/2\n+x+1,+y+1/2,-z+1/2\n+x+1/2,-y+1,+z+1/2\n-x+1,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a068\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ccca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y,+z\n-x,+y,-z+1/2\n+x+1/2,-y,-z+1/2\n-x,-y,-z\n+x+1/2,+y,-z\n+x,-y,+z+1/2\n-x+1/2,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1,-y+1/2,+z\n-x+1/2,+y+1/2,-z+1/2\n+x+1,-y+1/2,-z+1/2\n-x+1/2,-y+1/2,-z\n+x+1,+y+1/2,-z\n+x+1/2,-y+1/2,+z+1/2\n-x+1,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Cccm.html","title":"Cccm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a066\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cccm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z+1/2\n+x,-y,-z+1/2\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Charge.html","title":"CHARGE","text":"This is an optional top-level directive that allows the user to specify the total charge of the system. The form of the directive is as follows:
CHARGE\u00a0<real\u00a0charge\u00a0default\u00a00>\n
The charge directive, in conjunction with the charges of atomic nuclei (which can be changed via the geometry input, cf. Section Geometry), determines the total number of electrons in the chemical system. Therefore, a charge n
specification removes \u201cn\u201d electrons from the chemical system. Similarly, charge -n
adds \u201cn\u201d electrons. is zero if this directive is omitted. An example of a case where the directive would be needed is for a calculation on a doubly charged cation. In such a case, the directive is simply,
charge\u00a02\n
If centers with fractional charge have been specified the net charge of the system should be adjusted to ensure that there are an integral number of electrons.
The charge may be changed between tasks, and is used by all wavefunction types. For instance, in order to compute the first two vertical ionization energies of LiH, one might optimize the geometry of LiH using a UHF SCF wavefunction, and then perform energy calculations at the optimized geometry on LiH+ and LiH2+ in turn. This is accomplished with the following input:
geometry;\u00a0Li\u00a00\u00a00\u00a00;\u00a0H\u00a00\u00a00\u00a01.64;\u00a0end\u00a0basis;\u00a0Li\u00a0library\u00a03-21g;\u00a0H\u00a0library\u00a03-21g;\u00a0end \nscf;\u00a0uhf;\u00a0singlet;\u00a0end\u00a0task\u00a0scf\u00a0optimize \ncharge\u00a01\u00a0scf;\u00a0uhf;\u00a0doublet;\u00a0end\u00a0task\u00a0scf \ncharge\u00a02\u00a0scf;\u00a0uhf;\u00a0singlet;\u00a0end\u00a0task\u00a0scf\n
The GEOMETRY, BASIS, and SCF directives are described below (Geometry, Basis and SCF respectively) but their intent should be clear. The TASK directive is described above (TASK).
"},{"location":"Citation.html","title":"Citation","text":"Please cite the following reference when publishing results obtained with NWChem:
E. Apr\u00e0, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cau\u00ebt, Y. Chen, G. N. Chuev, C. J. Cramer, J. Daily, M. J. O. Deegan, T. H. Dunning Jr., M. Dupuis, K. G. Dyall, G. I. Fann, S. A. Fischer, A. Fonari, H. Fr\u00fcchtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann, A. W. G\u00f6tz, J. Hammond, V. Helms, E. D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B. G. Johnson, H. J\u00f3nsson, R. A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logsdail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin, T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J. Nichols, J. Nieplocha, A. Otero-de-la-Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M. Richard, P. Sadayappan, G. C. Schatz, W. A. Shelton, D. W. Silverstein, D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S. Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman, T. Van Voorhis, \u00c1. V\u00e1zquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis, D. Wang, J. H. Weare, M. J. Williamson, T. L. Windus, K. Woli\u0144ski, A. T. Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, and R. J. Harrison, \u201cNWChem: Past, present, and future\u201d, The Journal of Chemical Physics 152, 184102 (2020). DOI: 10.1063/5.0004997 BibTex entry
"},{"location":"Classical-Methods.html","title":"Classical Methods","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a08\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n+x,-y,+z\n+x+1/2,+y+1/2,+z\n+x+1/2,-y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a08\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n+x,+y,-z\n+x,+y+1/2,+z+1/2\n+x,+y+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"Cmc2_1.html","title":"Cmc2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a036\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Cmc2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmca.html","title":"Cmca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a064\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y+1/2,+z+1/2\n-x,+y+1/2,-z+1/2\n+x,-y,-z\n-x,-y,-z\n+x,+y+1/2,-z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1,+z+1/2\n-x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1,+z+1/2\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmcm.html","title":"Cmcm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a063\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmcm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z+1/2\n-x,+y,-z+1/2\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z+1/2\n+x,-y,+z+1/2\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmm2.html","title":"Cmm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a035\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmma.html","title":"Cmma","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a067\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmma\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y+1/2,+z\n-x,+y+1/2,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y+1/2,-z\n+x,-y+1/2,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1,+z\n-x+1/2,+y+1,-z\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1,-z\n+x+1/2,-y+1,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Cmmm.html","title":"Cmmm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a065\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Cmmm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Compiling-NWChem.html","title":"Compiling NWChem from source","text":"On this page, a step-by-step description of the build process and necessary and optional environment variables is outlined. In addition, based on the experiences of developers and users how-to\u2019s for various platforms have been created. These how-to\u2019s will be updated with additional platforms and better environment variables over time.
Download of the NWChem source is a step needed before compilation. Details for downloading as well as instructions for installing pre-compiled version of NWChem are available at the Download page.
"},{"location":"Compiling-NWChem.html#setting-up-the-proper-environment-variables","title":"Setting up the proper environment variables","text":"$NWCHEM_TOP
defines the top directory of the NWChem source tree, e.g.When dealing with source from a NWChem release (6.8 in this example)
export NWCHEM_TOP=<your path>/nwchem-6.8\n
$NWCHEM_TARGET
defines your target platform, e.g.export NWCHEM_TARGET=LINUX64\n
The following platforms are available:
NWCHEM_TARGET Platform OS Compilers LINUX x86 Linux GNU, Intel, PGI ppc Linux GNU, IBM arm Linux GNU, flang LINUX64 x86_64 Linux GNU, Intel, PGI, Flang ppc64le Linux GNU, IBM aarch64 Linux GNU, flang MACX x86 Darwin GNU, Intel MACX64 x86_64 Darwin GNU, Intel BGL Blue Gene/L IBM BGP Blue Gene/P IBM BGQ Blue Gene/Q IBM$ARMCI_NETWORK
must be defined in order to achieve best performance on high performance networks, e.g.export ARMCI_NETWORK=MPI-PR\n
For a single processor system, this environment variable does not have to be defined. Supported combination of ARMCI_NETWORK and NWCHEM_TARGET variables:
ARMCI_NETWORK NWCHEM_TARGET Network Protocol OPENIB LINUX, LINUX64 Mellanox InfiniBand Verbs MPI-PR LINUX64 Any network MPI MPI-MTMPI-SPAWN LINUX64 MPI supportingmulti-threading multiple MPI-2 MPI-TS MPI-PT any any network with MPI MPI BGMLMPI BGL IBM Blue Gene/L BGLMPI DC MFMPI BGP IBM Blue Gene/P DCMF,MPIPlease see Choosing the ARMCI Library for additional information on choosing the right network options.
"},{"location":"Compiling-NWChem.html#mpi-variables","title":"MPI variables","text":"Variable DescriptionUSE_MPI
Set to \u201cy\u201d to indicate that NWChem should be compiled with MPI USE_MPIF
Set to \u201cy\u201d for the NWPW module to use fortran-bindings of MPI. (Generally set when USE_MPI is set) USE_MPIF4
Set to \u201cy\u201d for the NWPW module to use Integer*4 fortran-bindings of MPI. (Generally set when USE_MPI is set on most platforms) LIBMPI
(deprecated) Name of the MPI library that should be linked with -l MPI_LIB
(deprecated) Directory where the MPI library resides MPI_INCLUDE
(deprecated) Directory where the MPI include files reside"},{"location":"Compiling-NWChem.html#automatic-detection-of-mpi-variables-with-mpif90","title":"Automatic detection of MPI variables with mpif90","text":"New in NWChem 6.6: If the location of the mpif90
command is part of your PATH
env. variable, NWChem will figure out the values of LIBMPI
, MPI_LIB
and MPI_INCLUDE
(if they are not set). Therefore, we do NOT recommend to set LIBMPI
, MPI_LIB
and MPI_INCLUDE
and add the location of mpif90
to the PATH
variable, instead. Therefore, the next section can be considered obsolete.
The information of this section should not be used because of the automatic detection of MPI variables described in the previous section.
The output of the command
mpif90 -show
can be used to extract the values of LIBMPI, MPI_LIB and MPI_INCLUDE
E.g. for MPICH2, this might look like:
\n$ mpif90 -show\nf95 -I/usr/local/mpich2.141p1/include -I/usr/local/mpich2.141p1/include -L/usr/local/mpich2.141p1/lib \\\n-lmpichf90 -lmpichf90 -lmpich -lopa -lmpl -lrt -lpthread\n
The corresponding environment variables are
\n % export USE_MPI=y\n % export LIBMPI=\"-lmpich -lopa -lmpl -lpthread -lmpichf90 -lfmpich -lmpich\"\n % export MPI_LIB=/usr/local/mpich2.141p1/lib \n % export MPI_INCLUDE='/usr/local/mpich2.141p1/include\n
"},{"location":"Compiling-NWChem.html#how-to-start-nwchem","title":"How to start NWChem","text":"When MPI is used, the appropriate MPI run command should be used to start an NWChem calculation, e.g.
% mpirun -np 8 $NWCHEM_TOP/bin/$NWCHEM_TARGET/nwchem h2o.nw\n
"},{"location":"Compiling-NWChem.html#nwchem_modules","title":"NWCHEM_MODULES","text":"$NWCHEM_MODULES
defines the modules to be compiled, e.g.export NWCHEM_MODULES=\"all python\"\n
The following modules are available:
Module Description all Everything useful all python Everything useful plus python qm All quantum mechanics modules md MD only buildNote that additional environment variables need to be defined to specify the location of the Python libraries, when the python module is compiled. See the optional environmental variables section for specifics.
"},{"location":"Compiling-NWChem.html#adding-optional-environmental-variables","title":"Adding optional environmental variables","text":"USE_NOFSCHECK can be set to avoid NWChem creating files for each process when testing the size of the scratch directory (a.k.a. creation of junk files), e.g.
export USE_NOFSCHECK=TRUE\n
USE_NOIO can be set to avoid NWChem 6.5 doing I/O for the ddscf, mp2 and ccsd modules (it automatically sets USE_NOFSCHECK
, too). It is strongly recommended on large clusters or supercomputers or any computer lacking any fast and large local filesystem.
export USE_NOIO=TRUE\n
~~LIB_DEFINES can be set to pass additional defines to the C preprocessor (for both Fortran and C), e.g.
export LIB_DEFINES=-DDFLT_TOT_MEM=16777216\n
Note: -DDFLT_TOT_MEM
sets the default dynamic memory available for NWChem to run, where the units are in doubles.~~ However, it is recommended that, instead of manually defining this environment variable, the getmem.nwchem script to be executed as described in the related section
MRCC_METHODS can be set to request the multireference coupled cluster capability to be included in the code, e.g.
export MRCC_METHODS=TRUE\n
CCSDTQ can be set to request the CCSDTQ method and its derivatives to be included in the code, e.g.
export CCSDTQ=TRUE\n
"},{"location":"Compiling-NWChem.html#setting-python-environment-variables","title":"Setting Python environment variables","text":"Python programs may be embedded into the NWChem input and used to control the execution of NWChem. To build with Python, Python needs to be available on your machine. The software can be download from https://www.python.org . Follow the Python instructions for installation and testing. NWChem has been tested with Python versions up to 3.11
The following environment variables need to be set when compiling with Python, together with having the location of your installed python binary part of the PATH
environment variable:
export PYTHONVERSION=3.8\n
Note that the third number in the version should not be kept: 3.8.1 should be set as 3.8
You will also need to set PYTHONPATH to include any modules that you are using in your input. Examples of Python within NWChem are in the $NWCHEM_TOP/QA/tests/pyqa3
and $NWCHEM_TOP/contrib/python
directories.
By default NWChem uses its own basic linear algebra subroutines (BLAS). To include faster BLAS routines, the environment variable BLASOPT needs to be set before building the code. For example, with OpenBLAS
export BLASOPT=\"-lopenblas\"\n
Good choices of optimized BLAS libraries on x86 (e.g. LINUX and LINUX64) hardware include:
BLIS https://github.com/flame/blis OpenBLAS https://github.com/xianyi/OpenBLAS GotoBLAS https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2 Intel MKL https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html Cray LibSci Available only on Cray hardware, it is automatically linked when compiling on Cray computers. IBM ESSL Available only on IBM hardware https://www.ibm.com/docs/en/essl/6.3
New since release 7.0.0 (after commit 6b0a971): If BLASOPT
is defined, the LAPACK_LIB
environment variable must be set up, too. LAPACK_LIB
must provide the location of the library containing the LAPACK routines. For example, OpenBLAS provides the full suite of LAPACK routines, therefore, in this case, LAPACK_LIB
can be set to the same value as BLASOPT
export BLASOPT=-lopenblas \nexport LAPACK_LIB=-lopenblas \n
NWChem can also take advantage of the ScaLAPACK library if it is installed on your system. The following environment variables need to be set:
export USE_SCALAPACK=y\n\nexport SCALAPACK=\"location of Scalapack and BLACS library\"\n
"},{"location":"Compiling-NWChem.html#how-to-deal-with-integer-size-of-linear-algebra-libraries","title":"How to deal with integer size of Linear Algebra libraries","text":"In the case of 64-bit platforms, most vendors optimized BLAS libraries cannot be used. This is due to the fact that while NWChem uses 64-bit integers (i.e. integer*8) on 64-bit platforms, most of the vendors optimized BLAS libraries used 32-bit integers. The same holds for the ScaLAPACK libraries, which internally use 32-bit integers. The BLAS_SIZE environment variable is used at compile time to set the size of integer arguments in BLAS calls.
BLAS_SIZE size of integer arguments in BLAS routines 4 32-bit (most common default) 8 64-bitA method is available to link against the libraries mentioned above, using the following procedure:
cd $NWCHEM_TOP/src\n make clean\n make 64_to_32\n make USE_64TO32=y BLAS_SIZE=4 BLASOPT=\" optimized BLAS\" SCALAPACK=\"location of Scalapack and BLACS library\"\n
E.g., for IBM64 this looks like
% make USE_64TO32=y BLAS_SIZE=4 BLASOPT=\"-lessl -lmass\"\n
Notes:
#INTERFACE64 = 1\n
needs to be changed to
INTERFACE64 = 1\n
New in NWChem 7.0.2:
BUILD_OPENBLAS
can be used to automatically build the OpenBLAS library during a NWChem compilation (either using BLAS_SIZE=8
or BLAS_SIZE=4
) BUILD_SCALAPACK
can be used to automatically build the ScaLapack library during a NWChem compilation (either using SCALAPACK_SIZE=8
or SCALAPACK_SIZE=4
)The following settings are strongly recommended over setting variables pointing to existing installations:
BUILD_OPENBLAS=1\nBUILD_SCALAPACK=1\nBLAS_SIZE=8\nSCALAPACK_SIZE=8\n
"},{"location":"Compiling-NWChem.html#linking-in-nbo","title":"Linking in NBO","text":"The 5.0 (obsolete) version of NBO provides a utility to generate source code that can be linked into computational chemistry packages such as NWChem. To utilize this functionality, follow the instructions in the NBO 5 package to generate an nwnbo.f file. Linking NBO into NWChem can be done using the following procedure:
% cd $NWCHEM_TOP/src \n % cp nwnbo.f $NWCHEM_TOP/src/nbo/. \n % make nwchem_config NWCHEM_MODULES=\"all nbo\" \n % make\n
One can now use \u201ctask nbo\u201d and incorporate NBO input into the NWChem input file directly:
nbo \n $NBO NRT $END \n ... \n end \n\n task nbo\n
"},{"location":"Compiling-NWChem.html#building-the-nwchem-binary","title":"Building the NWChem binary","text":"Once all required and optional environment variables have been set, NWChem can be compiled:
% cd $NWCHEM_TOP/src \n\n % make nwchem_config \n\n % make >& make.log\n
The make above will use the standard compilers available on your system. To use compilers different from the default one can either set environment variables:
% export FC=<fortran compiler> \n % export CC=<c compiler>\n
Or one can supply the compiler options to the make command (recommended option), e.g:
% make FC=ifort \n
For example, on Linux FC could be set either equal to ifort, gfortran or pgf90
Nota bene: NWChem does NOT support usage of the full path in FC and CC variables. Please provide filenames only as in the examples above!
Note 1: If in a Linux environment, FC is set equal to anything other than the tested compilers, there is no guarantee of a successful installation, since the makefile structure has not been tested to process other settings. In other words, please avoid make FC=\u201difort -O3 -xhost\u201d and stick to make FC=\u201difort\u201d, instead
Note 2: It\u2019s better to avoid redefining CC, since a) NWChem does not have C source that is a computational bottleneck and b) we typically test just the default C compiler. In other words, the recommendation is to compile with make FC=ifort
Note 3: It\u2019s better to avoid modifying the values of the FOPTIMIZE and COPTIMIZE variables. The reason is that the default values for FOPTIMIZE and COPTIMIZE have been tested by the NWChem developers (using the internal QA suites, among others), while any modification might produce incorrect results.
"},{"location":"Compiling-NWChem.html#setting-the-default-memory-values","title":"Setting the default memory values","text":"It is strongly recommended to use, after a successful compilation, the getmem.nwchem script in the $NWCHEM_TOP/contrib
directory. The script will choose the default memory settings based on the available physical memory, recompile the appropriate files and relink. Here is an example of its usage:
cd $NWCHEM_TOP/src\n../contrib/getmem.nwchem\n
If non default compiler are used, the getmem.nwchem
script must be called, using bash shell, by first specifying the compiler environment variable. The example below uses ifort as Fortran compiler
cd $NWCHEM_TOP/src\nFC=ifort ../contrib/getmem.nwchem\n
"},{"location":"Compiling-NWChem.html#how-to-linux-platforms","title":"How-to: Linux platforms","text":" % export NWCHEM_TOP=<your path>/nwchem \n % export NWCHEM_TARGET=LINUX64 \n % export NWCHEM_MODULES =all\n
The following environment variables need to be set when NWChem is compiled with MPI:
% export USE_MPI=y\n% export USE_MPIF=y\n% export USE_MPIF4=y\n\n
New in NWChem 6.6: If the location of the mpif90 command is part of your PATH env. variable, NWChem will figure out the values of LIBMPI, MPI_LIB and MPI_INCLUDE (if they are not set). Therefore, we recommend not to set LIBMPI, MPI_LIB and MPI_INCLUDE and add the location of mpif90 to the PATH variable, instead.
% cd $NWCHEM_TOP/src\n% make nwchem_config\n% make FC=gfortran >& make.log\n
"},{"location":"Compiling-NWChem.html#nwchem-66-on-ubuntu-1404-trusty-tahr","title":"NWChem 6.6 on Ubuntu 14.04 (Trusty Tahr)","text":"These instruction are likely to work (with minor modifications) on all Debian based distributions
python-dev gfortran libopenblas-dev libopenmpi-dev openmpi-bin tcsh make\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.7\nexport PYTHONHOME=/usr\nexport BLASOPT=\"-lopenblas -lpthread -lrt\"\nexport LAPACK_LIB=$BLASOPT\nexport BLAS_SIZE=4\nexport USE_64TO32=y\n
make nwchem_config NWCHEM_MODULES=\"all python\"\nmake 64_to_32\nmake\n
"},{"location":"Compiling-NWChem.html#nwchem-66-on-fedora-22","title":"NWChem 6.6 on Fedora 22","text":"python-devel gcc-gfortran openblas-devel openblas-serial64 openmpi-devel tcsh make patch\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.7\nexport PYTHONHOME=/usr\nexport BLASOPT=\"-lnwclapack -lopenblas64\"\nexport BLAS_SIZE=8\nexport PATH=/usr/lib64/openmpi/bin:$PATH\nexport LD_LIBRARY_PATH=/usr/lib64/openmpi/lib:$LD_LIBRARY_PATH\nexport USE_ARUR=y\n
make nwchem_config NWCHEM_MODULES=\"all python\"\nmake\n
"},{"location":"Compiling-NWChem.html#nwchem-68-on-centos-71fedora-27","title":"NWChem 6.8 on Centos 7.1/Fedora 27","text":"Once you have added the EPEL repository to your Centos/Fedora/RedHat installation, you can have a more efficient NWChem build.
sudo rpm -Uvh http://download.fedoraproject.org/pub/epel/7/x86_64/Packages/e/epel-release-7-11.noarch.rpm\n
python-devel gcc-gfortran openblas-devel openblas-serial64 openmpi-devel scalapack-openmpi-devel \\\nelpa-openmpi-devel tcsh openssh-clients which tar bzip2\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.7\nexport PYTHONHOME=/usr\nexport USE_64TO32=y\nexport BLAS_SIZE=4\nexport BLASOPT=\"-lopenblas -lpthread -lrt\"\nexport LAPACK_LIB=$BLASOPT\nexport SCALAPACK_SIZE=4\nexport SCALAPACK=\"-L/usr/lib64/openmpi/lib -lscalapack\"\nexport ELPA=\"-I/usr/lib64/gfortran/modules/openmpi -L/usr/lib64/openmpi/lib -lelpa\"\nexport LD_LIBRARY_PATH=/usr/lib64/openmpi/lib/:$LD_LIBRARY_PATH\nexport PATH=/usr/lib64/openmpi/bin/:$PATH\n
cd $NWCHEM_TOP/src \nmake nwchem_config NWCHEM_MODULES=\"all python\" \nmake 64_to_32 \nmake\n
"},{"location":"Compiling-NWChem.html#nwchem-66-on-redhat-6","title":"NWChem 6.6 on RedHat 6","text":"python-devel gcc-gfortran openmpi-devel tcsh make\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.6\nexport PYTHONHOME=/usr\nexport USE_INTERNALBLAS\nexport LD_LIBRARY_PATH=/usr/lib64/openmpi/lib/:$LD_LIBRARY_PATH\nexport PATH=/usr/lib64/openmpi/bin/:$PATH\n
make nwchem_config NWCHEM_MODULES=\"all python\"\nmake\n
"},{"location":"Compiling-NWChem.html#nwchem-66-on-redhat-6-epel-repository","title":"NWChem 6.6 on RedHat 6 & EPEL repository","text":"Once you have added the EPEL repository to you RedHat 6 installation, you can have a more efficient NWChem build. The settings are exactly the same as Centos 7.1
"},{"location":"Compiling-NWChem.html#nwchem-66-on-opensuse-13","title":"NWChem 6.6 on OpenSuse 13","text":"gcc-fortran make python-devel openblas-devel openmpi-devel tcsh\n
export USE_MPI=y\nexport NWCHEM_TARGET=LINUX64\nexport USE_PYTHONCONFIG=y\nexport PYTHONVERSION=2.7\nexport PYTHONHOME=/usr\nexport USE_64TO32=y\nexport BLAS_SIZE=4\nexport BLASOPT=\"-lopenblas -lpthread -lrt\"\nexport PATH=/usr/lib64/mpi/gcc/openmpi/bin:$PATH\nexport LD_LIBRARY_PATH=/usr/lib64/mpi/gcc/openmpi/lib64:$LD_LIBRARY_PATH\nexport PATH=/usr/lib64/openmpi/bin/:$PATH\n
make nwchem_config NWCHEM_MODULES=\"all python\"\nmake 64_to_32\nmake\n
"},{"location":"Compiling-NWChem.html#how-to-mac-platforms","title":"How to: Mac platforms","text":""},{"location":"Compiling-NWChem.html#compilation-of-nwchem-65-release-on-mac-os-x-109-x86_64","title":"Compilation of NWChem 6.5 release on Mac OS X 10.9 x86_64","text":"ruby -e \"$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)\"\n
brew install mpich2\n
export USE_MPI=y\nexport NWCHEM_MODULES=all\nexport NWCHEM_TARGET=MACX64\nexport NWCHEM_TOP=/Users/johndoe/nwchem\n
export CFLAGS_FORGA=\"-DMPICH_NO_ATTR_TYPE_TAGS\"\n
cd /Users/johndoe/nwchem/src\nmake nwchem_config\nmake\n
"},{"location":"Compiling-NWChem.html#compilation-of-nwchem-66-on-mac-os-x-1010-yosemite-x86_64","title":"Compilation of NWChem 6.6 on Mac OS X 10.10 (Yosemite) x86_64","text":""},{"location":"Compiling-NWChem.html#method-1-using-gfortran-from-hpcsfnet-and-mpich-from-macports","title":"Method #1: using gfortran from hpc.sf.net and mpich from macports","text":"sudo port install mpich\nsudo port select mpi mpich-mp-fortran\n
export NWCHEM_TOP=/Users/johndoe/nwchem/\nexport NWCHEM_TARGET=MACX64\nexport USE_MPI=\"y\"\nexport USE_MPIF=\"y\"\nexport USE_MPIF4=\"y\"\nexport CFLAGS_FORGA=\"-DMPICH_NO_ATTR_TYPE_TAGS\"\nexport LIBMPI=\"-lmpifort -lmpi -lpmpi -lpthread\"\nexport BLASOPT=\" \"\n
cd /Users/johndoe/nwchem/src\nmake nwchem_config\nmake\n
"},{"location":"Compiling-NWChem.html#method-2-using-gfortran-and-openmpi-from-brew","title":"Method #2: using gfortran and openmpi from brew","text":" /usr/bin/ruby -e \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)\" \n
brew install open-mpi\n
export USE_MPI=y \nexport NWCHEM_TARGET=MACX64 \nexport NWCHEM_TOP=/Users/johndoe/nwchem \nexport USE_INTERNALBLAS=y\n
export CFLAGS_FORGA \"-DMPICH_NO_ATTR_TYPE_TAGS\"\n
cd /Users/johndoe/nwchem/src \n make nwchem_config` \n make\n
WARNING: Please do not use the Mac OS X default BLAS and LAPACK libraries available (or brew\u2019s veclibfort), since they are causing NWChem to produce erroneous results
"},{"location":"Compiling-NWChem.html#method-3-using-intel-compilers-and-mkl","title":"Method #3: using Intel compilers and MKL","text":"The Intel compilers and MKL work just fine on Mac with the following options:
NWCHEM_TARGET=MACX64\nCC=icc\nFC=ifort\nBLASOPT=\"-mkl -openmp\"\nUSE_OPENMP=T\n
MPICH and ARMCI-MPI work reliably on Mac. See Choosing the ARMCI Library for details on ARMCI-MPI
"},{"location":"Compiling-NWChem.html#how-to-cray-platforms","title":"How-to: Cray platforms","text":"Common environmental variables for building and running on the Cray XT, XE, XC and XK:
% export NWCHEM_TOP=<your path>/nwchem \n % export NWCHEM_TARGET=LINUX64 \n % export NWCHEM_MODULES=all \n % export USE_MPI=y\n % export USE_MPIF=y \n % export USE_MPIF4=y \n % export USE_SCALAPACK=y \n % export USE_64TO32=y \n % export LIBMPI=\" \"\n
% cd $NWCHEM_TOP/src\n % make nwchem_config\n % make 64_to_32\n % make FC=ftn >& make.log\n
The step make 64_to_32
is required only if either SCALAPACK_SIZE or BLAS_SIZE are set equal to 4.
This is a new option available in NWChem 6.6.
Set the environmental variables for compilation:
% export ARMCI_NETWORK=MPI-PR\n
"},{"location":"Compiling-NWChem.html#example-olcf-titan","title":"Example: OLCF Titan","text":"These are variables used for compilation on the OLCF Titan, a Cray XK7 We assume use of Portland Group compilers programming environment (module load PrgEnv-pgi
)
NWCHEM_TARGET=LINUX64 \nARMCI_NETWORK=MPI-PR \nUSE_64TO32=y \nUSE_MPI=y \nBLAS_SIZE=4 \nLAPACK_SIZE=4 \nSCALAPACK_SIZE=4 \nSCALAPACK=-lsci_pgi_mp \nBLASOPT=-lsci_pgi_mp\n
To enable the GPU part, set
TCE_CUDA=y\n
and load the cudatoolkit module
module load cudatoolkit\n
"},{"location":"Compiling-NWChem.html#aries-eg-xc30xc40","title":"Aries, e.g. XC30/XC40","text":""},{"location":"Compiling-NWChem.html#method-1-armci_networkmpi-pr","title":"Method #1: ARMCI_NETWORK=MPI-PR","text":"This is a new option available in NWChem 6.6.
Set the environmental variables for compilation:
% export ARMCI_NETWORK=MPI-PR\n
"},{"location":"Compiling-NWChem.html#example-nersc-edison","title":"Example: NERSC Edison","text":"These are variables used for compilation on NERSC Edison, a Cray XC30, as of October 23rd 2015, when using Intel compilers (i.e. after issuing the commands module swap PrgEnv-gnu PrgEnv-intel
). Very similar settings can be applied to other Cray XC30 computers, such as the UK ARCHER computer
CRAY_CPU_TARGET=sandybridge \nNWCHEM_TARGET=LINUX64 \nARMCI_NETWORK=MPI-PR \nUSE_MPI=y\nSCALAPACK=\"-L$MKLROOT/lib/intel64 -lmkl_scalapack_ilp64 -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential \\\\ \n-lmkl_blacs_intelmpi_ilp64 -lpthread -lm\" \nSCALAPACK_SIZE=8 \nBLAS_SIZE=8 \nBLASOPT=\"-L$MKLROOT/lib/intel64 -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential -lpthread -lm\" \nLD_LIBRARY_PATH=/opt/gcc/4.9.2/snos/lib64:$LD_LIBRARY_PATH \nPATH=/opt/gcc/4.9.2/bin:$PATH \nCRAYPE_LINK_TYPE=dynamic \n
To compile
make nwchem_config \nmake FC=ftn\n
The following env. variables needs to added to the batch queue submission script
MPICH_GNI_MAX_VSHORT_MSG_SIZE=8192\nMPICH_GNI_MAX_EAGER_MSG_SIZE=131027 \nMPICH_GNI_NUM_BUFS=300 \nMPICH_GNI_NDREG_MAXSIZE=16777216 \nMPICH_GNI_MBOX_PLACEMENT=nic \nCOMEX_MAX_NB_OUTSTANDING=6\n
"},{"location":"Compiling-NWChem.html#example-nersc-cori","title":"Example: NERSC Cori","text":"These are variables used for compilation on the Haswell partition of NERSC Edison, a Cray XC40, as of November 6th 2016, when using Intel compilers (i.e. after issuing the commands module swap PrgEnv-gnu PrgEnv-intel
).
export NWCHEM_TARGET=LINUX64 \nexport USE_MPI=y \nexport NWCHEM_TARGET=LINUX64 \nexport ARMCI_NETWORK=MPI-PR \nexport USE_MPI=y \nexport USE_SCALAPACK=y \nexport SCALAPACK=\"-L$MKLROOT/lib/intel64 -lmkl_scalapack_ilp64 -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential \\ \n-lmkl_blacs_intelmpi_ilp64 -lpthread -lm\" \nexport SCALAPACK_SIZE=8 \nexport SCALAPACK_LIB=\"$SCALAPACK\" \nexport BLAS_SIZE=8\nexport BLASOPT=\"-L$MKLROOT/lib/intel64 -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential -lmkl_core -liomp5 -lpthread -ldmapp -lm\" \nexport USE_NOIO=y \nexport CRAYPE_LINK_TYPE=dynamic\n
To compile
make nwchem_config\nmake FC=ftn\n
The following env. variables needs to added to the batch queue submission script
MPICH_GNI_MAX_VSHORT_MSG_SIZE=10000 \nMPICH_GNI_MAX_EAGER_MSG_SIZE=98304 \nMPICH_GNI_NUM_BUFS=300 \nMPICH_GNI_NDREG_MAXSIZE=16777216 \nMPICH_GNI_MBOX_PLACEMENT=nic\nCOMEX_MAX_NB_OUTSTANDING=6\n
"},{"location":"Compiling-NWChem.html#how-to-intel-xeon-phi","title":"How-to: Intel Xeon Phi","text":"This section describes both the newer KNL and older KNC hardware, in reverse chronological order.
NWChem 6.6 (and later versions) support OpenMP threading, which is essential to obtaining good performance with NWChem on Intel Xeon Phi many-core processors. As of November 2016, the development version of NWChem contains threading support in the TCE coupled-cluster codes (primarily non-iterative triples in e.g. CCSD(T)), semi-direct CCSD(T), and plane-wave DFT (i.e. NWPW).
Required for compilation: Intel compilers, version 16+ (17+ is strongly recommended).
Environmental variables required for compilation:
% export USE_KNL=1 \n% export USE_OPENMP=1 \n% export USE_F90_ALLOCATABLE=T \n% export USE_FASTMEM=T\n
The latter two options are required to allocate temporaries in MCDRAM when running in flat mode. Please do not use cache mode for NWChem CCSD(T) codes. Note that using Fortran heap allocations means the memory statistics generated by MA are no longer accurate, but we doubt that anyone has been relying on these anyways.
USE_FASTMEM
requires the memkind library to be installed. An open source version of the memkind library can be downloaded from Github
Side note: With the exception of USE_FASTMEM
, all of the options in the KNL section apply to Intel Xeon processors as well. OpenMP is certainly useful on multicore processors as a way to reduce the communication overhead and memory footprint of NWChem.
When using MKL and Intel 16+, please use the following settings
% export BLASOPT =\"-mkl -qopenmp\" \n% export SCALAPACK=\"-mkl -qopenmp -lmkl_scalapack_ilp64 -lmkl_blacs_intelmpi_ilp64\"\n
The command require for compilation is
$ make FC=ifort CC=icc\n
Environmental variables recommended at runtime (assuming Intel OpenMP and MPI):
% export I_MPI_PIN=1 \n% export I_MPI_DEBUG=4 \n% export KMP_BLOCKTIME=1 \n% export KMP_AFFINITY=scatter,verbose\n
Once you are comfortable with the affinity settings, you can use these instead:
% export I_MPI_PIN=1\n% export KMP_BLOCKTIME=1 \n% export KMP_AFFINITY=scatter\n
Please consult the Intel or similar documentation regarding MPI+OpenMP affinity on your system. This is a complicated issue that depends on the software you use; it is impossible to document all the different combinations of MPI and OpenMP implementations that may be used with NWChem.
If you encounter segfaults not related to ARMCI, you may need to set the following or recompile with -heap-arrays
. Please create thread in the Forum if you observe this.
% ulimit -s unlimited \n% export OMP_STACKSIZE=32M\n
NWChem 6.5 (and later versions) offers the possibility of using Intel Xeon Phi hardware to perform the most computationally intensive part of the CCSD(T) calculations (non-iterative triples corrections).
Required for compilation: Intel Composer XE version 14.0.3 (or later versions)
Environmental variables required for compilation:
% export USE_OPENMP=1 \n% export USE_OFFLOAD=1\n
When using MKL and Intel Composer XE version 14 (or later versions), please use the following settings
% export BLASOPT =\"-mkl -openmp -lpthread -lm\" \n% export SCALAPACK=\"-mkl -openmp -lmkl_scalapack_ilp64 -lmkl_blacs_intelmpi_ilp64 -lpthread -lm\"\n
The command require for compilation is
$ make FC=ifort \n
From our experience using the CCSD(T) TCE module, we have determined that the optimal configuration is to use a single Global Arrays ranks for offloading work to each Xeon Phi card.
On the EMSL cascade system, each node is equipped with two coprocessors, and NWChem can allocate one GA ranks per coprocessor. In the job scripts, we recommend spawning just 6 GA ranks for each node, instead of 16 (number that would match the number of physical cores). Therefore, 2 out 6 GA ranks assigned to a particular compute node will offload to the coprocessors, while the remaining 6 cores while be used for traditional CPU processing duties. Since during offload the host core is idle, we can double the number of OpenMP threads for the host (OMP_NUM_THREADS=4
) in order to fill the idle core with work from another GA rank (4 process with 4 threads each will total 16 threads on each node).
NWChem itself automatically detects the available coprocessors in the system and properly partitions them for optimal use, therefore no action is required other than specifying the number of processes on each node (using the appropriate mpirun/mpiexec options) and setting the value of OMP_NUM_THREADS
as in the example above.
Environmental variables useful at run-time:
OMP_NUM_THREADS is needed for the thread-level parallelization on the Xeon CPU hosts
% export OMP_NUM_THREADS=4\n
MIC_USE_2MB_BUFFER greatly improve communication between host and Xeon Phi card
% export MIC_USE_2MB_BUFFER=16K\n
Very important: when running on clusters equipped with Xeon Phi and Infiniband network hardware (requiring ARMCI_NETWORK=OPENIB
), the following env. variable is required, even in the case when the Xeon Phi hardware is not utilized.
% export ARMCI_OPENIB_DEVICE=mlx4_0\n
"},{"location":"Compiling-NWChem.html#how-to-ibm-platforms","title":"How-to: IBM platforms","text":"The following environment variables need to be set
% export NWCHEM_TOP=<your path>/nwchem\n% export NWCHEM_TARGET=BGL\n% export ARMCI_NETWORK=BGMLMPI\n% export BGLSYS_DRIVER=/bgl/BlueLight/ppcfloor\n% export BGLSYS_ROOT=${BGLSYS_DRIVER}/bglsys\n% export BLRTS_GNU_ROOT=${BGLSYS_DRIVER}/blrts-gnu\n% export BGDRIVER=${BGLSYS_DRIVER}\n% export BGCOMPILERS=${BLRTS_GNU_ROOT}/bin\n% export USE_MPI=y\n% export LARGE_FILES=TRUE\n% export MPI_LIB=${BGLSYS_ROOT}/lib\n% export MPI_INCLUDE=${BGLSYS_ROOT}/include\n% export LIBMPI=\"-lfmpich_.rts -lmpich.rts -lmsglayer.rts -lrts.rts -ldevices.rts\"\n% export BGMLMPI_INCLUDE=/bgl/BlueLight/ppcfloor/bglsys/include\n% export BGMLLIBS=/bgl/BlueLight/ppcfloor/bglsys/lib\n
To compile, the following commands should be used:
% cd $NWCHEM_TOP/src\n% make nwchem_config\n% make FC=blrts_xlf >& make.log\n
The following environment variables need to be set
% export NWCHEM_TARGET=BGP\n% export ARMCI_NETWORK=DCMFMPI\n% export MSG_COMMS=DCMFMPI\n% export USE_MPI=y\n% export LARGE_FILES=TRUE\n% export BGP_INSTALLDIR=/bgsys/drivers/ppcfloor\n% export BGCOMPILERS=/bgsys/drivers/ppcfloor/gnu-linux/bin\n% export BGP_RUNTIMEPATH=/bgsys/drivers/ppcfloor/runtime\n% export ARMCIDRV=${BGP_INSTALLDIR}\n% export BGDRIVER=${ARMCIDRV}\n% export MPI_LIB=${BGDRIVER}/comm/lib\n% export MPI_INCLUDE=${BGDRIVER}/comm/include\n% export LIBMPI=\"-L${MPI_LIB} -lfmpich_.cnk -lmpich.cnk -ldcmfcoll.cnk -ldcmf.cnk -lpthread -lrt -L${BGP_RUNTIMEPATH}/SPI -lSPI.cna\"\n% export BGMLMPI_INCLUDE=${MPI_INCLUDE}\n
To compile, the following commands should be used:
% cd $NWCHEM_TOP/src\n% make nwchem_config\n% make FC=bgxlf >& make.log\n
The following environment variables need to be set
% export NWCHEM_TARGET=BGQ\n% export USE_MPI=y\n% export USE_MPIF=y\n% export USE_MPIF4=y\n% export MPI_INCLUDE=/bgsys/drivers/ppcfloor/comm/xl/include\n% export LIBMPI=\" \"\n% export BLASOPT=\"/opt/ibmmath/essl/5.1/lib64/libesslbg.a -llapack -lblas -Wl,-zmuldefs \"\n% export BLAS_LIB=\"/opt/ibmmath/essl/5.1/lib64/libesslbg.a -zmuldefs \"\n% export BLAS_SIZE=4\n% export USE_64TO32=y\n% set path=(/bgsys/drivers/ppcfloor/gnu-linux/bin/ $path)\n% export ARMCI_NETWORK=MPI-TS\n% export DISABLE_GAMIRROR=y\n
To compile, the following commands should be used:
% module load bgq-xl\n% make nwchem_config\n% make 64_to_32 >& make6t3.log\n% make >& make.log\n
WARNING: This is just a baseline port that we have tested and validated against our QA suite. There is large room for improvement both for serial performance (compiler options) and parallel performance (use of alternative ARMCI_NETWORKs other than MPI-TS)
The following environment variables should be set:
% export NWCHEM_TOP=<your path>/nwchem\n% export NWCHEM_TARGET=IBM64\n% export ARMCI_NETWORK=MPI-MT\n% export OBJECT_MODE=64\n% export USE_MPI=y\n
To compile, the following commands should be used:
% cd $NWCHEM_TOP/src\n% make nwchem_config\n% make FC=xlf >& make.log\n
"},{"location":"Compiling-NWChem.html#how-to-commodity-clusters-with-infiniband","title":"How-to: Commodity clusters with Infiniband","text":"Common environmental variables for building and running on most Infiniband clusters are:
export NWCHEM_TOP=<your path>/nwchem \n export NWCHEM_TARGET=LINUX64 \n export NWCHEM_MODULES=\"all\" \n export USE_MPI=y \n export USE_MPIF=y \n export USE_MPIF4=y \n
export ARMCI_NETWORK=OPENIB \n export IB_INCLUDE=<Location of Infiniband libraries>/include \n
cd $NWCHEM_TOP/src \n\n make nwchem_config \n\n make >& make.log\n
"},{"location":"Compiling-NWChem.html#how-to-commodity-clusters-with-intel-omni-path","title":"How-to: Commodity clusters with Intel Omni-Path","text":" export ARMCI_NETWORK=MPI-PR\n
The following setting is needed to avoid run-time errors
export PSM2_MEMORY=large\n
More details on this topic discussed a
https://github.com/nwchemgit/nwchem/issues/284
https://github.com/GlobalArrays/ga/issues/126
The current recommended approach for building a NWChem binary for a Windows platform is to build with the MinGW/Mingw32 environment. MinGW can be installed using a semi-automatic tool mingw-get-setup.exe (http://sourceforge.net/projects/mingw/files/Installer/). A basic MinGW installation is required (Basic Setup), plus pthreads-32, mingw32-gcc-fortran-dev of \u201cAll Packages\u201d and the MSYS software. More detailed MinGW/MSYS installation tips can be found in the following forum discussions
https://nwchemgit.github.io/Special_AWCforum/sp/id5124.html https://nwchemgit.github.io/Special_AWCforum/sp/id6628.htmlAnother essential prerequisite step is to install Mpich, which can be found at the following URL
http://www.mpich.org/static/tarballs/1.4.1p1/mpich2-1.4.1p1-win-ia32.msi
Once Mpich is installed, you should copy the installation files to a different location to avoid the failure of the tools compilation. You can use the following command
% cp -rp /c/Program\\ Files\\ \\(x86\\)/MPICH2/ ~/\n
You might want to install Python, too, by using the following installation file
https://www.python.org/ftp/python/2.7.8/python-2.7.8.msi
Next, you need to set the env.
% export NWCHEM_TOP=~/nwchem-6.8 \n% export NWCHEM_TARGET=LINUX\n% export USE_MPI=y \n% export MPI_LOC=~/MPICH2 \n% export MPI_INCLUDE=$MPI_LOC/include \n% export MPI_LIB=$MPI_LOC/lib \n% export LIBMPI=\"-lfmpich2g -lmpi\" \n% export PYTHONVERSION=27 \n% export DEPEND_CC=gcc\n% export USE_INTERNALBLAS=y\n% export NWCHEM_MODULES=all\n
Then, you can start the compilation by typing
% cd $NWCHEM_TOP/src \n% make nwchem_config \n% make FC=gfortran DEPEND_CC=gcc\n
"},{"location":"Compiling-NWChem.html#msys2","title":"MSYS2","text":"https://github.com/msys2/msys2/wiki/MSYS2-installation
pacman -Syuu\npacman -S mingw32/mingw-w64-i686-gcc-fortran\npacman -S mingw32/mingw-w64-i686-python3\npacman -S msys/make\n
"},{"location":"Compiling-NWChem.html#wsl-on-windows-10","title":"WSL on Windows 10","text":"A good alternative only on Windows 10 is Windows Subsystem for Linux (WSL). This option gives the best performance on Windows when WLS 2 is used. WSL allows you to obtain a functional command line Linux 64-bit NWChem environment, either by compiling the NWChem code from scratch or by using the Ubuntu precompiled NWChem package. Here is a link to the install guide
https://learn.microsoft.com/en-us/windows/wsl/install
Once Ubuntu is installed, the quickest method to install NWChem is by fetching the Ubuntu NWChem package by typing
sudo apt install nwchem\n
"},{"location":"Compiling-NWChem.html#general-site-installation","title":"General site installation","text":"The build procedures outlined above will allow use of NWChem within the NWChem directory structure. The code will look for the basis set library file in a default place within that directory structure. To install the code in a general, public place (e.g., /usr/local/NWChem) the following procedure can be applied:
mkdir /usr/local/NWChem\nmkdir /usr/local/NWChem/bin\nmkdir /usr/local/NWChem/data\n
cp $NWCHEM_TOP/bin/${NWCHEM_TARGET}/nwchem /usr/local/NWChem/bin\ncd /usr/local/NWChem/bin\nchmod 755 nwchem\n
cd $NWCHEM_TOP/src/basis\ncp -r libraries /usr/local/NWChem/data\ncd $NWCHEM_TOP/src/\ncp -r data /usr/local/NWChem\ncd $NWCHEM_TOP/src/nwpw\ncp -r libraryps /usr/local/NWChem/data\n
$HOME
directory is probably the best plan for new installations. Users would have to issue the following command prior to using NWChem:ln -s /usr/local/NWChem/data/default.nwchemrc $HOME/.nwchemrc\n
Contents of the default.nwchemrc
file based on the above information should be:
nwchem_basis_library /usr/local/NWChem/data/libraries/\nnwchem_nwpw_library /usr/local/NWChem/data/libraryps/\nffield amber\namber_1 /usr/local/NWChem/data/amber_s/\namber_2 /usr/local/NWChem/data/amber_q/\namber_3 /usr/local/NWChem/data/amber_x/\namber_4 /usr/local/NWChem/data/amber_u/\nspce /usr/local/NWChem/data/solvents/spce.rst\ncharmm_s /usr/local/NWChem/data/charmm_s/\ncharmm_x /usr/local/NWChem/data/charmm_x/\n
Of course users can copy this file instead of making the symbolic link described above and change these defaults at their discretion.
It is can also be useful to use the NWCHEM_BASIS_LIBRARY
environment variable when testing a new installation when an old one exists. This will allow you to overwrite the value of nwchem_basis_library
in your .nwchemrc
file and point to the new basis library. For example:
% export NWCHEM_BASIS_LIBRARY=\"$NWCHEM/data-5.0/libraries/\"\n
Do not forget the trailing \u201c/\u201d.
"},{"location":"Constraints.html","title":"Constraints","text":"The constraints directive allows the user to specify which constraints should be imposed on the system during the analysis of potential energy surface. Currently such constraints are limited to fixed atom positions and harmonic restraints (springs) on the distance between the two atoms. The general form of constraints block is presented below:
CONSTRAINTS [string name ] \\ \n [clear] \\ \n [enable||disable] \\ \n [fix atom <integer list>] \\ \n [spring bond <integer atom1> <integer atom2> <real k> <real r0> ] \n [spring dihedral <integer atom1> <integer atom2> <integer atom3> <integer atom4> <real k> <real phi0 in degrees> ] \n [spring bondings <real K0> <real gamma0> [<real ca> <integer atom1a> <integer atom2a> \n <real cb> <integer atom1b> <integer atom2b>\n ...]]\n [penalty pbondings <real K0> <real gcut0> <real gamma0> [<real ca> <integer atom1a> <integer atom2a> \n <real cb> <integer atom1b> <integer atom2b>\n ...]]\n END\n
The keywords are described below
name
- optional keyword that associates a name with a given set of constraints. Any unnamed set of constraints will be given a name default and will be automatically loaded prior to a calculation. Any constraints with the name other than default will have to be loaded manually using the SET directive. For example, CONSTRAINTS one \n spring bond 1 3 5.0 1.3\n fix atom 1 \n END \n
the above constraints can be loaded using the following set directive that assigns the name one
as the current constraint
set constraints one \n .... \n task ....\n
clear
- destroys any prior constraint information. This may be useful when the same constraints have to be redefined or completely removed from the runtime database.enable||disable
- enables or disables without actually removing the information from the runtime database.fix atom
- fixes atom positions during geometry optimization. This directive requires an integer list that specifies which atoms are to be fixed. This directive can be repeated within a given constraints block. To illustrate the use fix atom
directive let us consider a situation where we would like to fix atoms 1, 3, 4, 5, 6 while performing an optimization on some hypothetical system. There are actually several ways to enter this particular constraint. constraints \n fix atom 1 3 4 5 6 \n end\n
constraints \n fix atom 1 3:6 \n end\n
fix atom
directives: constraints \n fix atom 1 \n fix atom 3:6 \n end\n
spring bond
< i j k r0 > - places a spring with a spring constant k and equilibrium length r0 between atoms i and j (all in atomic units). Please note that this type of constraint adds an additional term to the total energy expressionE = Etotal + \u00bd k (rij - r0)2
This additional term forces the distance between atoms i and j to be in the vicinity of r0 but never exactly that. In general the spring energy term will always have some nonzero residual value, and this has to be accounted for when comparing total energies. The spring bond
directive can be repeated within a given constraints block. If the spring between the same pair of atoms is defined more than once, it will be replaced by the latest specification in the order it appears in the input block.
spring dihedral places a spring with....
spring bondings places a spring with....
penalty pbondings places a penalty function with....
Dockerfile recipes are available at the repository https://github.com/nwchemgit/nwchem-dockerfiles
Docker images of the 7.2.0 release are hosted at https://ghcr.io at the link https://github.com/nwchemgit/nwchem-dockerfiles/pkgs/container/nwchem-720 and can be used with the following command
docker run --shm-size 256m -u `id -u` --rm -v [host_system_dir]:/data ghcr.io/nwchemgit/nwchem-dev input.nw\n
For example, the following command can be used when starting from the /tmp
directory:
docker run --shm-size 256m -u `id -u` --rm -v /tmp:/data ghcr.io/nwchemgit/nwchem-dev /data/input.nw\n
where the input file input.nw
is located in the /tmp
directory.
The following docker command will run NWChem in parallel using three processes
docker run --shm-size 256m -u `id -u` --rm --entrypoint='mpirun' -v /tmp:/data ghcr.io/nwchemgit/nwchem-dev -np 2 nwchem /data/xvdw.nw\n
This example uses the input file xvdw.nw
available on the host directory /tmp
The associated Dockerfile is available at https://github.com/nwchemgit/nwchem-dockerfiles/blob/master/nwchem-dev/Dockerfile
"},{"location":"Containers.html#singularity","title":"Singularity","text":"Singularity recipes for NWChem are available at. https://github.com/edoapra/nwchem-singularity
Singularity images are available at https://cloud.sylabs.io/library/edoapra or at ghcr.io/edoapra/nwchem-singularity/nwchem-dev.ompi41x
"},{"location":"Containers.html#instruction-for-running-on-emsl-tahoma","title":"Instruction for running on EMSL Tahoma","text":"Instructions for running NWChem Singularity images on EMSL tahoma
#!/bin/bash\n#SBATCH -N 2\n#SBATCH -t 00:29:00\n#SBATCH -A allocation_name\n#SBATCH --ntasks-per-node 36\n#SBATCH -o singularity_library.output.%j\n#SBATCH -e ./singularity_library.err.%j\n#SBATCH -J singularity_library\n#SBATCH --export ALL\nsource /etc/profile.d/modules.sh\nexport https_proxy=http://proxy.emsl.pnl.gov:3128\nmodule purge\nmodule load gcc/9.3.0\nmodule load openmpi/4.1.4\nSCRATCH=/big_scratch\n# pull new image to the current directory\nsingularity pull -F --name ./nwchems_`id -u`.img oras://ghcr.io/edoapra/nwchem-singularity/nwchem-dev.ompi41x:latest\n# copy image from current directory to local /big_scratch/ on compute nodes\nsrun -N $SLURM_NNODES -n $SLURM_NNODES cp ./nwchems_`id -u`.img $SCRATCH/nwchems.img\n# basis library files\nexport SINGULARITYENV_NWCHEM_BASIS_LIBRARY=/cluster/apps/nwchem/nwchem/src/basis/libraries/\n# use /big_scratch as scratch_dir\nexport SINGULARITYENV_SCRATCH_DIR=$SCRATCH\n# run\nsrun --mpi=pmi2 -N $SLURM_NNODES -n $SLURM_NPROCS singularity exec --bind $SCRATCH $SCRATCH/nwchems.img nwchem \"file name\"\n
"},{"location":"Containers.html#podman","title":"Podman","text":"Docker images could be run using podman commands
podman run --rm --shm-size 256m --volume /tmp:/data -i -t ghcr.io/nwchemgit/nwchem-dev/amd64 xvdw.nw\n
"},{"location":"Current_events.html","title":"Current events","text":""},{"location":"Current_events.html#emsl-arrows-an-easier-way-to-use-nwchem","title":"EMSL Arrows - An Easier Way to Use NWChem","text":"Are you just learning NWChem and would like to have an easy way to generate input decks, check your output decks against a large database of calculations, perform simple thermochemistry calculations, calculate the NMR and IR spectra of modest size molecule, or just try out NWChem before installing it? EMSL Arrows scientific service can help. A Web API to EMSL Arrows is now available for Alpha testing. Click on this link. For more information contact Eric Bylaska (eric.bylaska@pnnl.gov).
\u2018 EMSL Arrows API\u2018
Besides using the Web API you can also use EMSL Arrows by just sending a simple email. Try it out by clicking here to send an email to arrows@emsl.pnnl.gov.
EMSL arrows is a scientific service that uses NWChem and chemical computational databases to make materials and chemical modeling accessible via a broad spectrum of digital communications including posts to web APIs, social networks, and traditional email. Molecular modeling software has previously been extremely complex, making it prohibitive to all but experts in the field, yet even experts can struggle to perform calculations. This service is designed to be used by experts and non-experts alike. Experts will be able carry out and keep track of large numbers of complex calculations with diverse levels of theories present in their workflows. Additionally, due to a streamlined and easy-to-use input, non-experts will be able to carry out a wide variety of molecular modeling calculations previously not accessible to them.
You do not need to be a molecular modeling expert to use EMSL Arrows. It is very easy to use. You simply email chemical reactions to arrows@emsl.pnnl.gov and then an email is sent back to you with thermodynamic, reaction pathway (kinetic), spectroscopy, and other results. There are currently 42,000+ calculations in the EMSL Arrows database and it is growing every day. If an EMSL Arrows request requires a calculation not already in the database, then it will automatically start the calculation on a small number of freely available computers and send back the results when finished. More information can be found at Arrows. We would like thank the DOD SERDP program and the DOE OS OBER EMSL project for their support.
Tutorial on YouTube (mobile devices)
"},{"location":"Current_events.html#nwchem-66-has-been-released","title":"NWChem 6.6 has been released","text":"NWChem team is pleased to announce the 6.6 release. We would like to express our sincere thanks to all the authors and contributors who made this release possible. This release includes several new capabilities and bug fixes. The key features of NWChem 6.6 include:
USE_NOIO=y
) of Semi-direct MP2In preparation for next-generation supercomputer Summit, the Oak Ridge Leadership Computing Facility (OLCF) selected 13 partnership projects into its Center for Accelerated Application Readiness (CAAR) program. A collaborative effort of application development teams and staff from the OLCF Scientific Computing group, CAAR is focused on redesigning, porting, and optimizing application codes for Summit\u2019s hybrid CPU\u2013GPU architecture. Researchers from Pacific Northwest National Laboratory and IBM Almaden Research Center aim to scale the NWChem application to utilize GPU accelerators to provide benchmark energies to allow for accurate parameterization of force fields for glycans as well as develop and disseminate an open-source database of accurate glycan conformational energies. New implementations of high-accuracy methods capable of taking advantage of Summit computational resources will significantly shift the system-size limit tractable by very accurate yet expensive methods accounting for the inter-electron correlation effects. https://www.olcf.ornl.gov/caar/
"},{"location":"Current_events.html#nwchem-tutorial-at-nsccs","title":"NWChem Tutorial at NSCCS","text":"Two day workshop (April 21st-22nd 2015) will introduce researchers in the field of computational chemistry to the NWChem software package. NWChem aims to provide its users with computational chemistry tools that can handle (bio)molecules, nanostructures, and solid-state from quantum to classical, and all combinations thereof. https://web.archive.org/web/20150911003831/https://www.nsccs.ac.uk/NWChem2015.php
"},{"location":"Current_events.html#emsl-named-an-intel-parallel-computing-center","title":"EMSL Named an Intel Parallel Computing Center","text":"Intel has named EMSL, located at Pacific Northwest National Laboratory, as an Intel Parallel Computing Center. As an Intel PCC, EMSL\u2019s scientific computing team will work with Intel to modernize the codes of NWChem to take advantage of technological advancements in computers. NWChem is one of the Department of Energy\u2019s premier open-source computational chemistry software suites and has been developed at EMSL. The modernized codes will be applicable to several science drivers including studies of aerosol particles, soil chemistry, biosystems, hormone-cofactor functionality in proteins, ionic liquids in cells, spectroscopies, new materials and large-scale reaction mechanisms. https://web.archive.org/web/20170502154826/http://www.emsl.pnl.gov/emslweb/news/emsl-named-intel%C2%AE-parallel-computing-center
"},{"location":"Current_events.html#nwchem-sc2014-paper","title":"NWChem SC2014 paper","text":"This paper presents the implementation and performance of the highly accurate CCSD(T) quantum chemistry method on the Intel Xeon Phi coprocessor within the context of the NWChem computational chemistry package. The widespread use of highly correlated methods in electronic structure calculations is contingent upon the interplay between advances in theory and the possibility of utilizing the ever-growing computer power of emerging heterogeneous architectures. We discuss the design decisions of our implementation as well as the optimizations applied to the compute kernels and data transfers between host and coprocessor. We show the feasibility of adopting the Intel Many Integrated Core Architecture and the Intel Xeon Phi coprocessor for developing efficient computational chemistry modeling tools. Remarkable scalability is demonstrated by benchmarks. Our solution scales up to a total of 62560 cores with the concurrent utilization of Intel Xeon processors and Intel Xeon Phi coprocessors. New CCSD(T) implementation is available in the 6.5 release of NWchem http://sc14.supercomputing.org/schedule/event_detail-evid=pap217.html
"},{"location":"Current_events.html#nwchem-65-has-been-released","title":"NWChem 6.5 has been released","text":"NWChem team is pleased to announce the 6.5 release. We would like to express our sincere thanks to all the authors and contributors who made this release possible. This release includes several new powerful capabilities.
On May 17, 2013 NWChem version 6.3 was released.
"},{"location":"Current_events.html#nwchem-highlighted-in-doe-pulse","title":"NWChem highlighted in DOE Pulse","text":"NWChem\u2019s efforts to solve chemistry challenges with high performance computing were highlighted in DOE Pulse.
"},{"location":"Current_events.html#nwchem-611-bug-fix-release-now-available","title":"NWChem 6.1.1 bug fix release now available","text":"On June 26, 2012 NWChem version 6.1.1 was released. This version is solely a bug fix release with the same functionality as NWChem 6.1.
"},{"location":"Current_events.html#nwchem-schedules-tutorials-and-hands-on-training","title":"NWChem Schedules Tutorials and Hands-On Training","text":"Centers or sites interested in hosting a workshop or tutorial with or without hands-on training, please contact nwchemgit@gmail.com
Past tutorial/training sessions:
On January 27, 2012 NWChem version 6.1 was released. An overview of the changes, added functionality, and bug fixes in this latest version can be found.
"},{"location":"Current_events.html#pccp-perspective-published","title":"PCCP Perspective Published","text":"Developers of NWChem at EMSL were the lead authors on a perspective article in the highly ranked PCCP journal on utilizing high performance computing for chemistry and parallel computational chemistry. The article and cover were published in Phys. Chem. Chem. Phys. 12, 6896 (2010).
"},{"location":"Current_events.html#nwchem-released-as-open-source","title":"NWChem released as open-source","text":"On September 30, 2010 NWChem version 6.0 was released. This version marks a transition of NWChem to an open-source software package. The software is being released under the Educational Community License 2.0 (ECL 2.0).
New functionality, improvements, and bug fixes include:
The Dynamical Nucleation Theory Monte Carlo (DNTMC) module utilizes Dynamical Nucleation Theory (DNT) to compute monomer evaporation rate constants at a given temperature. The reactant is a molecular cluster of i rigid monomers while the product is a molecular cluster with i-1 monomers plus a free monomer. A Metropolis Monte Carlo (MC) methodology is utilized to sample the configurational space of these i rigid monomers. Both homogenous and heterogenous clusters are supported.
"},{"location":"DNTMC.html#subgroups","title":"SubGroups","text":"The DNTMC module supports the use of subgroups in the MC simulations. The number of subgroups is defined in the input through a set directive:
set subgroup_number <integer number>\n
where the number of subgroups requested is the argument. The number of processors that each subgroup has access to is determined by Total/subgroup_number. A separate MC simulation is performed within each subgroup. To use this functionality, NWChem must be compiled with the USE_SUBGROUPS environmental variable set.
Each MC simulation starts at a different starting configuration, which is equally spaced along the reaction coordinate. The statistical distributions which these MC simulations produce are averaged to form the final statistical distribution. Output from these subgroups consists of various files whose names are of the form (*.#num
). These files include restart files and other data files. The NWChem runtime database (RTDB) is used as input for these subgroups and must be globally accessible (set through the Permanent_Dir directive) to all processes.
The input block has the following form:
DNTMC \n [nspecies <integer number>] \n [species <list of strings name[nspecies]] \n [nmol <list of integers number[nspecies]>] \n\n [temp <real temperature>] \n [rmin <real rmin>] \n [rmax <real rmax>] \n [nob <integer nob>] \n [mcsteps <integer number>] \n [tdisp <real disp>] \n [rdisp <real rot>] \n [rsim || rconfig] \n [mprnt <integer number>] \n [convergence <real limit>] \n [norestart] \n [dntmc_dir <string directory>] \n\n [print &&|| noprint] \n\n [procrestart <integer number>] \n END\n
"},{"location":"DNTMC.html#definition-of-monomers","title":"Definition of Monomers","text":"Geometry information is required for each unique monomer (species). See the geometry input section 6 for more information. A unique label must be given for each monomer geometry. Additionally, the noautosym and nocenter options are suggested for use with the DNTMC module to prevent NWChem from changing the input geometries. Symmetry should also not be used since cluster configurations will seldom exhibit any symmetry; although monomers themselves may exhibit symmetry.
GEOMETRY [<string name species_1>] noautosym nocenter ... \n ... \n symmetry c1 \n END \n\n GEOMETRY [<string name species_2>] noautosym nocenter ... \n ... \n symmetry c1 \n END \n\n ...\n
The molecular cluster is defined by the number of unique monomers (nspecies). The geometry labels for each unique monomer is given in a space delimited list (species). Also required are the number of each unique monomer in the molecular cluster given as a space delimited list (nmol). These keywords are required and thus have no default values.
[nspecies <integer number>] \n [species <list of strings name[nspecies]] \n [nmol <list of integers number[nspecies]>]\n
An example is shown for a 10 monomer cluster consisting of a 50/50 mixture of water and ammonia.
"},{"location":"DNTMC.html#dntmc-runtime-options","title":"DNTMC runtime options","text":"Several options control the behavior of the DNTMC module. Some required options such as simulation temperature (temp), cluster radius (rmin and rmax), and maximum number of MC steps (mcsteps) are used to control the MC simulation.
[temp <real temperature>]\n
This required option gives the simulation temperature in which the MC simulation is run. Temperature is given in kelvin.
[rmin <real rmin>] \n [rmax <real rmax>] \n [nob <integer nob>]\n
These required options define the minimum and maximum extent of the projected reaction coordinate (The radius of a sphere centered at the center of mass). Rmin should be large enough to contain the entire molecular cluster of monomers and Rmax should be large enough to include any relevant configurational space (such as the position of the reaction bottleneck). These values are given in Angstroms.
The probability distributions obtain along this projected reaction coordinate has a minimum value of Rmin and a maximum value of Rmax. The distributions are created by chopping this range into a number of smaller sized bins. The number of bins (nob) is controlled by the option of the same name.
[mcsteps <integer number>] \n [tdisp <real disp default 0.04>] \n [rdisp <real rot default 0.06>] \n [convergence <real limit default 0.00>]\n
These options define some characteristics of the MC simulations. The maximum number of MC steps (mcsteps) to take in the course of the calculation run is a required option. Once the MC simulation has performed this number of steps the calculation will end. This is a per Markov chain quantity. The maximum translational step size (tdisp) and rotational step size (rdisp) are optional inputs with defaults set at 0.04 Angstroms and 0.06 radians, respectively. The convergence keyword allows the convergence threshold to be set. The default is 0.00 which effectively turns off this checking. Once the measure of convergence goes below this threshold the calculation will end.
[rsim || rconfig]
These optional keywords allow the selection of two different MC sampling methods. rsim selects a Metropolis MC methodology which samples configurations according to a Canonical ensemble. The rconfig keyword selects a MC methodology which samples configurations according to a derivative of the Canonical ensemble with respect to the projected reaction coordinate. These keywords are optional with the default method being rconfig.
[mprnt <integer number default 10>] \n [dntmc_dir <string directory default ./>] \n [norestart]\n
These three options define some of the output and data analysis behavior. mprnt is an option which controls how often data analysis occurs during the simulation. Currently, every mprnt*nob
MC steps data analysis is performed and results are output to files and/or to the log file. Restart files are also written every mprnt number of MC steps during the simulation. The default value is 10. The keyword dntmc_dir allows the definition of an alternate directory to place DNTMC specific ouputfiles. These files can be very large so be sure enough space is available. This directory should be accessible by every process (although not necessarily globally accessible). The default is to place these files in the directory which NWChem is run (./). The keyword norestart turns off the production of restart files. By default restart files are produced every mprnt number of MC steps.
The DNTMC module supports the use of PRINT and NOPRINT Keywords. The specific labels which DNTMC recognizes are included below.
Name Print Level Description \u201cdebug\u201d debug Some debug information written in Output file. \u201cinformation\u201d none Some information such as energies and geometries. \u201cmcdata\u201d low Production of a set of files (Prefix.MCdata.#num
). These files are a concatenated list of structures, Energies, and Dipole Moments for each accepted configuration sampled in the MC run. \u201calldata\u201d low Production of a set of files (Prefix.Alldata.#num
). These files include the same information as MCdata files. However, they include ALL configurations (accepted or rejected). \u201cmcout\u201d debug - low Production of a set of files (Prefix.MCout.#num
). These files contain a set of informative and debug information. Also included is the set of information which mirrors the Alldata files. \u201cfdist\u201d low Production of a file (Prefix.fdist
) which contains a concatenated list of distributions every mprnt*100
MC steps. \u201ctimers\u201d debug Enables some timers in the code. These timers return performance statistics in the output file every time data analysis is performed. Two timers are used. One for the mcloop itself and one for the communication step.
Several output files are available in the DNTMC module. This section defines the format for some of these files.
*.fdist
This file is a concatenated list of radial distribution functions printed out every mprnt MC steps. Each distribution is normalized (sum equal to one) with respect to the entire (all species) distribution. The error is the RMS deviation of the average at each point. Each entry is as follows:
[1] # Total Configurations \n [2] Species number # \n [3](R coordinate in Angstroms) (Probability) (Error) \n [Repeats nob times] \n [2 and 3 Repeats for each species]\n [4] *** separator. \n ``` \n2. `*.MCdata.#` \n\n This file is a concatenated list of accepted configurations. Each\n file corresponds to a single Markov chain. The dipole is set to zero\n for methods which do not produce a dipole moment with energy\n calculations. Rsim is either the radial extent of the cluster\n (r-config) or the simulation radius (r-simulation). Each entry is as\n follows: \n
[1] (Atomic label) (X Coord.) (Y Coord.) (Z Coord.) \n[1 Repeats for each atom in the cluster configuration, units are in\nangstroms] \n[2] Ucalc = # hartree \n[3] Dipole = (X) (Y) (Z) au\n[4] Rsim = # Angstrom \n[1 through 4 repeats for each accepted configuration]\n
3. `*.MCout.#` \n\n This file has the same format and information content as the MCdata\n file except that additional output is included. This additional\n output includes summary statistics such as acceptance ratios,\n average potential energy, and average radius. The information\n included for accepted configurations does not include dipole moment\n or radius. \n\n4. `*.MCall.#` \n\n This file has the same format as the MCdata file expect that it\n includes information for all configurations for which an energy is\n determined. All accepted and rejected configurations are included in\n this file. \n\n5. `*.restart.#` \n\n This file contains the restart information for each subgroup. Its\n format is not very human readable but the basic fields are described\n in short here. \n
Random number seed Potential energy in hartrees\nSum of potential energy\nAverage potential energy\nSum of the squared potential energy\nSquared potential energy Dipole moment in au (x) (Y) (Z)\nRmin and Rmax Rsim (Radius corresponds to r-config or r-sim methods)\nArray of nspecies length, value indicates the number of each type of monomer which lies at radius Rsim from the center of mass [r-simulation sets these to zero]\nSum of Rsim Average of Rsim\nNumber of accepted translantional moves\nNumber of accepted rotational moves Number of accepted volume moves\nNumber of attempted moves (volume) (translational) (rotational)\nNumber of accepted moves (Zero)\nNumber of accepted moves (Zero)\nNumber of MC steps completed\n[1] (Atom label) (X Coord.) (Y Coord.) (Z Coord.)\n[1 repeats for each atom in cluster configurations, units are in angstroms]\n[2] Array of nspecies length, number of configurations in bin\n[3] Array of nspecies length, normalized number of configurations in each bin\n[4] (Value of bin in Angstroms) (Array of nspecies length, normalized probability of bin)\n[2 through 4 repeats nob times]\n
\n## DNTMC Restart\n
[procrestart ]
Flag to indicate restart postprocessing. It is suggested that this\npostprocessing run is done utilizing only one processor.\n\nIn order to restart a DNTMC run, postprocessing is required to put\nrequired information into the runtime database (RTDB). During a run\nrestart information is written to files (`Prefix.restart.#num`) every\nmprnt MC steps. This information must be read and deposited into the\nRTDB before a restart run can be done. The number taken as an argument\nis the number of files to read and must also equal the number of\nsubgroups the calculation utilizes. The start directive must also be set\nto restart for this to work properly. All input is read as usual.\nHowever, values from the restart files take precedence over input\nvalues. Some keywords such as mcsteps are not defined in the restart\nfiles. Task directives are ignored. You must have a RTDB present in your\npermanent directory.\n\nOnce postprocessing is done a standard restart can be done from the RTDB\nby removing the procrestart keyword and including the restart directive.\n\n## Task Directives\n\nThe DNTMC module can be used with any level of theory which can produce\nenergies. Gradients and Hessians are not required within this\nmethodology. If dipole moments are available, they are also utilized.\nThe task directive for the DNTMC module is shown below:\n
task dntmc
## Example\n\nThis example is for a molecular cluster of 10 monomers. A 50/50 mixture\nof water and ammonia. The energies are done at the SCF/6-31++G** level\nof\ntheory.\n
start # start or restart directive if a restart run MEMORY 1000 mb
PERMANENT_DIR /home/bill # Globally accessible directory which the # rtdb (*.db) file will/does reside.
basis \u201cao basis\u201d spherical noprint * library 6-31++G** end # basis set directive for scf energies
scf singlet rhf tol2e 1.0e-12 vectors input atomic thresh 1.0e-06 maxiter 200 print none end # scf directive for scf energies
geometry geom1 units angstroms noautosym nocenter noprint O 0.393676503613369 -1.743794626956820 -0.762291912129271 H -0.427227157125777 -1.279138812526320 -0.924898279781319 H 1.075463952717060 -1.095883929075060 -0.940073459864222 symmetry c1 end # geometry of a monomer with title \u201cgeom1\u201d
geometry geom2 units angstroms noautosym nocenter noprint N 6.36299e-08 0.00000 -0.670378 H 0.916275 0.00000 -0.159874 H -0.458137 0.793517 -0.159874 H -0.458137 -0.793517 -0.159874 symmetry c1 end # geometry of another monomer with title \u201cgeom2\u201d # other monomers may be included with different titles
set subgroups_number 8 # set directive which gives the number of subgroups # each group runs a separate MC simulation
dntmc # DNTMC input block nspecies 2 # The number of unique species (number of titled geometries # above) species geom1 geom2 # An array of geometry titles (one for each # nspecies/geometry) nmol 5 5 # An array stating the number of each # monomer/nspecies/geometry in simulation. temp 243.0 mcsteps 1000000 rmin 3.25 rmax 12.25 mprnt 10 tdisp 0.04 rdisp 0.06 print none fdist mcdata # this print line first sets the print-level to none # then it states that the .fdist and .mcdata.(#num) # files are to be written rconfig dntmc_dir /home/bill/largefile # An accessible directory which to place the .fdist, # .mcdata.(#num), and *.restart.(#num) files. convergence 1.0D+00 end
task scf dntmc # task directive stating that energies are to be done at the scf #level of theory. ```
"},{"location":"DPLOT.html","title":"DPLOT","text":""},{"location":"DPLOT.html#overview","title":"Overview","text":" DPLOT \n ... \n END\n
This directive is used to obtain the plots of various types of electron densities (or orbitals) of the molecule. The electron density is calculated on a specified set of grid points using the molecular orbitals from SCF or DFT calculation. The output file is either in MSI Insight II contour format (default) or in the Gaussian Cube format. DPLOT is not executed until the task dplot
directive is given. Different sub-directives are described below.
The implementation of the dplot functionality uses mostly local memory. The quantities stored in local memory are:
The stack memory setting in the input file must be sufficient to hold these quantities in local memory on a processor.
"},{"location":"DPLOT.html#gaussian-gaussian-cube-format","title":"GAUSSIAN: Gaussian Cube format","text":" GAUSSIAN\n
A outputfile is generate in Gaussian Cube format. You can visualize this file using gOpenMol (after converting the Gaussian Cube file with gcube2plt), Molden or Molekel.
"},{"location":"DPLOT.html#title-title-directive","title":"TITLE: Title directive","text":" TITLE <string Title default Unknown Title>\n
This sub-directive specifies a title line for the generated input to the Insight program or for the Gaussian cube file. Only one line is allowed.
"},{"location":"DPLOT.html#limitxyz-plot-limits","title":"LIMITXYZ: Plot limits","text":" LIMITXYZ [units <string Units default angstroms>] \n <real X_From> <real X_To> <integer No_Of_Spacings_X> \n <real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n <real Z_From> <real Z_To> <integer No_Of_Spacings_Z>\n
This sub-directive specifies the limits of the cell to be plotted. The grid is generated using No_Of_Spacings + 1 points along each direction. The known names for Units are angstroms, au and bohr.
"},{"location":"DPLOT.html#spin-density-to-be-plotted","title":"SPIN: Density to be plotted","text":" SPIN <string Spin default total>\n
This sub-directive specifies what kind of density is to be computed. The known names for Spin are total
, alpha
, beta
and spindens
, the last being computed as the difference between \u03b1 and \u03b2 electron densities.
OUTPUT <string File_Name default dplot>\n
This sub-directive specifies the name of the generated input to the Insight program or the generated Gaussian cube file. The name OUTPUT
is reserved for the standard NWChem output.
VECTORS <string File_Name default movecs> [<string File_Name2>]\n
This sub-directive specifies the name of the molecular orbital file. If the second file is optionally given the density is computed as the difference between the corresponding electron densities. The vector files have to match.
"},{"location":"DPLOT.html#where-density-evaluation","title":"WHERE: Density evaluation","text":" WHERE <string Where default grid>\n
This sub-directive specifies where the density is to be computed. The known names for where
are grid
(the calculation of the density is performed on the set of a grid points specified by the sub-directive LimitXYZ
and the file specified by the sub-directive Output is generated), nuclei
(the density is computed at the position of the nuclei and written to the NWChem output) and g+n
(both).
ORBITALS [<string Option default density>]\n <integer No_Of_Orbitals> \n <integer Orb_No_1 Orb_No_2 ...>\n
This sub-directive specifies the subset of the orbital space for the calculation of the electron density. The density is computed using the occupation numbers from the orbital file modified according to the spin
directive. If the contours of the orbitals are to be plotted Option should be set to view
(instead of the implicit default value density
). Note, that in this case No_Of_Orbitals should be set to 1 and sub-directive where
is automatically set to grid
. Also specification of two orbital files conflicts with the view option. alpha orbitals are always plotted unless spin
is set to beta
.
CIVECS [<string Name of civecs file>]\n
"},{"location":"DPLOT.html#densmat-density-matrix","title":"DENSMAT: Density matrix","text":"DENSMAT [<string Name of density matrix file>]\n
"},{"location":"DPLOT.html#examples","title":"Examples","text":""},{"location":"DPLOT.html#charge-density","title":"Charge Density","text":""},{"location":"DPLOT.html#example-of-hf-charge-density-plot-with-gaussian-cube-output","title":"Example of HF charge density plot (with Gaussian Cube output)","text":"start n2 \ngeometry \n n 0 0 0.53879155 \n n 0 0 -0.53879155 \nend \nbasis; n library cc-pvdz;end \nscf \nvectors output n2.movecs \nend \ndplot \n TITLE HOMO \n vectors n2.movecs \n LimitXYZ \n -3.0 3.0 10 \n -3.0 3.0 10 \n -3.0 3.0 10 \n spin total \n gaussian \n output chargedensity.cube \nend \ntask scf \ntask dplot\n
"},{"location":"DPLOT.html#example-of-ccsd-charge-density-plot-with-gaussian-cube-output","title":"Example of CCSD charge density plot (with Gaussian Cube output)","text":"start n2\ngeometry\n n 0 0 0.53879155\n n 0 0 -0.53879155\n symmetry c2v\nend\nbasis; n library cc-pvdz;end\ntce\n ccsd\n densmat n2.densmat\nend\ntask tce energy\ndplot\n TITLE HOMO\n LimitXYZ\n -3.0 3.0 10\n -3.0 3.0 10\n -3.0 3.0 10\n spin total\n gaussian\n densmat n2.densmat\n output ccsddensity.cube\nend\ntask dplot\n
"},{"location":"DPLOT.html#molecular-orbital","title":"Molecular Orbital","text":"Example of orbital plot (with Insight II contour output):
start n2 \ngeometry \n n 0 0 0.53879155 \n n 0 0 -0.53879155 \nend \nbasis; n library cc-pvdz;end \nscf \nvectors output n2.movecs \nend \ndplot \n TITLE HOMO \n vectors n2.movecs \n LimitXYZ \n -3.0 3.0 10 \n -3.0 3.0 10 \n -3.0 3.0 10 \n spin total \n orbitals view; 1; 7 \n output homo.grd \nend \ntask scf \ntask dplot\n
"},{"location":"DPLOT.html#transition-density","title":"Transition Density","text":"TDDFT calculation followed by a calculation of the transition density for a specific excited state using the DPLOT block
echo \nstart h2o-td \ntitle h2o-td \nmemory stack 400 mb heap 50 mb global 350 mb \ncharge 0 \ngeometry units au noautoz nocenter \nsymmetry group c1 \n O 0.00000000000000 0.00000000000000 0.00000000000000 \n H 0.47043554760291 1.35028113274600 1.06035416576826 \n H -1.74335410533480 -0.23369304784300 0.27360785442967 \nend \nbasis \"ao basis\" print \n H S \n 13.0107010 0.19682158E-01 \n 1.9622572 0.13796524 \n 0.44453796 0.47831935 \n H S \n 0.12194962 1.0000000 \n H P \n 0.8000000 1.0000000 \n O S \n 2266.1767785 -0.53431809926E-02 \n 340.87010191 -0.39890039230E-01 \n 77.363135167 -0.17853911985 \n 21.479644940 -0.46427684959 \n 6.6589433124 -0.44309745172 \n O S \n 0.80975975668 1.0000000 \n O S \n 0.25530772234 1.0000000 \n O P \n 17.721504317 0.43394573193E-01 \n 3.8635505440 0.23094120765 \n 1.0480920883 0.51375311064 \n O P \n 0.27641544411 1.0000000 \n O D \n 1.2000000 1.0000000 \nend \ndft \n xc bhlyp \n grid fine \n direct \n convergence energy 1d-5 \nend \ntddft \n rpa \n nroots 5 \n thresh 1d-5 \n singlet \n notriplet \n civecs \nend \ntask tddft energy \ndplot \n civecs h2o-td.civecs_singlet \n root 2 \n LimitXYZ \n -3.74335 2.47044 50 \n -2.23369 3.35028 50 \n -2 3.06035 50 \n gaussian \n output root-2.cube \nend \ntask dplot\n
"},{"location":"DPLOT.html#plot-the-excited-state-density","title":"Plot the excited state density","text":"echo \nstart tddftgrad_co_exden \ngeometry \n C 0.00000000 0.00000000 -0.64628342 \n O 0.00000000 0.00000000 0.48264375 \n symmetry c1 \nend \nbasis spherical \n * library \"3-21G\" \nend \ndft \n xc pbe0 \n direct \nend \ntddft \n nroots 3 \n notriplet \n target 1 \n civecs \n grad \n root 1 \n end \nend \ntask tddft gradient \ndplot \n densmat tddftgrad_co_exden.dmat \n LimitXYZ \n-4.0 4.0 50 \n-4.0 4.0 50 \n-4.0 4.0 50 \n gaussian \n output co_exden.cube \nend \ntask dplot\n
"},{"location":"Density-Functional-Theory-for-Molecules.html","title":"Density Functional Theory (DFT)","text":""},{"location":"Density-Functional-Theory-for-Molecules.html#overview","title":"Overview","text":"The NWChem density functional theory (DFT) module uses the Gaussian basis set approach to compute closed shell and open shell densities and Kohn-Sham orbitals in the:
The formal scaling of the DFT computation can be reduced by choosing to use auxiliary Gaussian basis sets to fit the charge density (CD) and/or fit the exchange-correlation (XC) potential.
DFT input is provided using the compound DFT directive
DFT \n ... \n END\n
The actual DFT calculation will be performed when the input module encounters the TASK directive.
TASK DFT\n
Once a user has specified a geometry and a Kohn-Sham orbital basis set the DFT module can be invoked with no input directives (defaults invoked throughout). There are sub-directives which allow for customized application; those currently provided as options for the DFT module are:
VECTORS [[input] (<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>)] \\ \n [swap [alpha||beta] <integer vec1 vec2> ...] \\ \n [output <string output_filename default input_movecs>] \\ \n XC [[acm] [b3lyp] [beckehandh] [pbe0]\\ \n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke97-d] [becke98] \\ \n [hcth] [hcth120] [hcth147] [hcth147@tz2p]\\\n [hcth407] [becke97gga1] [hcth407p]\\ \n [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\ \n [xpkzb99] [cpkzb99] [xtpss03] [ctpss03] [xctpssh]\\ \n [b1b95] [bb1k] [mpw1b95] [mpwb1k] [pw6b95] [pwb6k] [m05] [m05-2x] [vs98] \\ \n [m06] [m06-hf] [m06-L] [m06-2x] \\ \n [HFexch <real prefactor default 1.0>] \\ \n [becke88 [nonlocal] <real prefactor default 1.0>] \\ \n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [gill96 [nonlocal] <real prefactor default 1.0>] \\ \n [lyp <real prefactor default 1.0>] \\ \n [perdew81 <real prefactor default 1.0>] \\ \n [perdew86 [nonlocal] <real prefactor default 1.0>] \\ \n [perdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [pw91lda <real prefactor default 1.0>] \\ \n [slater <real prefactor default 1.0>] \\ \n [vwn_1 <real prefactor default 1.0>] \\ \n [vwn_2 <real prefactor default 1.0>] \\ \n [vwn_3 <real prefactor default 1.0>] \\ \n [vwn_4 <real prefactor default 1.0>] \\ \n [vwn_5 <real prefactor default 1.0>] \\ \n [vwn_1_rpa <real prefactor default 1.0>] \\ \n [xtpss03 [nonlocal] <real prefactor default 1.0>] \\ \n [ctpss03 [nonlocal] <real prefactor default 1.0>] \\ \n [bc95 [nonlocal] <real prefactor default 1.0>] \\ \n [xpw6b95 [nonlocal] <real prefactor default 1.0>] \\ \n [xpwb6k [nonlocal] <real prefactor default 1.0>] \\ \n [xm05 [nonlocal] <real prefactor default 1.0>] \\ \n [xm05-2x [nonlocal] <real prefactor default 1.0>] \\ \n [cpw6b95 [nonlocal] <real prefactor default 1.0>] \\ \n [cpwb6k [nonlocal] <real prefactor default 1.0>] \\ \n [cm05 [nonlocal] <real prefactor default 1.0>] \\ \n [cm05-2x [nonlocal] <real prefactor default 1.0>]] \\ \n [xvs98 [nonlocal] <real prefactor default 1.0>]] \\ \n [cvs98 [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-L [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-hf [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06 [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-2x [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-L [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-hf [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06 [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-2x [nonlocal] <real prefactor default 1.0>]] \n CONVERGENCE [[energy <real energy default 1e-7>] \\ \n [density <real density default 1e-5>] \\ \n [gradient <real gradient default 5e-4>] \\ \n [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>] \\ \n [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 30>] \\ \n [damp <integer ndamp default 0>] [nodamping] \\ \n [diis [nfock <integer nfock default 10>]] \\ \n [nodiis] [lshift <real lshift default 0.5>] \\ \n [nolevelshifting] \\ \n [hl_tol <real hl_tol default 0.1>] \\ \n [rabuck [n_rabuck <integer n_rabuck default 25>]\\\n [fast] ] \n GRID [(xcoarse||coarse||medium||fine||xfine||huge) default medium] \\ \n [(gausleg||lebedev ) default lebedev ] \\ \n [(becke||erf1||erf2||ssf) default erf1] \\ \n [(euler||mura||treutler) default mura] \\ \n [rm <real rm default 2.0>] \\ \n [nodisk] \n TOLERANCES [[tight] [tol_rho <real tol_rho default 1e-10>] \\ \n [accCoul <integer accCoul default 8>] \\ \n [radius <real radius default 25.0>]] \n [(LB94||CS00 <real shift default none>)] \n DECOMP \n ODFT \n DIRECT \n SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$>]\n INCORE \n ITERATIONS <integer iterations default 30> \n MAX_OVL \n CGMIN \n RODFT \n MULLIKEN \n DISP \n XDM [ a1 <real a1> ] [ a2 <real a2> ] \n MULT <integer mult default 1> \n NOIO \n PRINT||NOPRINT\n SYM <string (ON||OFF) default ON>\n ADAPT <string (ON||OFF) default ON>\n
The following sections describe these keywords and optional sub-directives that can be specified for a DFT calculation in NWChem.
"},{"location":"Density-Functional-Theory-for-Molecules.html#specification-of-basis-sets-for-the-dft-module","title":"Specification of Basis Sets for the DFT Module","text":"The DFT module requires at a minimum the basis set for the Kohn-Sham molecular orbitals. This basis set must be in the default basis set named \u201cao basis\u201d, or it must be assigned to this default name using the SET directive.
In addition to the basis set for the Kohn-Sham orbitals, the charge density fitting basis set can also be specified in the input directives for the DFT module. This basis set is used for the evaluation of the Coulomb potential in the Dunlap scheme12. The charge density fitting basis set must have the name cd basis
. This can be the actual name of a basis set, or a basis set can be assigned this name using the SET directive. If this basis set is not defined by input, the O(N4) exact Coulomb contribution is computed.
The user also has the option of specifying a third basis set for the evaluation of the exchange-correlation potential. This basis set must have the name xc basis
. If this basis set is not specified by input, the exchange contribution (XC) is evaluated by numerical quadrature. In most applications, this approach is efficient enough, so the \u201cxc basis\u201d basis set is not required.
For the DFT module, the input options for defining the basis sets in a given calculation can be summarized as follows:
ao basis
- Kohn-Sham molecular orbitals; required for all calculationscd basis
- charge density fitting basis set; optional, but recommended for evaluation of the Coulomb potentialUse of the auxiliary density functional theory method (ADFT)3 can be triggered by means of the adft
keyword. This can result in a large speed-up when using \u201cpure\u201d GGA functionals (e.g. PBE96) and Laplacian-dependent mGGA functionals (e.g. SCAN-L). The speed-up comes from the use of the fitted density obtained with the charge density fitting technique to approximate both the Coulomb and Exchange-Correlation contributions.
The ADFT method is similar in spirit to the exchange-correlation fitting technique triggered by specifying an xc basis without the adft
keyword. It is important to note that, different to straight exchange-correlation fitting, energy derivatives are well-defined within the ADFT framework. As a consequence, geometry optimizations and harmonic vibrational frequencies are well-behaved.
The ADFT method requires a charge density fitting basis set (see DFT basis set section). If not cd basis
set is provided, the weigend coulomb fitting
basis set will be loaded.
The VECTORS directive is the same as that in the SCF module. Currently, the LOCK keyword is not supported by the DFT module, however the directive
MAX_OVL\n
has the same effect.
"},{"location":"Density-Functional-Theory-for-Molecules.html#xc-and-decomp-exchange-correlation-potentials","title":"XC and DECOMP: Exchange-Correlation Potentials","text":" XC [[acm] [b3lyp] [beckehandh] [pbe0] [bhlyp]\\ \n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke98] [hcth] [hcth120] [hcth147] [hcth147@tz2p] \\\n [hcth407] [becke97gga1] [hcth407p] \\ \n [optx] [hcthp14] [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\ \n [m05] [m05-2x] [m06] [m06-l] [m06-2x] [m06-hf] [m08-hx] [m08-so] [m11] [m11-l]\\ \n [HFexch <real prefactor default 1.0>] \\ \n [becke88 [nonlocal] <real prefactor default 1.0>] \\ \n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [gill96 [nonlocal] <real prefactor default 1.0>] \\ \n [lyp <real prefactor default 1.0>] \\ \n [perdew81 <real prefactor default 1.0>] \\ \n [perdew86 [nonlocal] <real prefactor default 1.0>] \\ \n [perdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [pw91lda <real prefactor default 1.0>] \\ \n [slater <real prefactor default 1.0>] \\ \n [vwn_1 <real prefactor default 1.0>] \\ \n [vwn_2 <real prefactor default 1.0>] \\ \n [vwn_3 <real prefactor default 1.0>] \\ \n [vwn_4 <real prefactor default 1.0>] \\ \n [vwn_5 <real prefactor default 1.0>] \\ \n [vwn_1_rpa <real prefactor default 1.0>]]\n
The user has the option of specifying the exchange-correlation treatment in the DFT Module (see table below for full list of functionals). The default exchange-correlation functional is defined as the local density approximation (LDA) for closed shell systems and its counterpart the local spin-density (LSD) approximation for open shell systems. Within this approximation, the exchange functional is the Slater \u03c11/3 functional45, and the correlation functional is the Vosko-Wilk-Nusair (VWN) functional (functional V)6. The parameters used in this formula are obtained by fitting to the Ceperley and Alder Quantum Monte-Carlo solution of the homogeneous electron gas.
These defaults can be invoked explicitly by specifying the following keywords within the DFT module input directive, XC slater vwn_5
.
That is, this statement in the input file
dft \n XC slater vwn_5 \nend \ntask dft\n
is equivalent to the simple line
task dft\n
The DECOMP
directive causes the components of the energy corresponding to each functional to be printed, rather than just the total exchange-correlation energy that is the default. You can see an example of this directive in the sample input.
Many alternative exchange and correlation functionals are available to the user as listed in the table below. The following sections describe how to use these options.
"},{"location":"Density-Functional-Theory-for-Molecules.html#libxc-interface-new-in-nwchem-720","title":"Libxc interface New in NWChem 7.2.0:","text":"If NWChem is compiled by linking it with the libxc DFT library (as described in the Interfaces with External Software section), the user will be able to use most of the XC functionals available in libxc. The input syntax requires to use the xc keyword followed by the functionals name from list available in Libxc
For example, the following input for the NWChem libxc interface
dft\n xc gga_x_pbe 1.0 gga_x_pbe 1.0\nend\n
while trigger use of the same PBE96 functionals as in the NWChem built-in interface
dft\n xc xpbe96 1.0 cpbe96 1.0\nend\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#exchange-correlation-functionals","title":"Exchange-Correlation Functionals","text":"There are several Exchange and Correlation functionals in addition to the default slater
and vwn_5
functionals. These are either local or gradient-corrected functionals (GCA); a full list can be found in the table below.
The Hartree-Fock exact exchange functional, (which has O(N4) computation expense), is invoked by specifying
XC HFexch\n
Note that the user also has the ability to include only the local or nonlocal contributions of a given functional. In addition, the user can specify a multiplicative prefactor (the variable in the input) for the local/nonlocal component or total. An example of this might be,
XC becke88 nonlocal 0.72\n
The user should be aware that the Becke88 local component is simply the Slater exchange and should be input as such.
Any combination of the supported exchange functional options can be used. For example, the popular Gaussian B3 exchange could be specified as:
XC slater 0.8 becke88 nonlocal 0.72 HFexch 0.2\n
Any combination of the supported correlation functional options can be used. For example, B3LYP could be specified as:
XC vwn_1_rpa 0.19 lyp 0.81 HFexch 0.20 slater 0.80 becke88 nonlocal 0.72\n
and X3LYP as:
xc vwn_1_rpa 0.129 lyp 0.871 hfexch 0.218 slater 0.782 \\\nbecke88 nonlocal 0.542 xperdew91 nonlocal 0.167\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#setting-up-common-exchange-correlation-functionals","title":"Setting up common exchange-correlation functionals","text":"xc b3lyp
xc pbe0
xc xpbe96 cpbe96
xc xperdew91 perdew91
xc bhlyp
xc beckehandh
xc becke88 perdew86
xc becke88 perdew91
xc becke88 lyp
Minnesota Functionals
Analytic second derivatives are not supported with the Minnesota functionals yet.
"},{"location":"Density-Functional-Theory-for-Molecules.html#combined-exchange-and-correlation-functionals","title":"Combined Exchange and Correlation Functionals","text":"In addition to the options listed above for the exchange and correlation functionals, the user has the alternative of specifying combined exchange and correlation functionals.
The available hybrid functionals (where a Hartree-Fock Exchange component is present) consist of the Becke \u201chalf and half\u201d7, the adiabatic connection method8, Becke 1997 (\u201cBecke V\u201d paper9).
The keyword beckehandh
specifies that the exchange-correlation energy will be computed as
EXC \u2248 \u00bdEXHF + \u00bdEXSlater + \u00bdECPW91LDA
We know this is NOT the correct Becke prescribed implementation that requires the XC potential in the energy expression. But this is what is currently implemented as an approximation to it.
The keyword acm
specifies that the exchange-correlation energy is computed as
EXC = a0EXHF + (1 - a0)EXSlater + aX\u03b4EXBecke88 + ECVWN + aC\u03b4ECPerdew91
where
a0 = 0.20, aX = 0.72, aC = 0.81
and \u03b4 stands for a non-local component.
The keyword b3lyp
specifies that the exchange-correlation energy is computed as
EXC = a0EXHF + (1 - a0)EXSlater + aX\u03b4EXBecke88 + (1 - aC)ECVWN_1_RPA + aC\u03b4ECLYP
where
a0 = 0.20, aX = 0.72, aC = 0.81
"},{"location":"Density-Functional-Theory-for-Molecules.html#xc-functionals-summary","title":"XC Functionals Summary","text":"Table\u00a01: Available Exchange (X) and Correlation (C) functionals. GGA is the Generalized Gradient Approximation, and Meta refers to Meta-GGAs. The column 2nd refers to second derivatives of the energy with respect to nuclear position. Keyword X C GGA Meta Hybr. 2nd Ref. slater * Y 45 vwn_1 * Y 6 vwn_2 * Y 6 vwn_3 * Y 6 vwn_4 * Y 6 vwn_5 * Y 6 vwn_1_rpa * Y 6 perdew81 * Y 10 pw91lda * Y 11 xbecke86b * * N 12 becke88 * * Y 13 xperdew86 * * N 14 xperdew91 * * Y 11 xpbe96 * * Y 1516 gill96 * * Y 17 optx * * N 18 mpw91 * * Y 1920 xft97 * * N 2122 rpbe * * Y 23 revpbe * * Y 24 xpw6b95 * * N 25 xpwb6k * * N 25 perdew86 * * Y 14 lyp * * Y 26 perdew91 * * Y 2728 cpbe96 * * Y 1516 cft97 * * N 2122 op * * N 29 hcth * * * N 30 hcth120 * * * N 31 hcth147 * * * N 31 hcth147@tz2p * * * N 32 hcth407 * * * N 33 becke97gga1 * * * N 34 hcthp14 * * * N 35 ft97 * * * N 2122 htch407p * * * N 36 bop * * * N 29 pbeop * * * N 37 xpkzb99 * * N 38 cpkzb99 * * N 38 xtpss03 * * N 39 ctpss03 * * N 39 bc95 * * N 23 cpw6b95 * * N 25 cpwb6k * * N 25 xm05 * * * N 4041 cm05 * * N 4041 m05-2x * * * * N 42 xm05-2x * * * N 42 cm05-2x * * N 42 xctpssh * * N 43 bb1k * * N 24 mpw1b95 * * N 44 mpwb1k * * N 44 pw6b95 * * N 25 pwb6k * * N 25 m05 * * N 40 vs98 * * N 45 xvs98 * * N 45 cvs98 * * N 45 m06-L * * * N 46 xm06-L * * N 46 cm06-L * * N 46 m06-hf * * N 47 xm06-hf * * * N 47 cm06-hf * * N 47 m06 * * N 48 xm06 * * * N 48 cm06 * * N 48 m06-2x * * N 46 xm06-2x * * * N 46 cm06-2x * * N 46 cm08-hx * * N 49 xm08-hx * * N 49 m08-hx * * * * N 49 cm08-so * * N 49 xm08-so * * N 49 m08-so * * * * N 49 cm11 * * N 50 xm11 * * N 50 m11 * * * * N 50 cm11-l * * N 51 xm11-l * * N 51 m11-l * * * N 51 csogga * * N 49 xsogga * * N 49 sogga * * * N 49 csogga11 * * N 52 xsogga11 * * N 52 sogga11 * * * N 52 csogga11-x * N 53 xsogga11-x * * N 53 sogga11-x * * * * N 53 dldf * * * * N 54 beckehandh * * * Y 7 b3lyp * * * * Y 8 acm * * * * Y 8 becke97 * * * * N 9 becke97-1 * * * * N 30 becke97-2 * * * * N 55 becke97-3 * * * * N 56 becke97-d * * * * N 57 becke98 * * * * N 58 pbe0 * * * * Y 59 mpw1k * * * * Y 60 xmvs15 * * N 61 hle16 * * * * Y 62 scan * * * * N 63 scanl * * * * N 64 revm06-L * * * * N 65 revm06 * * * * * N 66 wb97x * * * * N 67 wb97x-d3 * * * * N 68 rscan * * * * N 69 r2scan * * * * N 70 r2scan0 * * * * * N 71 r2scanl * * * * N 7273 ncap * * * Y 74"},{"location":"Density-Functional-Theory-for-Molecules.html#meta-gga-functionals","title":"Meta-GGA Functionals","text":"One way to calculate meta-GGA energies is to use orbitals and densities from fully self-consistent GGA or LDA calculations and run them in one iteration in the meta-GGA functional. It is expected that meta-GGA energies obtained this way will be close to fully self consistent meta-GGA calculations.
It is possible to calculate metaGGA energies both ways in NWChem, that is, self-consistently or with GGA/LDA orbitals and densities. However, since second derivatives are not available for metaGGAs, in order to calculate frequencies, one must use task dft freq numerical. A sample file with this is shown below, in Sample input file. In this instance, the energy is calculated self-consistently and geometry is optimized using the analytical gradients.
(For more information on metaGGAs, see Kurth et al 1999 75 for a brief description of meta-GGAs, and citations 14-27 therein for thorough background)
Note: both TPSS and PKZB correlation require the PBE GGA CORRELATION (which is itself dependent on an LDA). The decision has been made to use these functionals with the accompanying local PW91LDA. The user cannot set the local part of these metaGGA functionals.
"},{"location":"Density-Functional-Theory-for-Molecules.html#range-separated-functionals","title":"Range-Separated Functionals","text":"Using the Ewald decomposition
we can split the the Exchange interaction as
Therefore, the long-range HF Exchange energy becomes
cam <real cam> cam_alpha <real cam_alpha> cam_beta <cam_beta>\n
cam
represents the attenuation parameter \u03bc, cam_alpha
and cam_beta
are the \u03b1 and \u03b2 parameters that control the amount of short-range DFT and long-range HF Exchange according to the Ewald decomposition. As r12 \u2192 0, the HF exchange fraction is \u03b1, while the DFT exchange fraction is 1 - \u03b1. As r12 \u2192 \u221e, the HF exchange fraction approaches \u03b1 + \u03b2 and the DFT exchange fraction approaches 1 - \u03b1 - \u03b2. In the HSE functional, the HF part is short-ranged and DFT is long-ranged.
Range separated functionals (or long-range corrected or LC) can be specified as follows:
CAM-B3LYP:
xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00 \ncam 0.33 cam_alpha 0.19 cam_beta 0.46\n
LC-BLYP:
xc xcamb88 1.00 lyp 1.0 hfexch 1.00 \ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
LC-PBE:
xc xcampbe96 1.0 cpbe96 1.0 HFexch 1.0 \ncam 0.30 cam_alpha 0.0 cam_beta 1.0\n
LC-PBE0 or CAM-PBE0:
xc xcampbe96 1.0 cpbe96 1.0 HFexch 1.0\ncam 0.30 cam_alpha 0.25 cam_beta 0.75\n
BNL (Baer, Neuhauser, Lifshifts):
xc xbnl07 0.90 lyp 1.00 hfexch 1.00 \ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
LC-wPBE:
xc xwpbe 1.00 cpbe96 1.0 hfexch 1.00 \ncam 0.4 cam_alpha 0.00 cam_beta 1.00\n
LRC-wPBEh:
xc xwpbe 0.80 cpbe96 1.0 hfexch 1.00 \ncam 0.2 cam_alpha 0.20 cam_beta 0.80\n
QTP-00
xc xcamb88 1.00 lyp 0.80 vwn_5 0.2 hfexch 1.00 \ncam 0.29 cam_alpha 0.54 cam_beta 0.37\n
rCAM-B3LYP
xc xcamb88 1.00 lyp 1.0 vwn_5 0. hfexch 1.00 becke88 nonlocal 0.13590\ncam 0.33 cam_alpha 0.18352 cam_beta 0.94979\n
HSE03 functional: 0.25*Ex(HF-SR) - 0.25*Ex(PBE-SR) + Ex(PBE) + Ec(PBE), where gamma(HF-SR) = gamma(PBE-SR)
xc hse03\n
or it can be explicitly set as
xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25\ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
HSE06 functional:
xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25\ncam 0.11 cam_alpha 0.0 cam_beta 1.0\n
Please see references 76777879808182838485868788 (not a complete list) for further details about the theory behind these functionals and applications.
Example illustrating the CAM-B3LYP functional:
start h2o-camb3lyp \ngeometry units angstrom \n O 0.00000000 0.00000000 0.11726921 \n H 0.75698224 0.00000000 -0.46907685 \n H -0.75698224 0.00000000 -0.46907685 \nend \nbasis spherical \n * library aug-cc-pvdz \nend \ndft \n xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00 \n cam 0.33 cam_alpha 0.19 cam_beta 0.46 \n direct \n iterations 100 \nend \ntask dft energy\n
Example illustrating the HSE03 functional:
echo \nstart h2o-hse \ngeometry units angstrom \nO 0.00000000 0.00000000 0.11726921 \nH 0.75698224 0.00000000 -0.46907685 \nH -0.75698224 0.00000000 -0.46907685 \nend \nbasis spherical \n * library aug-cc-pvdz \nend \ndft \n xc hse03 \n iterations 100 \n direct \n end \ntask dft energy\n
or alternatively
dft \n xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25 \n cam 0.33 cam_alpha 0.0 cam_beta 1.0 \n iterations 100 \n direct \nend \ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#ssb-d-functional","title":"SSB-D functional","text":"The SSB-D8990 functional is a small correction to the non-empirical PBE functional and includes a portion of Grimme\u2019s dispersion correction (s6=0.847455). It is designed to reproduce the good results of OPBE for spin-state splittings and reaction barriers, and the good results of PBE for weak interactions. The SSB-D functional works well for these systems, including for difficult systems for DFT (dimerization of anthracene, branching of octane, water-hexamer isomers, C12H12 isomers, stacked adenine dimers), and for NMR chemical shieldings.
It can be specified as
xc ssb-d\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#semi-empirical-hybrid-dft-combined-with-perturbative-mp2","title":"Semi-empirical hybrid DFT combined with perturbative MP2","text":"This theory combines hybrid density functional theory with MP2 semi-empirically. The B2PLYP functional, which is an example of this approximation, can be specified as:
mp2\n freeze atomic\nend\ndft \n xc HFexch 0.53 becke88 0.47 lyp 0.73 mp2 0.27 \n dftmp2 \nend\n
For details of the theory, please see reference91.
"},{"location":"Density-Functional-Theory-for-Molecules.html#lb94-and-cs00-asymptotic-correction","title":"LB94 and CS00: Asymptotic correction","text":"The keyword LB94
will correct the asymptotic region of the XC definition of exchange-correlation potential by the van-Leeuwen-Baerends exchange-correlation potential that has the correct asymptotic behavior. The total energy will be computed by the XC definition of exchange-correlation functional. This scheme is known to tend to overcorrect the deficiency of most uncorrected exchange-correlation potentials.
The keyword CS00
, when supplied with a real value of shift (in atomic units), will perform Casida-Salahub \u201800 asymptotic correction. This is primarily intended for use with TDDFT. The shift is normally positive (which means that the original uncorrected exchange-correlation potential must be shifted down).
When the keyword CS00
is specified without the value of shift, the program will automatically supply it according to the semi-empirical formula of Zhan, Nichols, and Dixon (again, see TDDFT for more details and references). As the Zhan\u2019s formula is calibrated against B3LYP results, it is most meaningful to use this with the B3LYP functional, although the program does not prohibit (or even warn) the use of any other functional.
Sample input files of asymptotically corrected TDDFT calculations can be found in the corresponding section.
"},{"location":"Density-Functional-Theory-for-Molecules.html#sample-input-file","title":"Sample input file","text":"A simple example calculates the geometry of water, using the metaGGA functionals xtpss03
and ctpss03
. This also highlights some of the print features in the DFT module. Note that you must use the line task dft freq numerical
because analytic hessians are not available for the metaGGAs:
title \"WATER 6-311G* meta-GGA XC geometry\" \necho \ngeometry units angstroms \n O 0.0 0.0 0.0 \n H 0.0 0.0 1.0 \n H 0.0 1.0 0.0 \nend \nbasis \n H library 6-311G* \n O library 6-311G* \nend \ndft \n iterations 50 \n print kinetic_energy \n xc xtpss03 ctpss03 \n decomp \nend \ntask dft optimize \ntask dft freq numerical\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#iterations-or-maxiter-number-of-scf-iterations","title":"ITERATIONS or MAXITER: Number of SCF iterations","text":" ITERATIONS or MAXITER <integer iterations default 30>\n
The default optimization in the DFT module is to iterate on the Kohn-Sham (SCF) equations for a specified number of iterations (default 30). The keyword that controls this optimization is ITERATIONS
, and has the following general form,
iterations <integer iterations default 30>\n
or
maxiter <integer iterations default 30>\n
The optimization procedure will stop when the specified number of iterations is reached or convergence is met. See an example that uses this directive in Sample input file.
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-scf-convergence-control","title":"CONVERGENCE: SCF Convergence Control","text":" CONVERGENCE [energy <real energy default 1e-6>] \\ \n [density <real density default 1e-5>] \\ \n [gradient <real gradient default 5e-4>] \\ \n [hl_tol <real hl_tol default 0.1>] \n [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 30>] \\ \n [damp <integer ndamp default 0>] [nodamping] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [(diis [nfock <integer nfock default 10>]) || nodiis] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>] \\ \n [(lshift <real lshift default 0.5>) || nolevelshifting] \\ \n [rabuck [n_rabuck <integer n_rabuck default 25>] \\\n [fast] ]\n
Convergence is satisfied by meeting any or all of three criteria;
CONVERGENCE energy <real energy default 1e-6>\n
CONVERGENCE density <real density default 1e-5>\n
CONVERGENCE gradient <real gradient default 5e-4>\n
The default optimization strategy is to immediately begin direct inversion of the iterative subspace. Damping is also initiated (using 70% of the previous density) for the first 2 iteration. In addition, if the HOMO - LUMO gap is small and the Fock matrix diagonally dominant, then level-shifting is automatically initiated. There are a variety of ways to customize this procedure to whatever is desired.
An alternative optimization strategy is to specify, by using the change in total energy (between iterations N and N-1), when to turn damping, level-shifting, and/or DIIS on/off. Start and stop keywords for each of these is available as,
CONVERGENCE [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>]\n
So, for example, damping, DIIS, and/or level-shifting can be turned on/off as desired.
Another strategy can be to specify how many iterations (cycles) you wish each type of procedure to be used. The necessary keywords to control the number of damping cycles (ncydp
), the number of DIIS cycles (ncyds
), and the number of level-shifting cycles (ncysh
) are input as,
CONVERGENCE [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 0>]\n
The amount of damping, level-shifting, time at which level-shifting is automatically imposed, and Fock matrices used in the DIIS extrapolation can be modified by the following keywords
CONVERGENCE [damp <integer ndamp default 0>] \\ \n [diis [nfock <integer nfock default 10>]] \\ \n [lshift <real lshift default 0.5>] \\ \n [hl_tol <real hl_tol default 0.1>]]\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-damp-keyword","title":"CONVERGENCE DAMP Keyword","text":"Damping is defined to be the percentage of the previous iterations density mixed with the current iterations density. So, for example
CONVERGENCE damp 70\n
would mix 30% of the current iteration density with 70% of the previous iteration density.
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-lshift-keyword","title":"CONVERGENCE LSHIFT Keyword","text":"Level-Shifting is defined as the amount of shift applied to the diagonal elements of the unoccupied block of the Fock matrix. The shift is specified by the keyword lshift
. For example the directive,
CONVERGENCE lshift 0.5\n
causes the diagonal elements of the Fock matrix corresponding to the virtual orbitals to be shifted by 0.5 a.u. By default, this level-shifting procedure is switched on whenever the HOMO-LUMO gap is small. Small is defined by default to be 0.05 au but can be modified by the directive hl_tol. An example of changing the HOMO-LUMO gap tolerance to 0.01 would be,
CONVERGENCE hl_tol 0.01\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-diis-keyword","title":"CONVERGENCE DIIS Keyword","text":"Direct inversion of the iterative subspace with extrapolation of up to 10 Fock matrices is a default optimization procedure. For large molecular systems the amount of available memory may preclude the ability to store this number of N2 arrays in global memory. The user may then specify the number of Fock matrices to be used in the extrapolation (must be greater than three (3) to be effective). To set the number of Fock matrices stored and used in the extrapolation procedure to 3 would take the form,
CONVERGENCE diis 3\n
The user has the ability to simply turn off any optimization procedures deemed undesirable with the obvious keywords,
CONVERGENCE [nodamping] [nodiis] [nolevelshifting]\n
For systems where the initial guess is very poor, the user can try using fractional occupation of the orbital levels during the initial cycles of the SCF convergence92. The input has the following form
CONVERGENCE rabuck [n_rabuck <integer n_rabuck default 25>]]\n
where the optional value n_rabuck
determines the number of SCF cycles during which the method will be active. For example, to set equal to 30 the number of cycles where the Rabuck method is active, you need to use the following line
CONVERGENCE rabuck 30\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#convergence-fast-keyword","title":"CONVERGENCE FAST Keyword","text":"convergence fast
turns on a series of parameters that most often speed-up convergence, but not in 100% of the cases.
CONVERGENCE fast\n
Here is an input snippet that would give you the same result as convergence fast
dft\nconvergence lshift 0. ncydp 0 dampon 1d99 dampoff 1d-4 damp 40\nend\nset quickguess t\ntask dft \n
"},{"location":"Density-Functional-Theory-for-Molecules.html#cdft-constrained-dft","title":"CDFT: Constrained DFT","text":"This option enables the constrained DFT formalism by Wu and Van Voorhis93:
CDFT <integer fatom1 latom1> [<integer fatom2 latom2>] (charge||spin <real constaint_value>) \\ \n [pop (becke||mulliken||lowdin) default lowdin]\n
Variables fatom1
and latom1
define the first and last atom of the group of atoms to which the constraint will be applied. Therefore, the atoms in the same group should be placed continuously in the geometry input. If fatom2
and latom2
are specified, the difference between group 1 and 2 (i.e. 1-2) is constrained.
The constraint can be either on the charge or the spin density (number of alpha - beta electrons) with a user specified constraint_value
. Note: No gradients have been implemented for the spin constraints case. Geometry optimizations can only be performed using the charge constraint.
To calculate the charge or spin density, the Becke, Mulliken, and Lowdin population schemes can be used. The Lowdin scheme is default while the Mulliken scheme is not recommended. If basis sets with many diffuse functions are used, the Becke population scheme is recommended.
Multiple constraints can be defined simultaniously by defining multiple cdft lines in the input. The same population scheme will be used for all constraints and only needs to be specified once. If multiple population options are defined, the last one will be used. When there are convergence problems with multiple constraints, the user is advised to do one constraint first and to use the resulting orbitals for the next step of the constrained calculations.
It is best to put convergence nolevelshifting
in the dft directive to avoid issues with gradient calculations and convergence in CDFT. Use orbital swap to get a broken-symmetry solution.
An input example is given below.
geometry \nsymmetry \n C 0.0 0.0 0.0 \n O 1.2 0.0 0.0 \n C 0.0 0.0 2.0 \n O 1.2 0.0 2.0 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc b3lyp \n convergence nolevelshifting \n odft \n mult 1 \n vectors swap beta 14 15 \n cdft 1 2 charge 1.0 \nend \ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#smear-fractional-occupation-of-the-molecular-orbitals","title":"SMEAR: Fractional Occupation of the Molecular Orbitals","text":"The SMEAR
keyword is useful in cases with many degenerate states near the HOMO (eg metallic clusters)
SMEAR <real smear default 0.001>\n
This option allows fractional occupation of the molecular orbitals. A Gaussian broadening function of exponent smear is used as described in the paper by Warren and Dunlap94. The user must be aware that an additional energy term is added to the total energy in order to have energies and gradients consistent.
"},{"location":"Density-Functional-Theory-for-Molecules.html#fon-calculations-with-fractional-numbers-of-electrons","title":"FON: Calculations with fractional numbers of electrons","text":""},{"location":"Density-Functional-Theory-for-Molecules.html#restricted","title":"Restricted","text":"fon partial 3 electrons 1.8 filled 2\n
Here 1.8 electrons will be equally divided over 3 valence orbitals and 2 orbitals are fully filled. The total number of electrons here is 5.8
Example input:
echo \ntitle \"carbon atom\" \nstart carbon_fon \ngeometry \nsymmetry c1 \n C 0.0 0.0 0.0 \nend \nbasis \n * library 6-31G \nend\ndft \n direct \n grid xfine \n convergence energy 1d-8 \n xc pbe0 \n fon partial 3 electrons 1.8 filled 2 \nend\ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#unrestricted","title":"Unrestricted","text":"fon alpha partial 3 electrons 0.9 filled 2 \nfon beta partial 3 electrons 0.9 filled 2\n
Here 0.9 electrons will be equally divided over 3 alpha valence orbitals and 2 alpha orbitals are fully filled. Similarly for beta. The total number of electrons here is 5.8
Example input:
echo \ntitle \"carbon atom\" \nstart carbon_fon \ngeometry \n C 0.0 0.0 0.0 \nend \nbasis \n * library 6-31G \nend \ndft \n odft \n fon alpha partial 3 electrons 0.9 filled 2 \n fon beta partial 3 electrons 0.9 filled 2 \nend \ntask dft energy\n
To set fractional numbers in the core orbitals, add the following directive in the input file:
set dft:core_fon .true.\n
Example input:
dft\n print \"final vectors analysis\"\n odft\n direct\n fon alpha partial 2 electrons 1.0 filled 2\n fon beta partial 2 electrons 1.0 filled 2\n xc pbe0\n convergence energy 1d-8\nend\ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#occup-controlling-the-occupations-of-molecular-orbitals","title":"OCCUP: Controlling the occupations of molecular orbitals","text":"Example:
echo \nstart h2o_core_hole \nmemory 1000 mb \ngeometry units au \n O 0 0 0 \n H 0 1.430 -1.107 \n H 0 -1.430 -1.107 \nend \nbasis \n O library 6-31g* \n H library 6-31g* \nend \noccup \n 6 6 # occupation list for 6 alpha and 6 beta orbitals \n 1.0 0.0 # core-hole in the first beta orbital\n 1.0 1.0 \n 1.0 1.0 \n 1.0 1.0 \n 1.0 1.0 \n 0.0 0.0 \nend \ndft \n odft \n mult 1 \n xc beckehandh \nend \ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#grid-numerical-integration-of-the-xc-potential","title":"GRID: Numerical Integration of the XC Potential","text":" GRID [(xcoarse||coarse||medium||fine||xfine||huge) default medium] \\ \n [(gausleg||lebedev ) default lebedev ] \\ \n [(becke||erf1||erf2||ssf) default erf1] \\ \n [(euler||mura||treutler) default mura] \\ \n [rm <real rm default 2.0>] \\ \n [nodisk]\n
A numerical integration is necessary for the evaluation of the exchange-correlation contribution to the density functional. The default quadrature used for the numerical integration is an Euler-MacLaurin scheme for the radial components (with a modified Mura-Knowles transformation) and a Lebedev scheme for the angular components. Within this numerical integration procedure various levels of accuracy have been defined and are available to the user. The user can specify the level of accuracy with the keywords; xcoarse
, coarse
, medium
, fine
, xfine
and huge
. The default is medium
.
GRID [xcoarse||coarse||medium||fine||xfine||huge]\n
Our intent is to have a numerical integration scheme which would give us approximately the accuracy defined below regardless of molecular composition.
Keyword Total Energy Target Accuracy xcoarse 1\u22c510-4 coarse 1\u22c510-5 medium 1\u22c510-6 fine 1\u22c510-7 xfine 1\u22c510-8 huge 1\u22c510-10In order to determine the level of radial and angular quadrature needed to give us the target accuracy, we computed total DFT energies at the LDA level of theory for many homonuclear atomic, diatomic and triatomic systems in rows 1-4 of the periodic table. In each case all bond lengths were set to twice the Bragg-Slater radius. The total DFT energy of the system was computed using the converged SCF density with atoms having radial shells ranging from 35-235 (at fixed 48/96 angular quadratures) and angular quadratures of 12/24-48/96 (at fixed 235 radial shells). The error of the numerical integration was determined by comparison to a \u201cbest\u201d or most accurate calculation in which a grid of 235 radial points 48 theta and 96 phi angular points on each atom was used. This corresponds to approximately 1 million points per atom. The following tables were empirically determined to give the desired target accuracy for DFT total energies. These tables below show the number of radial and angular shells which the DFT module will use for for a given atom depending on the row it is in (in the periodic table) and the desired accuracy. Note, differing atom types in a given molecular system will most likely have differing associated numerical grids. The intent is to generate the desired energy accuracy (at the expense of speed of the calculation).
Keyword Radial Angular xcoarse 21 194 coarse 35 302 medium 49 434 fine 70 590 xfine 100 1202Program default number of radial and angular shells empirically determined for Row 1 atoms (Li \u2192 F) to reach the desired accuracies.
Keyword Radial Angular xcoarse 42 194 coarse 70 302 medium 88 434 fine 123 770 xfine 125 1454 huge 300 1454Program default number of radial and angular shells empirically determined for Row 2 atoms (Na \u2192 Cl) to reach the desired accuracies.
Keyword Radial Angular xcoarse 75 194 coarse 95 302 medium 112 590 fine 130 974 xfine 160 1454 huge 400 1454Program default number of radial and angular shells empirically determined for Row 3 atoms (K \u2192 Br) to reach the desired accuracies.
Keyword Radial Angular xcoarse 84 194 coarse 104 302 medium 123 590 fine 141 974 xfine 205 1454 huge 400 1454Program default number of radial and angular shells empirically determined for Row 4 atoms (Rb \u2192 I) to reach the desired accuracies.
"},{"location":"Density-Functional-Theory-for-Molecules.html#angular-grids","title":"Angular grids","text":"In addition to the simple keyword specifying the desired accuracy as described above, the user has the option of specifying a custom quadrature of this type in which ALL atoms have the same grid specification. This is accomplished by using the gausleg
keyword.
GRID gausleg <integer nradpts default 50> <integer nagrid default 10>\n
In this type of grid, the number of phi points is twice the number of theta points. So, for example, a specification of,
GRID gausleg 80 20\n
would be interpreted as 80 radial points, 20 theta points, and 40 phi points per center (or 64000 points per center before pruning).
"},{"location":"Density-Functional-Theory-for-Molecules.html#lebedev-angular-grid","title":"Lebedev angular grid","text":"A second quadrature is the Lebedev scheme for the angular components. Within this numerical integration procedure various levels of accuracy have also been defined and are available to the user. The input for this type of grid takes the form,
GRID lebedev <integer radpts > <integer iangquad >\n
In this context the variable iangquad
specifies a certain number of angular points as indicated by the table below:
Therefore the user can specify any number of radial points along with the level of angular quadrature (1-29).
The user can also specify grid parameters specific for a given atom type: parameters that must be supplied are: atom tag and number of radial points. As an example, here is a grid input line for the water molecule
grid lebedev 80 11 H 70 8 O 90 11\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#partitioning-functions","title":"Partitioning functions","text":"GRID [(becke||erf1||erf2||ssf) default erf1]\n
Erfn partitioning functions
"},{"location":"Density-Functional-Theory-for-Molecules.html#radial-grids","title":"Radial grids","text":"
GRID [[euler||mura||treutler] default mura]\n
NODISK\n
This keyword turns off storage of grid points and weights on disk.
"},{"location":"Density-Functional-Theory-for-Molecules.html#tolerances-screening-tolerances","title":"TOLERANCES: Screening tolerances","text":" TOLERANCES [[tight] [tol_rho <real tol_rho default 1e-10>] \\ \n [accCoul <integer accCoul default 8>] \\ \n [radius <real radius default 25.0>]]\n
The user has the option of controlling screening for the tolerances in the integral evaluations for the DFT module. In most applications, the default values will be adequate for the calculation, but different values can be specified in the input for the DFT module using the keywords described below.
The input parameter accCoul
is used to define the tolerance in Schwarz screening for the Coulomb integrals. Only integrals with estimated values greater than 10(-accCoul) are evaluated.
TOLERANCES accCoul <integer accCoul default 8>\n
Screening away needless computation of the XC functional (on the grid) due to negligible density is also possible with the use of,
TOLERANCES tol_rho <real tol_rho default 1e-10>\n
XC functional computation is bypassed if the corresponding density elements are less than tol_rho
.
A screening parameter, radius, used in the screening of the Becke or Delley spatial weights is also available as,
TOLERANCES radius <real radius default 25.0>\n
where radius
is the cutoff value in bohr.
The tolerances as discussed previously are insured at convergence. More sleazy tolerances are invoked early in the iterative process which can speed things up a bit. This can also be problematic at times because it introduces a discontinuity in the convergence process. To avoid use of initial sleazy tolerances the user can invoke the tight option:
TOLERANCES tight\n
This option sets all tolerances to their default/user specified values at the very first iteration.
"},{"location":"Density-Functional-Theory-for-Molecules.html#direct-semidirect-and-noio-hardware-resource-control","title":"DIRECT, SEMIDIRECT and NOIO: Hardware Resource Control","text":" DIRECT||INCORE \n SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$] \n NOIO\n
The inverted charge-density and exchange-correlation matrices for a DFT calculation are normally written to disk storage. The user can prevent this by specifying the keyword noio
within the input for the DFT directive. The input to exercise this option is as follows,
noio\n
If this keyword is encountered, then the two matrices (inverted charge-density and exchange-correlation) are computed \u201con-the-fly\u201d whenever needed.
The INCORE
option is always assumed to be true but can be overridden with the option DIRECT
in which case all integrals are computed \u201con-the-fly\u201d.
The SEMIDIRECT
option controls caching of integrals. A full description of this option is described in the Hartree-Fock section. Some functionality which is only compatible with the DIRECT
option will not, at present, work when using SEMIDIRECT
.
ODFT\n MULT <integer mult default 1>\n
Both closed-shell and open-shell systems can be studied using the DFT module. Specifying the keyword MULT
within the DFT
directive allows the user to define the spin multiplicity of the system. The form of the input line is as follows;
MULT <integer mult default 1>\n
When the keyword MULT
is specified, the user can define the integer variable mult
, where mult is equal to the number of alpha electrons minus beta electrons, plus 1.
When MULT
is set to a negative number. For example, if MULT = -3
, a triplet calculation will be performed with the beta electrons preferentially occupied. For MULT = 3
, the alpha electrons will be preferentially occupied.
The keyword ODFT
is unnecessary except in the context of forcing a singlet system to be computed as an open shell system (i.e., using a spin-unrestricted wavefunction).
The cgmin
keyword will use the quadratic convergence algorithm. It is possible to turn the use of the quadratic convergence algorithm off with the nocgmin
keyword.
The rodft
keyword will perform restricted open-shell calculations. This keyword can only be used with the CGMIN
keyword.
sic [perturbative || oep || oep-loc ]\n<default perturbative>\n
The Perdew and Zunger10 method to remove the self-interaction contained in many exchange-correlation functionals has been implemented with the Optimized Effective Potential method100101 within the Krieger-Li-Iafrate approximation102103104. Three variants of these methods are included in NWChem:
sic perturbative
This is the default option for the sic directive. After a self-consistent calculation, the Kohn-Sham orbitals are localized with the Foster-Boys algorithm (see section on orbital localization) and the self-interaction energy is added to the total energy. All exchange-correlation functionals implemented in the NWChem can be used with this option.sic oep
With this option the optimized effective potential is built in each step of the self-consistent process. Because the electrostatic potential generated for each orbital involves a numerical integration, this method can be expensive.sic oep-loc
This option is similar to the oep option with the addition of localization of the Kohn-Sham orbitals in each step of the self-consistent process.With oep
and oep-loc
options a xfine grid
(see section about numerical integration ) must be used in order to avoid numerical noise, furthermore the hybrid functionals can not be used with these options. More details of the implementation of this method can be found in the paper by Garza105. The components of the sic energy can be printed out using:
print \"SIC information\"\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#mulliken-mulliken-analysis","title":"MULLIKEN: Mulliken analysis","text":"Mulliken analysis of the charge distribution is invoked by the keyword:
MULLIKEN\n
When this keyword is encountered, Mulliken analysis of both the input density as well as the output density will occur. For example, to perform a mulliken analysis and print the explicit population analysis of the basis functions, use the following
dft\n mulliken\n print \"mulliken ao\"\nend\ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#fukui-fukui-indices","title":"FUKUI: Fukui Indices","text":"Fukui indices analysis is invoked by the keyword:
FUKUI\n
When this keyword is encounters, the condensed Fukui indices will be calculated and printed in the output. Detailed information about the analysis can be obtained using the following
dft \n fukui \n print \"Fukui information\" \n end \n task dft\n
The implementation of the Fukui analyis in NWChem was based on the papers by Galvan106 and by Chamorro107. This implementation makes use of the generalized Fukui indices (). The traditional, spin-restricted, Fukui indices are given by , and their average:
"},{"location":"Density-Functional-Theory-for-Molecules.html#bsse-basis-set-superposition-error","title":"BSSE: Basis Set Superposition Error","text":"Particular care is required to compute BSSE by the counter-poise method for the DFT module. In order to include terms deriving from the numerical grid used in the XC integration, the user must label the ghost atoms not just bq, but bq followed by the given atomic symbol. For example, the first component needed to compute the BSSE for the water dimer, should be written as follows
geometry h2o autosym units au\n O 0.00000000 0.00000000 0.22143139\n H 1.43042868 0.00000000 -0.88572555\n H -1.43042868 0.00000000 -0.88572555\n bqH 0.71521434 0.00000000 -0.33214708\n bqH -0.71521434 0.00000000 -0.33214708\n bqO 0.00000000 0.00000000 -0.88572555\nend\nbasis\n H library aug-cc-pvdz\n O library aug-cc-pvdz\n bqH library H aug-cc-pvdz\n bqO library O aug-cc-pvdz\nend\n
Please note that the ghost oxygen atom has been labeled bqO
, and not just bq
.
DISP \\\n [ vdw <real vdw integer default 2]] \\\n [[s6 <real s6 default depends on XC functional>] \\\n [ alpha <real alpha default 20.0d0] \\\n [ off ] \n
When systems with high dependence on van der Waals interactions are computed, the dispersion term may be added empirically through long-range contribution DFT-D, i.e. EDFT-D=EDFT-KS+Edisp, where:
In this equation, the s6 term depends in the functional and basis set used, C6ij is the dispersion coefficient between pairs of atoms. Rvdw and Rij are related with van der Waals atom radii and the nucleus distance respectively. The \u03b1 value contributes to control the corrections at intermediate distances.
There are available three ways to compute C6ij:
where Neff and C6 are obtained from references 108 and 109 (Use vdw 0
)
See details in reference110. (Use vdw 1)
See details in reference91. (Use vdw 2
)
Note that in each option there is a certain set of C6 and Rvdw. Also note that Grimme only defined parameters for elements up to Z=54 for the dispersion correction above. C6 values for elements above Z=54 have been set to zero.
For options vdw 1
and vdw 2
, there are s6 values by default for some functionals and triple-zeta plus double polarization basis set (TZV2P):
vdw 1
BLYP 1.40, PBE 0.70 and BP86 1.30.vdw 2
BLYP 1.20, PBE 0.75, BP86 1.05, B3LYP 1.05, Becke97-D 1.25 and TPSS 1.00.Grimme\u2019s DFT-D3 is also available. Here the dispersion term has the following form:
This new dispersion correction covers elements through Z=94. Cijn (n=6,8) are coordination and geometry dependent. Details about the functional form can be found in reference 111.
To use the Grimme DFT-D3 dispersion correction, use the option
vdw 3
(s6
and alpha
cannot be set manually). Functionals for which DFT-D3 is available in NWChem are BLYP, B3LYP, BP86, Becke97-D, PBE96, TPSS, PBE0, B2PLYP, BHLYP, TPSSH, PWB6K, B1B95, SSB-D, MPW1B95, MPWB1K, M05, M05-2X, M06L, M06, M06-2X, and M06HF
vdw 4
triggers the DFT-D3BJ dispersion model. Currently only BLYP, B3LYP, BHLYP, TPSS, TPSSh, B2-PLYP, B97-D, BP86, PBE96, PW6B95, revPBE, B3PW91, pwb6k, b1b95, CAM-B3LYP, LC-wPBE, HCTH120, MPW1B95, BOP, OLYP, BPBE, OPBE and SSB are supported.
This capability is also supported for energy gradients and Hessian. Is possible to be deactivated with OFF.
"},{"location":"Density-Functional-Theory-for-Molecules.html#noscf-non-self-consistent-calculations","title":"NOSCF: Non Self-Consistent Calculations","text":"The noscf
keyword can be used to to calculate the non self-consistent energy for a set of input vectors. For example, the following input shows how a non self-consistent B3LYP energy can be calculated using a self-consistent set of vectors calculated at the Hartree-Fock level.
start h2o-noscf\n\ngeometry units angstrom\n O 0.00000000 0.00000000 0.11726921\n H 0.75698224 0.00000000 -0.46907685\n H -0.75698224 0.00000000 -0.46907685\nend\n\nbasis spherical\n * library aug-cc-pvdz\nend\ndft\n xc hfexch\n vectors output hf.movecs \nend\ntask dft energy\ndft\n xc b3lyp\n vectors input hf.movecs \n noscf \nend\ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#xdm-exchange-hole-dipole-moment-dispersion-model","title":"XDM: Exchange-hole dipole moment dispersion model","text":"XDM [ a1 <real a1> ] [ a2 <real a2> ]\n
See details (including list of a1 and a2 parameters) in paper[delaroza2013] and the website http://schooner.chem.dal.ca/wiki/XDM
geometry \n O -0.190010095135 -1.168397415155 0.925531922479\n H -0.124425719598 -0.832776238160 1.818190662986\n H -0.063897685990 -0.392575837594 0.364048725248\n O 0.174717244879 1.084630474836 -0.860510672419\n H -0.566281023931 1.301941006866 -1.427261487135\n H 0.935093179777 1.047335209207 -1.441842151158\n end\n\n basis spherical\n * library aug-cc-pvdz\n end\n\n dft\n direct\n xc b3lyp\n xdm a1 0.6224 a2 1.7068\n end\n\n task dft optimize\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#print-control","title":"Print Control","text":" PRINT||NOPRINT\n
The PRINT||NOPRINT
options control the level of output in the DFT. Please see some examples using this directive in Sample input file. Known controllable print options are:
DFT Print Control Specifications
"},{"location":"Density-Functional-Theory-for-Molecules.html#spin-orbit-density-functional-theory-sodft","title":"Spin-Orbit Density Functional Theory (SODFT)","text":"The spin-orbit DFT module (SODFT) in the NWChem code allows for the variational treatment of the one-electron spin-orbit operator within the DFT framework. Calculations can be performed either with an electron relativistic approach (ZORA) or with an effective core potential (ECP) and a matching spin-orbit potential (SO). The current implementation does NOT use symmetry.
The actual SODFT calculation will be performed when the input module encounters the TASK directive (TASK).
TASK SODFT\n
Input parameters are the same as for the DFT. Some of the DFT options are not available in the SODFT. These are max_ovl
and sic
.
Besides using the standard ECP and basis sets, see Effective Core Potentials for details, one also has to specify a spin-orbit (SO) potential. The input specification for the SO potential can be found in Effective Core Potentials. At this time we have not included any spin-orbit potentials in the basis set library. However, one can get these from the Stuttgart/K\u00f6ln web pages http://www.tc.uni-koeln.de/PP/clickpse.en.html.
Note: One should use a combination of ECP and SO potentials that were designed for the same size core, i.e., don\u2019t use a small core ECP potential with a large core SO potential (it will produce erroneous results).
The following is an example of a calculation of UO2:
start uo2_sodft \necho \n\ncharge 2 \ngeometry \n U 0.00000 0.00000 0.00000 \n O 0.00000 0.00000 1.68000 \n O 0.00000 0.00000 -1.68000 \nend \nbasis \"ao basis\" \n * library \"stuttgart rlc ecp\"\nEND\nECP\n * library \"stuttgart rlc ecp\"\nEND\nSO \n U p \n 2 3.986181 1.816350 \n 2 2.000160 11.543940 \n 2 0.960841 0.794644 \n U d \n 2 4.147972 0.353683 \n 2 2.234563 3.499282 \n 2 0.913695 0.514635 \n U f \n 2 3.998938 4.744214 \n 2 1.998840 -5.211731 \n 2 0.995641 1.867860 \nEND \ndft \n mult 1 \n xc hfexch \nend \ntask sodft\n
"},{"location":"Density-Functional-Theory-for-Molecules.html#sym-and-adapt","title":"SYM and ADAPT","text":"The options SYM
and ADAPT
works the same way as the analogous options for the SCF code. Therefore please use the following links for SYM and ADAPT, respectively.
Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. On First-Row Diatomic Molecules and Local Density Models. The Journal of Chemical Physics 1979, 71 (12), 4993. https://doi.org/10.1063/1.438313.\u00a0\u21a9
Eichkorn, K.; Treutler, O.; \u00d6hm, H.; H\u00e4ser, M.; Ahlrichs, R. Auxiliary Basis Sets to Approximate Coulomb Potentials. Chemical Physics Letters 1995, 240 (4), 283\u2013290. https://doi.org/10.1016/0009-2614(95)00621-a.\u00a0\u21a9
K\u00f6ster, A. M.; Reveles, J. U.; Campo, J. M. del. Calculation of Exchange-Correlation Potentials with Auxiliary Function Densities. The Journal of Chemical Physics 2004, 121 (8), 3417\u20133424. https://doi.org/10.1063/1.1771638.\u00a0\u21a9
Slater, J. C.; Johnson, K. H. Self-Consistent-Field X\u03b1 Cluster Method for Polyatomic Molecules and Solids. Phys. Rev. B 1972, 5, 844\u2013853. https://doi.org/10.1103/PhysRevB.5.844.\u00a0\u21a9\u21a9
Slater, J. C. Quantum Theory of Molecules and Solids: The Self-Consistent Field for Molecules and Solids; McGraw-Hill Education, 1974; p 640.\u00a0\u21a9\u21a9
Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Canadian Journal of physics 1980, 58 (8), 1200\u20131211. https://doi.org/10.1139/p80-159.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. The Journal of Chemical Physics 1993, 98 (2), 1372\u20131377. https://doi.org/https://aip.scitation.org/doi/abs/10.1063/1.464304.\u00a0\u21a9\u21a9
Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics 1993, 98 (7), 5648\u20135652. https://doi.org/10.1063/1.464913.\u00a0\u21a9\u21a9\u21a9
Becke, A. D. Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. The Journal of Chemical Physics 1997, 107 (20), 8554\u20138560. https://doi.org/10.1063/1.475007.\u00a0\u21a9\u21a9
Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048\u20135079. https://doi.org/10.1103/PhysRevB.23.5048.\u00a0\u21a9\u21a9
Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244\u201313249. https://doi.org/10.1103/PhysRevB.45.13244.\u00a0\u21a9\u21a9
Becke, A. D. On the Large-Gradient Behavior of the Density Functional Exchange Energy. The Journal of Chemical Physics 1986, 85 (12), 7184\u20137187. https://doi.org/10.1063/1.451353.\u00a0\u21a9
Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A 1988, 38 (6), 3098\u20133100. https://doi.org/10.1103/PhysRevA.38.3098.\u00a0\u21a9
Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Physical Review B 1986, 33 (12), 8822\u20138824. https://doi.org/10.1103/PhysRevB.33.8822.\u00a0\u21a9\u21a9
Perdew, J. P.; Burke, K.; Ernzerhof, M. Errata: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865\u20133868. https://doi.org/10.1103/PhysRevLett.77.3865.\u00a0\u21a9\u21a9
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396\u20131396. https://doi.org/10.1103/PhysRevLett.78.1396.\u00a0\u21a9\u21a9
Gill, P. M. W. A New Gradient-Corrected Exchange Functional. Molecular Physics 1996, 89 (2), 433\u2013445. https://doi.org/10.1080/002689796173813.\u00a0\u21a9
Handy, N. C.; Cohen, A. J. Left-Right Correlation Energy. Molecular Physics 2001, 99 (5), 403\u2013412. https://doi.org/10.1080/00268970010018431.\u00a0\u21a9
Adamo, C.; Barone, V. Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods Without Adjustable Parameters: The mPW and mPW1PW Models. The Journal of Chemical Physics 1998, 108 (2), 664\u2013675. https://doi.org/10.1063/1.475428.\u00a0\u21a9
Zhao, Y.; Truhlar, D. G. Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. The Journal of Physical Chemistry A 2005, 109 (25), 5656\u20135667. https://doi.org/10.1021/jp050536c.\u00a0\u21a9
Filatov, M.; Thiel, W. A New Gradient-Corrected Exchange-Correlation Density Functional. Molecular Physics 1997, 91 (5), 847\u2013860. https://doi.org/10.1080/002689797170950.\u00a0\u21a9\u21a9\u21a9
Filatov, M.; Thiel, W. A Nonlocal Correlation Energy Density Functional from a Coulomb Hole Model. International Journal of Quantum Chemistry 1997, 62 (6), 603\u2013616. https://doi.org/10.1002/(sici)1097-461x(1997)62:6<603::aid-qua4>3.0.co;2-#.\u00a0\u21a9\u21a9\u21a9
Hammer, B.; Hansen, L. B.; N\u00f8rskov, J. K. Improved Adsorption Energetics Within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B 1999, 59 (11), 7413\u20137421. https://doi.org/10.1103/physrevb.59.7413.\u00a0\u21a9\u21a9
Zhang, Y.; Yang, W. Comment on Generalized Gradient Approximation Made Simple. Physical Review Letters 1998, 80 (4), 890\u2013890. https://doi.org/10.1103/physrevlett.80.890.\u00a0\u21a9\u21a9
Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics. The Journal of Physical Chemistry A 2004, 108 (14), 2715\u20132719. https://doi.org/10.1021/jp049908s.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B 1988, 37 (2), 785\u2013789. https://doi.org/10.1103/PhysRevB.37.785.\u00a0\u21a9
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1992, 46 (11), 6671\u20136687. https://doi.org/10.1103/PhysRevB.46.6671.\u00a0\u21a9
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1993, 48 (7), 4978\u20134978. https://doi.org/10.1103/PhysRevB.48.4978.2.\u00a0\u21a9
Tsuneda, T.; Suzumura, T.; Hirao, K. A New One-Parameter Progressive Collesalvetti-Type Correlation Functional. The Journal of Chemical Physics 1999, 110 (22), 10664\u201310678. https://doi.org/10.1063/1.479012.\u00a0\u21a9\u21a9
Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. Development and Assessment of New Exchange-Correlation Functionals. The Journal of Chemical Physics 1998, 109 (15), 6264\u20136271. https://doi.org/10.1063/1.477267.\u00a0\u21a9\u21a9
Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. New Generalized Gradient Approximation Functionals. The Journal of Chemical Physics 2000, 112 (4), 1670\u20131678. https://doi.org/10.1063/1.480732.\u00a0\u21a9\u21a9
Boese, A. D.; Martin, J. M. L.; Handy, N. C. The Role of the Basis Set: Assessing Density Functional Theory. The Journal of Chemical Physics 2003, 119 (6), 3005\u20133014. https://doi.org/10.1063/1.1589004.\u00a0\u21a9
Boese, A. D.; Handy, N. C. A New Parametrization of Exchangecorrelation Generalized Gradient Approximation Functionals. The Journal of Chemical Physics 2001, 114 (13), 5497\u20135503. https://doi.org/10.1063/1.1347371.\u00a0\u21a9
Cohen, A. J.; Handy, N. C. Assessment of Exchange Correlation Functionals. Chemical Physics Letters 2000, 316 (1-2), 160\u2013166. https://doi.org/10.1016/s0009-2614(99)01273-7.\u00a0\u21a9
Menconi, G.; Wilson, P. J.; Tozer, D. J. Emphasizing the Exchange-Correlation Potential in Functional Development. The Journal of Chemical Physics 2001, 114 (9), 3958\u20133967. https://doi.org/10.1063/1.1342776.\u00a0\u21a9
Boese, A. D.; Chandra, A.; Martin, J. M. L.; Marx, D. From Ab Initio Quantum Chemistry to Molecular Dynamics: The Delicate Case of Hydrogen Bonding in Ammonia. The Journal of Chemical Physics 2003, 119 (12), 5965\u20135980. https://doi.org/10.1063/1.1599338.\u00a0\u21a9
Tsuneda, T.; Suzumura, T.; Hirao, K. A Reexamination of Exchange Energy Functionals. The Journal of Chemical Physics 1999, 111 (13), 5656\u20135667. https://doi.org/10.1063/1.479954.\u00a0\u21a9
Perdew, J. P.; Kurth, S.; Zupan, A.; Blaha, P. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Physical Review Letters 1999, 82 (12), 2544\u20132547. https://doi.org/10.1103/physrevlett.82.2544.\u00a0\u21a9\u21a9
Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters 2003, 91 (14), 146401. https://doi.org/10.1103/physrevlett.91.146401.\u00a0\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van Der Waals Interactions. The Journal of Physical Chemistry A 2004, 108 (33), 6908\u20136918. https://doi.org/10.1021/jp048147q.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Exchange-Correlation Functional with Broad Accuracy for Metallic and Nonmetallic Compounds, Kinetics, and Noncovalent Interactions. The Journal of Chemical Physics 2005, 123 (16), 161103. https://doi.org/10.1063/1.2126975.\u00a0\u21a9\u21a9
Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation 2006, 2 (2), 364\u2013382. https://doi.org/10.1021/ct0502763.\u00a0\u21a9\u21a9\u21a9
Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. The Journal of Chemical Physics 2003, 119 (23), 12129\u201312137. https://doi.org/10.1063/1.1626543.\u00a0\u21a9
Becke, A. D. Density-Functional Thermochemistry. IV. A New Dynamical Correlation Functional and Implications for Exact-Exchange Mixing. The Journal of Chemical Physics 1996, 104 (3), 1040\u20131046. https://doi.org/10.1063/1.470829.\u00a0\u21a9\u21a9
Voorhis, T. V.; Scuseria, G. E. A Novel Form for the Exchange-Correlation Energy Functional. The Journal of Chemical Physics 1998, 109 (2), 400\u2013410. https://doi.org/10.1063/1.476577.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. The Journal of Chemical Physics 2006, 125 (19), 194101. https://doi.org/10.1063/1.2370993.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average Than B3LYP for Ground States. The Journal of Physical Chemistry A 2006, 110 (49), 13126\u201313130. https://doi.org/10.1021/jp066479k.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theoretical Chemistry Accounts 2008, 120 (1-3), 215\u2013241. https://doi.org/10.1007/s00214-007-0310-x.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Construction of a Generalized Gradient Approximation by Restoring the Density-Gradient Expansion and Enforcing a Tight Lieboxford Bound. The Journal of Chemical Physics 2008, 128 (18), 184109. https://doi.org/10.1063/1.2912068.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. The Journal of Physical Chemistry Letters 2011, 2 (21), 2810\u20132817. https://doi.org/10.1021/jz201170d.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. M11-l: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. The Journal of Physical Chemistry Letters 2012, 3 (1), 117\u2013124. https://doi.org/10.1021/jz201525m.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Zhao, Y.; Truhlar, D. G. Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance. The Journal of Physical Chemistry Letters 2011, 2 (16), 1991\u20131997. https://doi.org/10.1021/jz200616w.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. Communication: A Global Hybrid Generalized Gradient Approximation to the Exchange-Correlation Functional That Satisfies the Second-Order Density-Gradient Constraint and Has Broad Applicability in Chemistry. The Journal of Chemical Physics 2011, 135 (19), 191102. https://doi.org/10.1063/1.3663871.\u00a0\u21a9\u21a9\u21a9
Pernal, K.; Podeszwa, R.; Patkowski, K.; Szalewicz, K. Dispersionless Density Functional Theory. Physical Review Letters 2009, 103 (26), 263201. https://doi.org/10.1103/physrevlett.103.263201.\u00a0\u21a9
Wilson, P. J.; Bradley, T. J.; Tozer, D. J. Hybrid Exchange-Correlation Functional Determined from Thermochemical Data and Ab Initio Potentials. The Journal of Chemical Physics 2001, 115 (20), 9233\u20139242. https://doi.org/10.1063/1.1412605.\u00a0\u21a9
Keal, T. W.; Tozer, D. J. Semiempirical Hybrid Functional with Improved Performance in an Extensive Chemical Assessment. The Journal of Chemical Physics 2005, 123 (12), 121103. https://doi.org/10.1063/1.2061227.\u00a0\u21a9
Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. Journal of Computational Chemistry 2006, 27 (15), 1787\u20131799. https://doi.org/10.1002/jcc.20495.\u00a0\u21a9
Schmider, H. L.; Becke, A. D. Optimized Density Functionals from the Extended G2 Test Set. The Journal of Chemical Physics 1998, 108 (23), 9624\u20139631. https://doi.org/10.1063/1.476438.\u00a0\u21a9
Adamo, C.; Barone, V. Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model. The Journal of Chemical Physics 1999, 110 (13), 6158\u20136170. https://doi.org/10.1063/1.478522.\u00a0\u21a9
Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. Adiabatic Connection for Kinetics. The Journal of Physical Chemistry A 2000, 104 (21), 4811\u20134815. https://doi.org/10.1021/jp000497z.\u00a0\u21a9
Sun, J.; Perdew, J. P.; Ruzsinszky, A. Semilocal Density Functional Obeying a Strongly Tightened Bound for Exchange. Proceedings of the National Academy of Sciences 2015, 112 (3), 685\u2013689. https://doi.org/10.1073/pnas.1423145112.\u00a0\u21a9
Verma, P.; Truhlar, D. G. HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies. The Journal of Physical Chemistry Letters 2017, 8 (2), 380\u2013387. https://doi.org/10.1021/acs.jpclett.6b02757.\u00a0\u21a9
Yang, Z.; Peng, H.; Sun, J.; Perdew, J. P. More Realistic Band Gaps from Meta-Generalized Gradient Approximations: Only in a Generalized Kohn-Sham Scheme. Physical Review B 2016, 93 (20), 205205. https://doi.org/10.1103/physrevb.93.205205.\u00a0\u21a9
Mejia-Rodriguez, D.; Trickey, S. B. Deorbitalization Strategies for Meta-Generalized-Gradient-Approximation Exchange-Correlation Functionals. Physical Review A 2017, 96 (5), 052512. https://doi.org/10.1103/physreva.96.052512.\u00a0\u21a9
Wang, Y.; Jin, X.; Yu, H. S.; Truhlar, D. G.; He, X. Revised M06-l Functional for Improved Accuracy on Chemical Reaction Barrier Heights, Noncovalent Interactions, and Solid-State Physics. Proceedings of the National Academy of Sciences 2017, 114 (32), 8487\u20138492. https://doi.org/10.1073/pnas.1705670114.\u00a0\u21a9
Wang, Y.; Verma, P.; Jin, X.; Truhlar, D. G.; He, X. Revised M06 Density Functional for Main-Group and Transition-Metal Chemistry. Proceedings of the National Academy of Sciences 2018, 115 (41), 10257\u201310262. https://doi.org/10.1073/pnas.1810421115.\u00a0\u21a9
Chai, J.-D.; Head-Gordon, M. Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. The Journal of Chemical Physics 2008, 128 (8), 084106. https://doi.org/10.1063/1.2834918.\u00a0\u21a9
Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. Journal of Chemical Theory and Computation 2012, 9 (1), 263\u2013272. https://doi.org/10.1021/ct300715s.\u00a0\u21a9
Bart\u00f3k, A. P.; Yates, J. R. Regularized SCAN Functional. The Journal of Chemical Physics 2019, 150 (16), 161101. https://doi.org/10.1063/1.5094646.\u00a0\u21a9
Furness, J. W.; Kaplan, A. D.; Ning, J.; Perdew, J. P.; Sun, J. Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation. The Journal of Physical Chemistry Letters 2020, 11 (19), 8208\u20138215. https://doi.org/10.1021/acs.jpclett.0c02405.\u00a0\u21a9
Bursch, M.; Neugebauer, H.; Ehlert, S.; Grimme, S. Dispersion Corrected r2SCAN Based Global Hybrid Functionals: r2SCANh, r2SCAN0, and r2SCAN50. The Journal of Chemical Physics 2022, 156 (13), 134105. https://doi.org/10.1063/5.0086040.\u00a0\u21a9
Mej\u00eda-Rodr\u00edguez, D.; Trickey, S. B. Meta-GGA Performance in Solids at Almost GGA Cost. Physical Review B 2020, 102 (12), 121109. https://doi.org/10.1103/physrevb.102.121109.\u00a0\u21a9
Mej\u00eda-Rodr\u00edguez, D.; Trickey, S. B. Spin-Crossover from a Well-Behaved, Low-Cost Meta-GGA Density Functional. The Journal of Physical Chemistry A 2020, 124 (47), 9889\u20139894. https://doi.org/10.1021/acs.jpca.0c08883.\u00a0\u21a9
Carmona-Esp\u00edndola, J.; G\u00e1zquez, J. L.; Vela, A.; Trickey, S. B. Generalized Gradient Approximation Exchange Energy Functional with Near-Best Semilocal Performance. Journal of Chemical Theory and Computation 2018, 15 (1), 303\u2013310. https://doi.org/10.1021/acs.jctc.8b00998.\u00a0\u21a9
Kurth, S.; Perdew, J. P.; Blaha, P. Molecular and Solid-State Tests of Density Functional Approximations: LSD, GGAs, and Meta-GGAs. International Journal of Quantum Chemistry 1999, 75 (4-5), 889\u2013909. https://doi.org/10.1002/(sici)1097-461x(1999)75:4/5<889::aid-qua54>3.0.co;2-8.\u00a0\u21a9
Savin, A. Beyond the Kohn-Sham Determinant. In Recent advances in density functional methods; WORLD SCIENTIFIC, 1995; pp 129\u2013153. https://doi.org/10.1142/9789812830586\\_0004.\u00a0\u21a9
Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A Long-Range Correction Scheme for Generalized-Gradient-Approximation Exchange Functionals. The Journal of Chemical Physics 2001, 115 (8), 3540\u20133544. https://doi.org/10.1063/1.1383587.\u00a0\u21a9
Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A Long-Range-Corrected Time-Dependent Density Functional Theory. The Journal of Chemical Physics 2004, 120 (18), 8425\u20138433. https://doi.org/10.1063/1.1688752.\u00a0\u21a9
Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chemical Physics Letters 2004, 393 (1-3), 51\u201357. https://doi.org/10.1016/j.cplett.2004.06.011.\u00a0\u21a9
Peach, M. J. G.; Cohen, A. J.; Tozer, D. J. Influence of Coulomb-Attenuation on Exchange-Correlation Functional Quality. Phys. Chem. Chem. Phys. 2006, 8 (39), 4543\u20134549. https://doi.org/10.1039/b608553a.\u00a0\u21a9
Song, J.-W.; Hirosawa, T.; Tsuneda, T.; Hirao, K. Long-Range Corrected Density Functional Calculations of Chemical Reactions: Redetermination of Parameter. The Journal of Chemical Physics 2007, 126 (15), 154105. https://doi.org/10.1063/1.2721532.\u00a0\u21a9
Livshits, E.; Baer, R. A Well-Tempered Density Functional Theory of Electrons in Molecules. Physical Chemistry Chemical Physics 2007, 9 (23), 2932. https://doi.org/10.1039/b617919c.\u00a0\u21a9
Cohen, A. J.; Mori-S\u00e1nchez, P.; Yang, W. Development of Exchange-Correlation Functionals with Minimal Many-Electron Self-Interaction Error. The Journal of Chemical Physics 2007, 126 (19), 191109. https://doi.org/10.1063/1.2741248.\u00a0\u21a9
Rohrdanz, M. A.; Herbert, J. M. Simultaneous Benchmarking of Ground- and Excited-State Properties with Long-Range-Corrected Density Functional Theory. The Journal of Chemical Physics 2008, 129 (3), 034107. https://doi.org/10.1063/1.2954017.\u00a0\u21a9
Govind, N.; Valiev, M.; Jensen, L.; Kowalski, K. Excitation Energies of Zinc Porphyrin in Aqueous Solution Using Long-Range Corrected Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A 2009, 113 (21), 6041\u20136043. https://doi.org/10.1021/jp902118k.\u00a0\u21a9
Baer, R.; Livshits, E.; Salzner, U. Tuned Range-Separated Hybrids in Density Functional Theory. Annual Review of Physical Chemistry 2010, 61 (1), 85\u2013109. https://doi.org/10.1146/annurev.physchem.012809.103321.\u00a0\u21a9
Autschbach, J.; Srebro, M. Delocalization Error and Functional Tuning in Kohn-Sham Calculations of Molecular Properties. Accounts of Chemical Research 2014, 47 (8), 2592\u20132602. https://doi.org/10.1021/ar500171t.\u00a0\u21a9
Verma, P.; Bartlett, R. J. Increasing the Applicability of Density Functional Theory. IV. Consequences of Ionization-Potential Improved Exchange-Correlation Potentials. The Journal of Chemical Physics 2014, 140 (18), 18A534. https://doi.org/10.1063/1.4871409.\u00a0\u21a9
Swart, M.; Sol\u00e0, M.; Bickelhaupt, F. M. A New All-Round Density Functional Based on Spin States and SN2 Barriers. The Journal of Chemical Physics 2009, 131 (9), 094103. https://doi.org/10.1063/1.3213193.\u00a0\u21a9
Swart, M.; Sol\u00e0, M.; Bickelhaupt, F. M. Switching Between OPTX and PBE Exchange Functionals. Journal of Computational Methods in Sciences and Engineering 2009, 9 (1-2), 69\u201377. https://doi.org/10.3233/jcm-2009-0230.\u00a0\u21a9
Grimme, S. Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. The Journal of Chemical Physics 2006, 124 (3), 034108. https://doi.org/10.1063/1.2148954.\u00a0\u21a9\u21a9
Rabuck, A. D.; Scuseria, G. E. Improving Self-Consistent Field Convergence by Varying Occupation Numbers. The Journal of Chemical Physics 1999, 110 (2), 695\u2013700. https://doi.org/10.1063/1.478177.\u00a0\u21a9
Wu, Q.; Voorhis, T. V. Direct Optimization Method to Study Constrained Systems Within Density-Functional Theory. Physical Review A 2005, 72 (2), 024502. https://doi.org/10.1103/physreva.72.024502.\u00a0\u21a9
Warren, R. W.; Dunlap, B. I. Fractional Occupation Numbers and Density Functional Energy Gradients Within the Linear Combination of Gaussian-Type Orbitals Approach. Chemical Physics Letters 1996, 262 (3-4), 384\u2013392. https://doi.org/10.1016/0009-2614(96)01107-4.\u00a0\u21a9
Becke, A. D. A Multicenter Numerical Integration Scheme for Polyatomic Molecules. The Journal of Chemical Physics 1988, 88 (4), 2547\u20132553. https://doi.org/10.1063/1.454033.\u00a0\u21a9
Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. Achieving Linear Scaling in Exchange-Correlation Density Functional Quadratures. Chemical Physics Letters 1996, 257 (3-4), 213\u2013223. https://doi.org/10.1016/0009-2614(96)00600-8.\u00a0\u21a9
Murray, C. W.; Handy, N. C.; Laming, G. J. Quadrature Schemes for Integrals of Density Functional Theory. Molecular Physics 1993, 78 (4), 997\u20131014. https://doi.org/10.1080/00268979300100651.\u00a0\u21a9
Mura, M. E.; Knowles, P. J. Improved Radial Grids for Quadrature in Molecular Density-Functional Calculations. The Journal of Chemical Physics 1996, 104 (24), 9848\u20139858. https://doi.org/10.1063/1.471749.\u00a0\u21a9
Treutler, O.; Ahlrichs, R. Efficient Molecular Numerical Integration Schemes. The Journal of Chemical Physics 1995, 102 (1), 346\u2013354. https://doi.org/10.1063/1.469408.\u00a0\u21a9
Sharp, R. T.; Horton, G. K. A Variational Approach to the Unipotential Many-Electron Problem. Physical Review 1953, 90 (2), 317\u2013317. https://doi.org/10.1103/physrev.90.317.\u00a0\u21a9
Talman, J. D.; Shadwick, W. F. Optimized Effective Atomic Central Potential. Physical Review A 1976, 14 (1), 36\u201340. https://doi.org/10.1103/physreva.14.36.\u00a0\u21a9
Krieger, J. B.; Li, Y.; Iafrate, G. J. Construction and Application of an Accurate Local Spin-Polarized Kohn-Sham Potential with Integer Discontinuity: Exchange-Only Theory. Physical Review A 1992, 45 (1), 101\u2013126. https://doi.org/10.1103/physreva.45.101.\u00a0\u21a9
Krieger, J. B.; Li, Y.; Iafrate, G. J. Systematic Approximations to the Optimized Effective Potential: Application to Orbital-Density-Functional Theory. Physical Review A 1992, 46 (9), 5453\u20135458. https://doi.org/10.1103/physreva.46.5453.\u00a0\u21a9
Li, Y.; Krieger, J. B.; Iafrate, G. J. Self-Consistent Calculations of Atomic Properties Using Self-Interaction-Free Exchange-Only Kohn-Sham Potentials. Physical Review A 1993, 47 (1), 165\u2013181. https://doi.org/10.1103/physreva.47.165.\u00a0\u21a9
Garza, J.; Nichols, J. A.; Dixon, D. A. The Optimized Effective Potential and the Self-Interaction Correction in Density Functional Theory: Application to Molecules. The Journal of Chemical Physics 2000, 112 (18), 7880\u20137890. https://doi.org/10.1063/1.481421.\u00a0\u21a9
Galvan, M.; Vela, A.; Gazquez, J. L. Chemical Reactivity in Spin-Polarized Density Functional Theory. The Journal of Physical Chemistry 1988, 92 (22), 6470\u20136474. https://doi.org/10.1021/j100333a056.\u00a0\u21a9
Chamorro, E.; P\u00e9rez, P. Condensed-to-Atoms Electronic Fukui Functions Within the Framework of Spin-Polarized Density-Functional Theory. The Journal of Chemical Physics 2005, 123 (11), 114107. https://doi.org/10.1063/1.2033689.\u00a0\u21a9
Wu, Q.; Yang, W. Empirical Correction to Density Functional Theory for van Der Waals Interactions. The Journal of Chemical Physics 2002, 116 (2), 515\u2013524. https://doi.org/10.1063/1.1424928.\u00a0\u21a9
Zimmerli, U.; Parrinello, M.; Koumoutsakos, P. Dispersion Corrections to Density Functionals for Water Aromatic Interactions. The Journal of Chemical Physics 2004, 120 (6), 2693\u20132699. https://doi.org/10.1063/1.1637034.\u00a0\u21a9
Grimme, S. Accurate Description of van Der Waals Complexes by Density Functional Theory Including Empirical Corrections. Journal of Computational Chemistry 2004, 25 (12), 1463\u20131473. https://doi.org/10.1002/jcc.20078.\u00a0\u21a9
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-d) for the 94 Elements h-Pu. The Journal of Chemical Physics 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.\u00a0\u21a9
The NWChem density functional theory (DFT) module uses the Gaussian basis set approach to compute closed shell and open shell densities and Kohn-Sham orbitals in the:
The formal scaling of the DFT computation can be reduced by choosing to use auxiliary Gaussian basis sets to fit the charge density (CD) and/or fit the exchange-correlation (XC) potential.
DFT input is provided using the compound DFT directive
DFT \n ... \n END\n
The actual DFT calculation will be performed when the input module encounters the TASK directive.
TASK DFT\n
Once a user has specified a geometry and a Kohn-Sham orbital basis set the DFT module can be invoked with no input directives (defaults invoked throughout). There are sub-directives which allow for customized application; those currently provided as options for the DFT module are:
VECTORS [[input] (<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>)] \\ \n [swap [alpha||beta] <integer vec1 vec2> ...] \\ \n [output <string output_filename default input_movecs>] \\ \n XC [[acm] [b3lyp] [beckehandh] [pbe0]\\ \n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke97-d] [becke98] \\ \n [hcth] [hcth120] [hcth147] [hcth147@tz2p]\\\n [hcth407] [becke97gga1] [hcth407p]\\ \n [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\ \n [xpkzb99] [cpkzb99] [xtpss03] [ctpss03] [xctpssh]\\ \n [b1b95] [bb1k] [mpw1b95] [mpwb1k] [pw6b95] [pwb6k] [m05] [m05-2x] [vs98] \\ \n [m06] [m06-hf] [m06-L] [m06-2x] \\ \n [HFexch <real prefactor default 1.0>] \\ \n [becke88 [nonlocal] <real prefactor default 1.0>] \\ \n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [gill96 [nonlocal] <real prefactor default 1.0>] \\ \n [lyp <real prefactor default 1.0>] \\ \n [perdew81 <real prefactor default 1.0>] \\ \n [perdew86 [nonlocal] <real prefactor default 1.0>] \\ \n [perdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [pw91lda <real prefactor default 1.0>] \\ \n [slater <real prefactor default 1.0>] \\ \n [vwn_1 <real prefactor default 1.0>] \\ \n [vwn_2 <real prefactor default 1.0>] \\ \n [vwn_3 <real prefactor default 1.0>] \\ \n [vwn_4 <real prefactor default 1.0>] \\ \n [vwn_5 <real prefactor default 1.0>] \\ \n [vwn_1_rpa <real prefactor default 1.0>] \\ \n [xtpss03 [nonlocal] <real prefactor default 1.0>] \\ \n [ctpss03 [nonlocal] <real prefactor default 1.0>] \\ \n [bc95 [nonlocal] <real prefactor default 1.0>] \\ \n [xpw6b95 [nonlocal] <real prefactor default 1.0>] \\ \n [xpwb6k [nonlocal] <real prefactor default 1.0>] \\ \n [xm05 [nonlocal] <real prefactor default 1.0>] \\ \n [xm05-2x [nonlocal] <real prefactor default 1.0>] \\ \n [cpw6b95 [nonlocal] <real prefactor default 1.0>] \\ \n [cpwb6k [nonlocal] <real prefactor default 1.0>] \\ \n [cm05 [nonlocal] <real prefactor default 1.0>] \\ \n [cm05-2x [nonlocal] <real prefactor default 1.0>]] \\ \n [xvs98 [nonlocal] <real prefactor default 1.0>]] \\ \n [cvs98 [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-L [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-hf [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06 [nonlocal] <real prefactor default 1.0>]] \\ \n [xm06-2x [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-L [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-hf [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06 [nonlocal] <real prefactor default 1.0>]] \\ \n [cm06-2x [nonlocal] <real prefactor default 1.0>]] \n CONVERGENCE [[energy <real energy default 1e-7>] \\ \n [density <real density default 1e-5>] \\ \n [gradient <real gradient default 5e-4>] \\ \n [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>] \\ \n [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 30>] \\ \n [damp <integer ndamp default 0>] [nodamping] \\ \n [diis [nfock <integer nfock default 10>]] \\ \n [nodiis] [lshift <real lshift default 0.5>] \\ \n [nolevelshifting] \\ \n [hl_tol <real hl_tol default 0.1>] \\ \n [rabuck [n_rabuck <integer n_rabuck default 25>]\\\n [fast] ] \n GRID [(xcoarse||coarse||medium||fine||xfine||huge) default medium] \\ \n [(gausleg||lebedev ) default lebedev ] \\ \n [(becke||erf1||erf2||ssf) default erf1] \\ \n [(euler||mura||treutler) default mura] \\ \n [rm <real rm default 2.0>] \\ \n [nodisk] \n TOLERANCES [[tight] [tol_rho <real tol_rho default 1e-10>] \\ \n [accCoul <integer accCoul default 8>] \\ \n [radius <real radius default 25.0>]] \n [(LB94||CS00 <real shift default none>)] \n DECOMP \n ODFT \n DIRECT \n SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$>]\n INCORE \n ITERATIONS <integer iterations default 30> \n MAX_OVL \n CGMIN \n RODFT \n MULLIKEN \n DISP \n XDM [ a1 <real a1> ] [ a2 <real a2> ] \n MULT <integer mult default 1> \n NOIO \n PRINT||NOPRINT\n SYM <string (ON||OFF) default ON>\n ADAPT <string (ON||OFF) default ON>\n
The following sections describe these keywords and optional sub-directives that can be specified for a DFT calculation in NWChem.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#specification-of-basis-sets-for-the-dft-module","title":"Specification of Basis Sets for the DFT Module","text":"The DFT module requires at a minimum the basis set for the Kohn-Sham molecular orbitals. This basis set must be in the default basis set named \u201cao basis\u201d, or it must be assigned to this default name using the SET directive.
In addition to the basis set for the Kohn-Sham orbitals, the charge density fitting basis set can also be specified in the input directives for the DFT module. This basis set is used for the evaluation of the Coulomb potential in the Dunlap scheme. The charge density fitting basis set must have the name cd basis
. This can be the actual name of a basis set, or a basis set can be assigned this name using the SET directive. If this basis set is not defined by input, the O(N4) exact Coulomb contribution is computed.
The user also has the option of specifying a third basis set for the evaluation of the exchange-correlation potential. This basis set must have the name xc basis
. If this basis set is not specified by input, the exchange contribution (XC) is evaluated by numerical quadrature. In most applications, this approach is efficient enough, so the \u201cxc basis\u201d basis set is not required.
For the DFT module, the input options for defining the basis sets in a given calculation can be summarized as follows:
ao basis
- Kohn-Sham molecular orbitals; required for all calculationscd basis
- charge density fitting basis set; optional, but recommended for evaluation of the Coulomb potentialUse of the auxiliary density functional theory method (ADFT)1 can be triggered by means of the adft
keyword. This can result in a large speed-up when using \u201cpure\u201d GGA functionals (e.g. PBE96) and Laplacian-dependent mGGA functionals (e.g. SCAN-L). The speed-up comes from the use of the fitted density obtained with the charge density fitting technique to approximate both the Coulomb and Exchange-Correlation contributions.
The ADFT method is similar in spirit to the exchange-correlation fitting technique triggered by specifying an xc basis without the adft
keyword. It is important to note that, different to straight exchange-correlation fitting, energy derivatives are well-defined within the ADFT framework. As a consequence, geometry optimizations and harmonic vibrational frequencies are well-behaved.
The ADFT method requires a charge density fitting basis set (see DFT basis set section). If not cd basis
set is provided, the weigend coulomb fitting
basis set will be loaded.
The VECTORS directive is the same as that in the SCF module. Currently, the LOCK keyword is not supported by the DFT module, however the directive
MAX_OVL\n
has the same effect.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#xc-and-decomp-exchange-correlation-potentials","title":"XC and DECOMP: Exchange-Correlation Potentials","text":" XC [[acm] [b3lyp] [beckehandh] [pbe0] [bhlyp]\\ \n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke98] [hcth] [hcth120] [hcth147] [hcth147@tz2p] \\\n [hcth407] [becke97gga1] [hcth407p] \\ \n [optx] [hcthp14] [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\ \n [m05] [m05-2x] [m06] [m06-l] [m06-2x] [m06-hf] [m08-hx] [m08-so] [m11] [m11-l]\\ \n [HFexch <real prefactor default 1.0>] \\ \n [becke88 [nonlocal] <real prefactor default 1.0>] \\ \n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [gill96 [nonlocal] <real prefactor default 1.0>] \\ \n [lyp <real prefactor default 1.0>] \\ \n [perdew81 <real prefactor default 1.0>] \\ \n [perdew86 [nonlocal] <real prefactor default 1.0>] \\ \n [perdew91 [nonlocal] <real prefactor default 1.0>] \\ \n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\ \n [pw91lda <real prefactor default 1.0>] \\ \n [slater <real prefactor default 1.0>] \\ \n [vwn_1 <real prefactor default 1.0>] \\ \n [vwn_2 <real prefactor default 1.0>] \\ \n [vwn_3 <real prefactor default 1.0>] \\ \n [vwn_4 <real prefactor default 1.0>] \\ \n [vwn_5 <real prefactor default 1.0>] \\ \n [vwn_1_rpa <real prefactor default 1.0>]]\n
The user has the option of specifying the exchange-correlation treatment in the DFT Module (see table below for full list of functionals). The default exchange-correlation functional is defined as the local density approximation (LDA) for closed shell systems and its counterpart the local spin-density (LSD) approximation for open shell systems. Within this approximation, the exchange functional is the Slater \u03c11/3 functional23, and the correlation functional is the Vosko-Wilk-Nusair (VWN) functional (functional V)4. The parameters used in this formula are obtained by fitting to the Ceperley and Alder Quantum Monte-Carlo solution of the homogeneous electron gas.
These defaults can be invoked explicitly by specifying the following keywords within the DFT module input directive, XC slater vwn_5
.
That is, this statement in the input file
dft \n XC slater vwn_5 \nend \ntask dft\n
is equivalent to the simple line
task dft\n
The DECOMP
directive causes the components of the energy corresponding to each functional to be printed, rather than just the total exchange-correlation energy that is the default. You can see an example of this directive in the sample input.
Many alternative exchange and correlation functionals are available to the user as listed in the table below. The following sections describe how to use these options.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#libxc-interface-new-in-nwchem-720","title":"Libxc interface New in NWChem 7.2.0:","text":"If NWChem is compiled by linking it with the libxc DFT library (as described in the Interfaces with External Software section), the user will be able to use most of the XC functionals available in libxc. The input syntax requires to use the xc keyword followed by the functionals name from list available in Libxc
For example, the following input for the NWChem libxc interface
dft\n xc gga_x_pbe 1.0 gga_x_pbe 1.0\nend\n
while trigger use of the same PBE96 functionals as in the NWChem built-in interface
dft\n xc xpbe96 1.0 cpbe96 1.0\nend\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#exchange-correlation-functionals","title":"Exchange-Correlation Functionals","text":"There are several Exchange and Correlation functionals in addition to the default slater
and vwn_5
functionals. These are either local or gradient-corrected functionals (GCA); a full list can be found in the table below.
The Hartree-Fock exact exchange functional, (which has O(N4) computation expense), is invoked by specifying
XC HFexch\n
Note that the user also has the ability to include only the local or nonlocal contributions of a given functional. In addition, the user can specify a multiplicative prefactor (the variable in the input) for the local/nonlocal component or total. An example of this might be,
XC becke88 nonlocal 0.72\n
The user should be aware that the Becke88 local component is simply the Slater exchange and should be input as such.
Any combination of the supported exchange functional options can be used. For example, the popular Gaussian B3 exchange could be specified as:
XC slater 0.8 becke88 nonlocal 0.72 HFexch 0.2\n
Any combination of the supported correlation functional options can be used. For example, B3LYP could be specified as:
XC vwn_1_rpa 0.19 lyp 0.81 HFexch 0.20 slater 0.80 becke88 nonlocal 0.72\n
and X3LYP as:
xc vwn_1_rpa 0.129 lyp 0.871 hfexch 0.218 slater 0.782 \\\nbecke88 nonlocal 0.542 xperdew91 nonlocal 0.167\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#setting-up-common-exchange-correlation-functionals","title":"Setting up common exchange-correlation functionals","text":"xc b3lyp
xc pbe0
xc xpbe96 cpbe96
xc xperdew91 perdew91
xc bhlyp
xc beckehandh
xc becke88 perdew86
xc becke88 perdew91
xc becke88 lyp
Minnesota Functionals
Analytic second derivatives are not supported with the Minnesota functionals yet.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#combined-exchange-and-correlation-functionals","title":"Combined Exchange and Correlation Functionals","text":"In addition to the options listed above for the exchange and correlation functionals, the user has the alternative of specifying combined exchange and correlation functionals.
The available hybrid functionals (where a Hartree-Fock Exchange component is present) consist of the Becke \u201chalf and half\u201d5, the adiabatic connection method6, Becke 1997 (\u201cBecke V\u201d paper7).
The keyword beckehandh
specifies that the exchange-correlation energy will be computed as
EXC \u2248 \u00bdEXHF + \u00bdEXSlater + \u00bdECPW91LDA
We know this is NOT the correct Becke prescribed implementation that requires the XC potential in the energy expression. But this is what is currently implemented as an approximation to it.
The keyword acm
specifies that the exchange-correlation energy is computed as
EXC = a0EXHF + (1 - a0)EXSlater + aX\u03b4EXBecke88 + ECVWN + aC\u03b4ECPerdew91
where
a0 = 0.20, aX = 0.72, aC = 0.81
and \u03b4 stands for a non-local component.
The keyword b3lyp
specifies that the exchange-correlation energy is computed as
EXC = a0EXHF + (1 - a0)EXSlater + aX\u03b4EXBecke88 + (1 - aC)ECVWN_1_RPA + aC\u03b4ECLYP
where
a0 = 0.20, aX = 0.72, aC = 0.81
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#xc-functionals-summary","title":"XC Functionals Summary","text":"Table\u00a01: Available Exchange (X) and Correlation (C) functionals. GGA is the Generalized Gradient Approximation, and Meta refers to Meta-GGAs. The column 2nd refers to second derivatives of the energy with respect to nuclear position. Keyword X C GGA Meta Hybr. 2nd Ref. slater * Y 23 vwn_1 * Y 4 vwn_2 * Y 4 vwn_3 * Y 4 vwn_4 * Y 4 vwn_5 * Y 4 vwn_1_rpa * Y 4 perdew81 * Y 8 pw91lda * Y 9 xbecke86b * * N 10 becke88 * * Y 11 xperdew86 * * N 12 xperdew91 * * Y 9 xpbe96 * * Y 1314 gill96 * * Y 15 optx * * N 16 mpw91 * * Y 1718 xft97 * * N 1920 rpbe * * Y 21 revpbe * * Y 22 xpw6b95 * * N 23 xpwb6k * * N 23 perdew86 * * Y 12 lyp * * Y 24 perdew91 * * Y 2526 cpbe96 * * Y 1314 cft97 * * N 1920 op * * N 27 hcth * * * N 28 hcth120 * * * N 29 hcth147 * * * N 29 hcth147@tz2p * * * N 30 hcth407 * * * N 31 becke97gga1 * * * N 32 hcthp14 * * * N 33 ft97 * * * N 1920 htch407p * * * N 34 bop * * * N 27 pbeop * * * N 35 xpkzb99 * * N 36 cpkzb99 * * N 36 xtpss03 * * N 37 ctpss03 * * N 37 bc95 * * N 21 cpw6b95 * * N 23 cpwb6k * * N 23 xm05 * * * N 38,39 cm05 * * N 38,39 m05-2x * * * * N 40 xm05-2x * * * N 40 cm05-2x * * N 40 xctpssh * * N 41 bb1k * * N 22 mpw1b95 * * N 42 mpwb1k * * N 42 pw6b95 * * N 23 pwb6k * * N 23 m05 * * N 38 vs98 * * N 43 xvs98 * * N 43 cvs98 * * N 43 m06-L * * * N 44 xm06-L * * N 44 cm06-L * * N 44 m06-hf * * N 45 xm06-hf * * * N 45 cm06-hf * * N 45 m06 * * N 46 xm06 * * * N 46 cm06 * * N 46 m06-2x * * N 44 xm06-2x * * * N 44 cm06-2x * * N 44 cm08-hx * * N 47 xm08-hx * * N 47 m08-hx * * * * N 47 cm08-so * * N 47 xm08-so * * N 47 m08-so * * * * N 47 cm11 * * N 48 xm11 * * N 48 m11 * * * * N 48 cm11-l * * N 49 xm11-l * * N 49 m11-l * * * N 49 csogga * * N 47 xsogga * * N 47 sogga * * * N 47 csogga11 * * N 50 xsogga11 * * N 50 sogga11 * * * N 50 csogga11-x * N [@peverati2001] xsogga11-x * * N [@peverati2001] sogga11-x * * * * N [@peverati2001] dldf * * * * N 51 beckehandh * * * Y 5 b3lyp * * * * Y 6 acm * * * * Y 6 becke97 * * * * N 7 becke97-1 * * * * N 28 becke97-2 * * * * N 52 becke97-3 * * * * N 53 becke97-d * * * * N 54 becke98 * * * * N 55 pbe0 * * * * Y 56 mpw1k * * * * Y 57 xmvs15 * * N 58 hle16 * * * * Y 59 scan * * * * N [@yang20176] scanl * * * * N 60 revm06-L * * * * N 61 revm06 * * * * * N 62 wb97x * * * * N 94 wb97x-d3 * * * * N 95 rscan * * * * N 96 r2scan * * * * N 97 r2scan0 * * * * * N [^101] r2scanl * * * * N [^100],[^r2scanl] ncap * * * Y [^102]"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#meta-gga-functionals","title":"Meta-GGA Functionals","text":"One way to calculate meta-GGA energies is to use orbitals and densities from fully self-consistent GGA or LDA calculations and run them in one iteration in the meta-GGA functional. It is expected that meta-GGA energies obtained this way will be close to fully self consistent meta-GGA calculations.
It is possible to calculate metaGGA energies both ways in NWChem, that is, self-consistently or with GGA/LDA orbitals and densities. However, since second derivatives are not available for metaGGAs, in order to calculate frequencies, one must use task dft freq numerical. A sample file with this is shown below, in Sample input file. In this instance, the energy is calculated self-consistently and geometry is optimized using the analytical gradients.
(For more information on metaGGAs, see Kurth et al 1999 63 for a brief description of meta-GGAs, and citations 14-27 therein for thorough background)
Note: both TPSS and PKZB correlation require the PBE GGA CORRELATION (which is itself dependent on an LDA). The decision has been made to use these functionals with the accompanying local PW91LDA. The user cannot set the local part of these metaGGA functionals.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#range-separated-functionals","title":"Range-Separated Functionals","text":"Using the Ewald decomposition
we can split the the Exchange interaction as
Therefore, the long-range HF Exchange energy becomes
cam <real cam> cam_alpha <real cam_alpha> cam_beta <cam_beta>\n
cam
represents the attenuation parameter \u03bc, cam_alpha
and cam_beta
are the \u03b1 and \u03b2 parameters that control the amount of short-range DFT and long-range HF Exchange according to the Ewald decomposition. As r12 \u2192 0, the HF exchange fraction is \u03b1, while the DFT exchange fraction is 1 - \u03b1. As r12 \u2192 \u221e, the HF exchange fraction approaches \u03b1 + \u03b2 and the DFT exchange fraction approaches 1 - \u03b1 - \u03b2. In the HSE functional, the HF part is short-ranged and DFT is long-ranged.
Range separated functionals (or long-range corrected or LC) can be specified as follows:
CAM-B3LYP:
xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00 \ncam 0.33 cam_alpha 0.19 cam_beta 0.46\n
LC-BLYP:
xc xcamb88 1.00 lyp 1.0 hfexch 1.00 \ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
LC-PBE:
xc xcampbe96 1.0 cpbe96 1.0 HFexch 1.0 \ncam 0.30 cam_alpha 0.0 cam_beta 1.0\n
LC-PBE0 or CAM-PBE0:
xc xcampbe96 1.0 cpbe96 1.0 HFexch 1.0\ncam 0.30 cam_alpha 0.25 cam_beta 0.75\n
BNL (Baer, Neuhauser, Lifshifts):
xc xbnl07 0.90 lyp 1.00 hfexch 1.00 \ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
LC-wPBE:
xc xwpbe 1.00 cpbe96 1.0 hfexch 1.00 \ncam 0.4 cam_alpha 0.00 cam_beta 1.00\n
LRC-wPBEh:
xc xwpbe 0.80 cpbe96 1.0 hfexch 1.00 \ncam 0.2 cam_alpha 0.20 cam_beta 0.80\n
QTP-00
xc xcamb88 1.00 lyp 0.80 vwn_5 0.2 hfexch 1.00 \ncam 0.29 cam_alpha 0.54 cam_beta 0.37\n
rCAM-B3LYP
xc xcamb88 1.00 lyp 1.0 vwn_5 0. hfexch 1.00 becke88 nonlocal 0.13590\ncam 0.33 cam_alpha 0.18352 cam_beta 0.94979\n
HSE03 functional: 0.25*Ex(HF-SR) - 0.25*Ex(PBE-SR) + Ex(PBE) + Ec(PBE), where gamma(HF-SR) = gamma(PBE-SR)
xc hse03\n
or it can be explicitly set as
xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25\ncam 0.33 cam_alpha 0.0 cam_beta 1.0\n
HSE06 functional:
xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25\ncam 0.11 cam_alpha 0.0 cam_beta 1.0\n
Please see references 64, 65, 66, 67, 68, [vydrov2006], 69, 70, 71, 72, 73, 74, 75 and 76 (not a complete list) for further details about the theory behind these functionals and applications.
Example illustrating the CAM-B3LYP functional:
start h2o-camb3lyp \ngeometry units angstrom \n O 0.00000000 0.00000000 0.11726921 \n H 0.75698224 0.00000000 -0.46907685 \n H -0.75698224 0.00000000 -0.46907685 \nend \nbasis spherical \n * library aug-cc-pvdz \nend \ndft \n xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00 \n cam 0.33 cam_alpha 0.19 cam_beta 0.46 \n direct \n iterations 100 \nend \ntask dft energy\n
Example illustrating the HSE03 functional:
echo \nstart h2o-hse \ngeometry units angstrom \nO 0.00000000 0.00000000 0.11726921 \nH 0.75698224 0.00000000 -0.46907685 \nH -0.75698224 0.00000000 -0.46907685 \nend \nbasis spherical \n * library aug-cc-pvdz \nend \ndft \n xc hse03 \n iterations 100 \n direct \n end \ntask dft energy\n
or alternatively
dft \n xc xpbe96 1.0 xcampbe96 -0.25 cpbe96 1.0 srhfexch 0.25 \n cam 0.33 cam_alpha 0.0 cam_beta 1.0 \n iterations 100 \n direct \nend \ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#ssb-d-functional","title":"SSB-D functional","text":"The SSB-D7778 functional is a small correction to the non-empirical PBE functional and includes a portion of Grimme\u2019s dispersion correction (s6=0.847455). It is designed to reproduce the good results of OPBE for spin-state splittings and reaction barriers, and the good results of PBE for weak interactions. The SSB-D functional works well for these systems, including for difficult systems for DFT (dimerization of anthracene, branching of octane, water-hexamer isomers, C12H12 isomers, stacked adenine dimers), and for NMR chemical shieldings.
It can be specified as
xc ssb-d\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#semi-empirical-hybrid-dft-combined-with-perturbative-mp2","title":"Semi-empirical hybrid DFT combined with perturbative MP2","text":"This theory combines hybrid density functional theory with MP2 semi-empirically. The B2PLYP functional, which is an example of this approximation, can be specified as:
mp2\n freeze atomic\nend\ndft \n xc HFexch 0.53 becke88 0.47 lyp 0.73 mp2 0.27 \n dftmp2 \nend\n
For details of the theory, please see reference79.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#lb94-and-cs00-asymptotic-correction","title":"LB94 and CS00: Asymptotic correction","text":"The keyword LB94
will correct the asymptotic region of the XC definition of exchange-correlation potential by the van-Leeuwen-Baerends exchange-correlation potential that has the correct asymptotic behavior. The total energy will be computed by the XC definition of exchange-correlation functional. This scheme is known to tend to overcorrect the deficiency of most uncorrected exchange-correlation potentials.
The keyword CS00
, when supplied with a real value of shift (in atomic units), will perform Casida-Salahub \u201800 asymptotic correction. This is primarily intended for use with TDDFT. The shift is normally positive (which means that the original uncorrected exchange-correlation potential must be shifted down).
When the keyword CS00
is specified without the value of shift, the program will automatically supply it according to the semi-empirical formula of Zhan, Nichols, and Dixon (again, see TDDFT for more details and references). As the Zhan\u2019s formula is calibrated against B3LYP results, it is most meaningful to use this with the B3LYP functional, although the program does not prohibit (or even warn) the use of any other functional.
Sample input files of asymptotically corrected TDDFT calculations can be found in the corresponding section.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#sample-input-file","title":"Sample input file","text":"A simple example calculates the geometry of water, using the metaGGA functionals xtpss03
and ctpss03
. This also highlights some of the print features in the DFT module. Note that you must use the line task dft freq numerical
because analytic hessians are not available for the metaGGAs:
title \"WATER 6-311G* meta-GGA XC geometry\" \necho \ngeometry units angstroms \n O 0.0 0.0 0.0 \n H 0.0 0.0 1.0 \n H 0.0 1.0 0.0 \nend \nbasis \n H library 6-311G* \n O library 6-311G* \nend \ndft \n iterations 50 \n print kinetic_energy \n xc xtpss03 ctpss03 \n decomp \nend \ntask dft optimize \ntask dft freq numerical\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#iterations-or-maxiter-number-of-scf-iterations","title":"ITERATIONS or MAXITER: Number of SCF iterations","text":" ITERATIONS or MAXITER <integer iterations default 30>\n
The default optimization in the DFT module is to iterate on the Kohn-Sham (SCF) equations for a specified number of iterations (default 30). The keyword that controls this optimization is ITERATIONS
, and has the following general form,
iterations <integer iterations default 30>\n
or
maxiter <integer iterations default 30>\n
The optimization procedure will stop when the specified number of iterations is reached or convergence is met. See an example that uses this directive in Sample input file.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-scf-convergence-control","title":"CONVERGENCE: SCF Convergence Control","text":" CONVERGENCE [energy <real energy default 1e-6>] \\ \n [density <real density default 1e-5>] \\ \n [gradient <real gradient default 5e-4>] \\ \n [hl_tol <real hl_tol default 0.1>] \n [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 30>] \\ \n [damp <integer ndamp default 0>] [nodamping] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [(diis [nfock <integer nfock default 10>]) || nodiis] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>] \\ \n [(lshift <real lshift default 0.5>) || nolevelshifting] \\ \n [rabuck [n_rabuck <integer n_rabuck default 25>] \\\n [fast] ]\n
Convergence is satisfied by meeting any or all of three criteria;
CONVERGENCE energy <real energy default 1e-6>\n
CONVERGENCE density <real density default 1e-5>\n
CONVERGENCE gradient <real gradient default 5e-4>\n
The default optimization strategy is to immediately begin direct inversion of the iterative subspace. Damping is also initiated (using 70% of the previous density) for the first 2 iteration. In addition, if the HOMO - LUMO gap is small and the Fock matrix diagonally dominant, then level-shifting is automatically initiated. There are a variety of ways to customize this procedure to whatever is desired.
An alternative optimization strategy is to specify, by using the change in total energy (between iterations N and N-1), when to turn damping, level-shifting, and/or DIIS on/off. Start and stop keywords for each of these is available as,
CONVERGENCE [dampon <real dampon default 0.0>] \\ \n [dampoff <real dampoff default 0.0>] \\ \n [diison <real diison default 0.0>] \\ \n [diisoff <real diisoff default 0.0>] \\ \n [levlon <real levlon default 0.0>] \\ \n [levloff <real levloff default 0.0>]\n
So, for example, damping, DIIS, and/or level-shifting can be turned on/off as desired.
Another strategy can be to specify how many iterations (cycles) you wish each type of procedure to be used. The necessary keywords to control the number of damping cycles (ncydp
), the number of DIIS cycles (ncyds
), and the number of level-shifting cycles (ncysh
) are input as,
CONVERGENCE [ncydp <integer ncydp default 2>] \\ \n [ncyds <integer ncyds default 30>] \\ \n [ncysh <integer ncysh default 0>]\n
The amount of damping, level-shifting, time at which level-shifting is automatically imposed, and Fock matrices used in the DIIS extrapolation can be modified by the following keywords
CONVERGENCE [damp <integer ndamp default 0>] \\ \n [diis [nfock <integer nfock default 10>]] \\ \n [lshift <real lshift default 0.5>] \\ \n [hl_tol <real hl_tol default 0.1>]]\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-damp-keyword","title":"CONVERGENCE DAMP Keyword","text":"Damping is defined to be the percentage of the previous iterations density mixed with the current iterations density. So, for example
CONVERGENCE damp 70\n
would mix 30% of the current iteration density with 70% of the previous iteration density.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-lshift-keyword","title":"CONVERGENCE LSHIFT Keyword","text":"Level-Shifting is defined as the amount of shift applied to the diagonal elements of the unoccupied block of the Fock matrix. The shift is specified by the keyword lshift
. For example the directive,
CONVERGENCE lshift 0.5\n
causes the diagonal elements of the Fock matrix corresponding to the virtual orbitals to be shifted by 0.5 a.u. By default, this level-shifting procedure is switched on whenever the HOMO-LUMO gap is small. Small is defined by default to be 0.05 au but can be modified by the directive hl_tol. An example of changing the HOMO-LUMO gap tolerance to 0.01 would be,
CONVERGENCE hl_tol 0.01\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-diis-keyword","title":"CONVERGENCE DIIS Keyword","text":"Direct inversion of the iterative subspace with extrapolation of up to 10 Fock matrices is a default optimization procedure. For large molecular systems the amount of available memory may preclude the ability to store this number of N2 arrays in global memory. The user may then specify the number of Fock matrices to be used in the extrapolation (must be greater than three (3) to be effective). To set the number of Fock matrices stored and used in the extrapolation procedure to 3 would take the form,
CONVERGENCE diis 3\n
The user has the ability to simply turn off any optimization procedures deemed undesirable with the obvious keywords,
CONVERGENCE [nodamping] [nodiis] [nolevelshifting]\n
For systems where the initial guess is very poor, the user can try using fractional occupation of the orbital levels during the initial cycles of the SCF convergence80. The input has the following form
CONVERGENCE rabuck [n_rabuck <integer n_rabuck default 25>]]\n
where the optional value n_rabuck
determines the number of SCF cycles during which the method will be active. For example, to set equal to 30 the number of cycles where the Rabuck method is active, you need to use the following line
CONVERGENCE rabuck 30\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#convergence-fast-keyword","title":"CONVERGENCE FAST Keyword","text":"convergence fast
turns on a series of parameters that most often speed-up convergence, but not in 100% of the cases.
CONVERGENCE fast\n
Here is an input snippet that would give you the same result as convergence fast
dft\nconvergence lshift 0. ncydp 0 dampon 1d99 dampoff 1d-4 damp 40\nend\nset quickguess t\ntask dft \n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#cdft-constrained-dft","title":"CDFT: Constrained DFT","text":"This option enables the constrained DFT formalism by Wu and Van Voorhis81:
CDFT <integer fatom1 latom1> [<integer fatom2 latom2>] (charge||spin <real constaint_value>) \\ \n [pop (becke||mulliken||lowdin) default lowdin]\n
Variables fatom1
and latom1
define the first and last atom of the group of atoms to which the constraint will be applied. Therefore, the atoms in the same group should be placed continuously in the geometry input. If fatom2
and latom2
are specified, the difference between group 1 and 2 (i.e. 1-2) is constrained.
The constraint can be either on the charge or the spin density (number of alpha - beta electrons) with a user specified constraint_value
. Note: No gradients have been implemented for the spin constraints case. Geometry optimizations can only be performed using the charge constraint.
To calculate the charge or spin density, the Becke, Mulliken, and Lowdin population schemes can be used. The Lowdin scheme is default while the Mulliken scheme is not recommended. If basis sets with many diffuse functions are used, the Becke population scheme is recommended.
Multiple constraints can be defined simultaniously by defining multiple cdft lines in the input. The same population scheme will be used for all constraints and only needs to be specified once. If multiple population options are defined, the last one will be used. When there are convergence problems with multiple constraints, the user is advised to do one constraint first and to use the resulting orbitals for the next step of the constrained calculations.
It is best to put convergence nolevelshifting
in the dft directive to avoid issues with gradient calculations and convergence in CDFT. Use orbital swap to get a broken-symmetry solution.
An input example is given below.
geometry \nsymmetry \n C 0.0 0.0 0.0 \n O 1.2 0.0 0.0 \n C 0.0 0.0 2.0 \n O 1.2 0.0 2.0 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc b3lyp \n convergence nolevelshifting \n odft \n mult 1 \n vectors swap beta 14 15 \n cdft 1 2 charge 1.0 \nend \ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#smear-fractional-occupation-of-the-molecular-orbitals","title":"SMEAR: Fractional Occupation of the Molecular Orbitals","text":"The SMEAR
keyword is useful in cases with many degenerate states near the HOMO (eg metallic clusters)
SMEAR <real smear default 0.001>\n
This option allows fractional occupation of the molecular orbitals. A Gaussian broadening function of exponent smear is used as described in the paper by Warren and Dunlap82. The user must be aware that an additional energy term is added to the total energy in order to have energies and gradients consistent.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#fon-calculations-with-fractional-numbers-of-electrons","title":"FON: Calculations with fractional numbers of electrons","text":""},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#restricted","title":"Restricted","text":"fon partial 3 electrons 1.8 filled 2\n
Here 1.8 electrons will be equally divided over 3 valence orbitals and 2 orbitals are fully filled. The total number of electrons here is 5.8
Example input:
echo \ntitle \"carbon atom\" \nstart carbon_fon \ngeometry \nsymmetry c1 \n C 0.0 0.0 0.0 \nend \nbasis \n * library 6-31G \nend\ndft \n direct \n grid xfine \n convergence energy 1d-8 \n xc pbe0 \n fon partial 3 electrons 1.8 filled 2 \nend\ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#unrestricted","title":"Unrestricted","text":"fon alpha partial 3 electrons 0.9 filled 2 \nfon beta partial 3 electrons 0.9 filled 2\n
Here 0.9 electrons will be equally divided over 3 alpha valence orbitals and 2 alpha orbitals are fully filled. Similarly for beta. The total number of electrons here is 5.8
Example input:
echo \ntitle \"carbon atom\" \nstart carbon_fon \ngeometry \n C 0.0 0.0 0.0 \nend \nbasis \n * library 6-31G \nend \ndft \n odft \n fon alpha partial 3 electrons 0.9 filled 2 \n fon beta partial 3 electrons 0.9 filled 2 \nend \ntask dft energy\n
To set fractional numbers in the core orbitals, add the following directive in the input file:
set dft:core_fon .true.\n
Example input:
dft\n print \"final vectors analysis\"\n odft\n direct\n fon alpha partial 2 electrons 1.0 filled 2\n fon beta partial 2 electrons 1.0 filled 2\n xc pbe0\n convergence energy 1d-8\nend\ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#occup-controlling-the-occupations-of-molecular-orbitals","title":"OCCUP: Controlling the occupations of molecular orbitals","text":"Example:
echo \nstart h2o_core_hole \nmemory 1000 mb \ngeometry units au \n O 0 0 0 \n H 0 1.430 -1.107 \n H 0 -1.430 -1.107 \nend \nbasis \n O library 6-31g* \n H library 6-31g* \nend \noccup \n 6 6 # occupation list for 6 alpha and 6 beta orbitals \n 1.0 0.0 # core-hole in the first beta orbital\n 1.0 1.0 \n 1.0 1.0 \n 1.0 1.0 \n 1.0 1.0 \n 0.0 0.0 \nend \ndft \n odft \n mult 1 \n xc beckehandh \nend \ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#grid-numerical-integration-of-the-xc-potential","title":"GRID: Numerical Integration of the XC Potential","text":" GRID [(xcoarse||coarse||medium||fine||xfine||huge) default medium] \\ \n [(gausleg||lebedev ) default lebedev ] \\ \n [(becke||erf1||erf2||ssf) default erf1] \\ \n [(euler||mura||treutler) default mura] \\ \n [rm <real rm default 2.0>] \\ \n [nodisk]\n
A numerical integration is necessary for the evaluation of the exchange-correlation contribution to the density functional. The default quadrature used for the numerical integration is an Euler-MacLaurin scheme for the radial components (with a modified Mura-Knowles transformation) and a Lebedev scheme for the angular components. Within this numerical integration procedure various levels of accuracy have been defined and are available to the user. The user can specify the level of accuracy with the keywords; xcoarse
, coarse
, medium
, fine
, xfine
and huge
. The default is medium
.
GRID [xcoarse||coarse||medium||fine||xfine||huge]\n
Our intent is to have a numerical integration scheme which would give us approximately the accuracy defined below regardless of molecular composition.
Keyword Total Energy Target Accuracy xcoarse 1\u22c510-4 coarse 1\u22c510-5 medium 1\u22c510-6 fine 1\u22c510-7 xfine 1\u22c510-8 huge 1\u22c510-10In order to determine the level of radial and angular quadrature needed to give us the target accuracy, we computed total DFT energies at the LDA level of theory for many homonuclear atomic, diatomic and triatomic systems in rows 1-4 of the periodic table. In each case all bond lengths were set to twice the Bragg-Slater radius. The total DFT energy of the system was computed using the converged SCF density with atoms having radial shells ranging from 35-235 (at fixed 48/96 angular quadratures) and angular quadratures of 12/24-48/96 (at fixed 235 radial shells). The error of the numerical integration was determined by comparison to a \u201cbest\u201d or most accurate calculation in which a grid of 235 radial points 48 theta and 96 phi angular points on each atom was used. This corresponds to approximately 1 million points per atom. The following tables were empirically determined to give the desired target accuracy for DFT total energies. These tables below show the number of radial and angular shells which the DFT module will use for for a given atom depending on the row it is in (in the periodic table) and the desired accuracy. Note, differing atom types in a given molecular system will most likely have differing associated numerical grids. The intent is to generate the desired energy accuracy (at the expense of speed of the calculation).
Keyword Radial Angular xcoarse 21 194 coarse 35 302 medium 49 434 fine 70 590 xfine 100 1202Program default number of radial and angular shells empirically determined for Row 1 atoms (Li \u2192 F) to reach the desired accuracies.
Keyword Radial Angular xcoarse 42 194 coarse 70 302 medium 88 434 fine 123 770 xfine 125 1454 huge 300 1454Program default number of radial and angular shells empirically determined for Row 2 atoms (Na \u2192 Cl) to reach the desired accuracies.
Keyword Radial Angular xcoarse 75 194 coarse 95 302 medium 112 590 fine 130 974 xfine 160 1454 huge 400 1454Program default number of radial and angular shells empirically determined for Row 3 atoms (K \u2192 Br) to reach the desired accuracies.
Keyword Radial Angular xcoarse 84 194 coarse 104 302 medium 123 590 fine 141 974 xfine 205 1454 huge 400 1454Program default number of radial and angular shells empirically determined for Row 4 atoms (Rb \u2192 I) to reach the desired accuracies.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#angular-grids","title":"Angular grids","text":"In addition to the simple keyword specifying the desired accuracy as described above, the user has the option of specifying a custom quadrature of this type in which ALL atoms have the same grid specification. This is accomplished by using the gausleg
keyword.
GRID gausleg <integer nradpts default 50> <integer nagrid default 10>\n
In this type of grid, the number of phi points is twice the number of theta points. So, for example, a specification of,
GRID gausleg 80 20\n
would be interpreted as 80 radial points, 20 theta points, and 40 phi points per center (or 64000 points per center before pruning).
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#lebedev-angular-grid","title":"Lebedev angular grid","text":"A second quadrature is the Lebedev scheme for the angular components. Within this numerical integration procedure various levels of accuracy have also been defined and are available to the user. The input for this type of grid takes the form,
GRID lebedev <integer radpts > <integer iangquad >\n
In this context the variable iangquad
specifies a certain number of angular points as indicated by the table below:
Therefore the user can specify any number of radial points along with the level of angular quadrature (1-29).
The user can also specify grid parameters specific for a given atom type: parameters that must be supplied are: atom tag and number of radial points. As an example, here is a grid input line for the water molecule
grid lebedev 80 11 H 70 8 O 90 11\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#partitioning-functions","title":"Partitioning functions","text":"GRID [(becke||erf1||erf2||ssf) default erf1]\n
Erfn partitioning functions
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#radial-grids","title":"Radial grids","text":"
GRID [[euler||mura||treutler] default mura]\n
NODISK\n
This keyword turns off storage of grid points and weights on disk.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#tolerances-screening-tolerances","title":"TOLERANCES: Screening tolerances","text":" TOLERANCES [[tight] [tol_rho <real tol_rho default 1e-10>] \\ \n [accCoul <integer accCoul default 8>] \\ \n [radius <real radius default 25.0>]]\n
The user has the option of controlling screening for the tolerances in the integral evaluations for the DFT module. In most applications, the default values will be adequate for the calculation, but different values can be specified in the input for the DFT module using the keywords described below.
The input parameter accCoul
is used to define the tolerance in Schwarz screening for the Coulomb integrals. Only integrals with estimated values greater than 10(-accCoul) are evaluated.
TOLERANCES accCoul <integer accCoul default 8>\n
Screening away needless computation of the XC functional (on the grid) due to negligible density is also possible with the use of,
TOLERANCES tol_rho <real tol_rho default 1e-10>\n
XC functional computation is bypassed if the corresponding density elements are less than tol_rho
.
A screening parameter, radius, used in the screening of the Becke or Delley spatial weights is also available as,
TOLERANCES radius <real radius default 25.0>\n
where radius
is the cutoff value in bohr.
The tolerances as discussed previously are insured at convergence. More sleazy tolerances are invoked early in the iterative process which can speed things up a bit. This can also be problematic at times because it introduces a discontinuity in the convergence process. To avoid use of initial sleazy tolerances the user can invoke the tight option:
TOLERANCES tight\n
This option sets all tolerances to their default/user specified values at the very first iteration.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#direct-semidirect-and-noio-hardware-resource-control","title":"DIRECT, SEMIDIRECT and NOIO: Hardware Resource Control","text":" DIRECT||INCORE \n SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$] \n NOIO\n
The inverted charge-density and exchange-correlation matrices for a DFT calculation are normally written to disk storage. The user can prevent this by specifying the keyword noio
within the input for the DFT directive. The input to exercise this option is as follows,
noio\n
If this keyword is encountered, then the two matrices (inverted charge-density and exchange-correlation) are computed \u201con-the-fly\u201d whenever needed.
The INCORE
option is always assumed to be true but can be overridden with the option DIRECT
in which case all integrals are computed \u201con-the-fly\u201d.
The SEMIDIRECT
option controls caching of integrals. A full description of this option is described in the Hartree-Fock section. Some functionality which is only compatible with the DIRECT
option will not, at present, work when using SEMIDIRECT
.
ODFT\n MULT <integer mult default 1>\n
Both closed-shell and open-shell systems can be studied using the DFT module. Specifying the keyword MULT
within the DFT
directive allows the user to define the spin multiplicity of the system. The form of the input line is as follows;
MULT <integer mult default 1>\n
When the keyword MULT
is specified, the user can define the integer variable mult
, where mult is equal to the number of alpha electrons minus beta electrons, plus 1.
When MULT
is set to a negative number. For example, if MULT = -3
, a triplet calculation will be performed with the beta electrons preferentially occupied. For MULT = 3
, the alpha electrons will be preferentially occupied.
The keyword ODFT
is unnecessary except in the context of forcing a singlet system to be computed as an open shell system (i.e., using a spin-unrestricted wavefunction).
The cgmin
keyword will use the quadratic convergence algorithm. It is possible to turn the use of the quadratic convergence algorithm off with the nocgmin
keyword.
The rodft
keyword will perform restricted open-shell calculations. This keyword can only be used with the CGMIN
keyword.
sic [perturbative || oep || oep-loc ]\n<default perturbative>\n
The Perdew and Zunger8 method to remove the self-interaction contained in many exchange-correlation functionals has been implemented with the Optimized Effective Potential method8889 within the Krieger-Li-Iafrate approximation909192. Three variants of these methods are included in NWChem:
sic perturbative
This is the default option for the sic directive. After a self-consistent calculation, the Kohn-Sham orbitals are localized with the Foster-Boys algorithm (see section on orbital localization) and the self-interaction energy is added to the total energy. All exchange-correlation functionals implemented in the NWChem can be used with this option.sic oep
With this option the optimized effective potential is built in each step of the self-consistent process. Because the electrostatic potential generated for each orbital involves a numerical integration, this method can be expensive.sic oep-loc
This option is similar to the oep option with the addition of localization of the Kohn-Sham orbitals in each step of the self-consistent process.With oep
and oep-loc
options a xfine grid
(see section about numerical integration ) must be used in order to avoid numerical noise, furthermore the hybrid functionals can not be used with these options. More details of the implementation of this method can be found in the paper by Garza93. The components of the sic energy can be printed out using:
print \"SIC information\"\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#mulliken-mulliken-analysis","title":"MULLIKEN: Mulliken analysis","text":"Mulliken analysis of the charge distribution is invoked by the keyword:
MULLIKEN\n
When this keyword is encountered, Mulliken analysis of both the input density as well as the output density will occur. For example, to perform a mulliken analysis and print the explicit population analysis of the basis functions, use the following
dft\n mulliken\n print \"mulliken ao\"\nend\ntask dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#fukui-fukui-indices","title":"FUKUI: Fukui Indices","text":"Fukui inidces analysis is invked by the keyword:
FUKUI\n
When this keyword is encounters, the condensed Fukui indices will be calculated and printed in the output. Detailed information about the analysis can be obtained using the following
dft \n fukui \n print \"Fukui information\" \n end \n task dft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#bsse-basis-set-superposition-error","title":"BSSE: Basis Set Superposition Error","text":"Particular care is required to compute BSSE by the counter-poise method for the DFT module. In order to include terms deriving from the numerical grid used in the XC integration, the user must label the ghost atoms not just bq, but bq followed by the given atomic symbol. For example, the first component needed to compute the BSSE for the water dimer, should be written as follows
geometry h2o autosym units au\n O 0.00000000 0.00000000 0.22143139\n H 1.43042868 0.00000000 -0.88572555\n H -1.43042868 0.00000000 -0.88572555\n bqH 0.71521434 0.00000000 -0.33214708\n bqH -0.71521434 0.00000000 -0.33214708\n bqO 0.00000000 0.00000000 -0.88572555\nend\nbasis\n H library aug-cc-pvdz\n O library aug-cc-pvdz\n bqH library H aug-cc-pvdz\n bqO library O aug-cc-pvdz\nend\n
Please note that the ghost oxygen atom has been labeled bqO
, and not just bq
.
DISP \\\n [ vdw <real vdw integer default 2]] \\\n [[s6 <real s6 default depends on XC functional>] \\\n [ alpha <real alpha default 20.0d0] \\\n [ off ] \n
When systems with high dependence on van der Waals interactions are computed, the dispersion term may be added empirically through long-range contribution DFT-D, i.e. EDFT-D=EDFT-KS+Edisp, where:
In this equation, the s6 term depends in the functional and basis set used, C6ij is the dispersion coefficient between pairs of atoms. Rvdw and Rij are related with van der Waals atom radii and the nucleus distance respectively. The \u03b1 value contributes to control the corrections at intermediate distances.
There are available three ways to compute C6ij:
where Neff and C6 are obtained from references 94 and 95 (Use vdw 0
)
See details in reference96. (Use vdw 1)
See details in reference79. (Use vdw 2
)
Note that in each option there is a certain set of C6 and Rvdw. Also note that Grimme only defined parameters for elements up to Z=54 for the dispersion correction above. C6 values for elements above Z=54 have been set to zero.
For options vdw 1
and vdw 2
, there are s6 values by default for some functionals and triple-zeta plus double polarization basis set (TZV2P):
vdw 1
BLYP 1.40, PBE 0.70 and BP86 1.30.vdw 2
BLYP 1.20, PBE 0.75, BP86 1.05, B3LYP 1.05, Becke97-D 1.25 and TPSS 1.00.Grimme\u2019s DFT-D3 is also available. Here the dispersion term has the following form:
This new dispersion correction covers elements through Z=94. Cijn (n=6,8) are coordination and geometry dependent. Details about the functional form can be found in reference 97.
To use the Grimme DFT-D3 dispersion correction, use the option
vdw 3
(s6
and alpha
cannot be set manually). Functionals for which DFT-D3 is available in NWChem are BLYP, B3LYP, BP86, Becke97-D, PBE96, TPSS, PBE0, B2PLYP, BHLYP, TPSSH, PWB6K, B1B95, SSB-D, MPW1B95, MPWB1K, M05, M05-2X, M06L, M06, M06-2X, and M06HF
vdw 4
triggers the DFT-D3BJ dispersion model. Currently only BLYP, B3LYP, BHLYP, TPSS, TPSSh, B2-PLYP, B97-D, BP86, PBE96, PW6B95, revPBE, B3PW91, pwb6k, b1b95, CAM-B3LYP, LC-wPBE, HCTH120, MPW1B95, BOP, OLYP, BPBE, OPBE and SSB are supported.
This capability is also supported for energy gradients and Hessian. Is possible to be deactivated with OFF.
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#noscf-non-self-consistent-calculations","title":"NOSCF: Non Self-Consistent Calculations","text":"The noscf
keyword can be used to to calculate the non self-consistent energy for a set of input vectors. For example, the following input shows how a non self-consistent B3LYP energy can be calculated using a self-consistent set of vectors calculated at the Hartree-Fock level.
start h2o-noscf\n\ngeometry units angstrom\n O 0.00000000 0.00000000 0.11726921\n H 0.75698224 0.00000000 -0.46907685\n H -0.75698224 0.00000000 -0.46907685\nend\n\nbasis spherical\n * library aug-cc-pvdz\nend\ndft\n xc hfexch\n vectors output hf.movecs \nend\ntask dft energy\ndft\n xc b3lyp\n vectors input hf.movecs \n noscf \nend\ntask dft energy\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#xdm-exchange-hole-dipole-moment-dispersion-model","title":"XDM: Exchange-hole dipole moment dispersion model","text":"XDM [ a1 <real a1> ] [ a2 <real a2> ]\n
See details (including list of a1 and a2 parameters) in paper[delaroza2013] and the website http://schooner.chem.dal.ca/wiki/XDM
geometry \n O -0.190010095135 -1.168397415155 0.925531922479\n H -0.124425719598 -0.832776238160 1.818190662986\n H -0.063897685990 -0.392575837594 0.364048725248\n O 0.174717244879 1.084630474836 -0.860510672419\n H -0.566281023931 1.301941006866 -1.427261487135\n H 0.935093179777 1.047335209207 -1.441842151158\n end\n\n basis spherical\n * library aug-cc-pvdz\n end\n\n dft\n direct\n xc b3lyp\n xdm a1 0.6224 a2 1.7068\n end\n\n task dft optimize\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#print-control","title":"Print Control","text":" PRINT||NOPRINT\n
The PRINT||NOPRINT
options control the level of output in the DFT. Please see some examples using this directive in Sample input file. Known controllable print options are:
DFT Print Control Specifications
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#spin-orbit-density-functional-theory-sodft","title":"Spin-Orbit Density Functional Theory (SODFT)","text":"The spin-orbit DFT module (SODFT) in the NWChem code allows for the variational treatment of the one-electron spin-orbit operator within the DFT framework. Calculations can be performed either with an electron relativistic approach (ZORA) or with an effective core potential (ECP) and a matching spin-orbit potential (SO). The current implementation does NOT use symmetry.
The actual SODFT calculation will be performed when the input module encounters the TASK directive (TASK).
TASK SODFT\n
Input parameters are the same as for the DFT. Some of the DFT options are not available in the SODFT. These are max_ovl
and sic
.
Besides using the standard ECP and basis sets, see Effective Core Potentials for details, one also has to specify a spin-orbit (SO) potential. The input specification for the SO potential can be found in Effective Core Potentials. At this time we have not included any spin-orbit potentials in the basis set library. However, one can get these from the Stuttgart/K\u00f6ln web pages http://www.tc.uni-koeln.de/PP/clickpse.en.html.
Note: One should use a combination of ECP and SO potentials that were designed for the same size core, i.e., don\u2019t use a small core ECP potential with a large core SO potential (it will produce erroneous results).
The following is an example of a calculation of UO2:
start uo2_sodft \necho \n\ncharge 2 \ngeometry \n U 0.00000 0.00000 0.00000 \n O 0.00000 0.00000 1.68000 \n O 0.00000 0.00000 -1.68000 \nend \nbasis \"ao basis\" \n * library \"stuttgart rlc ecp\"\nEND\nECP\n * library \"stuttgart rlc ecp\"\nEND\nSO \n U p \n 2 3.986181 1.816350 \n 2 2.000160 11.543940 \n 2 0.960841 0.794644 \n U d \n 2 4.147972 0.353683 \n 2 2.234563 3.499282 \n 2 0.913695 0.514635 \n U f \n 2 3.998938 4.744214 \n 2 1.998840 -5.211731 \n 2 0.995641 1.867860 \nEND \ndft \n mult 1 \n xc hfexch \nend \ntask sodft\n
"},{"location":"Density-Functional-Theory-for-Molecules_bibtext.html#sym-and-adapt","title":"SYM and ADAPT","text":"The options SYM
and ADAPT
works the same way as the analogous options for the SCF code. Therefore please use the following links for SYM and ADAPT, respectively.
K\u00f6ster, A. M.; Reveles, J. U.; Campo, J. M. del. Calculation of Exchange-Correlation Potentials with Auxiliary Function Densities. The Journal of Chemical Physics 2004, 121 (8), 3417\u20133424. https://doi.org/10.1063/1.1771638.\u00a0\u21a9
Slater, J. C.; Johnson, K. H. Self-Consistent-Field X\u03b1 Cluster Method for Polyatomic Molecules and Solids. Phys. Rev. B 1972, 5, 844\u2013853. https://doi.org/10.1103/PhysRevB.5.844.\u00a0\u21a9\u21a9
Slater, J. C. Quantum Theory of Molecules and Solids: The Self-Consistent Field for Molecules and Solids; McGraw-Hill Education, 1974; p 640.\u00a0\u21a9\u21a9
Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Canadian Journal of physics 1980, 58 (8), 1200\u20131211. https://doi.org/10.1139/p80-159.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. The Journal of Chemical Physics 1993, 98 (2), 1372\u20131377. https://doi.org/https://aip.scitation.org/doi/abs/10.1063/1.464304.\u00a0\u21a9\u21a9
Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics 1993, 98 (7), 5648\u20135652. https://doi.org/10.1063/1.464913.\u00a0\u21a9\u21a9\u21a9
Becke, A. D. Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. The Journal of Chemical Physics 1997, 107 (20), 8554\u20138560. https://doi.org/10.1063/1.475007.\u00a0\u21a9\u21a9
Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048\u20135079. https://doi.org/10.1103/PhysRevB.23.5048.\u00a0\u21a9\u21a9
Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244\u201313249. https://doi.org/10.1103/PhysRevB.45.13244.\u00a0\u21a9\u21a9
Becke, A. D. On the Large-Gradient Behavior of the Density Functional Exchange Energy. The Journal of Chemical Physics 1986, 85 (12), 7184\u20137187. https://doi.org/10.1063/1.451353.\u00a0\u21a9
Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A 1988, 38 (6), 3098\u20133100. https://doi.org/10.1103/PhysRevA.38.3098.\u00a0\u21a9
Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Physical Review B 1986, 33 (12), 8822\u20138824. https://doi.org/10.1103/PhysRevB.33.8822.\u00a0\u21a9\u21a9
Perdew, J. P.; Burke, K.; Ernzerhof, M. Errata: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865\u20133868. https://doi.org/10.1103/PhysRevLett.77.3865.\u00a0\u21a9\u21a9
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396\u20131396. https://doi.org/10.1103/PhysRevLett.78.1396.\u00a0\u21a9\u21a9
Gill, P. M. W. A New Gradient-Corrected Exchange Functional. Molecular Physics 1996, 89 (2), 433\u2013445. https://doi.org/10.1080/002689796173813.\u00a0\u21a9
Handy, N. C.; Cohen, A. J. Left-Right Correlation Energy. Molecular Physics 2001, 99 (5), 403\u2013412. https://doi.org/10.1080/00268970010018431.\u00a0\u21a9
Adamo, C.; Barone, V. Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods Without Adjustable Parameters: The mPW and mPW1PW Models. The Journal of Chemical Physics 1998, 108 (2), 664\u2013675. https://doi.org/10.1063/1.475428.\u00a0\u21a9
Zhao, Y.; Truhlar, D. G. Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. The Journal of Physical Chemistry A 2005, 109 (25), 5656\u20135667. https://doi.org/10.1021/jp050536c.\u00a0\u21a9
Filatov, M.; Thiel, W. A New Gradient-Corrected Exchange-Correlation Density Functional. Molecular Physics 1997, 91 (5), 847\u2013860. https://doi.org/10.1080/002689797170950.\u00a0\u21a9\u21a9\u21a9
Filatov, M.; Thiel, W. A Nonlocal Correlation Energy Density Functional from a Coulomb Hole Model. International Journal of Quantum Chemistry 1997, 62 (6), 603\u2013616. https://doi.org/10.1002/(sici)1097-461x(1997)62:6<603::aid-qua4>3.0.co;2-#.\u00a0\u21a9\u21a9\u21a9
Hammer, B.; Hansen, L. B.; N\u00f8rskov, J. K. Improved Adsorption Energetics Within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B 1999, 59 (11), 7413\u20137421. https://doi.org/10.1103/physrevb.59.7413.\u00a0\u21a9\u21a9
Zhang, Y.; Yang, W. Comment on Generalized Gradient Approximation Made Simple. Physical Review Letters 1998, 80 (4), 890\u2013890. https://doi.org/10.1103/physrevlett.80.890.\u00a0\u21a9\u21a9
Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics. The Journal of Physical Chemistry A 2004, 108 (14), 2715\u20132719. https://doi.org/10.1021/jp049908s.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B 1988, 37 (2), 785\u2013789. https://doi.org/10.1103/PhysRevB.37.785.\u00a0\u21a9
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1992, 46 (11), 6671\u20136687. https://doi.org/10.1103/PhysRevB.46.6671.\u00a0\u21a9
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1993, 48 (7), 4978\u20134978. https://doi.org/10.1103/PhysRevB.48.4978.2.\u00a0\u21a9
Tsuneda, T.; Suzumura, T.; Hirao, K. A New One-Parameter Progressive Collesalvetti-Type Correlation Functional. The Journal of Chemical Physics 1999, 110 (22), 10664\u201310678. https://doi.org/10.1063/1.479012.\u00a0\u21a9\u21a9
Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. Development and Assessment of New Exchange-Correlation Functionals. The Journal of Chemical Physics 1998, 109 (15), 6264\u20136271. https://doi.org/10.1063/1.477267.\u00a0\u21a9\u21a9
Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. New Generalized Gradient Approximation Functionals. The Journal of Chemical Physics 2000, 112 (4), 1670\u20131678. https://doi.org/10.1063/1.480732.\u00a0\u21a9\u21a9
Boese, A. D.; Martin, J. M. L.; Handy, N. C. The Role of the Basis Set: Assessing Density Functional Theory. The Journal of Chemical Physics 2003, 119 (6), 3005\u20133014. https://doi.org/10.1063/1.1589004.\u00a0\u21a9
Boese, A. D.; Handy, N. C. A New Parametrization of Exchangecorrelation Generalized Gradient Approximation Functionals. The Journal of Chemical Physics 2001, 114 (13), 5497\u20135503. https://doi.org/10.1063/1.1347371.\u00a0\u21a9
Cohen, A. J.; Handy, N. C. Assessment of Exchange Correlation Functionals. Chemical Physics Letters 2000, 316 (1-2), 160\u2013166. https://doi.org/10.1016/s0009-2614(99)01273-7.\u00a0\u21a9
Menconi, G.; Wilson, P. J.; Tozer, D. J. Emphasizing the Exchange-Correlation Potential in Functional Development. The Journal of Chemical Physics 2001, 114 (9), 3958\u20133967. https://doi.org/10.1063/1.1342776.\u00a0\u21a9
Boese, A. D.; Chandra, A.; Martin, J. M. L.; Marx, D. From Ab Initio Quantum Chemistry to Molecular Dynamics: The Delicate Case of Hydrogen Bonding in Ammonia. The Journal of Chemical Physics 2003, 119 (12), 5965\u20135980. https://doi.org/10.1063/1.1599338.\u00a0\u21a9
Tsuneda, T.; Suzumura, T.; Hirao, K. A Reexamination of Exchange Energy Functionals. The Journal of Chemical Physics 1999, 111 (13), 5656\u20135667. https://doi.org/10.1063/1.479954.\u00a0\u21a9
Perdew, J. P.; Kurth, S.; Zupan, A.; Blaha, P. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Physical Review Letters 1999, 82 (12), 2544\u20132547. https://doi.org/10.1103/physrevlett.82.2544.\u00a0\u21a9\u21a9
Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters 2003, 91 (14), 146401. https://doi.org/10.1103/physrevlett.91.146401.\u00a0\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van Der Waals Interactions. The Journal of Physical Chemistry A 2004, 108 (33), 6908\u20136918. https://doi.org/10.1021/jp048147q.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Exchange-Correlation Functional with Broad Accuracy for Metallic and Nonmetallic Compounds, Kinetics, and Noncovalent Interactions. The Journal of Chemical Physics 2005, 123 (16), 161103. https://doi.org/10.1063/1.2126975.\u00a0\u21a9\u21a9
Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation 2006, 2 (2), 364\u2013382. https://doi.org/10.1021/ct0502763.\u00a0\u21a9\u21a9\u21a9
Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. The Journal of Chemical Physics 2003, 119 (23), 12129\u201312137. https://doi.org/10.1063/1.1626543.\u00a0\u21a9
Becke, A. D. Density-Functional Thermochemistry. IV. A New Dynamical Correlation Functional and Implications for Exact-Exchange Mixing. The Journal of Chemical Physics 1996, 104 (3), 1040\u20131046. https://doi.org/10.1063/1.470829.\u00a0\u21a9\u21a9
Voorhis, T. V.; Scuseria, G. E. A Novel Form for the Exchange-Correlation Energy Functional. The Journal of Chemical Physics 1998, 109 (2), 400\u2013410. https://doi.org/10.1063/1.476577.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. The Journal of Chemical Physics 2006, 125 (19), 194101. https://doi.org/10.1063/1.2370993.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average Than B3LYP for Ground States. The Journal of Physical Chemistry A 2006, 110 (49), 13126\u201313130. https://doi.org/10.1021/jp066479k.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theoretical Chemistry Accounts 2008, 120 (1-3), 215\u2013241. https://doi.org/10.1007/s00214-007-0310-x.\u00a0\u21a9\u21a9\u21a9
Zhao, Y.; Truhlar, D. G. Construction of a Generalized Gradient Approximation by Restoring the Density-Gradient Expansion and Enforcing a Tight Lieboxford Bound. The Journal of Chemical Physics 2008, 128 (18), 184109. https://doi.org/10.1063/1.2912068.\u00a0\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. The Journal of Physical Chemistry Letters 2011, 2 (21), 2810\u20132817. https://doi.org/10.1021/jz201170d.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Truhlar, D. G. M11-l: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. The Journal of Physical Chemistry Letters 2012, 3 (1), 117\u2013124. https://doi.org/10.1021/jz201525m.\u00a0\u21a9\u21a9\u21a9
Peverati, R.; Zhao, Y.; Truhlar, D. G. Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance. The Journal of Physical Chemistry Letters 2011, 2 (16), 1991\u20131997. https://doi.org/10.1021/jz200616w.\u00a0\u21a9\u21a9\u21a9
Pernal, K.; Podeszwa, R.; Patkowski, K.; Szalewicz, K. Dispersionless Density Functional Theory. Physical Review Letters 2009, 103 (26), 263201. https://doi.org/10.1103/physrevlett.103.263201.\u00a0\u21a9
Wilson, P. J.; Bradley, T. J.; Tozer, D. J. Hybrid Exchange-Correlation Functional Determined from Thermochemical Data and Ab Initio Potentials. The Journal of Chemical Physics 2001, 115 (20), 9233\u20139242. https://doi.org/10.1063/1.1412605.\u00a0\u21a9
Keal, T. W.; Tozer, D. J. Semiempirical Hybrid Functional with Improved Performance in an Extensive Chemical Assessment. The Journal of Chemical Physics 2005, 123 (12), 121103. https://doi.org/10.1063/1.2061227.\u00a0\u21a9
Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. Journal of Computational Chemistry 2006, 27 (15), 1787\u20131799. https://doi.org/10.1002/jcc.20495.\u00a0\u21a9
Schmider, H. L.; Becke, A. D. Optimized Density Functionals from the Extended G2 Test Set. The Journal of Chemical Physics 1998, 108 (23), 9624\u20139631. https://doi.org/10.1063/1.476438.\u00a0\u21a9
Adamo, C.; Barone, V. Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model. The Journal of Chemical Physics 1999, 110 (13), 6158\u20136170. https://doi.org/10.1063/1.478522.\u00a0\u21a9
Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. Adiabatic Connection for Kinetics. The Journal of Physical Chemistry A 2000, 104 (21), 4811\u20134815. https://doi.org/10.1021/jp000497z.\u00a0\u21a9
Sun, J.; Perdew, J. P.; Ruzsinszky, A. Semilocal Density Functional Obeying a Strongly Tightened Bound for Exchange. Proceedings of the National Academy of Sciences 2015, 112 (3), 685\u2013689. https://doi.org/10.1073/pnas.1423145112.\u00a0\u21a9
Verma, P.; Truhlar, D. G. HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies. The Journal of Physical Chemistry Letters 2017, 8 (2), 380\u2013387. https://doi.org/10.1021/acs.jpclett.6b02757.\u00a0\u21a9
Mejia-Rodriguez, D.; Trickey, S. B. Deorbitalization Strategies for Meta-Generalized-Gradient-Approximation Exchange-Correlation Functionals. Physical Review A 2017, 96 (5), 052512. https://doi.org/10.1103/physreva.96.052512.\u00a0\u21a9
Wang, Y.; Jin, X.; Yu, H. S.; Truhlar, D. G.; He, X. Revised M06-l Functional for Improved Accuracy on Chemical Reaction Barrier Heights, Noncovalent Interactions, and Solid-State Physics. Proceedings of the National Academy of Sciences 2017, 114 (32), 8487\u20138492. https://doi.org/10.1073/pnas.1705670114.\u00a0\u21a9
Wang, Y.; Verma, P.; Jin, X.; Truhlar, D. G.; He, X. Revised M06 Density Functional for Main-Group and Transition-Metal Chemistry. Proceedings of the National Academy of Sciences 2018, 115 (41), 10257\u201310262. https://doi.org/10.1073/pnas.1810421115.\u00a0\u21a9
Kurth, S.; Perdew, J. P.; Blaha, P. Molecular and Solid-State Tests of Density Functional Approximations: LSD, GGAs, and Meta-GGAs. International Journal of Quantum Chemistry 1999, 75 (4-5), 889\u2013909. https://doi.org/10.1002/(sici)1097-461x(1999)75:4/5<889::aid-qua54>3.0.co;2-8.\u00a0\u21a9
Savin, A. Beyond the Kohn-Sham Determinant. In Recent advances in density functional methods; WORLD SCIENTIFIC, 1995; pp 129\u2013153. https://doi.org/10.1142/9789812830586\\_0004.\u00a0\u21a9
Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A Long-Range Correction Scheme for Generalized-Gradient-Approximation Exchange Functionals. The Journal of Chemical Physics 2001, 115 (8), 3540\u20133544. https://doi.org/10.1063/1.1383587.\u00a0\u21a9
Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A Long-Range-Corrected Time-Dependent Density Functional Theory. The Journal of Chemical Physics 2004, 120 (18), 8425\u20138433. https://doi.org/10.1063/1.1688752.\u00a0\u21a9
Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chemical Physics Letters 2004, 393 (1-3), 51\u201357. https://doi.org/10.1016/j.cplett.2004.06.011.\u00a0\u21a9
Peach, M. J. G.; Cohen, A. J.; Tozer, D. J. Influence of Coulomb-Attenuation on Exchange-Correlation Functional Quality. Phys. Chem. Chem. Phys. 2006, 8 (39), 4543\u20134549. https://doi.org/10.1039/b608553a.\u00a0\u21a9
Song, J.-W.; Hirosawa, T.; Tsuneda, T.; Hirao, K. Long-Range Corrected Density Functional Calculations of Chemical Reactions: Redetermination of Parameter. The Journal of Chemical Physics 2007, 126 (15), 154105. https://doi.org/10.1063/1.2721532.\u00a0\u21a9
Livshits, E.; Baer, R. A Well-Tempered Density Functional Theory of Electrons in Molecules. Physical Chemistry Chemical Physics 2007, 9 (23), 2932. https://doi.org/10.1039/b617919c.\u00a0\u21a9
Cohen, A. J.; Mori-S\u00e1nchez, P.; Yang, W. Development of Exchange-Correlation Functionals with Minimal Many-Electron Self-Interaction Error. The Journal of Chemical Physics 2007, 126 (19), 191109. https://doi.org/10.1063/1.2741248.\u00a0\u21a9
Rohrdanz, M. A.; Herbert, J. M. Simultaneous Benchmarking of Ground- and Excited-State Properties with Long-Range-Corrected Density Functional Theory. The Journal of Chemical Physics 2008, 129 (3), 034107. https://doi.org/10.1063/1.2954017.\u00a0\u21a9
Govind, N.; Valiev, M.; Jensen, L.; Kowalski, K. Excitation Energies of Zinc Porphyrin in Aqueous Solution Using Long-Range Corrected Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A 2009, 113 (21), 6041\u20136043. https://doi.org/10.1021/jp902118k.\u00a0\u21a9
Baer, R.; Livshits, E.; Salzner, U. Tuned Range-Separated Hybrids in Density Functional Theory. Annual Review of Physical Chemistry 2010, 61 (1), 85\u2013109. https://doi.org/10.1146/annurev.physchem.012809.103321.\u00a0\u21a9
Autschbach, J.; Srebro, M. Delocalization Error and Functional Tuning in Kohn-Sham Calculations of Molecular Properties. Accounts of Chemical Research 2014, 47 (8), 2592\u20132602. https://doi.org/10.1021/ar500171t.\u00a0\u21a9
Verma, P.; Bartlett, R. J. Increasing the Applicability of Density Functional Theory. IV. Consequences of Ionization-Potential Improved Exchange-Correlation Potentials. The Journal of Chemical Physics 2014, 140 (18), 18A534. https://doi.org/10.1063/1.4871409.\u00a0\u21a9
Swart, M.; Sol\u00e0, M.; Bickelhaupt, F. M. A New All-Round Density Functional Based on Spin States and SN2 Barriers. The Journal of Chemical Physics 2009, 131 (9), 094103. https://doi.org/10.1063/1.3213193.\u00a0\u21a9
Swart, M.; Sol\u00e0, M.; Bickelhaupt, F. M. Switching Between OPTX and PBE Exchange Functionals. Journal of Computational Methods in Sciences and Engineering 2009, 9 (1-2), 69\u201377. https://doi.org/10.3233/jcm-2009-0230.\u00a0\u21a9
Grimme, S. Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. The Journal of Chemical Physics 2006, 124 (3), 034108. https://doi.org/10.1063/1.2148954.\u00a0\u21a9\u21a9
Rabuck, A. D.; Scuseria, G. E. Improving Self-Consistent Field Convergence by Varying Occupation Numbers. The Journal of Chemical Physics 1999, 110 (2), 695\u2013700. https://doi.org/10.1063/1.478177.\u00a0\u21a9
Wu, Q.; Voorhis, T. V. Direct Optimization Method to Study Constrained Systems Within Density-Functional Theory. Physical Review A 2005, 72 (2), 024502. https://doi.org/10.1103/physreva.72.024502.\u00a0\u21a9
Warren, R. W.; Dunlap, B. I. Fractional Occupation Numbers and Density Functional Energy Gradients Within the Linear Combination of Gaussian-Type Orbitals Approach. Chemical Physics Letters 1996, 262 (3-4), 384\u2013392. https://doi.org/10.1016/0009-2614(96)01107-4.\u00a0\u21a9
Becke, A. D. A Multicenter Numerical Integration Scheme for Polyatomic Molecules. The Journal of Chemical Physics 1988, 88 (4), 2547\u20132553. https://doi.org/10.1063/1.454033.\u00a0\u21a9
Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. Achieving Linear Scaling in Exchange-Correlation Density Functional Quadratures. Chemical Physics Letters 1996, 257 (3-4), 213\u2013223. https://doi.org/10.1016/0009-2614(96)00600-8.\u00a0\u21a9
Murray, C. W.; Handy, N. C.; Laming, G. J. Quadrature Schemes for Integrals of Density Functional Theory. Molecular Physics 1993, 78 (4), 997\u20131014. https://doi.org/10.1080/00268979300100651.\u00a0\u21a9
Mura, M. E.; Knowles, P. J. Improved Radial Grids for Quadrature in Molecular Density-Functional Calculations. The Journal of Chemical Physics 1996, 104 (24), 9848\u20139858. https://doi.org/10.1063/1.471749.\u00a0\u21a9
Treutler, O.; Ahlrichs, R. Efficient Molecular Numerical Integration Schemes. The Journal of Chemical Physics 1995, 102 (1), 346\u2013354. https://doi.org/10.1063/1.469408.\u00a0\u21a9
Sharp, R. T.; Horton, G. K. A Variational Approach to the Unipotential Many-Electron Problem. Physical Review 1953, 90 (2), 317\u2013317. https://doi.org/10.1103/physrev.90.317.\u00a0\u21a9
Talman, J. D.; Shadwick, W. F. Optimized Effective Atomic Central Potential. Physical Review A 1976, 14 (1), 36\u201340. https://doi.org/10.1103/physreva.14.36.\u00a0\u21a9
Krieger, J. B.; Li, Y.; Iafrate, G. J. Construction and Application of an Accurate Local Spin-Polarized Kohn-Sham Potential with Integer Discontinuity: Exchange-Only Theory. Physical Review A 1992, 45 (1), 101\u2013126. https://doi.org/10.1103/physreva.45.101.\u00a0\u21a9
Krieger, J. B.; Li, Y.; Iafrate, G. J. Systematic Approximations to the Optimized Effective Potential: Application to Orbital-Density-Functional Theory. Physical Review A 1992, 46 (9), 5453\u20135458. https://doi.org/10.1103/physreva.46.5453.\u00a0\u21a9
Li, Y.; Krieger, J. B.; Iafrate, G. J. Self-Consistent Calculations of Atomic Properties Using Self-Interaction-Free Exchange-Only Kohn-Sham Potentials. Physical Review A 1993, 47 (1), 165\u2013181. https://doi.org/10.1103/physreva.47.165.\u00a0\u21a9
Garza, J.; Nichols, J. A.; Dixon, D. A. The Optimized Effective Potential and the Self-Interaction Correction in Density Functional Theory: Application to Molecules. The Journal of Chemical Physics 2000, 112 (18), 7880\u20137890. https://doi.org/10.1063/1.481421.\u00a0\u21a9
Wu, Q.; Yang, W. Empirical Correction to Density Functional Theory for van Der Waals Interactions. The Journal of Chemical Physics 2002, 116 (2), 515\u2013524. https://doi.org/10.1063/1.1424928.\u00a0\u21a9\u21a9
Zimmerli, U.; Parrinello, M.; Koumoutsakos, P. Dispersion Corrections to Density Functionals for Water Aromatic Interactions. The Journal of Chemical Physics 2004, 120 (6), 2693\u20132699. https://doi.org/10.1063/1.1637034.\u00a0\u21a9\u21a9
Grimme, S. Accurate Description of van Der Waals Complexes by Density Functional Theory Including Empirical Corrections. Journal of Computational Chemistry 2004, 25 (12), 1463\u20131473. https://doi.org/10.1002/jcc.20078.\u00a0\u21a9\u21a9
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-d) for the 94 Elements h-Pu. The Journal of Chemical Physics 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.\u00a0\u21a9\u21a9
NWChem is being developed by a consortium of scientists and maintained at the EMSL at PNNL. A current list of developers can be found here. This page provides important information for current and new developers.
"},{"location":"Developer.html#downloading-from-and-committing-to-the-nwchem-source-tree","title":"Downloading from and Committing to the NWChem source tree","text":"The NWChem source is maintained with git, an open-source version control system. To download NWChem you must have git installed on your development platform. For an extensive description of the GIT functionality and commands, please check the git documentation.
The NWChem GIT repository is hosted on Github at https://github.com/nwchemgit/nwchem/
The development version (git master branch) of NWChem can be downloaded using the command
% git clone https://github.com/nwchemgit/nwchem\n
A branch version cane be downloaded by using the -b option of git clone. For example, the hotfix/release-6-8 branch can be downloaded with the command
git clone -b hotfix/release-6-8 \\\nhttps://github.com/nwchemgit/nwchem nwchem-6.8.1\n
Committing changes to existing source files can be done using the command
TBD ....
TBD Instructions on Fork & Pull
Developer access to the NWChem source tree branches in svn is password restricted. New potential developers should contact members of the NWChem Core Developer Team.
Before contributions from this new developer can be incorporated into NWChem, this person will have to provide written feedback that the contributions can be released within NWChem under a ECL 2.0 open-source license.
A (Trusted) Developer will receive the appropriate access to the nwchemgit github repository. If a Developer consistently incorporates code changes that negatively affect the development tree, access to the nwchemgit github repository can be revoked.
To Be Revised: %% The type of developer and their level of access are:
A detailed step-by-step description of the build process and necessary and optional environment variables is outlined on the Compiling NWChem page.
"},{"location":"Developer.html#development-contribution-requirements","title":"Development Contribution Requirements","text":"All new functionality or capability contributions require:
Proposed new modules and tasks, and their impact on existing modules and functionality need to be documented for review. New modules or tasks will require agreement from the full team before they can be added.
"},{"location":"Developer.html#programming-model-and-languages","title":"Programming Model and Languages","text":"The programming model in is based on independent \u201ctask\u201d modules that perform various functions in the code and are build on modular APIs. Modules and APIs can share data, or share access to files containing data, only through a (most of the time) disk-resident run time database, which is similar to the GAMESS-UK dumpfile or the Gaussian checkpoint file. The run time database contains all the information necessary to restart a task.
The structure and flow of the program and input are such that it allows for performing multiple tasks within one job. Input is read and stored into the run time database until a TASK directive is encountered. When a TASK directive is found in the input, the appropriate module will extract relevant data from the database and any associated files and perform the requested calculation. Upon completion of the task, the module will store significant results in the database, and may also modify other database entries in order to affect the behavior of subsequent computations.
The archive of the NWChem Mailing list can be found here.
"},{"location":"Developer.html#nwchem-wiki-page-guidelines","title":"NWChem Wiki Page Guidelines","text":"Follow the link to the NWChem Wiki Page Guidelines.
"},{"location":"Developer.html#nwchem-doxygen-documentation","title":"NWChem Doxygen documentation","text":"The source code in NWChem is documented using Doxygen in a number of places. In order to enable documentation for a given directory only a script has been created in
nwchem/contrib/doxygen/run_doxygen
This script can be run in any subdirectory of the NWChem source tree. It will automatically adapt the Doxygen configuration file for the directory it is run in and generate documentation for that directory and all its children. The documentation is generated in a subdirectory
doxydocs\n
and can be viewed, for example, by running
% firefox doxydocs/html/index.html\n
Doxygen has many capabilities and a number of them can be driven through the run_doxygen script. Run
% run_doxygen -h\n
for more details.
"},{"location":"Developer.html#module-specific-details","title":"Module specific details","text":""},{"location":"Developer.html#the-nwxc-module-higher-order-derivatives-of-density-functionals","title":"The NWXC module: higher order derivatives of density functionals","text":"The NWXC module was primarily developed to provide higher order derivatives of density functionals. In addition it provides infrastructure needed to manage all aspects of a DFT energy expression in one place, including the range separation of the exchange integrals and dispersion corrections.
The derivatives of the density functionals can be optained in two different ways:
nwxc is the top-level directory. It also contains the code for the module API as well as the automatically differentiated code of the density functionals.
nwad contains the automatic differentiation module.
nwad/maxima contains a script to help create the automatic differentiation unit tests.
nwad/unit_tests contains the unit tests.
maxima contains the symbolic algebra tools as well as the code they generate
maxima/bin contains the scripts that driver the Maxima symbolic algebra engine as well as utility scripts that process the Maxima generated Fortran.
maxima/max contains the Maxima specifications of the functionals.
maxima/f77 contains the Maxima generated Fortran code.
"},{"location":"Developer.html#api-functions","title":"API functions","text":"API routines of the NWXC module are
Within the NWXC module specific terms of the density fucntionals are identified by an integer constant. These constants are listed in nwxcP.fh, Currently the order of the constants is: exchange functionals first, correlation functionals second, and finally combined exchange-correlation functionals. Within each class the constants are sorted alphabetically. To add a new functional a new constant needs to be inserted into nwxcP.fh first.
Internally a functional is stored as two lists of terms. One list contains the specification as entered by the user. This specification is used to print the functional in the output, and to store the functional on the runtime data base. The other list contains the specification of the functional as it is used to evaluate the expression. These lists as well as the Coulomb attenuation and dispersion correction parameters are controlled from nwxc_add_df . The translation of an input string to the appropriate functional needs to be added here.
In order to print the functional the code uses the name and reference for the functional (or functional terms). The function nwxc_get_info returns the corresponding character string given the integer identifier of a functional. For a new functional this reference needs to be added.
As the NWXC module currently supports both automatic differentiation as well as symbolic algebra generated implementations of the functionals there are two parallel sets of routines that invoke the actual functional evaluation. The routines nwxc_eval_df_doit, nwxc_eval_df2_doit, and nwxc_eval_df3_doit invoke the automatic differentiation implementations. The routines nwxcm_eval_df, nwxcm_eval_df2, and nwxcm_eval_df3 invoke the Maxima generated implementations. The appropriate subroutine calls need to be added in these places.
Comments:
One way to generate the code for a new functional to add is shown in workflow schematic NWXC code generation workflow
The step involved can be summarized as:
E. Apra, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam, D. Wang, T. L. Windus, J. Hammond, J. Autschbach, K. Bhaskaran-Nair, J. Brabec, K. Lopata, S. A. Fischer, S. Krishnamoorthy, W. Ma, M. Klemm, O. Villa, Y. Chen, V. Anisimov, F. Aquino, S. Hirata, M. T. Hackler, T. Risthaus, M. Malagoli, A. Marenich, A. Otero-de-la-Roza, J. Mullin, P. Nichols, R. Peverati, J. Pittner, Y. Zhao, P.-D. Fan, A. Fonari, M. Williamson, R. J. Harrison, J. R. Rehr, M. Dupuis, D. Silverstein, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, B. E. Van Kuiken, A. Vazquez-Mayagoitia, L. Jensen, M. Swart, Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, L. D. Crosby, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. A. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. E. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. J. O. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. C. Hess, J. Jaffe, B. G. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, K. Glaesemann, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. H. van Lenthe, A. T. Wong, Z. Zhang.
"},{"location":"Download.html","title":"How to download and install NWChem","text":""},{"location":"Download.html#source-download","title":"Source Download","text":"The NWChem source is available for download from https://github.com/nwchemgit/nwchem/releases
Compilation instructions can be found at this link
"},{"location":"Download.html#nwchem-availability-in-linux-distributions","title":"NWChem availability in Linux distributions","text":"Debian: https://packages.debian.org/search?keywords=nwchem
Ubuntu: https://launchpad.net/ubuntu/+source/nwchem
Fedora and EPEL: https://admin.fedoraproject.org/updates/search/nwchem
Good search engine for NWChem Linux packages: https://pkgs.org/search/?q=nwchem
"},{"location":"Download.html#example-of-nwchem-installation-on-debianubuntu","title":"Example of NWChem installation on Debian/Ubuntu","text":"sudo apt-get install nwchem\n
"},{"location":"Download.html#example-of-nwchem-rpm-installation-under-redhat-6-x86_64","title":"Example of NWChem RPM installation under RedHat 6 x86_64","text":"sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm\nsudo yum update\nsudo yum install nwchem nwchem-openmpi environment-modules\n
In order to run NWChem, you must type
module load openmpi-x86_64\n
The name of the NWChem executable is
nwchem_openmpi\n
"},{"location":"Download.html#example-of-nwchem-rpm-installation-under-centos-7-x86_64","title":"Example of NWChem RPM installation under Centos 7 x86_64","text":"sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm\nsudo yum update\nsudo yum install nwchem nwchem-openmpi Lmod\n
In order to run NWChem, you must type
module load mpi/openmpi-x86_64\n
The name of the NWChem executable is
nwchem_openmpi\n
Serial runs, using a single process, (on a input file named n2.nw
in the following example) can be performed with the command
nwchem_openmpi n2.nw\n
Parallel runs (using more than one process) can be performed with the command
mpirun -np 2 nwchem_openmpi n2.nw\n
"},{"location":"Download.html#nwchem-availability-on-macos","title":"NWChem availability on macOS","text":"NWChem can be installed from Homebrew, by executing the following commands
bin/bash -c \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)\"\n\nbrew install nwchem\n
"},{"location":"Download.html#nwchem-installation-on-conda","title":"NWChem installation on Conda","text":"NWChem can be installed on Linux or MacOS from the conda-forge channel of Conda with the commands
conda install -c conda-forge micromamba\nmicromamba install -c conda-forge nwchem\n
More details at https://github.com/conda-forge/nwchem-feedstock
"},{"location":"ECCE_PRINT.html","title":"ECCE PRINT","text":""},{"location":"ECCE_PRINT.html#ecce_print","title":"ECCE_PRINT","text":"The ECCE_PRINT directive allows the user to print out a file, usually called ecce.out, that will allow the calculation and its results to be imported into Ecce (see http://ecce.pnl.gov).
ECCE_PRINT
The entry for variable is the name of the file that will contain the Ecce import information and should include the full path to the directory where you want that file. For example
ecce_print\u00a0/home/user/job/ecce.out
If the full path is not given and only the file name is given, the file will be located in whatever directory the job is started in. For example, if the line
ecce_print\u00a0ecce.out
is in the input file, the file could end up in the scratch directory if the user is using a batch script that copies the input file to a local scratch directory and then launches NWChem from there. If the system then automatically removes files in the scratch space at the end of the job, the ecce.out file will be lost. So, the best practice is to include the full path name for the file.
"},{"location":"ECHO.html","title":"ECHO","text":""},{"location":"ECHO.html#echo","title":"ECHO","text":"This start-up directive is provided as a convenient way to include a listing of the input file in the output of a calculation. It causes the entire input file to be printed to Fortran unit six (standard output). It has no keywords, arguments, or options, and consists of the single line:
ECHO
The ECHO directive is processed only once, by Process 0 when the input file is read.
"},{"location":"ECP.html","title":"Effective Core Potentials","text":""},{"location":"ECP.html#overview","title":"Overview","text":"Effective core potentials (ECPs) are a useful means of replacing the core electrons in a calculation with an effective potential, thereby eliminating the need for the core basis functions, which usually require a large set of Gaussians to describe them. In addition to replacing the core, they may be used to represent relativistic effects, which are largely confined to the core. In this context, both the scalar (spin-free) relativistic effects and spin-orbit (spin-dependent) relativistic effects may be included in effective potentials. NWChem has the facility to use both, and these are described in the next two sections.
A brief recapitulation of the development of RECPs is given here, following L.F. Pacios and P.A. Christiansen, J. Chem. Phys. 82, 2664 (1985). The process can be viewed as starting from an atomic Dirac-Hartree-Fock calculation, done in jj coupling, and producing relativistic effective potentials (REPs) for each and value, which for example contains the Coulomb potential of the core electrons balanced by the part of the nuclear attraction which cancels the core electron charge. The residue is expressed in a semi-local form,
where is one larger than the maximum angular momentum in the atom. The scalar potential is obtained by averaging the REPs for each for a given to give an averaged relativistic effective potential, or AREP
These are summed into the full potential
The spin-orbit potential is obtained from the difference between the REPs for the two values for a given , and may be represented in terms of an effective spin-orbit operator,
where
The relavistic potential is the sum of and .
The spin-orbit integrals generated by NWChem are the integrals over the sum, including the factor of as an effective spin-orbit operator without further factors introduced.
The effective potentials, both scalar and spin-orbit, are fitted to Gaussians with the form
where is the contraction coefficient, is the exponent of the term (r-exponent), and is the Gaussian exponent. The exponent is shifted by 2, in accordance with most of the ECP literature and implementations, i.e., implies . The current implementation allows values of only 0, 1, or 2.
"},{"location":"ECP.html#scalar-ecps","title":"Scalar ECPs","text":"The optional directive ECP
allows the user to describe an effective core potential (ECP) in terms of contracted Gaussian functions as given above. Potentials using these functions must be specified explicitly by user input in the ECP
directive. This directive has essentially the same form and properties as the standard BASIS
directive, except for essential differences required for ECPs. Because of this, the ECP is treated internally as a basis set. The form of the input for the ECP
directive is as follows:
ECP [<string name default \"ecp basis\">] \\ \n [print || noprint default print] \n <string tag> library [<string tag_in_lib>] \\ \n <string standard_set> [file <filename>] \\ \n [except<string tag list>] \n <string tag> [nelec] <integer number_of_electrons_replaced> \n ... \n <string tag> <string shell_type> \n <real r-exponent> <real Gaussian-exponent> <real list_of_coefficients> \n ... \n END\n
ECPs are automatically segmented, even if general contractions are input. The projection operators defined in an ECP are spherical by default, so there is no need to include the CARTESIAN
or SPHERICAL
keyword as there is for a standard basis set. ECPs are associated with centers in geometries through tags or names of centers. These tags must match in the same manner as for basis sets the tags in a GEOMETRY and ECP directives, and are limited to sixteen (16) characters. Each center with the same tag will have the same ECP. By default, the input module prints each ECP that it encounters. The NOPRINT
option can be used to disable printing. There can be only one active ECP, even though several may exist in the input deck. The ECP modules load ecp basis
inputs along with any ao basis
inputs present. ECPs may be used in both energy and gradient calculations.
ECPs are named in the same fashion as geometries or regular basis sets, with the default name being \u201cecp basis\u201d. It should be clear from the above discussion on geometries and database entries how indirection is supported. All directives that are in common with the standard Gaussian basis set input have the same function and syntax.
As for regular basis sets, ECPs may be obtained from the standard library. For a complete list of basis sets and associated ECPs in the NWChem library see the available basis sets or the Basis Set Exchange for naming conventions and their specifications.
The keyword nelec
allows the user to specify the number of core electrons replaced by the ECP. Additional input lines define the specific coefficients and exponents. The variable <shell_type>
is used to specify the components of the ECP. The keyword ul
entered for <shell_type>
denotes the local part of the ECP. This is equivalent to the highest angular momentum functions specified in the literature for most ECPs. The standard entries (s, p, d, etc.) for shell_type
specify the angular momentum projector onto the local function. The shell type label of s indicates the ul-s projector input, p indicates the ul-p, etc.
For example, the Christiansen, Ross and Ermler ARECPs are available in the standard basis set library named crenbl_ecp
. To perform a calculation on uranyl UO22+ with all-electron oxygen (aug-cc-pvdz basis), and uranium with an ARECP and using the corresponding basis the following input can be used
geometry\n U 0 0 0\n O 0 0 1.65\n O 0 0 -1.65\n end\n basis \n U library crenbl_ecp\n O library aug-cc-pvdz\n end\n ecp\n U library crenbl_ecp\n end\n
The following is an example of explicit input of an ECP for H2CO. It defines an ECP for the carbon and oxygen atoms in the molecule.
ecp\n C nelec 2 # ecp replaces 2 electrons on C\n C ul # d\n 1 80.0000000 -1.60000000\n 1 30.0000000 -0.40000000\n 2 0.5498205 -0.03990210\n C s # s - d \n 0 0.7374760 0.63810832\n 0 135.2354832 11.00916230\n 2 8.5605569 20.13797020\n C p # p - d\n 2 10.6863587 -3.24684280\n 2 23.4979897 0.78505765\n O nelec 2 # ecp replaces 2 electrons on O\n O ul # d \n 1 80.0000000 -1.60000000\n 1 30.0000000 -0.40000000\n 2 1.0953760 -0.06623814\n O s # s - d\n 0 0.9212952 0.39552179\n 0 28.6481971 2.51654843\n 2 9.3033500 17.04478500\n O p # p - s \n 2 52.3427019 27.97790770\n 2 30.7220233 -16.49630500\n end\n
Various ECPs without a local function are available, including those of the Stuttgart group. For those, no ul
part needs to be defined. To define the absence of the local potential, simply specify one contraction with a zero coefficient:
<string tag> ul\n 2 1.00000 0.00000\n
"},{"location":"ECP.html#spin-orbit-ecps","title":"Spin-orbit ECPs","text":"The Spin-orbit ECPs can be used with the Density Functional Approach, but one has to run the calculations without symmetry. Note: when a Hartree-Fock method is specified the spin-orbit input will be ignored.
Spin-orbit ECPs are fitted in precisely the same functional form as the scalar RECPs and have the same properties, with the exception that there is no local potential ul, no s potential and no effective charge has to be defined. Spin-orbit potentials are specified in the same way as ECPs except that the directive SO is used instead of ECP. Note that there currently are no spin-orbit ECPs defined in the standard NWChem library. The SO directive is as follows:
SO [<string name default \"so basis\">] \\ \n [print || noprint default print] \n <string tag> library [<string tag_in_lib>] \\\n <string standard_set> [file <filename>] \n [except `<string tag list>] \n ... \n <string tag> <string shell_type> \n <real r-exponent> <real Gaussian-exponent> <real list_of_coefficients> \n ... \n END\n
Note: in the literature the coefficients of the spin-orbit potentials are NOT always defined in the same manner. The NWChem code assumes that the spin-orbit potential defined in the input is of the form:
For example, in the literature (most of) the Stuttgart potentials are defined as and, hence, have to be multiplied by (Note: On the Stuttgart/K\u00f6ln web pages https://www.tc.uni-koeln.de/PP/clickpse.en.html, spin-orbit potentials have already been corrected by the appropriate scaling factor and can be used as is). On the other hand, the CRENBL potentials in the published papers are defined as have been corrected with the factor, so make sure the appropriate scaling is applied).
For example, to use the Stuttgart/K\u00f6ln ECP and SO-ECP for Hg (ECP60MDF) in NWChem. The following URL will display bot the the ECP and SO parts. http://www.tc.uni-koeln.de/cgi-bin/pp.pl?language=en,format=molpro,element=Hg,job=getecp,ecp=ECP60MDF The highlighted section (last four lines) below is the SO part. The un-highlighted part (first five lines) is the ECP.
\n! Q=20., MEFIT, MCDHF+Breit, Ref 37. \nECP,Hg,60,5,4; \n1; 2,1.000000,0.000000; \n2; 2,12.413071,275.774797; 2,6.897913,49.267898; \n4; 2,11.310320,80.506984; 2,10.210773,161.034824; 2,5.939804,9.083416; 2,5.019755,18.367773; \n4; 2,8.407895,51.137256; 2,8.214086,76.707459; 2,4.012612,6.561821; 2,3.795398,9.818070; \n2; 2,3.273106,9.429001; 2,3.208321,12.494856; \n2; 2,4.485296,-6.338414; 2,4.513200,-8.099863; \n4; 2,11.310320,-161.013967;2,10.210773,161.034824;2,5.939804,-18.166832;2,5.019755,18.367773; \n4; 2,8.407895,-51.137256; 2,8.214086,51.138306; 2,4.012612,-6.561821; 2,3.795398,6.545380; \n2; 2,3.273106,-6.286001; 2,3.208321,6.247428; \n2; 2,4.485296,3.169207; 2,4.513200,-3.239945;\n! References: \n! [37] D. Figgen, G. Rauhut, M. Dolg, H. Stoll, Chem. Phys. 311, 227 (2005). \n
The corresponding NWChem input is
ecp \nHg nelec 60\nHg ul\n2 1.0000000 0.0000000\nHg S\n2 12.4130710 275.7747970\n2 6.8979130 49.2678980\nHg P\n2 11.3103200 80.5069840\n2 10.2107730 161.0348240\n2 5.9398040 9.0834160\n2 5.0197550 18.3677730\nHg D\n2 8.4078950 51.1372560\n2 8.2140860 76.7074590\n2 4.0126120 6.5618210\n2 3.7953980 9.8180700\nHg F\n2 3.2731060 9.4290010\n2 3.2083210 12.4948560\nHg G\n2 4.4852960 -6.3384140\n2 4.5132000 -8.0998630\nend\n\nso\nHg P\n2 11.310320 161.013967\n2 10.210773 161.034824\n2 5.939804 -18.166832\n2 5.019755 18.367773\nHg D \n2 8.407895 -51.137256\n2 8.214086 51.138306\n2 4.012612 -6.561821\n2 3.795398 6.545380\nHg F \n2 3.273106 -6.286001\n2 3.208321 6.247428\nHg G \n2 4.485296 3.169207\n2 4.513200 -3.239945\nend\n
"},{"location":"ECP.html#websites-with-spin-orbits-ecps","title":"Websites with Spin-Orbits ECPs","text":"We would like thank the DOD SERDP program and the DOE OS OBER EMSL project for providing support that helped with the initial development of EMSL Arrows.
\u2018 EMSL Arrows API\u2018
Tutorial on YouTube (mobile devices)
> Click here to try out Arrows by sending it an email
Are you just learning NWChem and would like to have an easy way to generate input decks, check your output decks against a large database of calculations, perform simple thermochemistry calculations, calculate the NMR and IR spectra of modest size molecule, or just try out NWChem before installing it? EMSL Arrows scientific service can help. A Web API to EMSL Arrows is now available for Alpha testing. Click on this link.
For more information contact Eric Bylaska (eric.bylaska@pnnl.gov)
\u2018 EMSL Arrows API\u2018
The difficulty of simulating the thermodynamic and kinetic properties of new materials is convoluted by the sensitivity of the processes at the macroscopic scale to the atomic scale; the unusual and unexpected bonding behaviors of the materials; the complex extreme temperature and pressure environments likely to be encountered; and the requirements that simulations be as parameter free as possible and extremely reliable. The tools of quantum chemistry and statistical mechanics combined with advanced parallel packages such as NWChem have proved to be very effective and productive. Not surprisingly, programs that implement these types of tools make up a large fraction of DOE OS supercomputer cycles. Despite these hugely successful theoretical developments, reliable calculations of this type require considerable computational effort and often the use of codes with difficult input decks.
The NWChem molecular modeling software implements a robust and diverse set of molecular theories that can estimate the thermodynamics and kinetics of molecules and materials. It arguably has the most capabilities of any molecular modeling code today. The problem with NWChem and other molecular modeling codes is that:
The goal of this project is to provide EMSL users and DOE scientists and engineers with an open-source computational chemistry and materials tool called EMSL Arrows. EMSL Arrows is a software package that combines NWChem, SQL and NOSQL databases, and email (in the future also social networks, e.g. Twitter, Tumblr) that simplifies molecular and materials modeling and makes these modeling capabilities easier to use and more accessible to many scientists and engineers.
EMSL Arrows is very simple to use. The user just emails chemical reactions to arrows@emsl.pnnl.gov and then an email is sent back with thermodynamic, reaction pathway (kinetic), spectroscopy, and other results.
EMSL Arrows parses the email and then searches the database for the compounds in the reactions. If a compound isn\u2019t there, an NWChem calculation is setup and submitted to calculate it. Once the calculation is finished the results are entered into the database and then results are emailed back. This whole process is completely automated. To enter different calculation types (e.g. use pspw theory, or pbe0 exchange correlation functional) the SMILES is appended with keyword{options} tags. An example email is as follows:
To:\u00a0arrows@emsl.pnnl.gov\u2028 \nSubject:\u00a0Calculate\u00a0isodesmic\u00a0reactions \n\nArrows::\u00a0 \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0:Reaction \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0~\u00a0theory{pspw}\u00a0:Reaction \nReaction:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C(Cl)(Cl)(Cl)S\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CS\u00a0:Reaction \nReaction:\u00a0\u00a0\u00a0C(Cl)(Cl)(Cl)S\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CS\u00a0~\u00a0theory{pm3}\u00a0:Reaction \nReaction:\u00a0TNT\u00a0+\u00a03\u00a0benzene\u00a0-->\u00a0toluene\u00a0+\u00a03\u00a0nitrobenzene\u00a0~\u00a0xc{pbe}\u00a0:Reaction \n::Arrows\n
The results returned by EMSL Arrows are a combination of text and graphical output.
Currently EMSL Arrows is designed to calculate the following for all NWChem theories: - Reaction thermodynamics for molecular systems - Reaction paths for molecular systems - UV-vis, IR, Raman spectra for molecular systems, phonon \u2028spectra for materials systems - NMR spectra for molecular and materials systems - EXAFS spectra for molecular and materials systems - Energetics, structures, and band structures of crystals using the \u2028Crystal Open Database (COD ) numbers - A variety of datafiles can be returned including XYZ files, CIF \u2028files, NWChem output files We envision that as Arrows evolves it will be part of future closed cycles of chemical and materials discovery that requires integrated computational and experimental tools combined with materials synthesis. ### Try out EMSL Arrows by sending the following simple emails to arrows@emsl.pnnl.gov
Returns b3lyp/6-311++G(2d,2p) results for the cinnamon flavored molecule. Click here to run this example.
----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nmolecule:\u00a0Cinnamaldehyde\u00a0:molecule \n\n::Arrows\n
Using MP2 to calculate the reaction energy of a hydrolysis reaction for TNT. Click here to run this example.
----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\u00a0 \nReaction:\u00a0cid=8376\u00a0+\u00a0hydroxide\u00a0-->\u00a0O=N(=O)c1cc(O)c(c(c1)N(=O)=O)C\u00a0+\u00a0nitrite\u00a0~\u00a0theory{mp2}\u00a0:Reaction \n\n::Arrows\n
Examples of [isodesmic reaction](Plane-Wave-Density-Functional-Theory.md#nwpw-tutorial-3-using-isodesmic-reaction-energies-to-estimate-gas-phase-thermodynamics) Click here to to run this example. ----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nReaction:\u00a0TNT\u00a0+\u00a03\u00a0benzene\u00a0-->\u00a0toluene\u00a0+\u00a03\u00a0nitrobenzene\u00a0\u00a0~\u00a0theory{mp2}\u00a0:Reaction\u00a0 \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0:Reaction \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0~\u00a0xc{pbe}\u00a0:Reaction \nReaction:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0~\u00a0theory{pspw}\u00a0:Reaction \n\n::Arrows\n
Examples of reaction prediction capabilities in Arrows. Click here to to run this example. ----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nPredict:\u00a02\u00a0methane\u00a0\u00a0\u00a0:Predict \n\n::Arrows\n
Click here to to run this example. ----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nPredict:\u00a0TNT\u00a0+\u00a0hydroxide\u00a0\u00a0\u00a0:Predict \n\n::Arrows\n
Fetch an NWChem output deck from Arrows. Click here to to run this example. ----------------\u00a0mailto:\u00a0arrows@emsl.pnnl.gov\u00a0----------------------- \nArrows:: \n\nnwoutput:\u00a0caffeine\u00a0:nwoutput \n\n::Arrows\n
## Try out the following web API links (Now Available for Alpha Testing) [EMSL Arrows API v1.0](http://arrows.emsl.pnnl.gov/api/) ## Introduction to ESMILES - How to Change Calculation Theories The combined string, \"Molecule\\_Input keyword1{option1} keyword2{option2} keywordN{optionN}\", is called an \"extended smiles\" or \"esmiles\" for short. The Molecule\\_Input can be specified using a variety of formats including a SMILES string, common names, iupac, kegg numbers, cas, pubchem ids, chemspider ids, and InChI strings. The keyword{option} tags are used to enter different calculation types for a molecule, e.g. use pspw theory, ccsd(t), or pbe0 exchange correlation functional. The following are examples of esmiles strings: Plane-Wave DFT calculation using LDA and a cutoff energy=30.0 Ry c1ccccc1\u00a0theory{pspw}\u00a0xc{lda}\u00a0basis{30.0\u00a0Ry}\n
MP2 calculation using 6-31G\\* basis set CCO\u00a0theory{mp2}\u00a0basis{6-31G*}\n
CCSD(T) calculation of ethanol CCO\u00a0theory{ccsd(t)}\u00a0basis{6-31G*}\n
Mopac PM3 calculation of caffeine Caffeine\u00a0theory{pm3}\n
Aperiodic plane-wave DFT calculation of triplet cabon tetrachloride C(Cl)(Cl)(Cl)Cl\u00a0mult{3}\u00a0theory{pspw4} \n
Gas-phase M06-2x/6-31+G\\* calculation of benzene benzene\u00a0theory{dft}\u00a0xc{m06-2x}\u00a0solvation_type{none}\n
Equivalent ESMILES for CCSD(T)/6-31G\\* calculation of methanol methyl\u00a0alcohol\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \nkegg=D02309\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \ncas=67-56-1\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \ncid=887\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \ncsid=864\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \nInChI=1S/CH4O/c1-2/h2H,1H3\u00a0theory{ccsd(t)}\u00a0basis{6-31G*} \n
The available keywords in and esmiles string are: theory, theory\\_property, theory\\_base, basis, basis\\_property, basis\\_base, xc, xc\\_property, xc\\_base, solvation\\_type, charge, mult, xyzdata, geometry\\_generation, and calculation\\_type. ### ESMILES Options - theory{}, theory\\_property{} and theory\\_base{} The default theory used is theory{dft}. The following theories are available: -\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0dft\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0NWChem\u00a0Gaussian\u00a0DFT \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pspw\u00a0\u00a0\u00a0--\u00a0NWChem\u00a0Plane-Wave\u00a0DFT\u00a0(periodic\u00a0boundary\u00a0conditions,\u00a0\u0393\u00a0point) \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pspw4\u00a0--\u00a0NWChem\u00a0Plane-Wave\u00a0DFT\u00a0(aperiodic\u00a0boundary\u00a0conditions) \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0mp2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0NWChem\u00a0MP2\u00a0program \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0ccsd(t)\u00a0\u00a0--\u00a0NWChem\u00a0CCSD(T) \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pm3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0Mopac7\u00a0PM3 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0am1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0Mopac7\u00a0AM1 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0mindo\u00a0\u00a0\u00a0--\u00a0Mopac7\u00a0MINDO \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0mindo3\u00a0--\u00a0Mopac7\u00a0MINDO3\n
The theory\\_property{} is an optional keyword used to specify the theory used in an nmr calculation, and theory\\_base{} is an optional keyword used to specify the theory of the base calculation for an MP2 or CCSD(T) calculation. By default the theory\\_property and theory\\_base are defined to be the same as theory{}. ### ESMILES Options - basis{}, basis\\_property{} and basis\\_base{} The default basis used is 6-311++G(2d,2p) for the Gaussian DFT, MP2 and CCSD(T) programs. For plane-wave DFT the default basis or cutoff energy is defined to by 50.0 Hartrees or 100.0 Ry. For Gaussian basis sets any basis set recognized by NWChem can be used, e.g. CCO\u00a0basis{6-31G*}\n
Other common basis sets can be used such as cc-pvdz, 6-311G, 3-21G, 6-31+G\\*. For plane-wave basis sets the cutoff energy can changed by just entering the number in Hartrees or Rydbergs CCO\u00a0theory{pspw]\u00a0basis{50.0}\u00a0\nCCO\u00a0theory{pspw}\u00a0basis{100\u00a0Ry} \n
The basis\\_property{} is an optional keyword used to specify the basis set used in an nmr calculation, and basis\\_base{} is an optional keyword used to specify the basis set of the base calculation for an MP2 or CCSD(T) calculation. By default the basis\\_property and basis\\_base are defined to be the same as basis{}. ### ESMILES Options - xc{}, xc\\_property{} and xc\\_base{} Only the Gaussian and plane-wave DFT programs utilize the xc{} keyword. The default exchange correlation functional used is xc{b3lyp}. The following exchange correlation functions are available with the Gaussian DFT and plane-wave DFT programs. -\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0lda\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0\u00a0local\u00a0density\u00a0approximation\u00a0(LDA)\u00a0of\u00a0S.J.\u00a0Vosko,\u00a0L.\u00a0Wilk\u00a0and\u00a0M.\u00a0Nusair,\u00a0Can.\u00a0J.\u00a0Phys.\u00a058,\u00a01200\u00a0(1980) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pbe\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0The\u00a0gradient\u00a0corrected\u00a0exchange\u00a0correlation\u00a0function\u00a0of\u00a0J.P.\u00a0Perdew,\u00a0K.\u00a0Burke\u00a0and\u00a0M.\u00a0Ernzerhof,\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Phys.\u00a0Rev.\u00a0Lett.\u00a077,\u00a03865\u00a0(1996);\u00a078\u00a0,\u00a01396\u00a0(1997) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0blyp\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0The\u00a0gradient\u00a0corrected\u00a0exchange\u00a0correlation\u00a0function\u00a0A.D.\u00a0Becke,\u00a0Phys.\u00a0Rev.\u00a0A\u00a088,\u00a03098\u00a0(1988)\u00a0and\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0C.\u00a0Lee,\u00a0W.\u00a0Yang\u00a0and\u00a0R.\u00a0G.\u00a0Parr,\u00a0Phys.\u00a0Rev.\u00a0B\u00a037,\u00a0785\u00a0(1988) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0b3lyp\u00a0\u00a0\u00a0--\u00a0the\u00a0hybrid\u00a0exchange\u00a0correlation\u00a0function\u00a0of\u00a0A.D.\u00a0Becke,\u00a0J.\u00a0Chem.\u00a0Phys.\u00a098,\u00a05648\u00a0(1993)\u00a0\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0and\u00a0C.\u00a0Lee,\u00a0W.\u00a0Yang\u00a0and\u00a0R.\u00a0G.\u00a0Parr,\u00a0Phys.\u00a0Rev.\u00a0B\u00a037,\u00a0785\u00a0(1988) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0pbe0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0the\u00a0hybrid\u00a0exchange\u00a0correlation\u00a0function\u00a0of\u00a0C.Adamo\u00a0and\u00a0V.Barone,\u00a0J.\u00a0Chem.\u00a0Phys.\u00a0110,\u00a06158\u00a0(1999) \n\u00a0 \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0m06-2x\u00a0--\u00a0the\u00a0hybrid\u00a0meta\u00a0exchange\u00a0correlation\u00a0function\u00a0of\u00a0Y.\u00a0Zhao,\u00a0D.\u00a0G.\u00a0Truhlar,\u00a0J.\u00a0Chem.\u00a0Phys.\u00a0125,\u00a0194101\u00a0(2006).\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Only\u00a0available\u00a0in\u00a0Gaussian\u00a0DFT\u00a0program\n
The xc\\_property{} is an optional keyword used to specify the exchange correlation potential used in an nmr calculation, and xc\\_base{} is an optional keyword used to specify the exchange correlation potential of the base calculation for an MP2 or CCSD(T) calculation. By default the xc\\_property and xc\\_base are defined to be the same as xc{}. ### ESMILES Options - solvation\\_type{} The default solvation type is solvation\\_type{COSMO}. The following solvation types are available with the Gaussian DFT, MP2 and CCSD(T) programs. -\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0COSMO\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0The\u00a0COSMO\u00a0solvation\u00a0model\u00a0of\u00a0Klampt\u00a0and\u00a0Shuurman (solvent=water)\n\n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0COSMO-SMD\u00a0\u00a0 \u00a0 --\u00a0The\u00a0extended\u00a0Minnesota\u00a0COSMO\u00a0solvation\u00a0model\u00a0of\u00a0Cramer\u00a0et\u00a0al. (solvent=water)\n\n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0COSMO-SMD:solvent\u00a0\u00a0\u00a0--\u00a0where the solvent keyword is from Table of SMD solvent names below\n\n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0None\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0--\u00a0Gas-phase\u00a0calculation,\u00a0no\u00a0solvation\u00a0model\u00a0included\u00a0in\u00a0the\u00a0calculations\n
The available SMD `solvent` keywords are given below: | Keyword | Name | | ----------- | ------------------------------- | | h2o | water (default) | | water | water (default) | | acetacid | acetic acid | | acetone | acetone | | acetntrl | acetonitrile | | acetphen | acetophenone | | aniline | aniline | | anisole | anisole | | benzaldh | benzaldehyde | | benzene | benzene | | benzntrl | benzonitrile | | benzylcl | benzyl chloride | | brisobut | 1-bromo-2-methylpropane | | brbenzen | bromobenzene | | brethane | bromoethane | | bromform | bromoform | | broctane | 1-bromooctane | | brpentan | 1-bromopentane | | brpropa2 | 2-bromopropane | | brpropan | 1-bromopropane | | butanal | butanal | | butacid | butanoic acid | | butanol | 1-butanol | | butanol2 | 2-butanol | | butanone | butanone | | butantrl | butanonitrile | | butile | butyl acetate | | nba | butylamine | | nbutbenz | n-butylbenzene | | sbutbenz | sec-butylbenzene | | tbutbenz | tert-butylbenzene | | cs2 | carbon disulfide | | carbntet | carbon tetrachloride | | clbenzen | chlorobenzene | | secbutcl | sec-butyl chloride | | chcl3 | chloroform | | clhexane | 1-chlorohexane | | clpentan | 1-chloropentane | | clpropan | 1-chloropropane | | ocltolue | o-chlorotoluene | | m-cresol | m-cresol | | o-cresol | o-cresol | | cychexan | cyclohexane | | cychexon | cyclohexanone | | cycpentn | cyclopentane | | cycpntol | cyclopentanol | | cycpnton | cyclopentanone | | declncis | cis-decalin | | declntra | trans-decalin | | declnmix | decalin (cis/trans mixture) | | decane | n-decane | | decanol | 1-decanol | | edb12 | 1,2-dibromoethane | | dibrmetn | dibromomethane | | butyleth | dibutyl ether | | odiclbnz | o-dichlorobenzene | | edc12 | 1,2-dichloroethane | | c12dce | cis-dichloroethylene | | t12dce | trans-dichloroethylene | | dcm | dichloromethane | | ether | diethyl ether | | et2s | diethyl sulfide | | dietamin | diethylamine | | mi | diiodomethane | | dipe | diisopropyl ether | | dmds | dimethyl disulfide | | dmso | dimethyl sulfoxide | | dma | N,N-dimethylacetamide | | cisdmchx | cis-1,2-dimethylcyclohexane | | dmf | N,N-dimethylformamide | | dmepen24 | 2,4-dimethylpentane | | dmepyr24 | 2,4-dimethylpyridine | | dmepyr26 | 2,6-dimethylpyridine | | dioxane | 1,4-dioxane | | phoph | diphenyl ether | | dproamin | dipropylamine | | dodecan | n-dodecane | | meg | 1,2-ethanediol | | etsh | ethanethiol | | ethanol | ethanol | | etoac | ethyl acetate | | etome | ethyl formate | | eb | ethylbenzene | | phenetol | ethyl phenyl ether | | c6h5f | fluorobenzene | | foctane | 1-fluorooctane | | formamid | formamide | | formacid | formic acid | | heptane | n-heptane | | heptanol | 1-heptanol | | heptnon2 | 2-heptanone | | heptnon4 | 4-heptanone | | hexadecn | n-hexadecane | | hexane | n-hexane | | hexnacid | hexanoic acid | | hexanol | 1-hexanol | | hexanon2 | 2-hexanone | | hexene | 1-hexene | | hexyne | 1-hexyne | | c6h5i | iodobenzene | | iobutane | 1-iodobutane | | c2h5i | iodoethane | | iohexdec | 1-iodohexadecane | | ch3i | iodomethane | | iopentan | 1-iodopentane | | iopropan | 1-iodopropane | | cumene | isopropylbenzene | | p-cymene | p-isopropyltoluene | | mesityln | mesitylene | | methanol | methanol | | egme | 2-methoxyethanol | | meacetat | methyl acetate | | mebnzate | methyl benzoate | | mebutate | methyl butanoate | | meformat | methyl formate | | mibk | 4-methyl-2-pentanone | | mepropyl | methyl propanoate | | isobutol | 2-methyl-1-propanol | | terbutol | 2-methyl-2-propanol | | nmeaniln | N-methylaniline | | mecychex | methylcyclohexane | | nmfmixtr | N-methylformamide (E/Z mixture) | | isohexan | 2-methylpentane | | mepyrid2 | 2-methylpyridine | | mepyrid3 | 3-methylpyridine | | mepyrid4 | 4-methylpyridine | | c6h5no2 | nitrobenzene | | c2h5no2 | nitroethane | | ch3no2 | nitromethane | | ntrprop1 | 1-nitropropane | | ntrprop2 | 2-nitropropane | | ontrtolu | o-nitrotoluene | | nonane | n-nonane | | nonanol | 1-nonanol | | nonanone | 5-nonanone | | octane | n-octane | | octanol | 1-octanol | | octanon2 | 2-octanone | | pentdecn | n-pentadecane | | pentanal | pentanal | | npentane | n-pentane | | pentacid | pentanoic acid | | pentanol | 1-pentanol | | pentnon2 | 2-pentanone | | pentnon3 | 3-pentanone | | pentene | 1-pentene | | e2penten | E-2-pentene | | pentacet | pentyl acetate | | pentamin | pentylamine | | pfb | perfluorobenzene | | benzalcl | phenylmethanol | | propanal | propanal | | propacid | propanoic acid | | propanol | 1-propanol | | propnol2 | 2-propanol | | propntrl | propanonitrile | | propenol | 2-propen-1-ol | | propacet | propyl acetate | | propamin | propylamine | | pyridine | pyridine | | c2cl4 | tetrachloroethene | | thf | tetrahydrofuran | | sulfolan | tetrahydrothiophene-S,S-dioxide | | tetralin | tetralin | | thiophen | thiophene | | phsh | thiophenol | | toluene | toluene | | tbp | tributyl phosphate | | tca111 | 1,1,1-trichloroethane | | tca112 | 1,1,2-trichloroethane | | tce | trichloroethene | | et3n | triethylamine | | tfe222 | 2,2,2-trifluoroethanol | | tmben124 | 1,2,4-trimethylbenzene | | isoctane | 2,2,4-trimethylpentane | | undecane | n-undecane | | m-xylene | m-xylene | | o-xylene | o-xylene | | p-xylene | p-xylene | | xylenemx | xylene (mixture) | When a solvent is specified by name, the descriptors for the solvent are based on the Minnesota Solvent Descriptor Database: Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. University of Minnesota: Minneapolis, MN, 2010. ## ESMILES Reactions - How to Calculate Reaction Energies The basic input is a chemical reaction where the molecules are specified using smiles strings or esmiles strings (vida infra), e.g. \u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\n
Note that the reaction: :reaction keywords have only one \":\", whereas the Arrows keywords use two colons. The results contain both gas phase and solution phase reaction energies. The default level of theory used in these calculations is b3lyp/6-311++G(2d,2p) and the default solvation model is COSMO. The returned email will contain the following output. Reaction\u00a01:\u00a0C(Cl)(Cl)(Cl)O\u00a0+\u00a0C\u00a0-->\u00a0C(Cl)(Cl)Cl\u00a0+\u00a0CO\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a01.00\u00a0(Id=6833)\u00a0+\u00a01.00\u00a0(Id=11824)\u00a0-->\u00a01.00\u00a0(Id=6832)\u00a0+\u00a01.00\u00a0(Id=11215)\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a01.00\u00a0trichloromethanol\u00a0+\u00a01.00\u00a0methane\u00a0-->\u00a01.00\u00a0chloroform\u00a0+\u00a01.00\u00a0methanol\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a01.00\u00a0C1Cl3H1O1\u00a0+\u00a01.00\u00a0C1H4\u00a0-->\u00a01.00\u00a0C1Cl3H1\u00a0+\u00a01.00\u00a0C1H4O1\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a01.00\u00a0OC(Cl)(Cl)Cl\u00a0theory{dft}\u00a0basis{6-311++G(2d,2p)}\u00a0xc{b3lyp}\u00a0solvation_type{COSMO}\u00a0^{0}\u00a0mult{1}\u00a0nf{?}\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0+\u00a01.00\u00a0C\u00a0theory{dft}\u00a0basis{6-311++G(2d,2p)}\u00a0xc{b3lyp}\u00a0solvation_type{COSMO}\u00a0^{0}\u00a0mult{1}\u00a0nf{0}\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0-->\u00a01.00\u00a0C(Cl)(Cl)Cl\u00a0theory{dft}\u00a0basis{6-311++G(2d,2p)}\u00a0xc{b3lyp}\u00a0solvation_type{COSMO}\u00a0^{0}\u00a0mult{1}\u00a0nf{?}\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0+\u00a01.00\u00a0CO\u00a0theory{dft}\u00a0basis{6-311++G(2d,2p)}\u00a0xc{b3lyp}\u00a0solvation_type{COSMO}\u00a0^{0}\u00a0mult{1}\u00a0nf{0}\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Erxn(gas)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Hrxn(gas)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Grxn(gas)\u00a0Delta_Solvation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Grxn(aq)\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a08.035\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a09.580\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a08.809\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.991\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.818\u00a0\u00a0--\u00a0in\u00a0kcal/mol\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a033.618\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a040.084\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a036.857\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-8.332\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a028.525\u00a0\u00a0--\u00a0in\u00a0kj/mol\u00a0\u00a0 \n-\u00a0instance\u00a01:\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.012804\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.015267\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.014038\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.003173\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.010865\u00a0\u00a0--\u00a0in\u00a0Hartrees\n
The reaction output for the chemical reaction contains the gas phase reaction energy, gas-phase reaction enthalpy, gas-phase reaction free energy, change in solvation energy, and the solution phase reaction free energy. The energy values are given in kcal/mol, kj/mol, and Hartrees.. Besides the energies the output also provides several rows of information about the calculation: -\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0first\u00a0row:\u00a0the\u00a0reaction\u00a0input\u00a0parsed \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0second\u00a0row:\u00a0the\u00a0arrows\u00a0ids\u00a0used\u00a0for\u00a0the\u00a0compounds\u00a0in\u00a0the\u00a0reaction \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0third\u00a0row:\u00a0the\u00a0iupac\u00a0names\u00a0of\u00a0the\u00a0compounds\u00a0if\u00a0available.\u00a0\u00a0If\u00a0not\u00a0available\u00a0the\u00a0systems\u00a0will\u00a0default\u00a0to\u00a0using\u00a0smiles\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0strings \n-\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0fourth-\u00a0rows:\u00a0the\u00a0chemical\u00a0reaction\u00a0is\u00a0written\u00a0using\u00a0the\u00a0esmiles\u00a0notation.\u00a0\u00a0\n
The esmiles notation contains all the information about the calculations of the compounds. In this example, theory used was dft, basis was 6-311++G(2d,2p), the exchange correlation, the solvation type was cosmo. The charge and multiplicity of the molecules are also given. The value in the nf{} tag contains the number of imaginary frequencies in the vibrational calculation for the molecule. A variety of other inputs to describe the chemical structure besides smiles can be used, including common names, iupac, kegg numbers, cas, pubchem ids, chemspider ids, and InChI strings. The common names, iupac and InChI strings are entered as replacements to the smiles strings, and the kegg, cas, pubchem, and csid inputs are entered as kegg=value, cas=value, cid=value, csid=value where value is the id. The chemical structure input types can be mixed and matched in the reaction input. The following reaction inputs are all equivalent. \ntrichloromethanol\u00a0+\u00a0methane\u00a0-->\u00a0chloroform\u00a0+\u00a0methyl\u00a0alcohol\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0kegg=D02309\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0cas=67-56-1\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0cid=887\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0csid=864\ntrichloromethanol\u00a0+\u00a0C\u00a0-->\u00a0chloroform\u00a0+\u00a0InChI=1S/CH4O/c1-2/h2H,1H3\n\n
To calculate atomization energies the following input can be used. C(Cl)(Cl)(Cl)O\u00a0\u00a0-->\u00a0[C]\u00a0\u00a0mult{3}\u00a0+\u00a03\u00a0[Cl]\u00a0mult{2}\u00a0+\u00a0[O]\u00a0mult{3}\n
## MAP Function for Adding Options to Reactions To calculate a reaction energy using non-default options the following format could be used, e.g. Arrows:: \n\nreaction:\u00a0 \ntrichloromethanol\u00a0theory{pspw}\u00a0xc{lda}\u00a0+\u00a0methane\u00a0theory{pspw}\u00a0xc{lda}\u00a0 \n-->\u00a0chloroform\u00a0theory{pspw}\u00a0xc{lda}\u00a0+\u00a0methyl\u00a0alcohol\u00a0theory{pspw}\u00a0xc{lda}\u00a0 \n:reaction \n\n::Arrows\n
in the body of an Arrows email, or just the following single line input in the Web API entry box \u00a0trichloromethanol\u00a0theory{pspw}\u00a0xc{lda}\u00a0+\u00a0methane\u00a0theory{pspw}\u00a0xc{lda}\u00a0\u00a0 \n\u00a0-->\u00a0chloroform\u00a0theory{pspw}\u00a0xc{lda}\u00a0+\u00a0methyl\u00a0alcohol\u00a0theory{pspw}\u00a0xc{lda}\n
Entering ESMILES in this way for reactions is tedius and prone to typos. To simplify this type of input a map function has been added to the reaction input, where the format for the mapping function is to append the reaction with the tilde, \"\\~\", symbol followed by the esmiles options. trichloromethanol\u00a0+\u00a0methane\u00a0-->\u00a0chloroform\u00a0+\u00a0methyl\u00a0alcohol\u00a0~\u00a0theory{pspw}\u00a0xc{lda}\n
The map function essentially appends every compound in the reaction by the esmiles options string.This is preferred way to use the map function. However, an alternative format for entering the map function has also been added to the reaction: :reaction block. The format of the block is reaction\\[esmiles options\\]: reaction :reaction. Arrows:: \n\nreaction[theory{pspw}\u00a0xc{lda}]:\u00a0 \ntrichloromethanol\u00a0+\u00a0methane\u00a0-->\u00a0chloroform\u00a0+\u00a0methyl\u00a0alcohol\u00a0\u00a0 \n:reaction \n\n::Arrows\n
## How to Define the Chemical Structure with XYZ Input The xyzinput: :xyzinput block is used to enter a chemical structure using xyz coordinates. The label: :label subblock is used to label the xyz structure so that it can be referenced in reaction: :reaction, molecule: :molecule, and nmr: :nmr blocks. The xyz geometry is entered inside the xyzdata: :xyzdata block. The coordinates are assumed to be in Angstroms. The xyz geometry can either contain the number of atoms at the start of the input, e.g. Arrows:: \n\nxyzinput: \nlabel:\u00a0amolecule\u00a0:label \n\u00a0\u00a0\u00a0xyzdata: \n20 \n\nC\u00a0\u00a0\u00a00.810772\u00a01.260891\u00a00.224768 \nC\u00a0\u00a0\u00a0-0.445319\u00a00.626551\u00a00.148559 \nC\u00a0\u00a0\u00a0-0.550132\u00a0-0.747571\u00a0-0.024182 \nC\u00a0\u00a0\u00a00.598317\u00a0-1.510887\u00a0-0.051277 \nC\u00a0\u00a0\u00a01.856720\u00a0-0.927387\u00a00.081993 \nC\u00a0\u00a0\u00a01.951003\u00a00.440481\u00a00.208335 \nH\u00a0\u00a0\u00a02.736961\u00a0-1.550133\u00a00.062422 \nH\u00a0\u00a0\u00a02.912395\u00a00.927722\u00a00.273890 \nO\u00a0\u00a0\u00a01.062201\u00a02.575051\u00a00.296009 \nC\u00a0\u00a0\u00a00.213380\u00a03.557631\u00a0-0.323370 \nH\u00a0\u00a0\u00a0-1.520657\u00a0-1.209783\u00a0-0.105115 \nN\u00a0\u00a0\u00a0-1.712300\u00a01.341956\u00a00.351481 \nN\u00a0\u00a0\u00a00.485785\u00a0-2.966232\u00a0-0.210786 \nO\u00a0\u00a0\u00a0-0.636770\u00a0-3.441145\u00a0-0.327238 \nO\u00a0\u00a0\u00a01.526277\u00a0-3.613525\u00a0-0.218259 \nO\u00a0\u00a0\u00a0-2.671572\u00a01.004073\u00a0-0.327713 \nO\u00a0\u00a0\u00a0-1.733900\u00a02.198527\u00a01.228109 \nH\u00a0\u00a0\u00a00.882435\u00a04.349335\u00a0-0.647148 \nH\u00a0\u00a0\u00a0-0.510291\u00a03.940088\u00a00.389177 \nH\u00a0\u00a0\u00a0-0.297779\u00a03.136834\u00a0-1.188838 \n\u00a0\u00a0:xyzdata \n:xyzinput \n\nmolecule:\u00a0label=amolecule\u00a0xc{m06-2x}\u00a0:molecule \n\n::Arrows \n\nr it can be left out, e.g.\n\nArrows:: \n\nxyzinput: \nlabel:\u00a0amolecule\u00a0:label \n\u00a0\u00a0\u00a0xyzdata: \nC\u00a0\u00a0\u00a00.810772\u00a01.260891\u00a00.224768 \nC\u00a0\u00a0\u00a0-0.445319\u00a00.626551\u00a00.148559 \nC\u00a0\u00a0\u00a0-0.550132\u00a0-0.747571\u00a0-0.024182 \nC\u00a0\u00a0\u00a00.598317\u00a0-1.510887\u00a0-0.051277 \nC\u00a0\u00a0\u00a01.856720\u00a0-0.927387\u00a00.081993 \nC\u00a0\u00a0\u00a01.951003\u00a00.440481\u00a00.208335 \nH\u00a0\u00a0\u00a02.736961\u00a0-1.550133\u00a00.062422 \nH\u00a0\u00a0\u00a02.912395\u00a00.927722\u00a00.273890 \nO\u00a0\u00a0\u00a01.062201\u00a02.575051\u00a00.296009 \nC\u00a0\u00a0\u00a00.213380\u00a03.557631\u00a0-0.323370 \nH\u00a0\u00a0\u00a0-1.520657\u00a0-1.209783\u00a0-0.105115 \nN\u00a0\u00a0\u00a0-1.712300\u00a01.341956\u00a00.351481 \nN\u00a0\u00a0\u00a00.485785\u00a0-2.966232\u00a0-0.210786 \nO\u00a0\u00a0\u00a0-0.636770\u00a0-3.441145\u00a0-0.327238 \nO\u00a0\u00a0\u00a01.526277\u00a0-3.613525\u00a0-0.218259 \nO\u00a0\u00a0\u00a0-2.671572\u00a01.004073\u00a0-0.327713 \nO\u00a0\u00a0\u00a0-1.733900\u00a02.198527\u00a01.228109 \nH\u00a0\u00a0\u00a00.882435\u00a04.349335\u00a0-0.647148 \nH\u00a0\u00a0\u00a0-0.510291\u00a03.940088\u00a00.389177 \nH\u00a0\u00a0\u00a0-0.297779\u00a03.136834\u00a0-1.188838 \n\u00a0\u00a0:xyzdata \n:xyzinput \n\nmolecule:\u00a0label=amolecule\u00a0xc{m06-2x}\u00a0:molecule\n\n::Arrows\n
## How to Calculate NMR Spectra The nmr: :nmr block is used to energy an NMR calculation Arrows:: \nnmr:\u00a0c1ccccc1\u00a0basis{6-31G*}\u00a0solvation_type{None}\u00a0:nmr\n::Arrows\n
For single line input the esmiles is preceded by the words \"nmr for\", e.g. nmr\u00a0for\u00a0c1ccccc1\u00a0basis{6-31G*}\u00a0solvation_type{None}\n
## How to Generate a Table of Reactions The reactionenumerate: :reactionenumerate block is used to generate a table of reactions in CSV format, which can be copy and pasted into spreadsheets. Arrows:: \n\nreactionenumerate: \n\u00a0\u00a0energytype:\u00a0grxn(aq)\u00a0kcal/mol\u00a0:energytype \n\u00a0\u00a0tablereactions: \n\u00a0\u00a0\u00a0\u00a0\u00a0reaction:\u00a0TNT\u00a0+\u00a0hydroxide\u00a0-->\u00a0TNT-2-OH\u00a0+\u00a0nitrite\u00a0:reaction \n\u00a0\u00a0\u00a0\u00a0\u00a0reaction:\u00a0DNAN\u00a0+\u00a0hydroxide\u00a0-->\u00a0DNAN-2-OH\u00a0+\u00a0nitrite\u00a0:reaction \n\u00a0\u00a0:tablereactions \n\u00a0\u00a0tablemethods: \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method:\u00a0xc{pbe}\u00a0:method \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method:\u00a0xc{b3lyp}\u00a0:method \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method:\u00a0xc{m06-2x}\u00a0:method \n\u00a0\u00a0:tablemethods \n:reactionenumerate \n\n::Arrows\n
## How to Fetch NWChem Output The NWChem output can be fetched using the nwoutput: :nwoutput and printnwout: :printnwout blocks. The input for the nwoutput: :nwoutput block is an ESMILES strings, e.g. Arrows::\nnwoutput:\u00a0TNT\u00a0theory{pspw}\u00a0:nwoutput\n::Arrows\n
For single line input the esmiles is preceded by the words \"nwoutput for\", e.g. nwoutput\u00a0for\u00a0aspirin\u00a0theory{pspw}\n
The input for the printnwout: :printnwout block is an Arrows id, e.g. Arrows:: \nprintnwout:\u00a013212\u00a0:printnwout\n::Arrows\n
## Generate NWChem Input The Web API can be used to generate an NWChem input deck. For single line input the esmiles is preceded by the words \"input deck for\", e.g. input\u00a0deck\u00a0for\u00a0aspirin\n
## How to Fetch XYZ Geometry An XYZ geometry can be fetched using the xyzfile: :xyzfile and printxyz: :printxyz blocks. The input for the xyzfile: :xyzfile block is an ESMILES strings, e.g. Arrows:: \nxyzfile:\u00a0TNT\u00a0theory{pspw}\u00a0:xyzfile\n::Arrows\n
The input for the printxyz: :printxyz block is an Arrows id, e.g. Arrows:: \nprintxyz:\u00a013212\u00a0:printxyz\n::Arrows\n
For single line input the esmiles is preceded by the words \"xyz for\", e.g. xyz\u00a0for\u00a0TNT\u00a0theory{pspw}\n
"},{"location":"EPR-pNMR.html","title":"EPR pNMR","text":""},{"location":"EPR-pNMR.html#epr-and-paramagnetic-nmr-nwchem-tutorial","title":"EPR and Paramagnetic NMR NWChem Tutorial","text":"This tutorial involves tensor/matrix operations, which can be readily done with Octave, a GNU license MATLAB-like program, freely available in any Linux or Cygwin (Windows) distribution. Octave will be used to demonstrate tensor manipulation and calculation of g-tensor, A-tensor, and paramagnetic NMR parameters obtained from an example NWChem output.
Example input:
echo\nstart ch3radical_rot\ntitle ch3radical_rot\ngeometry noautoz units angstrom nocenter\n symmetry c1\n c +0.00000000 +0.00000000 +0.00000000\n h -0.21385373 +0.98738914 +0.39826283\n h -0.78597592 -0.69448290 +0.28059107\n h +0.09050298 +0.04455726 -1.08102723\nend\nBASIS \"ao basis\" \n* library 6-311G\nEND\nrelativistic\n zora on\n zora:cutoff_NMR 1d-8\n zora:cutoff 1d-30\nend\ndft\n mult 2\n xc b3lyp\nend\ntask dft\nproperty\n gshift\n hyperfine\n shielding\nend\ntask dft property\n
First, the following constants and values are needed:
ge = 2.002319304; Be = 9.27400915e-24; k = 1.3806504e-23; u0 = 4*pi*(10^7);\nh = 6.62606896e-34; BN = 5.05078317e-27; gnC = 1.4044;\n
gnC is the nuclear g-factor for a 13C nucleus; it is calculated from the measured gyromagnetic ratio (in 106 rad s-1 T-1) for 13C:
gammaC = 67.262;\ngnC = gammaC*(h/(2*pi))/BN*(10^6);\n
Note that the example system CH3 ground state is a doublet.
S = 0.5;\n
Since paramagnetic NMR is temperature-dependent, specify a temperature in Kelvin:
T = 305.15;\n
Reconciling the g-tensor from NWChem calculation: Note that the tensor from a g-shift (\u0394g) calculation from NWChem is in ppt (parts-per-thousand). Enter the total \u0394g (g-shift) tensor into Octave:
GShiftTens = [0.1740 0.2216 -0.2640; 0.2216 0.6888 0.0981; ...\n-0.2640 0.0981 0.6542];\n
Transform \u0394g tensor to g tensor:
GTens = 0.001*GShiftTens + (ge*eye(3))\n
returns
2.0025e+00 2.2160e-04 -2.6400e-04\n2.2160e-04 2.0030e+00 9.8100e-05\n-2.6400e-04 9.8100e-05 2.0030e+00\n
Note that eye(3)
stands for the 3x3 identity matrix (diagonal 1\u2019s and off-diagonal 0\u2019s). To obtain gxx, gyy, and gzz from the g tensor matrix, find the eigenvalues of ggT and take the square root of the eigenvalues:
sqrt(eig(GTens*transpose(GTens)))\n
returns
ans =\n2.0023\n2.0031\n2.0031\n
To obtain giso , take the trace of g and divide by 3:
trace(GTens)/3\n
returns
2.0028\n
Reconciling the A-tensor from NWChem calculation: Enter the total A tensor (for convenience use the tensor that is in MHz) for the first carbon atom listed:
ATensC = [428.6293 -58.2145 69.3689;-58.2145 293.3841 -25.7459; ...\n69.3689 -25.7459 302.4571];\n
Correct this matrix by rotating it into the reference frame of the g-tensor (obtained in the last section):
ATensC_Corr = (ATensC/ge)*GTens\n
returns
428.651 -58.184 69.332\n-58.184 293.477 -25.732\n69.332 -25.732 302.546\n
To find Axx, Ayy, Azz, find the eigenvalues of AAT and take the square root of the eigenvalues:
sqrt(eig(ATensC_Corr*transpose(ATensC_Corr)))\n
returns
ans =\n271.88\n271.88\n480.91\n
To calculate Aiso , take the trace of the corrected A tensor and divide by 3:
trace(ATensC_Corr)/3\n
returns
341.56\n
Reconciling the pNMR parameters from NWChem calculation: Calculate the dipolar form of the corrected A tensor for the carbon atom:
ATensC_Corr_Dip = ATensC_Corr \u2013 (trace(ATensC_Corr)/3)*eye(3)\n
returns
87.093 -58.184 69.332\n-58.184 -48.081 -25.732\n69.332 -25.732 -39.012\n
For convenience, convert the hyperfine tensors units from MHz to J:
ATensC_Energy = (10^6)*h*ATensC\n
returns
2.8401e-25 -3.8573e-26 4.5964e-26\n-3.8573e-26 1.9440e-25 -1.7059e-26\n4.5964e-26 -1.7059e-26 2.0041e-25\n
ATensC_Corr_Energy = (10^6)*h*ATensC_Corr\n
returns
2.8403e-25 -3.8553e-26 4.5940e-26\n-3.8553e-26 1.9446e-25 -1.7050e-26\n4.5940e-26 -1.7050e-26 2.0047e-25\n
ATensC_Corr_Dip_Energy =(10^6)*h*ATensC_Corr_Dip\n
returns
5.7708e-26 -3.8553e-26 4.5940e-26\n-3.8553e-26 -3.1859e-26 -1.7050e-26\n4.5940e-26 -1.7050e-26 -2.5850e-26\n
To calculate the Fermi contact shift:
FCShiftC = ...\n(10^6)*trace(GTens)/3*Be/(gnC*BN)*(S*(S+1))/(3*k*T)*trace(ATensC_Energy)/3\n
returns
FCShiftC = 3.5159e+04\n
To calculate the pseudocontact shift (in ppm):
PCShiftC = ...\n(10^6)*(S*(S+1))/(9*k*T)*Be/(gnC*BN)*trace(ATensC_Corr_Dip_Energy*GTens)\n
returns
PCShiftC = -1.9008\n
From the shielding calculation in NWChem,
OrbShldC = 83.7136\n
Putting it all together, the total chemical shielding in ppm is:
TotShldC = OrbShldC \u2013 FCShiftC \u2013 PCShiftC\n
returns
TotShldC = -3.5074e+04\n
Subtract this value from the appropriate reference to obtain the chemical shift. We can repeat these steps for the hydrogen atom. The proton nuclear g-factor is:
gnH = 5.5856947\n
The hyperfine A tensor for the hydrogen atom from the NWChem output is:
ATensH = [-39.8498 -17.0675 5.2453; -17.0675 0.9102 23.3706; ...\n5.2453 23.3706 -46.3284];\n
Correct this tensor by transforming it into the reference frame of the g-tensor:
ATensH_Corr = (ATensH/ge)*GTens\n
returns
-39.85584 -17.07752 5.25143\n-17.07196 0.90977 23.38053\n5.25445 23.37695 -46.34308\n
Calculate the dipolar form of the corrected A tensor for the H atom:
ATensH_Corr_Dip = ATensH_Corr - (trace(ATensH_Corr))/3*eye(3)\n
returns
-11.4261 -17.0775 5.2514\n-17.0720 29.3395 23.3805\n5.2545 23.3770 -17.9134\n
Convert the hyperfine tensors units from MHz to J:
ATensH_Energy = (10^6)*h*ATensH\n
returns
-2.6405e-26 -1.1309e-26 3.4756e-27\n-1.1309e-26 6.0310e-28 1.5486e-26\n3.4756e-27 1.5486e-26 -3.0698e-26\n
ATensH_Corr_Energy = (10^6)*h*ATensH_Corr\n
returns
-2.6409e-26 -1.1316e-26 3.4796e-27\n-1.1312e-26 6.0282e-28 1.5492e-26\n3.4816e-27 1.5490e-26 -3.0707e-26\n
ATensH_Corr_Dip_Energy =(10^6)*h*ATensH_Corr_Dip\n
returns
-7.5710e-27 -1.1316e-26 3.4796e-27\n-1.1312e-26 1.9441e-26 1.5492e-26\n3.4816e-27 1.5490e-26 -1.1870e-26\n
Calculate the Fermi Contact Shift:
FCShiftH = ...\n(10^6)*trace(GTens)/3*Be/(gnH*BN)*(S*(S+1))/(3*k*T)*trace(ATensH_Energy)/3\n
returns
FCShiftH = -735.76\n
Calculate the pseudocontact shift:
PCShiftH = ...\n(10^6)*(S*(S+1))/(9*k*T)*Be/(gnH*BN)*trace(ATensH_Corr_Dip_Energy*GTens)\n
returns
PCShiftH = 0.0032218\n
From the NWChem output, the orbital shielding is:
OrbShldH = 28.1923\n
Putting it all together, the total chemical shielding in ppm is:
TotShldH = OrbShldH - FCShiftH \u2013 PCShiftH\n
returns
TotShldH = 763.95\n
```
"},{"location":"ESP.html","title":"Electrostatic potentials","text":""},{"location":"ESP.html#overview","title":"Overview","text":"The NWChem Electrostatic Potential (ESP) module derives partial atomic charges that fit the quantum mechanical electrostatic potential on selected grid points.
The ESP module is specified by the NWChem task directive
task esp\n
The input for the module is taken from the ESP input block
ESP \n ... \nEND\n
"},{"location":"ESP.html#grid-specification","title":"Grid specification","text":"The grid points for which the quantum mechanical electrostatic potential is evaluated and used in the fitting procedure of the partial atomic charges all lie outside the van der Waals radius of the atoms and within a cutoff distance from the atomic centers. The following input parameters determine the selection of grid points.
recalculate \n
is given, the grid and the electrostatic potential is recalculated.
range
keyword range <real rcut> \n
where rcut
is the maximum distance in nm between a grid point and any of the atomic centers. When omitted, a default value for rcut of 0.3 nm is used.
spacing
keyword spacing <real spac> \n
where spac
is the grid spacing in nm for the regularly spaced grid points. If not specified, a default spacing of 0.05 nm is used.
radius
of an element can be specified by radius <integer iatnum> <real atrad> \n
where iatnum is the atomic number for which a van der Waals radius of atrad in nm will be used in the grid point determination. Default values will be used for atoms not specified.
probe
radius in nm determining the envelope around the molecule is specified by probe <real probe default 0.07>\n
factor
specified by factor <real factor default 1.0>\n
All grid points are discarded that lie within a distance factor*(radius(i)+probe)
from any atom i.
screen [<real scrtol default 1.0D-5>]\n
"},{"location":"ESP.html#constraints","title":"Constraints","text":"Additional constraints to the partial atomic charges can be imposed during the fitting procedure.
constrain <real charge {<integer iatom>}\n
where charge
is the net charge of the set of atoms {iatom}
. A negative atom number iatom can be used to specify that the partial charge of that atom is substracted in the sum for the set.
constrain <real charge> <integer iatom> through <integer jatom> \n
where charge is the net charge of the set of atoms {[iatom:jatom]}
.
constrain equal {<integer iatom>}\n
constrain group <integer iatom> <integer jatom> to <integer katom> <integer latom>\n
resulting in the same charge for atoms iatom and katom, for atoms iatom+1 and k atom+1, \u2026 for atoms jatom and latom.
constrain xhn <integer iatom> {<integer jatom>}\n
can be used to constrain the set {iatom,{jatom}}
to zero charge, and constrain all atoms in {jatom}
to have the same charge. This can be used, for example, to restrain a methyl group to zero charge, and have all hydrogen carrying identical charges.
Restraints can be applied to each partial charge using the RESP charge fitting procedure.
restrain [hfree] (harmonic [<real scale>] | \\ \n hyperbolic [<real scale> [<real tight>]] \\ \n [maxiter <integer maxit>] [tolerance <real toler>])\n
Here hfree
can be specified to exclude hydrogen atoms from the restraining procedure. Variable scale
is the strength of the restraint potential, with a default of 0.005 au for the harmonic
restraint and a default value of 0.001 au for the hyperbolic
restraint. For the hyperbolic restraints the tightness tight
can be specified to change the default value of 0.1 e. The iteration count that needs to be carried out for the hyperbolic restraint is determined by the maximum number of allowed iterations maxiter
, with a default value of 25, and the tolerance
in the convergence of the partial charges toler
, with a default of 0.001 e.
The NWChem electron transfer (ET) module calculates the electronic coupling energy (also called the electron transfer matrix element) between ET reactant and product states. The electronic coupling (VRP), and nuclear reorganization energy (\u03bb) are all components of the electron transfer rate defined by Marcus\u2019 theory, which also depends on the temperature (see Reference 1 below):
The ET module utilizes the method of Corresponding Orbital Transformation to calculate VRP. The only input required are the names of the files containing the open-shell (UHF) MO vectors for the ET reactant and product states (R and P).
The basis set used in the calculation of VRP must be the same as the basis set used to calculate the MO vectors of R and P. The magnitude of VRP depends on the amount of overlap between R and P, which is important to consider when choosing the basis set. Diffuse functions may be necessary to fill in the overlap, particularly when the ET distance is long.
The MO\u2019s of R and P must correspond to localized states. for instance, in the reaction A- + B \u2192 A + B- the transferring electron is localized on A in the reactant state and is localized on B in the product state. To verify the localization of the electron in the calculation of the vectors, carefully examine the Mulliken population analysis. In order to determine which orbitals are involved in the electron transfer, use the print keyword \u201cmulliken ao\u201d which prints the Mulliken population of each basis function.
An effective core potential (ECP) basis can be used to replace core electrons. However, there is one caveat: the orbitals involved in electron transfer must not be replaced with ECP\u2019s. Since the ET orbitals are valence orbitals, this is not usually a problem, but the user should use ECP\u2019s with care.
Suggested references are listed below. The first two references gives a good description of Marcus\u2019 two-state ET model, and the appendix of the third reference details the method used in the ET module.
VECTORS [reactants] <string reactants_filename> \n VECTORS [products ] <string products_filename>\n
In the VECTORS directive the user specifies the source of the molecular orbital vectors for the ET reactant and product states. This is required input, as no default filename will be set by the program. In fact, this is the only required input in the ET module, although there are other optional keywords described below.
"},{"location":"Electron-Transfer.html#focknofock-method-for-calculating-the-two-electron-contribution-to-vrp","title":"FOCK/NOFOCK: method for calculating the two-electron contribution to VRP","text":" <string (FOCK||NOFOCK) default FOCK>\n
This directive enables/disables the use of the NWChem\u2019s Fock matrix routine in the calculation of the two-electron portion of the ET Hamiltonian. Since the Fock matrix routine has been optimized for speed, accuracy and parallel performance, it is the most efficient choice.
Alternatively, the user can calculate the two-electron contribution to the ET Hamiltonian with another subroutine which may be more accurate for systems with a small number of basis functions, although it is slower.
"},{"location":"Electron-Transfer.html#tol2e-integral-screening-threshold","title":"TOL2E: integral screening threshold","text":" TOL2E <real tol2e default max(10e-12,min(10e-7, S(RP)*10e-7 )>\n
The variable tol2e is used in determining the integral screening threshold for the evaluation of the two-electron contribution to the Hamiltonian between the electron transfer reactant and product states. As a default, tol2e is set depending on the magnitude of the overlap between the ET reactant and product states (SRP), and is not less than 1.0d-12 or greater than 1.0d-7.
The input to specify the threshold explicitly within the ET directive is, for example:
tol2e 1e-9\n
"},{"location":"Electron-Transfer.html#example","title":"Example","text":"The following example is for a simple electron transfer reaction, He \u2192 He+. The ET calculation is easy to execute, but it is crucial that ET reactant and product wavefunctions reflect localized states. This can be accomplished using either a fragment guess, or a charged atomic density guess. For self-exchange ET reactions such as this one, you can use the REORDER keyword to move the electron from the first helium to the second.
Example input :
basis \"ao basis\" \n * library aug-cc-pvtz\nend\n\ngeometry\n He 0 0 0\nend\n\ncharge 1\n\nscf\n tol2e 1d-9\n uhf\n doublet\n vectors output HeP.movecs\nend\ntask scf\n\ncharge 0\n\nscf\n uhf\n singlet\n vectors output He.movecs\nend\ntask scf\n\ngeometry noautosym noautoz\n He 0.0 0.0 0.0\n He 5.0 0.0 0.0\nend\n\ncharge 1\n#ET reactants:\nscf\n doublet; uhf; vectors input fragment HeP.movecs He.movecs output HeA.movecs\nend\ntask scf\n\n#ET products:\nscf\n doublet; uhf; vectors input HeA.movecs reorder 2 1 output HeB.movecs\nend\ntask scf\n\net\n vectors reactants HeA.movecs\n vectors products HeB.movecs\nend\ntask scf et\n
Here is what the output looks like for this example:
Electron Transfer Calculation\n -----------------------------\n\n MO vectors for reactants: HeA.movecs\n MO vectors for products : HeB.movecs\n\n Electronic energy of reactants H(RR) -5.2836825646\n Electronic energy of products H(PP) -5.2836825646\n\n Reactants/Products overlap S(RP) : -4.20D-04\n\n Reactants/Products interaction energy: \n ------------------------------------- \n One-electron contribution H1(RP) 0.0027017960\n\n Beginning calculation of 2e contribution\n Two-electron integral screening (tol2e) : 4.20D-11\n\n Two-electron contribution H2(RP) -0.0004625156\n Total interaction energy H(RP) 0.0022392804\n\n Electron Transfer Coupling Energy |V(RP)| 0.0000220152\n 4.832 cm-1\n 0.000599 eV\n 0.014 kcal/mol\n
The overlap between the ET reactant and product states (SRP) is small, so the magnitude of the coupling between the states is also small. If the fragment guess or charged atomic density guess were not used, the Mulliken spin population would be 0.5 on both He atoms, the overlap between the ET reactant and product states would be 100% and an infinite VRP would result.
"},{"location":"Electronic-Structure-Analysis.html","title":"Electronic Structure Analysis","text":"NWChem supports a spectrum of single excitation theories for vertical excitation energy calculations, namely, configuration interaction singles (CIS)1, time-dependent Hartree-Fock (TDHF or also known as random-phase approximation RPA), time-dependent density functional theory (TDDFT)2, and Tamm-Dancoff approximation3 to TDDFT. These methods are implemented in a single framework that invokes Davidson\u2019s trial vector algorithm (or its modification for a non-Hermitian eigenvalue problem). The capabilities of the module are summarized as follows:
These are very effective way to rectify the shortcomings of TDDFT when applied to Rydberg excited states (see below).
"},{"location":"Excited-State-Calculations.html#performance-of-cis-tdhf-and-tddft-methods","title":"Performance of CIS, TDHF, and TDDFT methods","text":"The accuracy of CIS and TDHF for excitation energies of closed-shell systems are comparable to each other, and are normally considered a zeroth-order description of the excitation process. These methods are particularly well balanced in describing Rydberg excited states, in contrast to TDDFT. However, for open-shell systems, the errors in the CIS and TDHF excitation energies are often excessive, primarily due to the multi-determinantal character of the ground and excited state wave functions of open-shell systems in a HF reference. The scaling of the computational cost of a CIS or TDHF calculation per state with respect to the system size is the same as that for a HF calculation for the ground state, since the critical step of the both methods are the Fock build, namely, the contraction of two-electron integrals with density matrices. It is usually necessary to include two sets of diffuse exponents in the basis set to properly account for the diffuse Rydberg excited states of neutral species.
The accuracy of TDDFT may vary depending on the exchange-correlation functional. In general, the exchange-correlation functionals that are widely used today and are implemented in NWChem work well for low-lying valence excited states. However, for high-lying diffuse excited states and Rydberg excited states in particular, TDDFT employing these conventional functionals breaks down and the excitation energies are substantially underestimated. This is because of the fact that the exchange-correlation potentials generated from these functionals decay too rapidly (exponentially) as opposed to the slow -1/r asymptotic decay of the true potential. A rough but useful index is the negative of the highest occupied KS orbital energy; when the calculated excitation energies become close to this threshold, these numbers are most likely underestimated relative to experimental results. It appears that TDDFT provides a better-balanced description of radical excited states. This may be traced to the fact that, in DFT, the ground state wave function is represented well as a single KS determinant, with less multi-determinantal character and less spin contamination, and hence the excitation thereof is described well as a simple one electron transition. The computational cost per state of TDDFT calculations scales as the same as the ground state DFT calculations, although the prefactor of the scaling may be much greater in the former.
A very simple and effecive way to rectify the TDDFT\u2019s failure for Rydberg excited states has been proposed by Tozer and Handy7 and by Casida and Salahub5. They proposed to splice a -1/r asymptotic tail to an exchange-correlation potential that does not have the correct asymptotic behavior. Because the approximate exchange-correlation potentials are too shallow everywhere, a negative constant must be added to them before they can be spliced to the -1/r tail seamlessly in a region that is not sensitive to chemical effects or to the long-range behavior. The negative constant or the shift is usually taken to be the difference of the HOMO energy from the true ionization potential, which can be obtained either from experiment or from a \u0394SCF calculation. Recently, we proposed a new, expedient, and self-contained asymptotic correction that does not require an ionization potential (or shift) as an external parameter from a separate calculation. In this scheme, the shift is computed by a semi-empirical formula proposed by Zhan, Nichols, and Dixon6. Both Casida-Salahub scheme and this new asymptotic correction scheme give considerably improved (Koopmans type) ionization potentials and Rydberg excitation energies. The latter, however, supply the shift by itself unlike to former.
"},{"location":"Excited-State-Calculations.html#input-syntax","title":"Input syntax","text":"The module is called TDDFT
as time-dependent density functional theory employing a hybrid HF-DFT functional encompasses all of the above-mentioned methods implemented. To use this module, one needs to specify TDDFT
on the task directive, e.g.,
TASK TDDFT ENERGY\n
for a single-point excitation energy calculation, and
TASK TDDFT OPTIMIZE\n
for an excited-state geometry optimization (and perhaps an adiabatic excitation energy calculation), and
TASK TDDFT FREQUENCIES\n
for an excited-state vibrational frequency calculation. The TDDFT module first invokes DFT module for a ground-state calculation (regardless of whether the calculations uses a HF reference as in CIS or TDHF or a DFT functional), and hence there is no need to perform a separate ground-state DFT calculation prior to calling a TDDFT
task. When no second argument of the task directive is given, a single-point excitation energy calculation will be assumed. For geometry optimizations, it is usually necessary to specify the target excited state and its irreducible representation it belongs to. See the subsections TARGET
and TARGETSYM
for more detail.
Individual parameters and keywords may be supplied in the TDDFT
input block. The syntax is:
TDDFT\n [(CIS||RPA) default RPA] \n [NROOTS <integer nroots default 1>] \n [MAXVECS <integer maxvecs default 1000>] \n [(SINGLET||NOSINGLET) default SINGLET] \n [(TRIPLET||NOTRIPLET) default TRIPLET] \n [THRESH <double thresh default 1e-4>] \n [MAXITER <integer maxiter default 100>] \n [TARGET <integer target default 1>] \n [TARGETSYM <character targetsym default 'none'>] \n [SYMMETRY] \n [ECUT] <-cutoff energy> \n [EWIN] <-lower cutoff energy> <-higher cutoff energy> \n [ALPHA] <integer lower orbital> <integer upper orbital> \n [BETA] <integer lower orbital> <integer upper orbital> \n [CIVECS] \n [GRAD, END] \n [CDSPECTRUM] \n [GIAO]\n [VELOCITY]\n [SIMPLESO]\n [ALGORITHM <integer algorithm default 0>] \n [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\ \n [virtual <integer nfzv default 0>]] \n [PRINT (none||low||medium||high||debug) \n <string list_of_names ...>]\n END\n
The user can also specify the reference wave function in the DFT input block (even when CIS and TDHF calculations are requested). See the section of Sample input and output for more details.
Since each keyword has a default value, a minimal input file will be
GEOMETRY\n Be 0.0 0.0 0.0 \n END \n BASIS \n Be library 6-31G** \n END \n TASK TDDFT ENERGY\n
Note that the keyword for the asymptotic correction must be given in the DFT input block, since all the effects of the correction (and also changes in the computer program) occur in the SCF calculation stage. See DFT (keywords CS00
and LB94
) for details.
These keywords toggle the Tamm-Dancoff approximation. CIS
means that the Tamm-Dancoff approximation is used and the CIS or Tamm-Dancoff TDDFT calculation is requested. RPA
, which is the default, requests TDHF (RPA) or TDDFT calculation.
The performance of CIS (Tamm-Dancoff TDDFT) and RPA (TDDFT) are comparable in accuracy. However, the computational cost is slightly greater in the latter due to the fact that the latter involves a non-Hermitian eigenvalue problem and requires left and right eigenvectors while the former needs just one set of eigenvectors of a Hermitian eigenvalue problem. The latter has much greater chance of aborting the calculation due to triplet near instability or other instability problems.
"},{"location":"Excited-State-Calculations.html#nroots-the-number-of-excited-states","title":"NROOTS: the number of excited states","text":"One can specify the number of excited state roots to be determined. The default value for NROOTS
is 1. It is advised that the users request several more roots than actually needed, since owing to the nature of the trial vector algorithm, some low-lying roots can be missed when they do not have sufficient overlap with the initial guess vectors.
The MAXVECS
keyword limits the subspace size of Davidson\u2019s algorithm; in other words, it is the maximum number of trial vectors that the calculation is allowed to hold. Typically, 10 to 20 trial vectors are needed for each excited state root to be converged. However, it need not exceed the product of the number of occupied orbitals and the number of virtual orbitals. The default value is 1000.
SINGLET || NOSINGLET
requests (suppresses) the calculation of singlet excited states when the reference wave function is closed shell. The default is SINGLET
.
TRIPLET || NOTRIPLET
requests (suppresses) the calculation of triplet excited states when the reference wave function is closed shell. The default is TRIPLET
.
The THRESH
keyword specifies the convergence threshold of Davidson\u2019s iterative algorithm to solve a matrix eigenvalue problem. The threshold refers to the norm of residual, namely, the difference between the left-hand side and right-hand side of the matrix eigenvalue equation with the current solution vector. With the default value of 1e-4, the excitation energies are usually converged to 1e-5 hartree.
It typically takes 10-30 iterations for the Davidson algorithm to get converged results. The default value for MAXITER
is 100.
At the moment, excited-state first geometry derivatives can be calculated analytically for a set of functionals, while excited-state second geometry derivatives are obtained by numerical differentiation. These keywords may be used to specify which excited state root is being used for the geometrical derivative calculation. For instance, when TARGET 3
and TARGETSYM a1g
are included in the input block, the total energy (ground state energy plus excitation energy) of the third lowest excited state root (excluding the ground state) transforming as the irreducible representation a1g will be passed to the module which performs the derivative calculations. The default values for TARGET
and TARGETSYM
are 1
and none
, respectively.
The keyword TARGETSYM
is essential in excited state geometry optimization, since it is very common that the order of excited states changes due to the geometry changes in the course of optimization. Without specifying the TARGETSYM
, the optimizer could (and would likely) be optimizing the geometry of an excited state that is different from the one the user had intended to optimize at the starting geometry. On the other hand, in the frequency calculations, TARGETSYM
must be none
, since the finite displacements given in the course of frequency calculations will lift the spatial symmetry of the equilibrium geometry. When these finite displacements can alter the order of excited states including the target state, the frequency calculation is not be feasible.
By adding the SYMMETRY
keyword to the input block, the user can request the module to generate the initial guess vectors transforming as the same irreducible representation as TARGETSYM
. This causes the final excited state roots be (exclusively) dominated by those with the specified irreducible representation. This may be useful, when the user is interested in just the optically allowed transitions, or in the geometry optimization of an excited state root with a particular irreducible representation. By default, this option is not set. TARGETSYM
must be specified when SYMMETRY
is invoked.
The ECUT
keyword enables restricted excitation window TDDFT (REW-TDDFT)8. This is an approach best suited for core excitations. By specifying this keyword only excitations from occupied states below the energy cutoff will be considered.
The EWIN
keyword enables a restricted energy window between a lower energy cutoff and a higher energy cutoff. For example, ewin -20.0 -10.0
will only consider excitations from occupied orbitals within the specified energy window
Orbital windows can be specified using the following keywords:
alpha 1 4\n beta 2 5\n
Here alpha excitations will be considered from orbitals 1 through 4 depending on the number of roots requested and beta excitations will be considered from orbitals 2 through 5 depending on the number of roots requested.
"},{"location":"Excited-State-Calculations.html#civecs-ci-vectors","title":"CIVECS: CI vectors","text":"The CIVECS
keyword will result in the CI vectors being written out. By default this is off. Please note this can be a very large file, so avoid turning on this keyword if you are calculating a very large number of roots. CI vectors are needed for excited-state gradient and transition density calculations.
Analytical TDDFT gradients can be calculated by specifying a grad
block within the main TDDFT
block
For example, the following will perform a TDDFT optimization on the first singlet excited state (S1). Note that the civecs
keyword must be specified. To perform a single TDDFT gradient, replace the optimize
keyword with gradient
in the task line. A complete TDDFT optimization input example is given the Sample Inputs section. A TDDFT gradients calculation can be used to calculate the density of a specific excited state. The excited stated density is written to a file with the .dmat
suffix.
tddft\n nroots 2\n algorithm 1\n notriplet\n target 1\n targetsym a\n civecs\n grad\n root 1\n end\nend\ntask tddft optimize\n
At the moment the following exchange-correlation functionals are supported with TDDFT gradients
LDA, BP86, PBE, BLYP, B3LYP, PBE0, BHLYP, CAM-B3LYP, LC-PBE, LC-PBE0, BNL, LC-wPBE, LC-wPBEh, LC-BLYP\n
"},{"location":"Excited-State-Calculations.html#cdspectrum-optical-rotation-calculations","title":"CDSpectrum: optical rotation calculations","text":"Perform optical rotation calculations. We recommend to use the GIAO
keyword
Perform CD spectrum calculations with the velocity gauge.
"},{"location":"Excited-State-Calculations.html#simpleso-simplified-spin-orbit-coupling","title":"SIMPLESO: simplified Spin-Orbit coupling","text":"Perform excited states calculations with a simplied Spin-Orbit coupling that uses eigenvalues from a spin-orbit calculation, instead of a standard dft calculation. Here is a snippet of an input example (please notice the use of molecular orbitals).
start au2\n geometry\n au 0 0 1\n au 0 0 -1\n symmetry d2h\nend\n#basis sets, ecp and so-ecp skipped for simplicity\n...\ndft\n odft\n vectors output au2_noso.mos\nend\ntask dft\ndft\n vectors input au2_noso.mos output au2_so.mos\nend\ntask sodft\ndft\n odft\n vectors input u2_noso.mos\nend\n\ntddft\n simpleso au2.evals\n nroots 1\n notriplet\nend\n\ntask tddft\n
"},{"location":"Excited-State-Calculations.html#algorithm-algorithms-for-tensor-contractions","title":"ALGORITHM: algorithms for tensor contractions","text":"There are four distinct algorithms to choose from, and the default value of 0 (optimal) means that the program makes an optimal choice from the four algorithms on the basis of available memory. In the order of decreasing memory requirement, the four algorithms are:
The incore algorithm stores all the trial and product vectors in memory across different nodes with the GA, and often decreases the MAXITER
value to accommodate them. The disk-based algorithm stores the vectors on disks across different nodes with the DRA, and retrieves each vector one at a time when it is needed. The multiple and single tensor contraction refers to whether just one or more than one trial vectors are contracted with integrals. The multiple tensor contraction algorithm is particularly effective (in terms of speed) for CIS and TDHF, since the number of the direct evaluations of two-electron integrals is diminished substantially.
Some of the lowest-lying core orbitals and/or some of the highest-lying virtual orbitals may be excluded in the CIS, TDHF, and TDDFT calculations by the FREEZE
keyword (this does not affect the ground state HF or DFT calculation). No orbitals are frozen by default. To exclude the atom-like core regions altogether, one may request
FREEZE atomic\n
To specify the number of lowest-lying occupied orbitals be excluded, one may use
FREEZE 10\n
which causes 10 lowest-lying occupied orbitals excluded. This is equivalent to writing
FREEZE core 10\n
To freeze the highest virtual orbitals, use the virtual
keyword. For instance, to freeze the top 5 virtuals
FREEZE virtual 5\n
"},{"location":"Excited-State-Calculations.html#trials-restart","title":"TRIALS: restart","text":"Setting the keyword trials
restart the calculation from the trials vector of a previous run.
trials \n
"},{"location":"Excited-State-Calculations.html#print-output-verbosity","title":"PRINT: output verbosity","text":"The PRINT
keyword changes the level of output verbosity. One may also request some particular items in the table below.
Printable items in the TDDFT modules and their default print levels.
"},{"location":"Excited-State-Calculations.html#sample-input","title":"Sample input","text":"The following is a sample input for a spin-restricted TDDFT calculation of singlet excitation energies for the water molecule at the B3LYP/6-31G*.
START h2o \nTITLE \"B3LYP/6-31G* H2O\" \nGEOMETRY \n O 0.00000000 0.00000000 0.12982363 \n H 0.75933475 0.00000000 -0.46621158 \n H -0.75933475 0.00000000 -0.46621158 \nEND \nBASIS \n * library 6-31G* \nEND \nDFT \n XC B3LYP \nEND \nTDDFT \n RPA \n NROOTS 20 \nEND \nTASK TDDFT ENERGY\n
To perform a spin-unrestricted TDHF/aug-cc-pVDZ calculation for the CO+ radical,
START co \ntitle \"TDHF/aug-cc-pVDZ CO+\" \ncharge 1 \ngeometry \n c 0.0 0.0 0.0 \n o 0.0 0.0 1.5\n symmetry c2v # enforcing abelian symmetry\nend \nbasis \n * library aug-cc-pvdz \nend \ndft \n xc hfexch \n mult 2 \nend\ntask dft optimize\ntddft \n rpa \n nroots 5 \nend \ntask tddft energy\n
A geometry optimization followed by a frequency calculation for an excited state is carried out for BF at the CIS/6-31G* level in the following sample input.
start bf \ntitle \"CIS/6-31G* BF optimization frequencies\" \ngeometry \n b 0.0 0.0 0.0 \n f 0.0 0.0 1.2\n symmetry c2v # enforcing abelian symmetry\nend \nbasis \n * library 6-31g* \nend \ndft \n xc hfexch \nend \ntddft \n cis \n nroots 3 \n notriplet \n target 1 \n civecs \n grad \n root 1 \n end \nend \ntask tddft optimize \ntask tddft frequencies\n
TDDFT with an asymptotically corrected SVWN exchange-correlation potential. Casida-Salahub scheme has been used with the shift value of 0.1837 a.u. supplied as an input parameter.
START tddft_ac_co \nGEOMETRY \n O 0.0 0.0 0.0000 \n C 0.0 0.0 1.1283 \n symmetry c2v # enforcing abelian symmetry\nEND \nBASIS SPHERICAL \n C library aug-cc-pVDZ \n O library aug-cc-pVDZ \nEND \nDFT \n XC Slater VWN_5 \n CS00 0.1837 \nEND \nTDDFT \n NROOTS 12 \nEND \nTASK TDDFT ENERGY\n
TDDFT with an asymptotically corrected B3LYP exchange-correlation potential. Hirata-Zhan-Apra-Windus-Dixon scheme has been used (this is only meaningful with B3LYP functional).
START tddft_ac_co \nGEOMETRY \n O 0.0 0.0 0.0000 \n C 0.0 0.0 1.1283 \n symmetry c2v # enforcing abelian symmetry\nEND \nBASIS SPHERICAL \n C library aug-cc-pVDZ \n O library aug-cc-pVDZ \nEND \nDFT \n XC B3LYP \n CS00 \nEND \nTDDFT \n NROOTS 12 \nEND \nTASK TDDFT ENERGY\n
TDDFT for core states. The following example illustrates the usage of an energy cutoff and energy and orbital windows.8
echo \nstart h2o_core \nmemory 1000 mb \ngeometry units au noautosym noautoz \n O 0.00000000 0.00000000 0.22170860 \n H 0.00000000 1.43758081 -0.88575430 \n H 0.00000000 -1.43758081 -0.88575430 \nend \nbasis \n O library 6-31g* \n H library 6-31g* \nend \ndft \n xc beckehandh \n print \"final vector analysis\" \nend \ntask dft \ntddft \n ecut -10 \n nroots 5 \n notriplet \n thresh 1d-03 \nend \ntask tddft \ntddft \n ewin -20.0 -10.0 \n cis \n nroots 5 \n notriplet \n thresh 1d-03 \nend \ntask tddft \ndft \n odft \n mult 1 \n xc beckehandh \n print \"final vector analysis\" \nend \ntask dft \ntddft \n alpha 1 1 \n beta 1 1 \n cis \n nroots 10 \n notriplet \n thresh 1d-03 \nend \ntask tddft\n
TDDFT optimization with LDA of Pyridine with the 6-31G basis9
echo \nstart tddftgrad_pyridine_opt \ntitle \"TDDFT/LDA geometry optimization of Pyridine with 6-31G\" \ngeometry nocenter \n N 0.00000000 0.00000000 1.41599295 \n C 0.00000000 -1.15372936 0.72067272 \n C 0.00000000 1.15372936 0.72067272 \n C 0.00000000 -1.20168790 -0.67391011 \n C 0.00000000 1.20168790 -0.67391011 \n C 0.00000000 0.00000000 -1.38406147 \n H 0.00000000 -2.07614628 1.31521089 \n H 0.00000000 2.07614628 1.31521089 \n H 0.00000000 2.16719803 -1.19243296 \n H 0.00000000 -2.16719803 -1.19243296 \n H 0.00000000 0.00000000 -2.48042299 \n symmetry c1 \nend \nbasis spherical \n* library \"6-31G\" \nend \ndriver \n clear \n maxiter 100 \nend \ndft \n iterations 500 \n grid xfine \nend \ntddft \n nroots 2 \n algorithm 1 \n notriplet \n target 1 \n targetsym a \n civecs \n grad \n root 1 \n end \nend \ntask tddft optimize\n
TDDFT calculation followed by a calculation of the transition density for a specific excited state using the DPLOT block
echo \nstart h2o-td \ntitle h2o-td \n\ncharge 0 \ngeometry units au\nsymmetry group c1 \n O 0.00000000000000 0.00000000000000 0.00000000000000 \n H 0.47043554760291 1.35028113274600 1.06035416576826 \n H -1.74335410533480 -0.23369304784300 0.27360785442967 \nend \nbasis \"ao basis\"\n* library \"Ahlrichs pVDZ\"\nend \ndft \n xc bhlyp \n grid fine \n direct \n convergence energy 1d-5 \nend \ntddft \n rpa \n nroots 5 \n thresh 1d-5 \n singlet \n notriplet \n civecs \nend \ntask tddft energy \ndplot \n civecs h2o-td.civecs_singlet \n root 2 \n LimitXYZ \n -3.74335 2.47044 50 \n -2.23369 3.35028 50 \n -2 3.06035 50 \n gaussian \n output root-2.cube \nend \ntask dplot\n
TDDFT protocol for calculating the valence-to-core (1s) X-ray emission spectrum 10
A Python script is available for parsing NWChem output for TDDFT/vspec excitation energies, and optionally Lorentzian broadenening the spectra . The nw_spectrum.py file can be found at https://raw.githubusercontent.com/nwchemgit/nwchem/master/contrib/parsers/nw_spectrum.py
Usage: nw_spectrum.py [options]\n\nReads NWChem output from stdin, parses for the linear response TDDFT or DFT\nvspec excitations, and prints the absorption spectrum to stdout. It will\noptionally broaden peaks using a Lorentzian with FWHM of at least two\nenergy/wavelength spacings. By default, it will automatically determine data\nformat (tddft or vspec) and generate a broadened spectrum in eV.\n\nExample:\n\n nw_spectrum -b0.3 -p5000 -wnm < water.nwo > spectrum.dat\n\nCreate absorption spectrum in nm named \"spectrum.dat\" from the NWChem output\nfile \"water.nwo\" named spectrum.dat with peaks broadened by 0.3 eV and 5000\npoints in the spectrum.\n\n\nOptions:\n -h, --help show this help message and exit\n -f FMT, --format=FMT data file format: auto (default), tddft, vspec, dos\n -b WID, --broad=WID broaden peaks (FWHM) by WID eV (default 0.1 eV)\n -n NUM, --nbin=NUM number of eigenvalue bins for DOS calc (default 20)\n -p NUM, --points=NUM create a spectrum with NUM points (default 2000)\n -w UNT, --units=UNT units for frequency: eV (default), au, nm\n -d STR, --delim=STR use STR as output separator (four spaces default)\n -x, --extract extract unbroadened roots; do not make spectrum\n -C, --clean clean output; data only, no header or comments\n -c CHA, --comment=CHA\n comment character for output ('#' default)\n -v, --verbose echo warnings and progress to stderr\n
"},{"location":"Excited-State-Calculations.html#references","title":"References","text":"J. B. Foreman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992), DOI:10.1021/j100180a030 \u21a9
C. Jamorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys. 104, 5134 (1996), DOI:10.1063/1.471140; R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996), DOI:10.1016/0009-2614(96)00440-X; R. Bauernschmitt, M. H\u00e4ser, O. Treutler, and R. Ahlrichs, Chem. Phys. Lett. 264, 573 (1997), DOI:10.1016/S0009-2614(96)01343-7.\u00a0\u21a9
S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999). DOI:10.1016/S0009-2614(99)01149-5 \u21a9
R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994), DOI:10.1103/PhysRevA.49.2421 \u21a9
M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998), DOI:10.1063/1.475855 \u21a9\u21a9
S. Hirata, C.-G. Zhan, E. Apr\u00e0, T. L. Windus, and D. A. Dixon, J. Phys. Chem. A 107, 10154 (2003). DOI:10.1021/jp035667x \u21a9\u21a9
D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180 (1998), DOI:10.1063/1.477711 \u21a9
K. Lopata, B. E. Van Kuiken, M. Khalil, N. Govind, \u201cLinear-Response and Real-Time Time-Dependent Density Functional Theory Studies of Core-Level Near-Edge X-Ray Absorption\u201d, J. Chem. Theory Comput., 2012, 8 (9), pp 3284\u20133292, DOI:10.1021/ct3005613 \u21a9\u21a9
D. W. Silverstein, N. Govind, H. J. J. van Dam, L. Jensen, \u201cSimulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory\u201d J. Chem. Theory Comput., 2013, 9 (12), pp 5490\u20135503, DOI:10.1021/ct4007772 \u21a9
Y. Zhang, S. Mukamel, M. Khalil, N. Govind, \u201cSimulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal\u201d, J. Chem. Theory Comput., 2015, 11 (12), pp 5804\u20135809, DOI:10.1021/acs.jctc.5b00763 \u21a9
group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0219\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F-43c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a089\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a090\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a091\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"F-43m.html","title":"F 43m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0216\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F-43m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"F222.html","title":"F222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a022\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"F23.html","title":"F23","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0196\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F23\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"F432.html","title":"F432","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0209\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0F432\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"F4_132.html","title":"F4 132","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0210\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0F4_132\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a089\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a090\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a091\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a092\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25 \n
"},{"location":"FAQ.html","title":"General information about NWChem","text":""},{"location":"FAQ.html#where-is-the-users-manual","title":"Where is the User\u2019s Manual?","text":"The NWChem User\u2019s Manual is now at https://nwchemgit.github.io/Home.html
"},{"location":"FAQ.html#where-do-i-go-for-help-with-a-global-arrays-problem","title":"Where do I go for help with a Global Arrays problem?","text":"If you have problems with compiling the tools directory, please visit the Global Arrays Google group at http://groups.google.com/g/hpctools/ or visit the Global Arrays website at http://hpc.pnl.gov/globalarrays/
"},{"location":"FAQ.html#where-do-i-go-for-help-with-nwchem-problems","title":"Where do I go for help with NWChem problems?","text":"Please post your NWChem issue to the NWChem forum hosted on Google Groups at https://groups.google.com/g/nwchem-forum
"},{"location":"FAQ.html#where-do-i-find-the-installation-instructions","title":"Where do I find the installation instructions?","text":"For updated instructions for compiling NWChem please visit the following URL https://nwchemgit.github.io/Compiling-NWChem.html
"},{"location":"FAQ.html#installation-problem-for-the-tools-directory","title":"Installation Problem for the tools directory","text":"When compiling the tools directory, you might see the compilation stopping with the message
configure: error: could not compile simple C MPI program\n
This is most likely due to incorrect settings for the MPI_LIB
, MPI_INCLUDE
and LIBMPI
environment variables. The suggested course of action is to unset all of the three variables above and point your PATH
env. variable to the location of mpif90
. If bash is your shell choice, this can be accomplished by typing
unset MPI_LIB\nunset MPI_INCLUDE\nunset LIBMPI\nexport PATH=\"directory where mpif90 is located\":$PATH\n
"},{"location":"FAQ.html#what-are-armci-and-armci_network","title":"What are ARMCI and ARMCI_NETWORK?","text":"ARMCI is a library used by Global Arrays (both ARMCI and GA source code is located in NWChem\u2019s tools directory). More information can be found at the following URL http://hpc.pnl.gov/armci If your installation uses a fast network and you are aiming to get optimal communication performance, you might want to assign a non-default value to ARMCI_NETWORK
. The following links contained useful information about ARMCI_NETWORK
:
You might encounter the following error message:
! warning: processed input with no task\n
Have you used emacs to create your input file? Emacs usually does not put and an end-of-line as a last character of the file, therefore the NWChem input parser ignores the last line of your input (the one containing the task directive). To fix the problem, add one more blank line after the task line and your task directive will be executed.
"},{"location":"FAQ.html#input-problem-autoz-fails-to-generate-valid-internal-coordinates","title":"Input problem: AUTOZ fails to generate valid internal coordinates","text":"If AUTOZ fails, NWChem will default to using Cartesian coordinates (and ignore any zcoord data) so you don\u2019t have to do anything unless you really need to use internal coordinates. An exception are certain cases where we have a molecule that contains a linear chain of 4 or more atoms, in which case the code will fail (see item 2. for work arounds). For small systems you can easily construct a Z-matrix, but for larger systems this can be quite hard.
First check your input. Are you using the correct units? The default is Angstroms. If you input atomic units but did not tell NWChem, then it\u2019s no wonder things are breaking. Also, is the geometry physically sensible? If atoms are too close to each other you\u2019ll get many unphysical bonds, whereas if they are too far apart AUTOZ will not be able to figure out how to connect things.
Once the obvious has been checked, there are several possible modes of failure, some of which may be worked around in the input.
Strictly linear molecules with 3 or more atoms. AUTOZ does not generate linear bend coordinates, but, just as in a real Z-matrix, you can specify a dummy center that is not co-linear. There are two relevant tips:
constrain the dummy center to be not co-linear otherwise the center could become co-linear. Also, the inevitable small forces on the dummy center can confuse the optimizer.
E.g., this input for acetylene will not use internals
geometry\n h 0 0 0\n c 0 0 1\n c 0 0 2.2\n h 0 0 3.2\n end\n\n but this one will\n\n geometry\n zcoord\n bond 2 3 3.0 cx constant\n angle 1 2 3 90.0 hcx constant\n end\n h 0 0 0\n c 0 0 1\n x 3 0 1\n c 0 0 2.2\n h 0 0 3.2\n end\n
Larger molecules that contain a strictly linear chain of four or more atoms (that ends in a free atom). For these molecules the autoz will fail and the code can currently not recover by using cartesians. One has to explicitly define noautoz in the geometry input to make it work. If internal coordinates are required one can fix it in the same manner as described above. However, you can also force a connection to a real nearby atom.
Very highly connected systems generate too many internal coordinates which can make optimization in redundant internals less efficient than in Cartesians. For systems such as clusters of atoms or small molecules, try using a smaller value of the scaling factor for covalent radii
zcoord; cvr_scaling 0.9; end\n
In addition to this you can also try specifying a minimal set of bonds to connect the fragments.
If these together don\u2019t work, then you\u2019re out of luck. Use Cartesians or construct a Z-matrix.
"},{"location":"FAQ.html#how-do-i-restart-a-geometry-optimization","title":"How do I restart a geometry optimization?","text":"If you have saved the restart information that is kept in the permanent directory, then you can restart a calculation, as long as it did not crash while writing to the data base.
Following are two input files. The first starts a geometry optimization for ammonia. If this stops for nearly any reason such as it was interrupted, ran out of time or disk space, or exceeded the maximum number of iterations, then it may be restarted with the second job.
The key points are
Job 1.
start ammonia\n permanent_dir /u/myfiles\n\n geometry\n zmatrix\n n\n h 1 nh\n h 1 nh 2 hnh\n h 1 nh 2 hnh 3 hnh -1\n variables\n nh 1.\n hnh 115.\n end\n end\n\n basis\n n library 3-21g; h library 3-21g\n end\n\n task scf optimize\n
Job 2.
restart ammonia\n permanent_dir /u/myfiles\n\n task scf optimize\n
"},{"location":"FAQ.html#execution-problem-how-do-i-set-the-value-of-armci_default_shmmax","title":"Execution Problem: How do I set the value of ARMCI_DEFAULT_SHMMAX?","text":"Some ARMCI_NETWORK values (e.g. OPENIB) depend on the ARMCI_DEFAULT_SHMMAX
value for large allocations of Global memory. We recommend a value of \u2013 at least \u2013 2048, e.g. in bash shell parlance
export ARMCI_DEFAULT_SHMMAX=2048\n
A value of 2048 for ARMCI_DEFAULT_SHMMAX corresponds to 2048 GBytes, equal to 204810241024=2147483648 bytes. For ARMCI_DEFAULT_SHMMAX=2048 to work, it is necessary that kernel parameter kernel.shmmax
to be greater than 2147483648. You can check the current value of kernel.shmmax
on your system by typing
sysctl kernel.shmmax\n
More detail about kernel.shmmax can be found at this link
"},{"location":"FAQ.html#wsl-execution-problems","title":"WSL execution problems","text":"NWChem runs on Windows Subsystem for Linux (WSL) can crash with the error message
--------------------------------------------------------------------------\nWARNING: Linux kernel CMA support was requested via the\nbtl_vader_single_copy_mechanism MCA variable, but CMA support is\nnot available due to restrictive ptrace settings.\n\nThe vader shared memory BTL will fall back on another single-copy\nmechanism if one is available. This may result in lower performance.\n\n Local host: hostabc\n--------------------------------------------------------------------------\n[hostabc:16805] 1 more process has sent help message help-btl-vader.txt / cma-permission-denied\n[hostabc:16805] Set MCA parameter \"orte_base_help_aggregate\" to 0 to see all help / error messages\n
The error can be fixed with the following command
echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope\n
More details at
The only way to increase the number of digits of the AO overlap matrix printout is by modify the source code of the ga_print()
function.
For example, in the cagse NWChem 7.0.2, you can do this by editing the C source code in $NWCHEM_TOP/src/tools/ga-5.7.2/global/src/global.util.c by increaseing the number of digits from 5 to 7
--- global.util.c.org 1969-07-20 15:50:45.000000000 -0700\n+++ global.util.c 1969-07-20 15:51:19.000000000 -0700\n@@ -122,22 +122,22 @@\n case C_DBL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj++)\n- fprintf(file,\" %11.5f\",dbuf[jj]);\n+ fprintf(file,\" %11.7f\",dbuf[jj]);\n break;\n case C_DCPL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj+=2)\n- fprintf(file,\" %11.5f,%11.5f\",dbuf[jj], dbuf[jj+1]);\n+ fprintf(file,\" %11.7f,%11.7f\",dbuf[jj], dbuf[jj+1]);\n break;\n case C_SCPL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj+=2)\n- fprintf(file,\" %11.5f,%11.5f\",dbuf[jj], dbuf[jj+1]);\n+ fprintf(file,\" %11.7f,%11.7f\",dbuf[jj], dbuf[jj+1]);\n break;\n case C_FLOAT:\n pnga_get(g_a, lo, hi, fbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj++)\n- fprintf(file,\" %11.5f\",fbuf[jj]);\n+ fprintf(file,\" %11.7f\",fbuf[jj]);\n break; \n case C_LONG:\n pnga_get(g_a, lo, hi, lbuf, &ld);\n@@ -229,22 +229,22 @@\n case C_DBL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj++)\n- fprintf(file,\" %11.5f\",dbuf[jj]);\n+ fprintf(file,\" %11.7f\",dbuf[jj]);\n break;\n case C_FLOAT:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj++)\n- fprintf(file,\" %11.5f\",fbuf[jj]);\n+ fprintf(file,\" %11.7f\",fbuf[jj]);\n break; \n case C_DCPL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj+=2)\n- fprintf(file,\" %11.5f,%11.5f\",dbuf[jj], dbuf[jj+1]);\n+ fprintf(file,\" %11.7f,%11.7f\",dbuf[jj], dbuf[jj+1]);\n break;\n case C_SCPL:\n pnga_get(g_a, lo, hi, dbuf, &ld);\n for(jj=0; jj<(jmax-j+1); jj+=2)\n- fprintf(file,\" %11.5f,%11.5f\",dbuf[jj], dbuf[jj+1]);\n+ fprintf(file,\" %11.7f,%11.7f\",dbuf[jj], dbuf[jj+1]);\n break;\n default: pnga_error(\"ga_print: wrong type\",0);\n }\n@@ -761,28 +761,28 @@\n if(ndim > 1)\n for(j=0; j<(hip[1]-lop[1]+1); j++)\n if((double)dbuf_2d[j*bufsize+i]<100000.0)\n- fprintf(file,\" %11.5f\",\n+ fprintf(file,\" %11.7f\",\n dbuf_2d[j*bufsize+i]);\n else\n fprintf(file,\" %.5e\",\n dbuf_2d[j*bufsize+i]);\n else\n if((double)dbuf_2d[i]<100000.0)\n- fprintf(file,\" %11.5f\",dbuf_2d[i]);\n+ fprintf(file,\" %11.7f\",dbuf_2d[i]);\n else\n fprintf(file,\" %.5e\",dbuf_2d[i]);\n break;\n case C_FLOAT:\n if(ndim > 1)\n for(j=0; j<(hip[1]-lop[1]+1); j++)\n- fprintf(file,\" %11.5f\", fbuf_2d[j*bufsize+i]);\n- else fprintf(file,\" %11.5f\", fbuf_2d[i]);\n+ fprintf(file,\" %11.7f\", fbuf_2d[j*bufsize+i]);\n+ else fprintf(file,\" %11.7f\", fbuf_2d[i]);\n break; \n case C_DCPL:\n if(ndim > 1)\n for(j=0; j<(hip[1]-lop[1]+1); j++)\n if(((double)dcbuf_2d[(j*bufsize+i)*2]<100000.0)&&((double)dcbuf_2d[(j*bufsize+i)*2+1]<100000.0))\n- fprintf(file,\" %11.5f,%11.5f\",\n+ fprintf(file,\" %11.7f,%11.7f\",\n dcbuf_2d[(j*bufsize+i)*2],\n dcbuf_2d[(j*bufsize+i)*2+1]);\n else\n@@ -792,7 +792,7 @@\n else\n if(((double)dcbuf_2d[i*2]<100000.0) &&\n ((double)dcbuf_2d[i*2+1]<100000.0))\n- fprintf(file,\" %11.5f,%11.5f\",\n+ fprintf(file,\" %11.7f,%11.7f\",\n dcbuf_2d[i*2], dcbuf_2d[i*2+1]);\n else\n fprintf(file,\" %.5e,%.5e\",\n@@ -802,7 +802,7 @@\n if(ndim > 1)\n for(j=0; j<(hip[1]-lop[1]+1); j++)\n if(((float)fcbuf_2d[(j*bufsize+i)*2]<100000.0)&&((float)fcbuf_2d[(j*bufsize+i)*2+1]<100000.0))\n- fprintf(file,\" %11.5f,%11.5f\",\n+ fprintf(file,\" %11.7f,%11.7f\",\n fcbuf_2d[(j*bufsize+i)*2],\n fcbuf_2d[(j*bufsize+i)*2+1]);\n else\n@@ -812,7 +812,7 @@\n else\n if(((float)fcbuf_2d[i*2]<100000.0) &&\n ((float)fcbuf_2d[i*2+1]<100000.0))\n- fprintf(file,\" %11.5f,%11.5f\",\n+ fprintf(file,\" %11.7f,%11.7f\",\n fcbuf_2d[i*2], fcbuf_2d[i*2+1]);\n else\n fprintf(file,\" %.5e,%.5e\",\n
https://nwchemgit.github.io/Special_AWCforum/sp/id3358.html
"},{"location":"FAQ.html#linear-dependencies","title":"Linear Dependencies","text":"Two or more basis functions can be consider linearly dependent when they span the same region of space. This can result in SCF converge problems. Analysis of the eigenvectors of the S-1/2 matrix (where S is the overlap matrix) is used to detect linear dependencies: if there are eigenvalues close to zero, the basis set goes through the process of canonical orthogonalization (as described in Section 3.4.5 of Szabo & Ostlund \u201cModern Quantum Chemistry\u201d book). This has net effect of a reduction of number of basis function used, compared to the original number set by input. By setting
set lindep:n_dep 0\n
this orthogonalization process is skipped.
"},{"location":"FAQ.html#discrepancy-on-the-number-of-basis-functions-spherical-vs-cartesian-functions","title":"Discrepancy on the number of basis functions: spherical vs cartesian functions","text":"If you are comparing NWChem results with the ones obtained from other codes and you believe there is a discrepancy in the number of basis functions, keep in mind that NWChem uses cartesian functions by default, while other codes could be using spherical functions, instead. If you need to use spherical functions, the beginning of the basis input field needs to be
basis spherical\n
More details in the documentation at the link https://nwchemgit.github.io/Basis.html#spherical-or-cartesian.
See also the following forum entries.
"},{"location":"FAQ.html#starting-nwchem-with-mpirun-np-1-crashes","title":"Starting NWChem withmpirun -np 1
crashes","text":"This is most likely due to the fact that NWChem was compiled with the setting ARMCI_NETWORK=MPI-PR
. This is the expected behavior, since ARMCI_NETWORK=MPI-PR
requires asking for for n+1 processes. In other words, a serial run (with a single computing process) is triggered by executing mpirun -np 2
. If you would prefer mpirun -np 1
to work, other choice of ARMCI_NETWORK
are possible as described in the ARMCI documentation.
If you get the following error
{1} nb_wait_for_handle Error: all user-level nonblocking handles have been exhausted\napplication called MPI_Abort(comm=0x84000002, -1)\n
you can fix it by executing the following command
export COMEX_MAX_NB_OUTSTANDING=16\n
"},{"location":"FAQ.html#memory-errors","title":"Memory errors","text":"If you get the following error
[0] Received an Error in Communication: (-1) 0: ptsalloc: increase memory in input line:\n
you can fix it by either increasing the memory line in the input file using the syntax described in the Memory section (e.g. memory total 1000 mb
), or by recompiling the NWChem binary with the getmem.nwchem
script as described in the section avaible at this link
The FCIDUMP module write the 1-electron and 2-electron integrals to disk folllowing the format specified in the paper P.J. Knowles, N.C. Handy, Computer Physics Communications 54, 75-83 (1989). DOI:10.1016/0010-4655(89)90033-7
The module is used when following NWChem task directive is specified
task dft fcidump\n
The input for the module is taken from the FCIDUMP input block
FCIDUMP\n ... \nEND\n
The resulting file will be named \u201cfile_prefix.fcidump\u201d
"},{"location":"FCIDUMP.html#orbitals-orbitals-specifications","title":"ORBITALS - Orbitals specifications","text":"ORBITALS [(molecular || atomic) default molecular]\n
The ORBITALS
keyword can have the value molecular
(default) or atomic
. When the default keyword molecular
is used, the integrals are transformed using the molecular orbitals. When the keyword atomic
is specified, the integrals are evaluated using the atomic orbitals (option not implemented yet)
When using molecular orbitals, orbitals can be frozen as described in the MP2 section
"},{"location":"FCIDUMP.html#examples","title":"Examples","text":"...\ndft\n xc hfexch\nend\n\ntask dft\n\nfcidump\n orbitals molecular\n freeze atomic\nend\n\ntask dft fcidump\n
"},{"location":"Fd-3.html","title":"Fd 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0203\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fd-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a038\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a039\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a040\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a062\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a063\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a064\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a066\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a068\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a086\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a087\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a088\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a089\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a090\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a091\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a092\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25 \n
"},{"location":"Fd-3c.html","title":"Fd 3c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0228\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fd-3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n+x,+y,+z\n-x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z\n+x+1/2,-y,-z+1/2\n+z,+x,+y\n+z+1/2,-x,-y+1/2\n-z,-x+1/2,+y+1/2\n-z+1/2,+x+1/2,-y\n+y,+z,+x\n-y+1/2,+z+1/2,-x\n+y+1/2,-z,-x+1/2\n-y,-z+1/2,+x+1/2\n+y+3/4,+x+1/4,-z+3/4\n-y+1/4,-x+1/4,-z+1/4\n+y+1/4,-x+3/4,+z+3/4\n-y+3/4,+x+3/4,+z+1/4\n+x+3/4,+z+1/4,-y+3/4\n-x+3/4,+z+3/4,+y+1/4\n-x+1/4,-z+1/4,-y+1/4\n+x+1/4,-z+3/4,+y+3/4\n+z+3/4,+y+1/4,-x+3/4\n+z+1/4,-y+3/4,+x+3/4\n-z+3/4,+y+3/4,+x+1/4\n-z+1/4,-y+1/4,-x+1/4\n-x+3/4,-y+3/4,-z+3/4\n+x+3/4,+y+1/4,-z+1/4\n+x+1/4,-y+1/4,+z+3/4\n-x+1/4,+y+3/4,+z+1/4\n-z+3/4,-x+3/4,-y+3/4\n-z+1/4,+x+3/4,+y+1/4\n+z+3/4,+x+1/4,-y+1/4\n+z+1/4,-x+1/4,+y+3/4\n-y+3/4,-z+3/4,-x+3/4\n+y+1/4,-z+1/4,+x+3/4\n-y+1/4,+z+3/4,+x+1/4\n+y+3/4,+z+1/4,-x+1/4\n-y,-x+1/2,+z\n+y+1/2,+x+1/2,+z+1/2\n-y+1/2,+x,-z\n+y,-x,-z+1/2\n-x,-z+1/2,+y\n+x,-z,-y+1/2\n+x+1/2,+z+1/2,+y+1/2\n-x+1/2,+z,-y\n-z,-y+1/2,+x\n-z+1/2,+y,-x\n+z,-y,-x+1/2\n+z+1/2,+y+1/2,+x+1/2\n+x,+y+1/2,+z+1/2\n-x,-y+1,+z+1\n-x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1/2,-z+1\n+z,+x+1/2,+y+1/2\n+z+1/2,-x+1/2,-y+1\n-z,-x+1,+y+1\n-z+1/2,+x+1,-y+1/2\n+y,+z+1/2,+x+1/2\n-y+1/2,+z+1,-x+1/2\n+y+1/2,-z+1/2,-x+1\n-y,-z+1,+x+1\n+y+3/4,+x+3/4,-z+5/4\n-y+1/4,-x+3/4,-z+3/4\n+y+1/4,-x+5/4,+z+5/4\n-y+3/4,+x+5/4,+z+3/4\n+x+3/4,+z+3/4,-y+5/4\n-x+3/4,+z+5/4,+y+3/4\n-x+1/4,-z+3/4,-y+3/4\n+x+1/4,-z+5/4,+y+5/4\n+z+3/4,+y+3/4,-x+5/4\n+z+1/4,-y+5/4,+x+5/4\n-z+3/4,+y+5/4,+x+3/4\n-z+1/4,-y+3/4,-x+3/4\n-x+3/4,-y+5/4,-z+5/4\n+x+3/4,+y+3/4,-z+3/4\n+x+1/4,-y+3/4,+z+5/4\n-x+1/4,+y+5/4,+z+3/4\n-z+3/4,-x+5/4,-y+5/4\n-z+1/4,+x+5/4,+y+3/4\n+z+3/4,+x+3/4,-y+3/4\n+z+1/4,-x+3/4,+y+5/4\n-y+3/4,-z+5/4,-x+5/4\n+y+1/4,-z+3/4,+x+5/4\n-y+1/4,+z+5/4,+x+3/4\n+y+3/4,+z+3/4,-x+3/4\n-y,-x+1,+z+1/2\n+y+1/2,+x+1,+z+1\n-y+1/2,+x+1/2,-z+1/2\n+y,-x+1/2,-z+1\n-x,-z+1,+y+1/2\n+x,-z+1/2,-y+1\n+x+1/2,+z+1,+y+1\n-x+1/2,+z+1/2,-y+1/2\n-z,-y+1,+x+1/2\n-z+1/2,+y+1/2,-x+1/2\n+z,-y+1/2,-x+1\n+z+1/2,+y+1,+x+1\n+x+1/2,+y,+z+1/2\n-x+1/2,-y+1/2,+z+1\n-x+1,+y+1/2,-z+1/2\n+x+1,-y,-z+1\n+z+1/2,+x,+y+1/2\n+z+1,-x,-y+1\n-z+1/2,-x+1/2,+y+1\n-z+1,+x+1/2,-y+1/2\n+y+1/2,+z,+x+1/2\n-y+1,+z+1/2,-x+1/2\n+y+1,-z,-x+1\n-y+1/2,-z+1/2,+x+1\n+y+5/4,+x+1/4,-z+5/4\n-y+3/4,-x+1/4,-z+3/4\n+y+3/4,-x+3/4,+z+5/4\n-y+5/4,+x+3/4,+z+3/4\n+x+5/4,+z+1/4,-y+5/4\n-x+5/4,+z+3/4,+y+3/4\n-x+3/4,-z+1/4,-y+3/4\n+x+3/4,-z+3/4,+y+5/4\n+z+5/4,+y+1/4,-x+5/4\n+z+3/4,-y+3/4,+x+5/4\n-z+5/4,+y+3/4,+x+3/4\n-z+3/4,-y+1/4,-x+3/4\n-x+5/4,-y+3/4,-z+5/4\n+x+5/4,+y+1/4,-z+3/4\n+x+3/4,-y+1/4,+z+5/4\n-x+3/4,+y+3/4,+z+3/4\n-z+5/4,-x+3/4,-y+5/4\n-z+3/4,+x+3/4,+y+3/4\n+z+5/4,+x+1/4,-y+3/4\n+z+3/4,-x+1/4,+y+5/4\n-y+5/4,-z+3/4,-x+5/4\n+y+3/4,-z+1/4,+x+5/4\n-y+3/4,+z+3/4,+x+3/4\n+y+5/4,+z+1/4,-x+3/4\n-y+1/2,-x+1/2,+z+1/2\n+y+1,+x+1/2,+z+1\n-y+1,+x,-z+1/2\n+y+1/2,-x,-z+1\n-x+1/2,-z+1/2,+y+1/2\n+x+1/2,-z,-y+1\n+x+1,+z+1/2,+y+1\n-x+1,+z,-y+1/2\n-z+1/2,-y+1/2,+x+1/2\n-z+1,+y,-x+1/2\n+z+1/2,-y,-x+1\n+z+1,+y+1/2,+x+1\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1,+z+1/2\n-x+1,+y+1,-z\n+x+1,-y+1/2,-z+1/2\n+z+1/2,+x+1/2,+y\n+z+1,-x+1/2,-y+1/2\n-z+1/2,-x+1,+y+1/2\n-z+1,+x+1,-y\n+y+1/2,+z+1/2,+x\n-y+1,+z+1,-x\n+y+1,-z+1/2,-x+1/2\n-y+1/2,-z+1,+x+1/2\n+y+5/4,+x+3/4,-z+3/4\n-y+3/4,-x+3/4,-z+1/4\n+y+3/4,-x+5/4,+z+3/4\n-y+5/4,+x+5/4,+z+1/4\n+x+5/4,+z+3/4,-y+3/4\n-x+5/4,+z+5/4,+y+1/4\n-x+3/4,-z+3/4,-y+1/4\n+x+3/4,-z+5/4,+y+3/4\n+z+5/4,+y+3/4,-x+3/4\n+z+3/4,-y+5/4,+x+3/4\n-z+5/4,+y+5/4,+x+1/4\n-z+3/4,-y+3/4,-x+1/4\n-x+5/4,-y+5/4,-z+3/4\n+x+5/4,+y+3/4,-z+1/4\n+x+3/4,-y+3/4,+z+3/4\n-x+3/4,+y+5/4,+z+1/4\n-z+5/4,-x+5/4,-y+3/4\n-z+3/4,+x+5/4,+y+1/4\n+z+5/4,+x+3/4,-y+1/4\n+z+3/4,-x+3/4,+y+3/4\n-y+5/4,-z+5/4,-x+3/4\n+y+3/4,-z+3/4,+x+3/4\n-y+3/4,+z+5/4,+x+1/4\n+y+5/4,+z+3/4,-x+1/4\n-y+1/2,-x+1,+z\n+y+1,+x+1,+z+1/2\n-y+1,+x+1/2,-z\n+y+1/2,-x+1/2,-z+1/2\n-x+1/2,-z+1,+y\n+x+1/2,-z+1/2,-y+1/2\n+x+1,+z+1,+y+1/2\n-x+1,+z+1/2,-y\n-z+1/2,-y+1,+x\n-z+1,+y+1/2,-x\n+z+1/2,-y+1/2,-x+1/2\n+z+1,+y+1,+x+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Fd-3m.html","title":"Fd 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0227\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fd-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n+x,+y,+z\n-x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z\n+x+1/2,-y,-z+1/2\n+z,+x,+y\n+z+1/2,-x,-y+1/2\n-z,-x+1/2,+y+1/2\n-z+1/2,+x+1/2,-y\n+y,+z,+x\n-y+1/2,+z+1/2,-x\n+y+1/2,-z,-x+1/2\n-y,-z+1/2,+x+1/2\n+y+3/4,+x+1/4,-z+3/4\n-y+1/4,-x+1/4,-z+1/4\n+y+1/4,-x+3/4,+z+3/4\n-y+3/4,+x+3/4,+z+1/4\n+x+3/4,+z+1/4,-y+3/4\n-x+3/4,+z+3/4,+y+1/4\n-x+1/4,-z+1/4,-y+1/4\n+x+1/4,-z+3/4,+y+3/4\n+z+3/4,+y+1/4,-x+3/4\n+z+1/4,-y+3/4,+x+3/4\n-z+3/4,+y+3/4,+x+1/4\n-z+1/4,-y+1/4,-x+1/4\n-x+1/4,-y+1/4,-z+1/4\n+x+1/4,+y+3/4,-z+3/4\n+x+3/4,-y+3/4,+z+1/4\n-x+3/4,+y+1/4,+z+3/4\n-z+1/4,-x+1/4,-y+1/4\n-z+3/4,+x+1/4,+y+3/4\n+z+1/4,+x+3/4,-y+3/4\n+z+3/4,-x+3/4,+y+1/4\n-y+1/4,-z+1/4,-x+1/4\n+y+3/4,-z+3/4,+x+1/4\n-y+3/4,+z+1/4,+x+3/4\n+y+1/4,+z+3/4,-x+3/4\n-y+1/2,-x,+z+1/2\n+y,+x,+z\n-y,+x+1/2,-z+1/2\n+y+1/2,-x+1/2,-z\n-x+1/2,-z,+y+1/2\n+x+1/2,-z+1/2,-y\n+x,+z,+y\n-x,+z+1/2,-y+1/2\n-z+1/2,-y,+x+1/2\n-z,+y+1/2,-x+1/2\n+z+1/2,-y+1/2,-x\n+z,+y,+x\n+x,+y+1/2,+z+1/2\n-x,-y+1,+z+1\n-x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1/2,-z+1\n+z,+x+1/2,+y+1/2\n+z+1/2,-x+1/2,-y+1\n-z,-x+1,+y+1\n-z+1/2,+x+1,-y+1/2\n+y,+z+1/2,+x+1/2\n-y+1/2,+z+1,-x+1/2\n+y+1/2,-z+1/2,-x+1\n-y,-z+1,+x+1\n+y+3/4,+x+3/4,-z+5/4\n-y+1/4,-x+3/4,-z+3/4\n+y+1/4,-x+5/4,+z+5/4\n-y+3/4,+x+5/4,+z+3/4\n+x+3/4,+z+3/4,-y+5/4\n-x+3/4,+z+5/4,+y+3/4\n-x+1/4,-z+3/4,-y+3/4\n+x+1/4,-z+5/4,+y+5/4\n+z+3/4,+y+3/4,-x+5/4\n+z+1/4,-y+5/4,+x+5/4\n-z+3/4,+y+5/4,+x+3/4\n-z+1/4,-y+3/4,-x+3/4\n-x+1/4,-y+3/4,-z+3/4\n+x+1/4,+y+5/4,-z+5/4\n+x+3/4,-y+5/4,+z+3/4\n-x+3/4,+y+3/4,+z+5/4\n-z+1/4,-x+3/4,-y+3/4\n-z+3/4,+x+3/4,+y+5/4\n+z+1/4,+x+5/4,-y+5/4\n+z+3/4,-x+5/4,+y+3/4\n-y+1/4,-z+3/4,-x+3/4\n+y+3/4,-z+5/4,+x+3/4\n-y+3/4,+z+3/4,+x+5/4\n+y+1/4,+z+5/4,-x+5/4\n-y+1/2,-x+1/2,+z+1\n+y,+x+1/2,+z+1/2\n-y,+x+1,-z+1\n+y+1/2,-x+1,-z+1/2\n-x+1/2,-z+1/2,+y+1\n+x+1/2,-z+1,-y+1/2\n+x,+z+1/2,+y+1/2\n-x,+z+1,-y+1\n-z+1/2,-y+1/2,+x+1\n-z,+y+1,-x+1\n+z+1/2,-y+1,-x+1/2\n+z,+y+1/2,+x+1/2\n+x+1/2,+y,+z+1/2\n-x+1/2,-y+1/2,+z+1\n-x+1,+y+1/2,-z+1/2\n+x+1,-y,-z+1\n+z+1/2,+x,+y+1/2\n+z+1,-x,-y+1\n-z+1/2,-x+1/2,+y+1\n-z+1,+x+1/2,-y+1/2\n+y+1/2,+z,+x+1/2\n-y+1,+z+1/2,-x+1/2\n+y+1,-z,-x+1\n-y+1/2,-z+1/2,+x+1\n+y+5/4,+x+1/4,-z+5/4\n-y+3/4,-x+1/4,-z+3/4\n+y+3/4,-x+3/4,+z+5/4\n-y+5/4,+x+3/4,+z+3/4\n+x+5/4,+z+1/4,-y+5/4\n-x+5/4,+z+3/4,+y+3/4\n-x+3/4,-z+1/4,-y+3/4\n+x+3/4,-z+3/4,+y+5/4\n+z+5/4,+y+1/4,-x+5/4\n+z+3/4,-y+3/4,+x+5/4\n-z+5/4,+y+3/4,+x+3/4\n-z+3/4,-y+1/4,-x+3/4\n-x+3/4,-y+1/4,-z+3/4\n+x+3/4,+y+3/4,-z+5/4\n+x+5/4,-y+3/4,+z+3/4\n-x+5/4,+y+1/4,+z+5/4\n-z+3/4,-x+1/4,-y+3/4\n-z+5/4,+x+1/4,+y+5/4\n+z+3/4,+x+3/4,-y+5/4\n+z+5/4,-x+3/4,+y+3/4\n-y+3/4,-z+1/4,-x+3/4\n+y+5/4,-z+3/4,+x+3/4\n-y+5/4,+z+1/4,+x+5/4\n+y+3/4,+z+3/4,-x+5/4\n-y+1,-x,+z+1\n+y+1/2,+x,+z+1/2\n-y+1/2,+x+1/2,-z+1\n+y+1,-x+1/2,-z+1/2\n-x+1,-z,+y+1\n+x+1,-z+1/2,-y+1/2\n+x+1/2,+z,+y+1/2\n-x+1/2,+z+1/2,-y+1\n-z+1,-y,+x+1\n-z+1/2,+y+1/2,-x+1\n+z+1,-y+1/2,-x+1/2\n+z+1/2,+y,+x+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1,+z+1/2\n-x+1,+y+1,-z\n+x+1,-y+1/2,-z+1/2\n+z+1/2,+x+1/2,+y\n+z+1,-x+1/2,-y+1/2\n-z+1/2,-x+1,+y+1/2\n-z+1,+x+1,-y\n+y+1/2,+z+1/2,+x\n-y+1,+z+1,-x\n+y+1,-z+1/2,-x+1/2\n-y+1/2,-z+1,+x+1/2\n+y+5/4,+x+3/4,-z+3/4\n-y+3/4,-x+3/4,-z+1/4\n+y+3/4,-x+5/4,+z+3/4\n-y+5/4,+x+5/4,+z+1/4\n+x+5/4,+z+3/4,-y+3/4\n-x+5/4,+z+5/4,+y+1/4\n-x+3/4,-z+3/4,-y+1/4\n+x+3/4,-z+5/4,+y+3/4\n+z+5/4,+y+3/4,-x+3/4\n+z+3/4,-y+5/4,+x+3/4\n-z+5/4,+y+5/4,+x+1/4\n-z+3/4,-y+3/4,-x+1/4\n-x+3/4,-y+3/4,-z+1/4\n+x+3/4,+y+5/4,-z+3/4\n+x+5/4,-y+5/4,+z+1/4\n-x+5/4,+y+3/4,+z+3/4\n-z+3/4,-x+3/4,-y+1/4\n-z+5/4,+x+3/4,+y+3/4\n+z+3/4,+x+5/4,-y+3/4\n+z+5/4,-x+5/4,+y+1/4\n-y+3/4,-z+3/4,-x+1/4\n+y+5/4,-z+5/4,+x+1/4\n-y+5/4,+z+3/4,+x+3/4\n+y+3/4,+z+5/4,-x+3/4\n-y+1,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z\n-y+1/2,+x+1,-z+1/2\n+y+1,-x+1,-z\n-x+1,-z+1/2,+y+1/2\n+x+1,-z+1,-y\n+x+1/2,+z+1/2,+y\n-x+1/2,+z+1,-y+1/2\n-z+1,-y+1/2,+x+1/2\n-z+1/2,+y+1,-x+1/2\n+z+1,-y+1,-x\n+z+1/2,+y+1/2,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0227\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fd-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n+x,+y,+z\n-x+3/4,-y+1/4,+z+1/2\n-x+1/4,+y+1/2,-z+3/4\n+x+1/2,-y+3/4,-z+1/4\n+z,+x,+y\n+z+1/2,-x+3/4,-y+1/4\n-z+3/4,-x+1/4,+y+1/2\n-z+1/4,+x+1/2,-y+3/4\n+y,+z,+x\n-y+1/4,+z+1/2,-x+3/4\n+y+1/2,-z+3/4,-x+1/4\n-y+3/4,-z+1/4,+x+1/2\n+y+3/4,+x+1/4,-z+1/2\n-y,-x,-z\n+y+1/4,-x+1/2,+z+3/4\n-y+1/2,+x+3/4,+z+1/4\n+x+3/4,+z+1/4,-y+1/2\n-x+1/2,+z+3/4,+y+1/4\n-x,-z,-y\n+x+1/4,-z+1/2,+y+3/4\n+z+3/4,+y+1/4,-x+1/2\n+z+1/4,-y+1/2,+x+3/4\n-z+1/2,+y+3/4,+x+1/4\n-z,-y,-x\n-x,-y,-z\n+x+1/4,+y+3/4,-z+1/2\n+x+3/4,-y+1/2,+z+1/4\n-x+1/2,+y+1/4,+z+3/4\n-z,-x,-y\n-z+1/2,+x+1/4,+y+3/4\n+z+1/4,+x+3/4,-y+1/2\n+z+3/4,-x+1/2,+y+1/4\n-y,-z,-x\n+y+3/4,-z+1/2,+x+1/4\n-y+1/2,+z+1/4,+x+3/4\n+y+1/4,+z+3/4,-x+1/2\n-y+1/4,-x+3/4,+z+1/2\n+y,+x,+z\n-y+3/4,+x+1/2,-z+1/4\n+y+1/2,-x+1/4,-z+3/4\n-x+1/4,-z+3/4,+y+1/2\n+x+1/2,-z+1/4,-y+3/4\n+x,+z,+y\n-x+3/4,+z+1/2,-y+1/4\n-z+1/4,-y+3/4,+x+1/2\n-z+3/4,+y+1/2,-x+1/4\n+z+1/2,-y+1/4,-x+3/4\n+z,+y,+x\n+x,+y+1/2,+z+1/2\n-x+3/4,-y+3/4,+z+1\n-x+1/4,+y+1,-z+5/4\n+x+1/2,-y+5/4,-z+3/4\n+z,+x+1/2,+y+1/2\n+z+1/2,-x+5/4,-y+3/4\n-z+3/4,-x+3/4,+y+1\n-z+1/4,+x+1,-y+5/4\n+y,+z+1/2,+x+1/2\n-y+1/4,+z+1,-x+5/4\n+y+1/2,-z+5/4,-x+3/4\n-y+3/4,-z+3/4,+x+1\n+y+3/4,+x+3/4,-z+1\n-y,-x+1/2,-z+1/2\n+y+1/4,-x+1,+z+5/4\n-y+1/2,+x+5/4,+z+3/4\n+x+3/4,+z+3/4,-y+1\n-x+1/2,+z+5/4,+y+3/4\n-x,-z+1/2,-y+1/2\n+x+1/4,-z+1,+y+5/4\n+z+3/4,+y+3/4,-x+1\n+z+1/4,-y+1,+x+5/4\n-z+1/2,+y+5/4,+x+3/4\n-z,-y+1/2,-x+1/2\n-x,-y+1/2,-z+1/2\n+x+1/4,+y+5/4,-z+1\n+x+3/4,-y+1,+z+3/4\n-x+1/2,+y+3/4,+z+5/4\n-z,-x+1/2,-y+1/2\n-z+1/2,+x+3/4,+y+5/4\n+z+1/4,+x+5/4,-y+1\n+z+3/4,-x+1,+y+3/4\n-y,-z+1/2,-x+1/2\n+y+3/4,-z+1,+x+3/4\n-y+1/2,+z+3/4,+x+5/4\n+y+1/4,+z+5/4,-x+1\n-y+1/4,-x+5/4,+z+1\n+y,+x+1/2,+z+1/2\n-y+3/4,+x+1,-z+3/4\n+y+1/2,-x+3/4,-z+5/4\n-x+1/4,-z+5/4,+y+1\n+x+1/2,-z+3/4,-y+5/4\n+x,+z+1/2,+y+1/2\n-x+3/4,+z+1,-y+3/4\n-z+1/4,-y+5/4,+x+1\n-z+3/4,+y+1,-x+3/4\n+z+1/2,-y+3/4,-x+5/4\n+z,+y+1/2,+x+1/2\n+x+1/2,+y,+z+1/2\n-x+5/4,-y+1/4,+z+1\n-x+3/4,+y+1/2,-z+5/4\n+x+1,-y+3/4,-z+3/4\n+z+1/2,+x,+y+1/2\n+z+1,-x+3/4,-y+3/4\n-z+5/4,-x+1/4,+y+1\n-z+3/4,+x+1/2,-y+5/4\n+y+1/2,+z,+x+1/2\n-y+3/4,+z+1/2,-x+5/4\n+y+1,-z+3/4,-x+3/4\n-y+5/4,-z+1/4,+x+1\n+y+5/4,+x+1/4,-z+1\n-y+1/2,-x,-z+1/2\n+y+3/4,-x+1/2,+z+5/4\n-y+1,+x+3/4,+z+3/4\n+x+5/4,+z+1/4,-y+1\n-x+1,+z+3/4,+y+3/4\n-x+1/2,-z,-y+1/2\n+x+3/4,-z+1/2,+y+5/4\n+z+5/4,+y+1/4,-x+1\n+z+3/4,-y+1/2,+x+5/4\n-z+1,+y+3/4,+x+3/4\n-z+1/2,-y,-x+1/2\n-x+1/2,-y,-z+1/2\n+x+3/4,+y+3/4,-z+1\n+x+5/4,-y+1/2,+z+3/4\n-x+1,+y+1/4,+z+5/4\n-z+1/2,-x,-y+1/2\n-z+1,+x+1/4,+y+5/4\n+z+3/4,+x+3/4,-y+1\n+z+5/4,-x+1/2,+y+3/4\n-y+1/2,-z,-x+1/2\n+y+5/4,-z+1/2,+x+3/4\n-y+1,+z+1/4,+x+5/4\n+y+3/4,+z+3/4,-x+1\n-y+3/4,-x+3/4,+z+1\n+y+1/2,+x,+z+1/2\n-y+5/4,+x+1/2,-z+3/4\n+y+1,-x+1/4,-z+5/4\n-x+3/4,-z+3/4,+y+1\n+x+1,-z+1/4,-y+5/4\n+x+1/2,+z,+y+1/2\n-x+5/4,+z+1/2,-y+3/4\n-z+3/4,-y+3/4,+x+1\n-z+5/4,+y+1/2,-x+3/4\n+z+1,-y+1/4,-x+5/4\n+z+1/2,+y,+x+1/2\n+x+1/2,+y+1/2,+z\n-x+5/4,-y+3/4,+z+1/2\n-x+3/4,+y+1,-z+3/4\n+x+1,-y+5/4,-z+1/4\n+z+1/2,+x+1/2,+y\n+z+1,-x+5/4,-y+1/4\n-z+5/4,-x+3/4,+y+1/2\n-z+3/4,+x+1,-y+3/4\n+y+1/2,+z+1/2,+x\n-y+3/4,+z+1,-x+3/4\n+y+1,-z+5/4,-x+1/4\n-y+5/4,-z+3/4,+x+1/2\n+y+5/4,+x+3/4,-z+1/2\n-y+1/2,-x+1/2,-z\n+y+3/4,-x+1,+z+3/4\n-y+1,+x+5/4,+z+1/4\n+x+5/4,+z+3/4,-y+1/2\n-x+1,+z+5/4,+y+1/4\n-x+1/2,-z+1/2,-y\n+x+3/4,-z+1,+y+3/4\n+z+5/4,+y+3/4,-x+1/2\n+z+3/4,-y+1,+x+3/4\n-z+1,+y+5/4,+x+1/4\n-z+1/2,-y+1/2,-x\n-x+1/2,-y+1/2,-z\n+x+3/4,+y+5/4,-z+1/2\n+x+5/4,-y+1,+z+1/4\n-x+1,+y+3/4,+z+3/4\n-z+1/2,-x+1/2,-y\n-z+1,+x+3/4,+y+3/4\n+z+3/4,+x+5/4,-y+1/2\n+z+5/4,-x+1,+y+1/4\n-y+1/2,-z+1/2,-x\n+y+5/4,-z+1,+x+1/4\n-y+1,+z+3/4,+x+3/4\n+y+3/4,+z+5/4,-x+1/2\n-y+3/4,-x+5/4,+z+1/2\n+y+1/2,+x+1/2,+z\n-y+5/4,+x+1,-z+1/4\n+y+1,-x+3/4,-z+3/4\n-x+3/4,-z+5/4,+y+1/2\n+x+1,-z+3/4,-y+3/4\n+x+1/2,+z+1/2,+y\n-x+5/4,+z+1,-y+1/4\n-z+3/4,-y+5/4,+x+1/2\n-z+5/4,+y+1,-x+1/4\n+z+1,-y+3/4,-x+3/4\n+z+1/2,+y+1/2,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Fdd2.html","title":"Fdd2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a043\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fdd2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+x+1/4,-y+1/4,+z+1/4\n-x+1/4,+y+1/4,+z+1/4\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x+1/4,-y+3/4,+z+3/4\n-x+1/4,+y+3/4,+z+3/4\n+x+1/2,+y,+z+1/2\n-x+1/2,-y,+z+1/2\n+x+3/4,-y+1/4,+z+3/4\n-x+3/4,+y+1/4,+z+3/4\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n+x+3/4,-y+3/4,+z+1/4\n-x+3/4,+y+3/4,+z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25 \n
"},{"location":"Fddd.html","title":"Fddd","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a070\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fddd\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a032\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x+1/4,-y+1/4,-z+1/4\n+x+1/4,+y+1/4,-z+1/4\n+x+1/4,-y+1/4,+z+1/4\n-x+1/4,+y+1/4,+z+1/4\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n-x,+y+1/2,-z+1/2\n+x,-y+1/2,-z+1/2\n-x+1/4,-y+3/4,-z+3/4\n+x+1/4,+y+3/4,-z+3/4\n+x+1/4,-y+3/4,+z+3/4\n-x+1/4,+y+3/4,+z+3/4\n+x+1/2,+y,+z+1/2\n-x+1/2,-y,+z+1/2\n-x+1/2,+y,-z+1/2\n+x+1/2,-y,-z+1/2\n-x+3/4,-y+1/4,-z+3/4\n+x+3/4,+y+1/4,-z+3/4\n+x+3/4,-y+1/4,+z+3/4\n-x+3/4,+y+1/4,+z+3/4\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x+3/4,-y+3/4,-z+1/4\n+x+3/4,+y+3/4,-z+1/4\n+x+3/4,-y+3/4,+z+1/4\n-x+3/4,+y+3/4,+z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a024\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a030\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a031\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a032\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a070\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fddd\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a032\n\n+x,+y,+z\n-x+3/4,-y+3/4,+z\n-x+3/4,+y,-z+3/4\n+x,-y+3/4,-z+3/4\n-x,-y,-z\n+x+1/4,+y+1/4,-z\n+x+1/4,-y,+z+1/4\n-x,+y+1/4,+z+1/4\n+x,+y+1/2,+z+1/2\n-x+3/4,-y+5/4,+z+1/2\n-x+3/4,+y+1/2,-z+5/4\n+x,-y+5/4,-z+5/4\n-x,-y+1/2,-z+1/2\n+x+1/4,+y+3/4,-z+1/2\n+x+1/4,-y+1/2,+z+3/4\n-x,+y+3/4,+z+3/4\n+x+1/2,+y,+z+1/2\n-x+5/4,-y+3/4,+z+1/2\n-x+5/4,+y,-z+5/4\n+x+1/2,-y+3/4,-z+5/4\n-x+1/2,-y,-z+1/2\n+x+3/4,+y+1/4,-z+1/2\n+x+3/4,-y,+z+3/4\n-x+1/2,+y+1/4,+z+3/4\n+x+1/2,+y+1/2,+z\n-x+5/4,-y+5/4,+z\n-x+5/4,+y+1/2,-z+3/4\n+x+1/2,-y+5/4,-z+3/4\n-x+1/2,-y+1/2,-z\n+x+3/4,+y+3/4,-z\n+x+3/4,-y+1/2,+z+1/4\n-x+1/2,+y+3/4,+z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a021\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a024\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a029\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a032\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25 \n
"},{"location":"Fm-3.html","title":"Fm 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0202\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fm-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a074\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Fm-3c.html","title":"Fm 3c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0226\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fm-3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Fm-3m.html","title":"Fm 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0225\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fm-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a0192\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a097\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a098\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a099\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0100\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0101\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0102\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0103\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0104\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0105\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0106\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0107\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0108\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0109\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0110\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0111\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0112\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0113\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0114\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0115\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0116\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0117\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0118\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0119\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0120\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0121\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0122\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0123\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0124\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0125\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0126\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0127\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0128\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0129\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0130\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0131\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0132\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0133\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0134\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a0135\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0136\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a0137\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0138\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0139\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0140\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0141\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0142\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0143\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0144\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a0145\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0146\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0147\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0148\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0149\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0150\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0151\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0152\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0153\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0154\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0155\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0156\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0157\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0158\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0159\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0160\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0161\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0162\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0163\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0164\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0165\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0166\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0167\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0168\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0169\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0170\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0171\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0172\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0173\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0174\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0175\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0176\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0177\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0178\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0179\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0180\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0181\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0182\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a0183\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0184\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a0185\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0186\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0187\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0188\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0189\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0190\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0191\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a0192\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Fmm2.html","title":"Fmm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a042\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fmm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z\n-x,+y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n+x+1/2,+y,+z+1/2\n-x+1/2,-y,+z+1/2\n+x+1/2,-y,+z+1/2\n-x+1/2,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Fmmm.html","title":"Fmmm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a069\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Fmmm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a032\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n+x,+y+1/2,+z+1/2\n-x,-y+1/2,+z+1/2\n-x,+y+1/2,-z+1/2\n+x,-y+1/2,-z+1/2\n-x,-y+1/2,-z+1/2\n+x,+y+1/2,-z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n+x+1/2,+y,+z+1/2\n-x+1/2,-y,+z+1/2\n-x+1/2,+y,-z+1/2\n+x+1/2,-y,-z+1/2\n-x+1/2,-y,-z+1/2\n+x+1/2,+y,-z+1/2\n+x+1/2,-y,+z+1/2\n-x+1/2,+y,+z+1/2\n+x+1/2,+y+1/2,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Format_of_MD_Files.html","title":"Format of MD files","text":""},{"location":"Format_of_MD_Files.html#format-of-fragment-file","title":"Format of fragment file","text":"Card Format Description I-1-1 a1 $ or # comments to describe fragment I-2-1 i5 number of atoms in the fragment I-2-2 i5 number of parameter sets I-2-3 i5 default parameter set I-2-4 i5 number of z-matrix definition For each parameter set one card I-3 I-3-1 a residue name for parameter set For each atom one deck II II-1-1 i5 atom sequence number II-1-2 a6 atom name II-1-3 a5 atom type II-1-4 a1 dynamics type blank : normal D : dummy atom S: solute interactions only Q : quantum atom other : intramolecular solute interactions only II-1-5 i5 link number 0: no link 1: first atom in chain 2: second atom in chain 3 and up: other links II-1-6 i5 environment type 0: no special identifier 1: planar, using improper torsion 2: tetrahedral, using improper torsion 3: tetrahedral, using improper torsion 4: atom in aromatic ring II-1-7 i5 II-1-8 i5 charge group II-1-9 i5 polarization group II-1-10 f12.6 atomic partial charge II-1-11 f12.6 atomic polarizability For each additional parameter set on card II-2 II-2-1 11x,a6 atom type II-2-2 a1 dynamics type blank : normal D : dummy atom S : solute interactions only Q : quantum atom other : intramolecular solute interactions only II-2-7 25x,f12.6 atomic partial charge II-2-8 f12.6 atomic polarizability Any number of cards in deck III to specify complete connectivity III-1-1 16i5 connectivity, duplication allowed One blank card to signal the end of the connectivity list For each z-matrix definition one card IV IV-1-1 i5 atom i IV-1-2 i5 atom j IV-1-3 i5 atom k IV-1-4 i5 atom l IV-1-5 f12.6 bond length i-j IV-1-6 f12.6 angle i-j-k IV-1-7 f12.6 torson i-j-k-l"},{"location":"Format_of_MD_Files.html#format-of-segment-file-1-of-7","title":"Format of segment file (1 of 7)","text":"Card Format Description I-0-1 # lines at top are comments I-1-1 a1 $ to identify the start of a segment I-1-2 a10 name of the segment, the tenth character N: identifies beginning of a chain C: identifies end of a chain blank: identifies chain fragment M: identifies an integral molecule I-2-1 f12.6 version number I-3-1 i5 number of atoms in the segment I-3-2 i5 number of bonds in the segment I-3-3 i5 number of angles in the segment I-3-4 i5 number of proper dihedrals in the segment I-3-5 i5 number of improper dihedrals in the segment I-3-6 i5 number of z-matrix definitions I-3-7 i5 number of parameter sets 1-3-8 i5 default parameter set For each parameter set one card I-4 I-4-1 f12.6 dipole correction energy"},{"location":"Format_of_MD_Files.html#format-of-segment-file-2-of-7","title":"Format of segment file (2 of 7)","text":"Card Format Description For each atom one deck II II-1-1 i5 atom sequence number II-1-2 a6 atom name II-1-3 i5 link number II-1-4 i5 environment type 0: no special identifier 1: planar, using improper torsion 2: tetrahedral, using improper torsion 3: tetrahedral, using improper torsion 4: atom in aromatic ring II-1-5 i5 II-1-6 i5 charge group II-1-7 i5 polarization group For each parameter set one card II-2 II-2-1 5x,a5 atom type II-2-2 a1 dynamics type blank : normal D : dummy atom S : solute interactions only Q : quantum atom other : intramolecular solute interactions only II-2-3 f12.6 atomic partial charge in e II-2-4 f12.6 atomic polarizability (4 \u03c0 \u03b5o in nm3)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-3-of-7","title":"Format of segment file (3 of 7)","text":"Card Format Description For each bond a deck III III-1-1 i5 bond sequence number III-1-2 i5 bond atom i III-1-3 i5 bond atom j III-1-4 i5 bond type 0: harmonic 1: constrained bond III-1-5 i5 bond parameter origin 0: from database, next card ignored 1: from next card For each parameter set one card III-2 III-2-1 f12.6 bond length in nm III-2-2 e12.5 bond force constant in (kJ nm2 mol-1)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-4-of-7","title":"Format of segment file (4 of 7)","text":"Card Format Description For each angle a deck IV IV-1-1 i5 angle sequence number IV-1-2 i5 angle atom i IV-1-3 i5 angle atom j IV-1-4 i5 angle atom k IV-1-5 i5 angle type 0: harmonic IV-1-6 i5 angle parameter origin 0: from database, next card ignored 1: from next card For each parameter set one card IV-2 IV-2-1 f10.6 angle in radians IV-2-2 e12.5 angle force constant in (kJ mol-1)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-5-of-7","title":"Format of segment file (5 of 7)","text":"Card Format Description For each proper dihedral a deck V V-1-1 i5 proper dihedral sequence number V-1-2 i5 proper dihedral atom i V-1-3 i5 proper dihedral atom j V-1-4 i5 proper dihedral atom k V-1-5 i5 proper dihedral atom l V-1-6 i5 proper dihedral type 0: (Ccos(m\u03c6-\u03b4) V-1-7 i5 proper dihedral parameter origin 0: from database, next card ignored 1: from next card For each parameter set one card V-2 V-2-1 i3 multiplicity V-2-2 f10.6 proper dihedral in radians V-2-3 e12.5 proper dihedral force constant in (kJ mol-1)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-6-of-7","title":"Format of segment file (6 of 7)","text":"Card Format Description For each improper dihedral a deck VI VI-1-1 i5 improper dihedral sequence number VI-1-2 i5 improper dihedral atom i VI-1-3 i5 improper dihedral atom j VI-1-4 i5 improper dihedral atom k VI-1-5 i5 improper dihedral atom l VI-1-6 i5 improper dihedral type 0: harmonic VI-1-7 i5 improper dihedral parameter origin 0: from database, next card ignored 1: from next card For each parameter set one card VI-2 VI-2-1 3x,f10.6 improper dihedral in radians VI-2-2 e12.5 improper dihedral force constant in (kJ mol-1)"},{"location":"Format_of_MD_Files.html#format-of-segment-file-7-of-7","title":"Format of segment file (7 of 7)","text":"
Card Format Description For each z-matrix definition one card VII VII-1-1 i5 atom i VII-1-2 i5 atom j VII-1-3 i5 atom k VII-1-4 i5 atom l VII-1-5 f12.6 bond length i-j VII-1-6 f12.6 angle i-j-k VII-1-7 f12.6 torson i-j-k-l"},{"location":"Format_of_MD_Files.html#format-of-sequence-file","title":"Format of sequence file","text":"Card Format Description I-1-1 a1 $ to identify the start of a sequence I-1-2 a10 name of the sequence Any number of cards 1 and 2 in deck II to specify the system II-1-1 i5 segment number II-1-2 a10 segment name, last character will be determined from chain II-2-1 a break to identify a break in the molecule chain II-2-1 a molecule to identify the end of a solute molecule II-2-1 a fraction to identify the end of a solute fraction II-2-1 a5 link to specify a link II-2-2 i5 segment number of first link atom II-2-3 a4 name of first link atom II-2-4 i5 segment number of second link atom II-2-5 a4 name of second link atom II-2-1 a solvent to identify solvent definition on next card II-2-1 a stop to identify the end of the sequence II-2-1 a6 repeat to repeat next ncard cards ncount times II-2-2 i5 number of cards to repeat (ncards) II-2-3 i5 number of times to repeat cards (ncount) Any number of cards in deck II to specify the system"},{"location":"Format_of_MD_Files.html#format-of-trajectory-file","title":"Format of trajectory file","text":"Card Format Description I-1-1 a6 keyword header I-2-1 i10 number of atoms per solvent molecule I-2-2 i10 number of solute atoms I-2-3 i10 number of solute bonds I-2-4 i10 number of solvent bonds I-2-5 i10 number of solvent molecules I-2-6 i10 precision of the coordinates. 0=standard, 1=high For each atom per solvent molecule one card I-3 I-3-1 a5 solvent name I-3-2 a5 atom name For each solute atom one card I-4 I-4-1 a5 segment name I-4-2 a5 atom name I-4-3 i6 segment number I-4-4 i10 solute atom counter I-4-5 i5 integer 1 For each solvent bond one card I-5 I-5-1 i8 atom index i for bond between i and j I-5-2 i8 atom index j for bond between i and j For each solute bond one card I-6 I-6-1 i8 atom index i for bond between i and j I-6-2 i8 atom index j for bond between i and j For each frame one deck II II-1-1 a5 keyword frame II-2-1 f12.6 time of frame in ps II-2-2 12.6 temperature of frame in K II-2-3 e12.5 pressure of frame in Pa II-2-4 a10 date II-2-5 a10 time II-3-1 f12.6 box dimension x II-3-2 12x,f12.6 box dimension y II-3-3 24x,f12.6 box dimension z II-4-1 l1 logical lxw for solvent coordinates II-4-2 l1 logical lvw for solvent velocities II-4-3 l1 logical lfw for solvent forces I-4-4 l1 II-4-5 l1 logical lxs for solute coordinates II-4-6 l1 logical lvs for solute velocities II-4-7 l1 logical lfs for solute forces II-4-8 l1 logical lps for solute induced dipoles II-4-5 i10 number of solvent molecules II-4-6 i10 number of solvent atoms II-4-7 i10 number of solute atoms For each solvent molecule one card II-5 for each atom, if standard precision II-5-1 3f8.3 solvent atom coordinates, if lxw or lvw II-5-4 3f8.3 solvent atom velocities, if lvw II-5-7 3f8.1 solvent atom forces, if lfw For each solute atom one card II-6 for each atom, if standard precision II-6-1 3f8.3 solute atom coordinates, if lxs or lvs II-6-4 3f8.3 solute atom velocities, if lvs II-6-7 3f8.1 solute atom forces, if lfs For each solvent molecule one card II-5 for each atom, if high precision II-5-1 3e12.6 solvent atom coordinates, if lxw or lvw II-5-4 3e12.6 solvent atom velocities, if lvw II-5-7 3e12.6 solvent atom forces, if lfw (on new card if both lxw and lvw) For each solute atom one card II-6 for each atom, if high precision II-6-1 3e12.6 solute atom coordinates, if lxs or lvs II-6-4 3e12.6 solute atom velocities, if lvs II-6-7 3e12.6 solute atom forces, if lfs (on new card if both lxs and lvs)"},{"location":"Format_of_MD_Files.html#format-of-free-energy-file","title":"Format of free energy file","text":"Card Format Description For each step in \u03bb one deck I I-1-1 i7 number nderiv of data summed in derivative decomposition array deriv I-1-2 i7 length ndata of total derivative array drf I-1-3 f12.6 current value of \u03bb I-1-4 f12.6 step size of \u03bb I-2-1 4e12.12 derivative decomposition array deriv(1:24) I-3-1 4e12.12 total derivative array dfr(1:nda) I-4-1 i10 size of ensemble at current \u03bb I-4-2 e20.12 average temperature at current \u03bb I-4-3 e20.12 average exponent reverse perturbation energy at current \u03bb I-4-4 e20.12 average exponent forward perturbation energy at current \u03bb"},{"location":"Format_of_MD_Files.html#format-of-root-mean-square-deviation-file","title":"Format of root mean square deviation file","text":"Card Format Description For each analyzed time step one card I-1 I-1-1 f12.6 time in ps I-1-2 f12.6 total rms deviation of the selected atoms before superimposition I-1-3 f12.6 total rms deviation of the selected atoms after superimposition II-1-1 a8 keyword analysis For each solute atom one card II-2 II-2-1 a5 segment name II-2-2 a5 atom name II-2-3 i6 segment number II-2-4 i10 atom number II-2-5 i5 selected if 1 II-2-6 f12.6 average atom rms deviation after superimposition III-1-1 a8 keyword analysis For each solute segment one card III-2 III-2-1 a5 segment name III-2-2 i6 segment number III-2-3 f12.6 average segment rms deviation after superimposition"},{"location":"Format_of_MD_Files.html#format-of-property-file","title":"Format of property file","text":"Card Format Description 1 i7 number nprop of recorded properties I-1-2 1x,2a10 date and time For each of the nprop properties one card I-2 I-2-1 a50 description of recorded property For each recorded step one deck II II-1-1 4(1pe12.5) value of property"},{"location":"Forum.html","title":"Forum","text":"
We use google groups for the users\u2019 forum.
The group is open to registered members.
Please do mention your real name as display name during the registration process.
The group can be accessed from the following link https://groups.google.com/g/nwchem-forum
If you have trouble registering to this group, please send an email to nwchemgit@gmail.com
You can use the form below to search the entries of the forum
"},{"location":"Forum_search.html","title":"Archived Forum Google Search","text":""},{"location":"Forum_search2.html","title":"Archive Forum Google Search 2nd","text":"Search"},{"location":"GW.html","title":"GW","text":""},{"location":"GW.html#overview","title":"Overview","text":"Electron attachment and detachment energies can be accurately described by many-body perturbation theory (MBPT) methods. In particular, the GW approximation (GWA) to the self-energy is a MBPT method that has seen recent interest in its application to molecules due to a promising cost/accuracy ratio.
The GW module implemented in NWChem takes a DFT mean-field approximation to the Green\u2019s function, G0, in order to solve the quasiparticle equation at the one-shot G0W0 or at various levels of the eigenvalue self-consistent GW approach (evGW). Since the mean-field orbitals are kept fixed in all these approaches, the results depend on the actual starting point G0 (hence, they depend on the exchange-correlation functional chosen for the underlying DFT calculation). For example, it has been known that a large fraction of exact exchange is needed for the accurate prediction of core-level binding energies at the one-shot G0W0 level.
For further theoretical insights and details about the actual implementation in NWChem, please refer to the paper by Mejia-Rodriguez et al1.
GW input is provided using the compound directive
GW\n ...\nEND\n
The actual GW calculation will be performed when the input module encounters the TASK directive.
TASK DFT GW\n
Note that DFT
must be specified as the underlying QM theory before GW
. The charge, geometry, and DFT options are all specified as normal.
In addition to an atomic orbital basis set, the GW module requires an auxiliary basis set to be provided in order to fit the four-center electron repulsion integrals. The auxliary basis set can have either the cd basis
or ri basis
names (see also DFT). Three combinations can be obtained:
ri basis
is given without a cd basis
, the ground-state DFT will be performed without density fitting, and the GW task will use the ri basis
to fit the integrals.cd basis
is given without a ri basis
, both DFT and GW tasks will be performed using the cd basis
to fit the integrals.cd basis
and ri basis
are present, the cd basis
will be used for the DFT task, while the ri basis
will be used for the GW task.There are sub-directives which allow for customized GW calculations. The most general GW input block directive will look like:
GW\n RPA \n CORE\n EVGW [<integer eviter default 4>]\n EVGW0 [<integer eviter default 4>]\n FIRST <integer first_orbital default 1>\n METHOD [ [analytic] || [cdgw <integer grid_points default 200>] ]\n ETA <real infinitesimal default 0.001> \n SOLVER [ [newton <integer maxiter default 10> ] || [graph] ]\n STATES [ [ alpha || beta ] [occ <integer number default 1>] [vir <integer default 0>] ]\n CONVERGENCE <real threshold default 0.005> [<string units default ev>]\nEND\n
The following sections describe these keywords.
"},{"location":"GW.html#rpa","title":"RPA","text":"The keyword RPA
triggers the computation of the RPA correlation energy. This adds a little overhead to the CD-GW approach.
The CORE
keyword forces to start counting the STATES
from the FIRST
molecular orbital upwards.
The FIRST
keyword has no meaning without CORE
specified.
The EVGW
keyword trigger the partial self-consistnet evGW approach, where both the Green\u2019s function G and the screened Coulomb W are updated by using the quasiparticle energies from the previous step in their construction.
Similarly, the EVGW0
triggers the evGW0 approach, where only the Green\u2019s function G is updated with the quasiparticle energies of the previous iterations. W0 is kept fixed.
Both partial self-consistent cycles run for eviter
number of cycles.
The use of EVGW
or EVGW0
will trigger the use of a scissor-shift operator for all states not updated in the evGW cycle.
Two different techniques to obtain the diagonal self-energy matrix elements are implemented in NWChem.
The analytic
method builds and diagonalizes the full Casida RPA matrix in order to obtain the screened Coulomb matrix elements. The Casida RPA matrix grows very rapidly in size (Nocc \u00d7 Nvir) and ultimately yields a N6 scaling due to the diagonalization step. It is therefore recommended to link the ELPA and turn on its use by setting
SET dft:scaleig e\n
The cdgw
method uses the Contour-Deformation technique in order to avoid the N6 diagonalization step. The diagonal self-energy matrix elements \u01a9nn are obtained via a numerical integration on the imaginary axis and the integrals over closed contours on the first and third quadrants of the complex plane. The grid_points
value controls the density of the modified Gauss-Legendre grid used in the numerical integration over the imaginary axis.
Both analytic
and cdgw
methods are suitable for core and valence calculations.
The magnitude of the imaginary infinitesimal can be controlled using the keyword ETA
. The default value of 0.001
should work rather well for valence calculations, but CORE
calculations might need a larger value, sometimes between 0.005
or even 0.01
.
Two methods to solver the quasiparticle equations are implemented in NWChem.
The newton
method uses a modified Newton approach to find the fixed-point of the quasiparticle equations. The Newton method tries to bracket the solution and switches to a golden section method whenever the Newton step goes beyond the bracketing values.
The graph
method uses a frequency grid in order to bracket the solution between two consecutive grid points. The number of grid points is controlled heuristically depending on the METHOD
and on the presence, or not, of nearby states in a cluster of energy (see below).
Regardless of the solver, the energies of the states are always classified in clusters with a maximum extension of 1.5 eV
. For a given cluster of energies, the newton
method will start with the state closer to the Fermi level and use its solution as guess for the rest of the states in the cluster. The graph
method will look for the solution of all the states in a given cluster at once with a frequency grid with range large enough to encompass all the cluster \u00b1 0.2 eV
.
The keyword STATES
controls for which particular state the GW quasiparticle equations are to be solved. The keyword might appear twice, one for the alpha spin channel and one for the beta channel. The beta channel keyword is meaningless for restricted closed-shell DFT calculations (MULT 1
without ODFT
in the DFT
input block).
The number of occupied states will be counted starting from the state closest to the Fermi level (HOMO) unless the keyword CORE
is present. The virtual states will always be counted from the state closest to the Fermi level upwards.
A -1 following either occ
or vir
stands for all states in the respective space.
The converegnce threshold of the quasiparticle equations can be controlled with the keyword CONVERGENCE
and might be given either in eV
or Hartree au
.
title \"CDGW C6F6 core\"\nstart\necho\n\nmemory 2000 mb\n\ngeometry\n C -0.21589696 1.38358991 0.00000000\n C -1.30618181 0.50480033 0.00000000\n C -1.09023026 -0.87871037 0.00000000\n C 0.21590562 -1.38360671 0.00000000\n C 1.30610372 -0.50476737 0.00000000\n C 1.09020243 0.87883094 0.00000000\n F -0.42025331 2.69273557 0.00000000\n F -2.54211642 0.98238922 0.00000000\n F -2.12174279 -1.71033945 0.00000000\n F 0.42026196 -2.69275237 0.00000000\n F 2.54203111 -0.98237286 0.00000000\n F 2.12188428 1.71024875 0.00000000\nend\n\nbasis \"ao basis\" spherical\n * library cc-pvdz\nend\n\nbasis \"cd basis\" spherical\n * library cc-pvdz-ri\nend\n\ndft\n xc xpbe96 0.55 hfexch 0.45 cpbe96 1.0\n direct\nend\n\ngw\n core\n eta 0.01\n method cdgw\n solver newton 15\n states alpha occ 12\nend\n\ntask dft gw\n
start\n\ngeometry\nO -0.000545 1.517541 0.000000\nH 0.094538 0.553640 0.000000\nH 0.901237 1.847958 0.000000\nend\n\nbasis \"ao basis\" spherical\n h library def2-svp\n o library def2-svp\nend\n\nbasis \"cd basis\" spherical\n h library def2-universal-jkfit\n o library def2-universal-jkfit\nend\n\ndft\n mult 1\n xc pbe96\n grid fine\n direct\nend\n\ngw\n states alpha occ 1 vir 1\nend\n\ntask dft gw\n
start\n\ngeometry\nO -0.000545 1.517541 0.000000\nH 0.094538 0.553640 0.000000\nH 0.901237 1.847958 0.000000\nend\n\nbasis \"ao basis\" spherical\n h library def2-svp\n o library def2-svp\nend\n\nbasis \"cd basis\" spherical\n h library def2-universal-jkfit\n o library def2-universal-jkfit\nend\n\ndft\n mult 1\n xc pbe96\n grid fine\n direct\nend\n\ngw\n evgw0 10\n states alpha occ -1 vir 10\nend\n\ntask dft gw\n
"},{"location":"GW.html#references","title":"References","text":"Mejia-Rodriguez, D.; Kunitsa, A.; Apr\u00e0, E.; Govind, N. Scalable Molecular GW Calculations: Valence and Core Spectra. Journal of Chemical Theory and Computation 2021, 17 (12), 7504\u20137517. https://doi.org/10.1021/acs.jctc.1c00738.\u00a0\u21a9
This module performs adiabatic ab initio molecular dynamics on finite systems. The nuclei are integrated using the velocity-Verlet algorithm, and the electronic potential can be provided by any of the Gaussian basis set based methods in NWChem, e.g. DFT, TDDFT, TCE, MP2, SCF, MCSCF, etc. If analytic gradients are not available for the selected level of theory, numerical gradients will automatically be used. Initial velocities are randomly selected from the Maxwell-Boltzmann distribution at the specified temperature, unless a restart file (.qmdrst
) is present. If a restart file is present, the trajectory information will be read from that file and the trajectory will resume from that point.
For computational details and a case study using the module, please refer to the 2016 paper by Fischer1.
QMD\n [dt_nucl <double default 10.0>] \n [nstep_nucl <integer default 1000>] \n [targ_temp <double default 298.15>] \n [thermostat <string default none> <thermostat parameters>] \n [rand_seed <integer default new one generated for each run>] \n [com_step <integer default 100>] \n [print_xyz <integer default 1>] \n [linear] \n [property <integer default 1>] \n [tddft <integer default 1>]\n [namd ]\nEND\n
The module is called as:
task <level of theory> qmd\n
where is any Gaussian basis set method in NWChem"},{"location":"Gaussian-Basis-AIMD.html#qmd-keywords","title":"QMD Keywords","text":""},{"location":"Gaussian-Basis-AIMD.html#dt_nucl-nuclear-time-step","title":"DT_NUCL: Nuclear time step","text":"
This specifies the nuclear time step in atomic units (1 a.u. = 0.02419 fs). Default: 10.0 a.u.
"},{"location":"Gaussian-Basis-AIMD.html#nstep_nucl-simulation-steps","title":"NSTEP_NUCL: Simulation steps","text":"This specifies the number of steps to take in the nuclear dynamics. Default: 1000
"},{"location":"Gaussian-Basis-AIMD.html#targ_temp-temperature-of-the-system","title":"TARG_TEMP: Temperature of the system","text":"This specifies the temperature to use with the thermostat. Also it is used in generating initial velocities from the Maxwell-Boltzmann distribution. Default: 298.15 K
"},{"location":"Gaussian-Basis-AIMD.html#thermostat-thermostat-for-controling-temperature-of-the-simulation","title":"THERMOSTAT: Thermostat for controling temperature of the simulation","text":"This specifies the thermostat to use for regulating the temperature of the nuclei. Possible options are:
none
No thermostat is used, i.e. an NVE ensemble is simulated. Default
svr
<double default 1000.0>
Stochastic velocity rescaling thermostat of Bussi, Donadio, and Parrinello2. Number sets the relaxation parameter of the thermostat
langevin
<double default 0.1>
Langevin dynamics, implementation according to Bussi and Parrinello3. The optional input parameter sets the value of the friction
berendsen
<double default 1000.0>
Berendsen thermostat, the optional input parameter sets the relaxation parameter of the thermostat
rescale
Velocity rescaling, i.e. isokinetic ensemble
nose-hoover
<integer default 3>
Nos\u00e9\u2013Hoover thermostat (only available in release 7.2.0 and later). The optional input parameter defines the number of oscillators.
"},{"location":"Gaussian-Basis-AIMD.html#rand_seed-seed-for-the-random-number-generator","title":"RAND_SEED: Seed for the random number generator","text":"rand_seed
specifies the seed for initializing the random number generator. If not given, a unique random seed will be generated. Even without a thermostat, this will influence the initial velocities.
com_step
specifies that center-of-mass translations and rotations will be removed every com_step
steps. Default 10 COM translations and rotations are removed on startup (either randomized initial velocities or those read from the restart file).
print_xyz
specifies how often the trajectory information (coordinates, velocities, total energy, step number, dipole (if available)) is written to the xyz file. The units for the coordinates and velocities in the xyz file are Angstrom and Angstrom/fs, respectively. For example, print_xyz 5
will write the xyz trajectory file every 5 steps. Default: 1
If the linear
keyword is present, the code assumes the molecule is linear.
If the property
keyword present, the code will look for the property block and calculate the requested properties. For example, property 5
will calculate properties on the current geometry every 5 steps. Default: 0 (e.g properties are not computed)
If the tddft
keyword is present, the code will look for the tddft block and calculate the absorption spectrum. For example, tddft 5
will perform tddft calculations on the current geometry every 5 steps. Default: 0 (e.g tddft is not run)
The following is a sample input for a ground state MD simulation. The simulation is 200 steps long with a 10 a.u. time step, using the stochastic velocity rescaling thermostat with a relaxation parameter of 100 a.u. and a target temperature of 200 K. Center-of-mass rotations and translations will be removed every 10 steps and trajectory information will be output to the xyz file every 5 steps.
start qmd_dft_h2o_svr \necho \nprint low \ngeometry noautosym noautoz \n O 0.00000000 -0.01681748 0.11334792 \n H 0.00000000 0.81325914 -0.34310308 \n H 0.00000000 -0.67863597 -0.56441201 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc pbe0 \nend \nqmd \n nstep_nucl 200 \n dt_nucl 10.0 \n targ_temp 200.0 \n com_step 10 \n thermostat svr 100.0 \n print_xyz 5 \nend \ntask dft qmd\n
"},{"location":"Gaussian-Basis-AIMD.html#excited-state-molecular-dynamics","title":"Excited state Molecular Dynamics","text":"The following is a sample input for an excited state MD simulation on the first excited state. The simulation is 200 steps long with a 10 a.u. time step, run in the microcanonical ensemble. Center-of-mass rotations and translations will be removed every 10 steps and trajectory information will be output to the xyz file every 5 steps.
start qmd_tddft_h2o_svr \necho \nprint low \ngeometry noautosym noautoz \n O 0.00000000 -0.01681748 0.11334792 \n H 0.00000000 0.81325914 -0.34310308 \n H 0.00000000 -0.67863597 -0.56441201 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc pbe0 \nend \ntddft \n nroots 5 \n notriplet \n target 1 \n civecs \n grad \n root 1 \n end \nend \nqmd \n nstep_nucl 200 \n dt_nucl 10.0 \n com_step 10 \n thermostat none \n print_xyz 5 \nend \ntask tddft qmd\n
"},{"location":"Gaussian-Basis-AIMD.html#property-calculation-in-a-molecular-dynamics-simulation","title":"Property calculation in a Molecular Dynamics simulation","text":"Thefollowing is a sample input for an MD simulation that compute polarizability by means of the SOS method at each time step.
start qmd_prop_h2o_svr \necho \nprint low \ngeometry noautosym noautoz \n O 0.00000000 -0.01681748 0.11334792 \n H 0.00000000 0.81325914 -0.34310308 \n H 0.00000000 -0.67863597 -0.56441201 \nend \nbasis \n * library 6-31G* \nend \ndft \n xc pbe0 \nend \n\nqmd \n nstep_nucl 200 \n dt_nucl 10.0 \n com_step 10 \n thermostat none \n print_xyz 5\n property 1\nend \n\nproperty\n polfromsos\nend\ntask tddft qmd\n
Additional sample inputs can be found in $NWCHEM_TOP/QA/tests/qmd_* (e.g. https://github.com/nwchemgit/nwchem/tree/master/QA/tests/qmd_dft_h2o_berendsen_props)
"},{"location":"Gaussian-Basis-AIMD.html#processing-the-output-of-a-qmd-run","title":"Processing the output of a QMD run","text":"The xyz file produced by the QMD module contains the velocities (given in Angstrom/fs), in addition to the coordinates (given in Angstrom). The comment lines also contain the time step, total energy (atomic units), and dipole moment (atomic units). In the directory $NWCHEM_TOP/contrib/qmd_tools, the code qmd_analysis.f90 will used the xyz trajectory as input to calculate the IR spectrum and vibrational density of states from Fourier transforms of the dipole and atomic momenta autocorrelation functions, respectively. The code needs to be linked to a LAPACK library when compiled; the Makefile in the directory will compile the code with the LAPACK routines included with the NWChem source.
Here we compute the IR spectrum and the element-wise breakdown of the vibrational density of states for silicon tetrachloride (SiCl4). The following input file was used.
start SiCl4 \necho \nprint low \ngeometry noautosym noautoz \n Si -0.00007905 0.00044148 0.00000001 \n Cl 0.71289590 1.00767685 1.74385011 \n Cl -2.13658008 -0.00149375 -0.00000001 \n Cl 0.71086735 -2.01430142 -0.00000001 \n Cl 0.71289588 1.00767684 -1.74385011 \nend \nbasis \n * library 6-31G \nend \ndft \n xc hfexch 1.0 \nend \nqmd \n nstep_nucl 20000 \n dt_nucl 10.0 \n targ_temp 20.0 \n com_step 10 \n rand_seed 12345 \n thermostat none \nend \ntask dft qmd\n
The IR spectrum and vibrational density of states were generated from the qmd_analysis code with the following command.
./qmd_analysis -xyz SiCl4.xyz -steps 15000 -skip 5000 -ts 10.0 -temp 20.0 -smax 800 -width 10.0\n
where we have skipped the first 5000 steps from the simulation and only used the data from the last 15000 steps to compute the spectra. The time step is given as 10 a.u. since that was the time step in the simulation and we output the trajectory information every step. The temperature was set to 20 K (for analysis, this is only used in the calculation of the quantum correction factor for the autocorrelation function of the dipole moment). The option smax sets the maximum of the spectral window that is output to 800 wave numbers. The width option sets the full-width at half-maximum of the peaks in the resulting spectra.
The computed IR spectrum and vibrational density of states are shown here.
"},{"location":"Gaussian-Basis-AIMD.html#namd-non-adiabatic-excited-stated-molecular-dynamics","title":"NAMD: Non-adiabatic Excited Stated Molecular Dynamics","text":"
For details of the NAMD implementation, please refer to the 2020 paper by Song4.
[namd]\n [init_state <integer default 2>]\n [nstates <integer default 2>]\n [dt_elec <double default 0.01>]\n [deco <logical default .false.]\n [tdks <integer default 1>]\n[end] \n
In the namd
sub-block within the qmd
block, please note:
mod(dt_nucl,dt_elec)=0
).The deco
flag applies the EDC electronic decoherence correction described in the papey bt Granucci and Persico5. The default value is .false.
, i.e. no decoherence correction is applied.
The keyword dt_elec
sets the electronic time step in atomic units.
The keyword nstates
sets the number of electronic states to include in the calculation, i.e. the number of states for use with Eq. 5 of the 2020 Song paper.
The keyword init_state
sets the initial electronic state to be occupied; the numbering for this keyword and the output that reports the currently occupied state runs from 0 (ground state) to nstates-1
. So if you want to start a calculation in the first excited state, you would set init_state
to 1.
The keyword tdks
will use Time-Dependent Kohn-Sham instead of the default Tamm-Dancoff approximation. The keyword requires the keyword odft
in the dft
input block to work. It can have two values:
1
(default) selects the alpha spin channel2
selects the beta spin channelExample input for fewest-switches surface-hopping (FSSH) approach.
geometry noautosym nocenter\nO 0.0000 0.0000 0.1197\nH 0.0000 0.7615 -0.4790\nH 0.0000 -0.7615 -0.4790\nend\nbasis\n* library 6-31G*\nend\n\ndft\n xc b3lyp\nend\n\ntddft\n nroots 10\n notriplet\n cis\n civecs\n grad\n root 1\n end\nend\n\nqmd\n nstep_nucl 50\n dt_nucl 0.5\n targ_temp 300.0\n thermostat svr 500\n namd \n nstates 5\n init_state 3\n dt_elec 0.1\n deco .true.\n end\nend\ntask tddft qmd\n
"},{"location":"Gaussian-Basis-AIMD.html#references","title":"References","text":"Fischer, S. A.; Ueltschi, T. W.; El-Khoury, P. Z.; Mifflin, A. L.; Hess, W. P.; Wang, H.-F.; Cramer, C. J.; Govind, N. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study. The Journal of Physical Chemistry B 2015, 120 (8), 1429\u20131436. https://doi.org/10.1021/acs.jpcb.5b03323.\u00a0\u21a9
Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling Through Velocity Rescaling. The Journal of Chemical Physics 2007, 126 (1), 014101. https://doi.org/10.1063/1.2408420.\u00a0\u21a9
Bussi, G.; Parrinello, M. Accurate Sampling Using Langevin Dynamics. Physical Review E 2007, 75 (5), 056707. https://doi.org/10.1103/PhysRevE.75.056707.\u00a0\u21a9
Song, H.; Fischer, S. A.; Zhang, Y.; Cramer, C. J.; Mukamel, S.; Govind, N.; Tretiak, S. First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem. Journal of Chemical Theory and Computation 2020, 16 (10), 6418\u20136427. https://doi.org/10.1021/acs.jctc.0c00295.\u00a0\u21a9
Granucci, G.; Persico, M. Critical Appraisal of the Fewest Switches Algorithm for Surface Hopping. The Journal of Chemical Physics 2007, 126 (13), 134114. https://doi.org/10.1063/1.2715585.\u00a0\u21a9
The DRIVER module is one of two drivers (also see documentation on STEPPER) to perform a geometry optimization function on the molecule defined by input using the GEOMETRY directive. Geometry optimization is either an energy minimization or a transition state optimization. The algorithm programmed in DRIVER is a quasi-newton optimization with line searches and approximate energy Hessian updates.
DRIVER is selected by default out of the two available modules to perform geometry optimization. In order to force use of DRIVER (e.g., because a previous optimization used STEPPER) provide a DRIVER input block (below) \u2013 even an empty block will force use of DRIVER.
Optional input for this module is specified within the compound directive,
DRIVER \n (LOOSE || DEFAULT || TIGHT) \n GMAX <real value> \n GRMS <real value> \n XMAX <real value> \n XRMS <real value> \n EPREC <real eprec default 1e-7> \n TRUST <real trust default 0.3> \n SADSTP <real sadstp default 0.1> \n CLEAR \n REDOAUTOZ \n INHESS <integer inhess default 0> \n (MODDIR || VARDIR) <integer dir default 0> \n (FIRSTNEG || NOFIRSTNEG) \n MAXITER <integer maxiter default 20> \n BSCALE <real BSCALE default 1.0>` \n ASCALE <real ASCALE default 0.25> \n TSCALE <real TSCALE default 0.1> \n HSCALE <real HSCALE default 1.0> \n PRINT ... \n XYZ <string xyz default *file_prefix*>] \n NOXYZ \n SOCKET (UNIX || IPI_CLIENT) <string socketname default (see input description)> \n END\n
On each optimization step a line search is performed. To speed up calculations (up to two times), it may be beneficial to turn off the line search using following directive:
set driver:linopt 0\n
"},{"location":"Geometry-Optimization.html#convergence-criteria","title":"Convergence criteria","text":" (LOOSE || DEFAULT || TIGHT) \n GMAX <real value> \n GRMS <real value> \n XMAX <real value> \n XRMS <real value>\n
The defaults may be used, or the directives LOOSE, DEFAULT, or TIGHT specified to use standard sets of values, or the individual criteria adjusted. All criteria are in atomic units. GMAX and GRMS control the maximum and root mean square gradient in the coordinates being used (Z-matrix, redundant internals, or Cartesian). XMAX and XRMS control the maximum and root mean square of the Cartesian step.
LOOSE DEFAULT TIGHT GMAX 0.00450 0.00045 0.000015 GRMS 0.00300 0.00030 0.00001 XMAX 0.01800 0.00180 0.00006 XRMS 0.01200 0.00120 0.00004Note that GMAX and GRMS used for convergence of geometry may significantly vary in different coordinate systems such as Z-matrix, redundant internals, or Cartesian. The coordinate system is defined in the input file (default is Z-matrix). Therefore the choice of coordinate system may slightly affect converged energy. Although in most cases XMAX and XRMS are last to converge which are always done in Cartesian coordinates, which insures convergence to the same geometry in different coordinate systems.
The old criterion may be recovered with the input
gmax 0.0008; grms 1; xrms 1; xmax 1\n
"},{"location":"Geometry-Optimization.html#available-precision","title":"Available precision","text":" EPREC <real eprec default 1e-7>\n
In performing a line search the optimizer must know the precision of the energy (this has nothing to do with convergence criteria). The default value of 1e-7 should be adjusted if less, or more, precision is available. Note that the default EPREC for DFT calculations is 5e-6 instead of 1e-7.
"},{"location":"Geometry-Optimization.html#controlling-the-step-length","title":"Controlling the step length","text":" TRUST <real trust default 0.3>\n SADSTP <real sadstp default 0.1>\n
A fixed trust radius (trust) is used to control the step during minimizations, and is also used for modes being minimized during saddle-point searches. It defaults to 0.3 for minimizations and 0.1 for saddle-point searches. The parameter sadstp is the trust radius used for the mode being maximized during a saddle-point search and defaults to 0.1.
"},{"location":"Geometry-Optimization.html#maximum-number-of-steps","title":"Maximum number of steps","text":" MAXITER <integer maxiter default 20>\n
By default at most 20 geometry optimization steps will be taken, but this may be modified with this directive.
"},{"location":"Geometry-Optimization.html#discard-restart-information","title":"Discard restart information","text":" CLEAR\n
By default Driver reuses Hessian information from a previous optimization, and, to facilitate a restart also stores which mode is being followed for a saddle-point search. This option deletes all restart data.
"},{"location":"Geometry-Optimization.html#regenerate-internal-coordinates","title":"Regenerate internal coordinates","text":" REDOAUTOZ\n
Deletes Hessian data and regenerates internal coordinates at the current geometry. Useful if there has been a large change in the geometry that has rendered the current set of coordinates invalid or non-optimal.
"},{"location":"Geometry-Optimization.html#initial-hessian","title":"Initial Hessian","text":" INHESS <integer inhess default 0>\n
In addition, the diagonal elements of the initial Hessian for internal coordinates may be scaled using separate factors for bonds, angles and torsions with the following
BSCALE <real bscale default 1.0> \n ASCALE <real ascale default 0.25> \n TSCALE <real tscale default 0.1>\n
These values typically give a two-fold speedup over unit values, based on about 100 test cases up to 15 atoms using 3-21g and 6-31g* SCF. However, if doing many optimizations on physically similar systems it may be worth fine tuning these parameters.
Finally, the entire Hessian from any source may be scaled by a factor using the directive
HSCALE <real hscale default 1.0>\n
It might be of utility, for instance, when computing an initial Hessian using SCF to start a large MP2 optimization. The SCF vibrational modes are expected to be stiffer than the MP2, so scaling the initial Hessian by a number less than one might be beneficial.
"},{"location":"Geometry-Optimization.html#mode-or-variable-to-follow-to-saddle-point","title":"Mode or variable to follow to saddle point","text":" (MODDIR || VARDIR) <integer dir default 0> \n (FIRSTNEG || NOFIRSTNEG)\n
When searching for a transition state the program, by default, will take an initial step uphill and then do mode following using a fuzzy maximum overlap (the lowest eigen-mode with an overlap with the previous search direction of 0.7 times the maximum overlap is selected). Once a negative eigen-value is found, that mode is followed regardless of overlap.
The initial uphill step is appropriate if the gradient points roughly in the direction of the saddle point, such as might be the case if a constrained optimization was performed at the starting geometry. Alternatively, the initial search direction may be chosen to be along a specific internal variable (using the directive VARDIR) or along a specific eigen-mode (using MODDIR). Following a variable might be valuable if the initial gradient is either very small or very large. Note that the eigen-modes in the optimizer have next-to-nothing to do with the output from a frequency calculation. You can examine the eigen-modes used by the optimizer with
driver; print hvecs; end\n
The selection of the first negative mode is usually a good choice if the search is started in the vicinity of the transition state and the initial search direction is satisfactory. However, sometimes the first negative mode might not be the one of interest (e.g., transverse to the reaction direction). If NOFIRSTNEG is specified, the code will not take the first negative direction and will continue doing mode-following until that mode goes negative.
"},{"location":"Geometry-Optimization.html#optimization-history-as-xyz-files","title":"Optimization history as XYZ files","text":" XYZ [<string xyz default $fileprefix>] \n NOXYZ\n
The XYZ directive causes the geometry at each step (but not intermediate points of a line search) to be output into separate files in the permanent directory in XYZ format. The optional string will prefix the filename. The NOXYZ directive turns this off.
For example, the input
driver; xyz test; end\n
will cause files test-000.xyz, test-001.xyz, \u2026 to be created in the permanent directory.
The script rasmolmovie in the NWChem contrib directory can be used to turn these into an animated GIF movie.
"},{"location":"Geometry-Optimization.html#i-pi-socket-communication","title":"i-PI Socket communication","text":" SOCKET (UNIX || IPI_CLIENT) <string socketname default (see input description)> \n
The SOCKET directive enables NWChem to communicate with other software packages \u2013 such as i-PI or ASE \u2013 via the i-PI socket protocol.
Communication is done either over Unix sockets (SOCKET UNIX
) or IP sockets (SOCKET IPI_CLIENT
):
/tmp/ipi_<socketname>
. If not specified, <socketname>
will default to nwchem
.<socketname>
. If not specified, <socketname>
will default to 127.0.0.1:31415
.The SOCKET
directive is only useful when used in conjunction with other software packages that support communication via the i-PI socket protocol. For more information, see the i-PI documentation.
The UNIX command \u201cegrep \u2018^@\u2019 \\< output\u201d will extract a pretty table summarizing the optimization.
If you specify the NWChem input
scf; print none; end \n driver; print low; end \n task scf optimize\n
you\u2019ll obtain a pleasantly terse output.
For more control, these options for the standard print directive are recognized
and these specific print options
The STEPPER module performs a search for critical points on the potential energy surface of the molecule defined by input using the GEOMETRY directive. Since STEPPER is not the primary geometry optimization module in NWChem the compound directive is required; the DRIVER module is the default. Input for this module is specified within the compound directive,
STEPPER \n ... \n END\n
The presence of the STEPPER compound directive automatically turns off the default geometry optimization tool DRIVER. Input specified for the STEPPER module must appear in the input file after the GEOMETRY directive, since it must know the number of atoms that are to be used in the geometry optimization. In the current version of NWChem, STEPPER can be used only with geometries that are defined in Cartesian coordinates. STEPPER removes translational and rotational components before determining the step direction (5 components for linear systems and 6 for others) using a standard Eckart algorithm. The default initial guess nuclear Hessian is the identity matrix.
The default in STEPPER is to minimize the energy as a function of the geometry with a maximum of 20 geometry optimization iterations. When this is the desired calculation, no input is required other than the STEPPER compound directive. However, the user also has the option of defining different tasks for the STEPPER module, and can vary the number of iterations and the convergence criteria from the default values. The input for these options is described in the following sections.
"},{"location":"Geometry-Optimization.html#min-and-ts-minimum-or-transition-state-search","title":"MIN and TS: Minimum or transition state search","text":"The default is for STEPPER to minimize the energy with respect to the geometry of the system. This default behavior may be forced with the directive
MIN\n
STEPPER can also be used to find the transition state by following the lowest eigenvector of the nuclear Hessian. This is usually invoked by using the saddle keyword on the TASK directive, but it may also be selected by specifying the directive
TS\n
in the STEPPER input.
"},{"location":"Geometry-Optimization.html#track-mode-selection","title":"TRACK: Mode selection","text":"STEPPER has the ability to ``track\u2019\u2018 a specific mode during an optimization for a transition state search, the user can also have the module track the eigenvector corresponding to a specific mode. This is done by specifying the directive
TRACK [nmode <integer nmode default 1>]\n
The keyword TRACK tells STEPPER to track the eigenvector corresponding to the integer value of during a transition state walk. (Note: this input is invalid for a minimization walk since following a specific eigenvector will not necessarily give the desired local minimum.) The step is constructed to go up in energy along the nmode eigenvector and down in all other degrees of freedom."},{"location":"Geometry-Optimization.html#maxiter-maximum-number-of-steps","title":"MAXITER: Maximum number of steps","text":"
In most applications, 20 stepper iterations will be sufficient to obtain the energy minimization. However, the user has the option of specifying the maximum number of iterations allowed, using the input line,
MAXITER <integer maxiter default 20>\n
The value specified for the integer defines the maximum number of geometry optimization steps. The geometry optimization will restart automatically."},{"location":"Geometry-Optimization.html#trust-trust-radius","title":"TRUST: Trust radius","text":"
The size of steps that can be taken in STEPPER is controlled by the trust radius which has a default value of 0.1. Steps are constrained to be no larger than the trust radius. The user has the option of overriding this default using the keyword TRUST, with the following input line,
TRUST <real radius default 0.1>\n
The larger the value specified for the variable radius, the larger the steps that can be taken by STEPPER. Experience has shown that for larger systems (i.e., those with 20 or more atoms), a value of 0.5, or greater, usually should be entered for ."},{"location":"Geometry-Optimization.html#convggm-convgg-and-convge-convergence-criteria","title":"CONVGGM, CONVGG and CONVGE: Convergence criteria","text":"
Three convergence criteria can be specified explicitly for the STEPPER calculations. The keyword CONVGGM allows the user to specify the convergence tolerance for the largest component of the gradient. This is the primary convergence criterion, as per the default settings, although all three criteria are in effect. this default setting is consistent with the other optimizer module DRIVER. The input line for CONVGGM has the following form,
CONVGGM <real convggm default 8.0d-04>\n
The keyword CONVGG allows the user to specify the convergence tolerance for the gradient norm for all degrees of freedom. The input line is of the following form,
CONVGG <real convgg default 1.0d-02>\n
The entry for the real variable should be approximately equal to the square root of the energy convergence tolerance.
The energy convergence tolerance is the convergence criterion for the energy difference in the geometry optimization in STEPPER. It can be specified by input using a line of the following form,
CONVGE <real convge default 1.0d-04>\n
"},{"location":"Geometry-Optimization.html#backstepping-in-stepper","title":"Backstepping in STEPPER","text":"If a step taken during the optimization is too large (e.g., the step causes the energy to go up for a minimization or down for a transition state search), the STEPPER optimizer will automatically \u201cbackstep\u201d and correct the step based on information prior to the faulty step. If you have an optimization that \u201cbacksteps\u201d frequently then the initial trust radius should most likely be decreased.
"},{"location":"Geometry-Optimization.html#initial-nuclear-hessian-options","title":"Initial Nuclear Hessian Options","text":"Stepper uses a modified Fletcher-Powell algorithm to find the transition state or energy minimum on the potential energy hypersurface. There are two files left in the user\u2019s permanent directory that are used to provide an initial hessian to the critical point search algorithm. If these files do not exist then the default is to use a unit matrix as the initial hessian. Once Stepper executes it generates a binary dump file by the name of name.stpr41
which will be used on all subsequent stepper runs and modified with the current updated hessian. The default file prefix is the \u201cname\u201d that is used (see START). It also stores the information for the last valid step in case the algorithm must take a \u201cbackstep\u201d. This file is the working data store for all stepper-based optimizations. This file is never deleted by default and is the first source of an initial hessian. The second source of an initial hessian is an ASCII file that contains the lower triangular values of the initial hessian. This is stored in file name.hess
, where \u201cname\u201d is again the default file prefix. This is the second source of an initial hessian and is the method used to incorporate an initial hessian from any other source (e.g., another ab initio code, a molecular mechanics code, etc.,). To get a decent starting hessian at a given point you can use the task specification task scf hessian, with a smaller basis set, which will by default generate the name.hess
file. Then you may define your basis set of choice and proceed with the optimization you desire.
Below are examples of the use of the SYMMETRY directive in the compound GEOMETRY directive. The z axis is always the primary rotation axis. When in doubt about which axes and planes are used for the group elements, the keyword print
may be added to the SYMMETRY
directive to obtain this information.
The \u03c3h plane is the xy plane.
\u00a0geometry units angstroms\n C 0.11931097 -0.66334875 0.00000000\n H 1.20599017 -0.87824237 0.00000000\n H -0.32267592 -1.15740001 0.89812652\n O -0.01716588 0.78143468 0.00000000\n H -1.04379735 0.88169812 0.00000000\n symmetry cs\n end\n
"},{"location":"Geometry-examples.html#c2v-water","title":"C2v \u00a0 water","text":"The z axis is the C2 axis and the \u03c3v may be either the xz or the yz planes.
geometry units au\n O 0.00000000 0.00000000 0.00000000\n H 0.00000000 1.43042809 -1.10715266\n symmetry group c2v\n end\n
"},{"location":"Geometry-examples.html#d2h-acetylene","title":"D2h \u00a0 acetylene","text":"Although acetylene has symmetry D\u221eh the subgroup D2h includes all operations that interchange equivalent atoms which is what determines how much speedup you gain from using symmetry in building a Fock matrix.
The C2 axes are the x, y, and z axes. The \u03c3 planes are the xy, xz and yz planes. Generally, the unique atoms are placed to use the z as the primary rotational axis and use the xz or yz planes as the \u03c3 plane.
geometry units au\n symmetry group d2h\n C 0.000000000 0.000000000 -1.115108538\n H 0.000000000 0.000000000 -3.106737425\n end\n
"},{"location":"Geometry-examples.html#d2h-ethylene","title":"D2h \u00a0 ethylene","text":"The C2 axes are the x, y, and z axes. The \u03c3 planes are the xy, xz and yz planes. Generally, the unique atoms are placed to use the z as the primary rotational axis and use the xz or yz planes as the \u03c3 plane.
geometry units angstroms\n C 0 0 0.659250 \n H 0 0.916366 1.224352 \n symmetry d2h\n end\n
"},{"location":"Geometry-examples.html#td-methane","title":"Td \u00a0 methane","text":"For ease of use, the primary C3 axis should be the x=y=z axis. The 3 C2 axes are the x, y, and z.
geometry units au\n c 0.0000000 0.0000000 0.0000000\n h 1.1828637 1.1828637 1.1828637\n symmetry group Td\n end\n
"},{"location":"Geometry-examples.html#ih-buckminsterfullerene","title":"Ih \u00a0 buckminsterfullerene","text":"One of the C5 axes is the z axis and the point of inversion is the origin.
geometry units angstroms # Bonds = 1.4445, 1.3945\n symmetry group Ih\n c -1.2287651 0.0 3.3143121\n end\n
"},{"location":"Geometry-examples.html#s4-porphyrin","title":"S4 \u00a0 porphyrin","text":"The S4 and C2 rotation axis is the z axis. The reflection plane for the S4 operation is the xy plane.
geometry units angstroms\n symmetry group s4\n\n fe 0.000 0.000 0.000 \n h 2.242 6.496 -3.320 \n h 1.542 4.304 -2.811\n c 1.947 6.284 -2.433\n c 1.568 4.987 -2.084\n h 2.252 8.213 -1.695\n c 1.993 7.278 -1.458\n h 5.474 -1.041 -1.143\n c 1.234 4.676 -0.765\n h 7.738 -1.714 -0.606\n c 0.857 3.276 -0.417\n h 1.380 -4.889 -0.413\n c 1.875 2.341 -0.234\n h 3.629 3.659 -0.234\n c 0.493 -2.964 -0.229\n c 1.551 -3.933 -0.221\n c 5.678 -1.273 -0.198\n c 1.656 6.974 -0.144\n c 3.261 2.696 -0.100\n n 1.702 0.990 -0.035\n end\n
"},{"location":"Geometry-examples.html#d3h-iron-penta-carbonyl","title":"D3h \u00a0 iron penta-carbonyl","text":"The C3 axis is the z axis. The \u03c3h plane is the xy plane. One of the perpendicular C2 axes is the x=y axis. One of the \u03c3v planes is the plane containing the x=y axis and the z axis. (The other axes and planes are generated by the C3 operation.)
geometry units au\n symmetry group d3h\n\n fe 0.0 0.0 0.0\n\n c 0.0 0.0 3.414358\n o 0.0 0.0 5.591323\n\n c 2.4417087 2.4417087 0.0\n o 3.9810552 3.9810552 0.0\n end\n
"},{"location":"Geometry-examples.html#d3d-sodium-crown-ether","title":"D3d \u00a0 sodium crown ether","text":"The C3 axis is the z axis. The point of inversion is the origin. One of the perpendicular C2 axes is the x=y axis. One of the \u03c3d planes is the plane containing the -x=y axis and the z axis.
Note that the oxygen atom is rotated in the x-y plane 15 degrees away from the y-axis so that it lies in a mirror plane. There is a total of six atoms generated from the unique oxygen, in contrast to twelve from each of the carbon and hydrogen atoms.
geometry units au\n symmetry D3d\n\n NA .0000000000 .0000000000 .0000000000\n O 1.3384771885 4.9952647969 .1544089284\n H 6.7342048019 -0.6723850379 2.6581562148\n C 6.7599180056 -0.4844977035 .6136583870\n H 8.6497577017 0.0709194071 .0345361934\n\n end\n
"},{"location":"Geometry-examples.html#c3v-ammonia","title":"C3v \u00a0 ammonia","text":"The C3 axis is the z axis. One of the \u03c3v planes is the plane containing the x=y axis and the z axis.
geometry units angstroms\n N 0 0 -0.055 \n H 0.665 0.665 -0.481 \n symmetry c3v\n end\n
"},{"location":"Geometry-examples.html#d6h-benzene","title":"D6h benzene","text":"The C6 axis is the z axis. The point of inversion is the origin. One of the 6 perpendicular C2\u2018 axes is the x=y axis. (-x=y works as a C2\u2018\u2019 axis.) The \u03c3h plane is the xy plane. The \u03c3d planes contain the C2\u2018\u2019 axis and the z axis. The \u03c3v planes contain the C2\u2018 axis and the z axis.
geometry units au\n C 1.855 1.855 0 \n H 3.289 3.289 0 \n symmetry D6h\n end\n
"},{"location":"Geometry-examples.html#c3h-h3bo3","title":"C3h \u00a0 H3BO3","text":"The C3 axis is the z axis. The \u03c3h plane is the xy plane.
geometry units au\n b 0 0 0 \n o 2.27238285 1.19464491 0.00000000 \n h 2.10895420 2.97347707 0.00000000 \n symmetry C3h\n end\n
"},{"location":"Geometry-examples.html#d5d-ferrocene","title":"D5d \u00a0 ferrocene","text":"The C5 axis is the z axis. The center of inversion is the origin. One of the perpendicular C2 axes is the x axis. One of the \u03c3d planes is the yz plane.
geometry units angstroms\n symmetry d5d\n\n fe 0 0 0 \n c 0 1.194 1.789 \n h 0 2.256 1.789 \n end\n
"},{"location":"Geometry-examples.html#c4v-sf5cl","title":"C4v \u00a0 SF5Cl","text":"The C4 axis is the z axis. The \u03c3v planes are the yz and the xz planes. The \u03c3d planes are: 1) the plane containing the x=y axis and the z axis and 2) the plane containing the -x=y axis and the z axis.
geometry units au\n S 0.00000000 0.00000000 -0.14917600 \n Cl 0.00000000 0.00000000 4.03279700 \n F 3.13694200 0.00000000 -0.15321800 \n F 0.00000000 0.00000000 -3.27074500 \n\n symmetry C4v\n end\n
"},{"location":"Geometry-examples.html#c2h-trans-dichloroethylene","title":"C2h \u00a0 trans-dichloroethylene","text":"The C2 axis is the z axis. The origin is the inversion center. The \u03c3h plane is the xy plane.
geometry units angstroms\n C 0.65051239 -0.08305064 0 \n Cl 1.75249381 1.30491767 0 \n H 1.14820954 -1.04789741 0 \n symmetry C2h\n end\n
"},{"location":"Geometry-examples.html#d2d-ch2cch2","title":"D2d \u00a0 CH2CCH2","text":"The C2 axis is the z axis (z is also the S4 axis). The x and y axes are the perpendicular C2\u2018s. The \u03c3d planes are: 1) the plane containing the x=y axis and the z axis and 2) the plane containing the -x=y axis and the z axis.
geometry units angstroms\n symmetry d2d\n c 0 0 0 \n c 0 0 1.300 \n h 0.656 0.656 1.857 \n end\n
"},{"location":"Geometry-examples.html#d5h-cyclopentadiene-anion","title":"D5h \u00a0 cyclopentadiene anion","text":"The C5 axis is the z axis (z is also the S5 axis). The y axis is one of the perpendicular C2 axes. The \u03c3h plane is the xy plane and one of the \u03c3d planes is the yz plane.
charge -1\n geometry units angstroms\n symmetry d5h\n c 0 1.1853 0 \n h 0 2.2654 0 \n end\n
"},{"location":"Geometry-examples.html#d4h-gold-tetrachloride","title":"D4h \u00a0 gold tetrachloride","text":"The C4 axis is the z axis (z is also the S4 axis). The C2\u2018 axes are the x and y axes and the C2\u2018\u2019 axes are the x=y axis and the x=-y axis. The inversion center is the origin. The \u03c3h plane is the xy plane. The \u03c3v planes are the xz and yz planes and the \u03c3d planes are 1) the plane containing the x=-y axis and the z axis and 2) the plane containing the x=y axis and the z axis.
geometry units au\n Au 0 0 0 \n Cl 0 4.033 0\n symmetry D4h\n end\n
"},{"location":"Geometry-load.html","title":"Geometry load","text":""},{"location":"Geometry-load.html#load","title":"LOAD","text":"\u00a0\u00a0\u00a0[\u00a0LOAD\u00a0[format\u00a0xyz||pdb]\u00a0\u00a0[frame\u00a0<int frame>]\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[select\u00a0[not]\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[name\u00a0<string atomname>]\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[rname\u00a0<string residue-name>] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[id\u00a0\u00a0<int atom-id>|<int range atom-id1:atom-id2>\u00a0...\u00a0] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[resi\u00a0<int residue-id>|<int range residue-id1:residue-id2>\u00a0...\u00a0] \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0] \n\u00a0\u00a0 \n\u00a0\u00a0\u00a0<string filename>\u00a0]\n
The LOAD directive allows users to load Cartesian coordinates from external pdb or xyz files with the name . This directive works in addition to the explicit Cartesian coordinate declaration and can be repeated and mixed with the latter. This allows for complex coordinate assemblies where some coordinates are loaded from external files and some specified explicitly in the input file. The ordering of coordinates in the final geometry will follow the order in which LOAD statements and explicit coordinates are specified.
\u00a0select\u00a0id\u00a02\u00a04:6\u00a09\n
will result in the selection of atom id\u2019s 2 4 5 6 9.
Multiple selection criteria are always combined as AND selections. For example
\u00a0\u00a0select\u00a0name\u00a0O\u00a0\u00a0id\u00a02:4\n
will select atoms that are named O and whose id/index is between 2 and 4. Each selection criteria can be inverted by prepending not keyword. For example
\u00a0\u00a0select\u00a0not\u00a0name\u00a0O\u00a0\u00a0id\u00a02:4\n
will select all atoms that are not named O and whose id/index is between 2 and 4.
"},{"location":"Geometry.html","title":"Geometries","text":""},{"location":"Geometry.html#overview","title":"Overview","text":"The GEOMETRY directive is a compound directive that allows the user to define the geometry to be used for a given calculation. The directive allows the user to specify the geometry with a relatively small amount of input, but there are a large number of optional keywords and additional subordinate directives that the user can specify, if needed. The directive therefore appears to be rather long and complicated when presented in its general form, as follows:
GEOMETRY [<string name default geometry>] \\ \n [units <string units default angstroms>] \\ \n [(angstrom_to_au || ang2au) \\ \n <real angstrom_to_au default 1.8897265>] \\ \n [print [xyz] || noprint] \\ \n [center || nocenter] \\ \n [bqbq] \\ \n [autosym [real tol default 1d-2] || noautosym] \\ \n [autoz || noautoz] \\ \n [adjust] \\ \n [(nuc || nucl || nucleus) <string nucmodel>] \n [SYMMETRY [group] <string group_name> [print] \\ \n [tol <real tol default 1d-2>]] \n [ [LOAD] [format xyz||pdb] [frame <int frame>] \\ \n [select [not] \\ \n [name <string atomname>] \\ \n [rname <string residue-name>] \n [id <int atom-id>|<int range atom-id1:atom-id2> ... ] \n [resi <int residue-id>|<int range residue-id1:residue-id2> ... ] \n ] \n <string filename> ] \n\n <string tag> <real x y z> [vx vy vz] [charge <real charge>] \\ \n [mass <real mass>] \\ \n [(nuc || nucl || nucleus) <string nucmodel>] \n ... ] \n [ZMATRIX || ZMT || ZMAT \n <string tagn> <list_of_zmatrix_variables> \n ... \n [VARIABLES \n <string symbol> <real value> \n ... ] \n [CONSTANTS \n <string symbol> <real value> \n ... ] \n (END || ZEND)] \n [ZCOORD \n CVR_SCALING <real value> \n BOND <integer i> <integer j> \\ \n [<real value>] [<string name>] [constant] \n ANGLE <integer i> <integer j> \\ \n [<real value>] [<string name>] [constant] \n TORSION <integer i> <integer j> <integer k> <integer l> \\ \n [<real value>] [<string name>] [constant] \n END] \n\n [SYSTEM surface <molecule polymer surface crystal default molecule> \n lat_a <real lat_a> lat_b <real lat_b> lat_c <real lat_c> \n alpha <real alpha> beta <real beta> gamma <real gamma> \n END] \n END\n
The three main parts of the GEOMETRY directive are:
The following sections present the input for this compound directive in detail, describing the options available and the usages of the various keywords in each of the three main parts.
Keywords of the GEOMETRY directive
SYMMETRY: Symmetry Group Input
Names of 3-dimensional space groups
Cartesian coordinate input
ZMATRIX: Z-matrix input
ZCOORD: Forcing internal coordinates
SYSTEM: Lattice parameters for periodic systems
LOAD: Load geometry from XYZ file
This section provides an overview of NWChem input and program architecture, and the syntax used to describe the input. See Simple Input File and Water Molecule Input for examples of NWChem input files with detailed explanation.
NWChem consists of independent modules that perform the various functions of the code. Examples of modules include the input parser, SCF energy, SCF analytic gradient, DFT energy, etc.. Data is passed between modules and saved for restart using a disk-resident database or dumpfile (see NWChem Architecture).
The input to NWChem is composed of commands, called directives, which define data (such as basis sets, geometries, and filenames) and the actions to be performed on that data. Directives are processed in the order presented in the input file, with the exception of certain start-up directives (see Input File Structure) which provide critical job control information, and are processed before all other input. Most directives are specific to a particular module and define data that is used by that module only. A few directives (see Top-level Directives) potentially affect all modules, for instance by specifying the total electric charge on the system.
There are two types of directives. Simple directives consist of one line of input, which may contain multiple fields. Compound directives group together multiple simple directives that are in some way related and are terminated with an END directive. See the sample inputs (Simple Input File and Water Molecule Input) and the input syntax specification (Input Format and Syntax for Directives).
All input is free format and case is ignored except for actual data (e.g., names/tags of centers, titles). Directives or blocks of module-specific directives (i.e., compound directives) can appear in any order, with the exception of the TASK directive (see Input File Structure and Tasks) which is used to invoke an NWChem module. All input for a given task must precede the TASK directive. This input specification rule allows the concatenation of multiple tasks in a single NWChem input file.
To make the input as short and simple as possible, most options have default values. The user needs to supply input only for those items that have no defaults, or for items that must be different from the defaults for the particular application. In the discussion of each directive, the defaults are noted, where applicable.
The input file structure is described in the following sections, and illustrated with two examples. The input format and syntax for directives is also described in detail.
"},{"location":"Getting-Started.html#nwchemrc-for-environment-variables-and-libraries","title":".nwchemrc for environment variables and libraries","text":"Each user should have a .nwchemrc
file to point to default data files, such as basis sets, pseudopotentials, and MD potentials.
Contents of the default.nwchemrc file based on the above information should be:
nwchem_basis_library <location of NWChem installation>/src/basis/libraries/ \n nwchem_nwpw_library <location of NWChem installation>/src/nwpw/libraryps/ \n ffield amber \n amber_1 <location of NWChem installation>/src/data/amber_s/ \n amber_2 <location of NWChem installation>/src/data/amber_q/ \n amber_3 <location of NWChem installation>/src/data/amber_x/ \n amber_4 <location of NWChem installation>/src/data/amber_u/ \n spce <location of NWChem installation>/src/data/solvents/spce.rst \n charmm_s <location of NWChem installation>/src/data/charmm_s/ \n charmm_x <location of NWChem installation>/src/data/charmm_x/\n
It is can also be useful to use the NWCHEM_BASIS_LIBRARY environment variable when testing a new libraries in your own directory. This will allow you to overwrite the value of nwchem_basis_library in your .nwchemrc file and point to the new basis library. For example:
% setenv NWCHEM_BASIS_LIBRARY \"$NWCHEM/data-5.0/libraries/\"\n
Do not forget the trailing \"/\"
.
The structure of an input file reflects the internal structure of NWChem. At the beginning of a calculation, NWChem needs to determine how much memory to use, the name of the database, whether it is a new or restarted job, where to put scratch/permanent files, etc.. It is not necessary to put this information at the top of the input file, however. NWChem will read through the entire input file looking for the start-up directives. In this first pass, all other directives are ignored.
The start-up directives are
START \nRESTART \nSCRATCH_DIR \nPERMANENT_DIR \nMEMORY \nECHO\n
After the input file has been scanned for the start-up directives, it is rewound and read sequentially. Input is processed either by the top-level parser (for the directives listed in Top-level Directives, such as TITLE, SET, \u2026) or by the parsers for specific computational modules (e.g., SCF, DFT, \u2026). Any directives that have already been processed (e.g., MEMORY) are ignored. Input is read until a TASK directive (see Tasks) is encountered. A TASK directive requests that a calculation be performed and specifies the level of theory and the operation to be performed. Input processing then stops and the specified task is executed. The position of the TASK directive in effect marks the end of the input for that task. Processing of the input resumes upon the successful completion of the task, and the results of that task are available to subsequent tasks in the same input file.
The name of the input file is usually provided as an argument to the execute command for NWChem. That is, the execute command looks something like the following
nwchem input_file\n
The default name for the input file is nwchem.nw
. If an input file name input_file
is specified without an extension, the code assumes .nw as a default extension, and the input filename becomes input_file.nw
. If the code cannot locate a file named either input_file
or input_file.nw
(or nwchem.nw if no file name is provided), an error is reported and execution terminates. The following section presents two input files to illustrate the directive syntax and input file format for NWChem applications.
A simple example of an NWChem input file is an SCF geometry optimization of the nitrogen molecule, using a Dunning cc-pvdz basis set. This input file contains the bare minimum of information the user must specify to run this type of problem \u2013 fewer than ten lines of input, as follows:
title \"Nitrogen cc-pvdz SCF geometry optimization\" \n geometry \n n 0 0 0 \n n 0 0 1.08 \n end \n basis \n n library cc-pvdz \n end \n task scf optimize\n
Examining the input line by line, it can be seen that it contains only four directives; TITLE, GEOMETRY, BASIS, and TASK. The TITLE directive is optional, and is provided as a means for the user to more easily identify outputs from different jobs. An initial geometry is specified in Cartesian coordinates and Angstr\u00f8ms by means of the GEOMETRY directive. The Dunning cc-pvdz basis is obtained from the NWChem basis library, as specified by the BASIS directive input. The TASK directive requests an SCF geometry optimization.
The GEOMETRY directive defaults to Cartesian coordinates and Angstr\u00f8ms (options include atomic units and Z-matrix format). The input blocks for the BASIS and GEOMETRY directives are structured in similar fashion, i.e., name, keyword, \u2026, end (In this simple example, there are no keywords). The BASIS input block must contain basis set information for every atom type in the geometry with which it will be used. Refer to Basis for a description of available basis sets and a discussion of how to define new ones.
The last line of this sample input file (task scf optimize) tells the program to optimize the molecular geometry by minimizing the SCF energy. (For a description of possible tasks and the format of the TASK directive, refer to Tasks)
If the input is stored in the file n2.nw
, the command to run this job on a typical UNIX workstation is as follows:
nwchem n2\n
NWChem output is to UNIX standard output, and error messages are sent to both standard output and standard error.
"},{"location":"Getting-Started.html#water-molecule-sample-input-file","title":"Water Molecule Sample Input File","text":"A more complex sample problem is the optimization of a positively charged water molecule using second-order M\u00f8ller-Plesset perturbation theory (MP2), followed by a computation of frequencies at the optimized geometry. A preliminary SCF geometry optimization is performed using a computationally inexpensive basis set (STO-3G). This yields a good starting guess for the optimal geometry, and any Hessian information generated will be used in the next optimization step. Then the optimization is finished using MP2 and a basis set with polarization functions. The final task is to calculate the MP2 vibrational frequencies. The input file to accomplish these three tasks is as follows:
start h2o_freq \ncharge 1 \ngeometry units angstroms \n O 0.0 0.0 0.0 \n H 0.0 0.0 1.0 \n H 0.0 1.0 0.0 \nend \nbasis \n H library sto-3g \n O library sto-3g \nend \nscf \n uhf; doublet \n print low \nend \ntitle \"H2O+ : STO-3G UHF geometry optimization\" \ntask scf optimize \nbasis \n H library 6-31g** \n O library 6-31g** \nend \ntitle \"H2O+ : 6-31g** UMP2 geometry optimization\" \ntask mp2 optimize \nmp2; print none; end \nscf; print none; end \ntitle \"H2O+ : 6-31g** UMP2 frequencies\" \ntask mp2 freq\n
The START directive (START/RESTART tells NWChem that this run is to be started from the beginning. This directive need not be at the beginning of the input file, but it is commonly placed there. Existing database or vector files are to be ignored or overwritten. The entry h2o_freq on the START line is the prefix to be used for all files created by the calculation. This convention allows different jobs to run in the same directory or to share the same scratch directory SCRATCH_DIR/PERMANENT_DIR, as long as they use different prefix names in this field.
As in the first sample problem, the geometry is given in Cartesian coordinates. In this case, the units are specified as Angstr\u00f8ms. (Since this is the default, explicit specification of the units is not actually necessary, however.) The CHARGE directive defines the total charge of the system. This calculation is to be done on an ion with charge +1.
A small basis set (STO-3G) is specified for the intial geometry optimization. Next, the multiple lines of the first SCF directive in the scf \u2026end block specify details about the SCF calculation to be performed. Unrestricted Hartree-Fock is chosen here (by specifying the keyword uhf), rather than the default, restricted open-shell high-spin Hartree-Fock (ROHF). This is necessary for the subsequent MP2 calculation, because only UMP2 is currently available for open-shell systems (see Section 4). For open-shell systems, the spin multiplicity has to be specified (using doublet in this case), or it defaults to singlet. The print level is set to low to avoid verbose output for the starting basis calculations.
All input up to this point affects only the settings in the runtime database. The program takes its information from this database, so the sequence of directives up to the first TASK directive is irrelevant. An exchange of order of the different blocks or directives would not affect the result. The TASK directive, however, must be specified after all relevant input for a given problem. The TASK directive causes the code to perform the specified calculation using the parameters set in the preceding directives. In this case, the first task is an SCF calculation with geometry optimization, specified with the input scf and optimize. (See Tasks for a list of available tasks and operations.)
After the completion of any task, settings in the database are used in subsequent tasks without change, unless they are overridden by new input directives. In this example, before the second task (task mp2 optimize), a better basis set (6-31G**) is defined and the title is changed. The second TASK directive invokes an MP2 geometry optimization.
Once the MP2 optimization is completed, the geometry obtained in the calculation is used to perform a frequency calculation. This task is invoked by the keyword freq in the final TASK directive, task mp2 freq. The second derivatives of the energy are calculated as numerical derivatives of analytical gradients. The intermediate energies and gradients are not of interest in this case, so output from the SCF and MP2 modules is disabled with the PRINT directives.
"},{"location":"Getting-Started.html#input-format-and-syntax-for-directives","title":"Input Format and Syntax for Directives","text":"This section describes the input format and the syntax used in the rest of this documentation to describe the format of directives. The input format for the directives used in NWChem is similar to that of UNIX shells, which is also used in other chemistry packages, most notably GAMESS-UK. An input line is parsed into whitespace (blanks or tabs) separating tokens or fields. Any token that contains whitespace must be enclosed in double quotes in order to be processed correctly. For example, the basis set with the descriptive name modified Dunning DZ must appear in a directive as \u201cmodified Dunning DZ\u201d, since the name consists of three separate words.
"},{"location":"Getting-Started.html#input-format","title":"Input Format","text":"A (physical) line in the input file is terminated with a newline character (also known as a `return\u2019 or `enter\u2019 character). A semicolon (;) can be also used to indicate the end of an input line, allowing a single physical line of input to contain multiple logical lines of input. For example, five lines of input for the GEOMETRY directive can be entered as follows;
geometry \n O 0 0 0 \n H 0 1.430 1.107 \n H 0 -1.430 1.107 \n end\n
These same five lines could be entered on a single line, as
geometry; O 0 0 0; H 0 1.430 1.107; H 0 -1.430 1.107; end\n
This one physical input line comprises five logical input lines. Each logical or physical input line must be no longer than 1023 characters.
In the input file:
\\
(backslash) at the end of a line concatenates it with the next line. Note that a space character is automatically inserted at this point so that it is not possible to split tokens across lines. A backslash is also used to quote special characters such as whitespace, semi-colons, and hash symbols so as to avoid their special meaning (NOTE: these special symbols must be quoted with the backslash even when enclosed within double quotes).;
(semicolon) is used to mark the end of a logical input line within a physical line of input.#
(the hash or pound symbol) is the comment character. All characters following #
(up to the end of the physical line) are ignored.Directives consist of a directive name, keywords, and optional input, and may contain one line or many. Simple directives consist of a single line of input with one or more fields. Compound directives can have multiple input lines, and can also include other optional simple and compound directives. A compound directive is terminated with an END directive. The directives START (see START/RESTART) and ECHO (see ECHO) are examples of simple directives. The directive GEOMETRY (see Geometry) is an example of a compound directive.
Some limited checking of the input for self-consistency is performed by the input module, but most defaults are imposed by the application modules at runtime. It is therefore usually impossible to determine beforehand whether or not all selected options are consistent with each other.
In the rest of this document, the following notation and syntax conventions are used in the generic descriptions of the NWChem input.
<input_filename>
, <basisname>
, <tag>
).$variable$
is used to indicate the substitution of the value of a variable.()
is used to group items (the parentheses and other special symbols should not appear in the input).||
separate exclusive options, parameters, or formats.[ ]
enclose optional entries that have a default value.< >
enclose a type, a name of a value to be specified, or a default value, if any.\\
is used to concatenate lines in a description....
is used to indicate indefinite continuation of a list.An input parameter is identified in the description of the directive by prefacing the name of the item with the type of data expected, i.e.,
If an input item is not prefaced by one of these type names, it is assumed to be of type ``string\u2019\u2018.
In addition, integer lists may be specified using Fortran triplet notation, which interprets lo:hi:inc as lo, lo+inc, lo+2*inc, \u2026, hi. For example, where a list of integers is expected in the input, the following two lines are equivalent
7 10 21:27:2 1:3 99 \n 7 10 21 23 25 27 1 2 3 99\n
(In Fortran triplet notation, the increment, if unstated, is 1; e.g., 1:3 = 1:3:1.)
The directive VECTORS is presented here as an example of an NWChem input directive. The general form of the directive is as follows:
VECTORS [input (<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>)] \\ \n [swap [(alpha||beta)] <integer vec1 vec2> ...] \\ \n [output <string output_movecs default $file_prefix$.movecs>]\n
This directive contains three optional keywords, as indicated by the three main sets of square brackets enclosing the keywords input, swap, and output. The keyword input allows the user to specify the source of the molecular orbital vectors. There are two mutually exclusive options for specifying the vectors, as indicated by the || symbol separating the option descriptions;
(<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>) \\\n
The first option, <string input_movecs default atomic>
, can be used to specify an ASCII character string for the parameter input_movecs
. If no entry is specified, the code uses the default atomic
(i.e., atomic guess). The second option, project <string basisname> <string filename>
, contains the keyword project
, which takes two string arguments. When this keyword is used, the vectors in file <filename>
will be projected from the (smaller) basis <basisname>
into the current atomic orbital (AO) basis.
The second keyword, swap
, can be used to re-order the starting vectors, specifying the pairs of vectors to be swapped. As many pairs as the user wishes to have swapped can be listed for . The optional keywords alpha and beta allow the user to swap the alpha or beta spin orbitals.
The third keyword, output
, allows the user to tell the code where to store the vectors, by specifying an ASCII string for the parameter output_movecs
. If no entry is specified for this parameter, the default is to write the vectors back into either the user- specified MO vectors input file or, if this is not available, the file $file_prefix$.movecs
.
A particular example of the VECTORS directive is shown below. It specifies both the input and output keywords, but does not use the swap option.
vectors input project \"small basis\" small_basis.movecs \\\n output large_basis.movecs\n
This directive tells the code to generate input vectors by projecting from vectors in a smaller basis named \u201csmall basis\u201d, which is stored in the file small_basis.movecs
. The output vectors will be stored in the file large_basis.movecs
.
The order of keyed optional entries within a directive should not matter, unless noted otherwise in the specific instructions for a particular directive.
"},{"location":"Guidelines-for-Authors.html","title":"TO BE REVISED. MOST OF THE CONTENT HERE IS OBSOLETE","text":"The current wiki has been created to provide documentation related to NWChem. This includes the user manual, tutorials and common practices, as well as programmer references, as well as other useful information. In order to make this wiki as useful as possible to the NWChem community a certain level of consistency of style is useful. To asist with this and beause of the nature of the subject matter of this specific wiki a number of tools and extensions have been selected to help document relevant aspects. These tools and suggestions for their use will be discussed here as well. Obviously for general information on these tools external references will be used.
"},{"location":"Guidelines-for-Authors.html#tools","title":"Tools","text":"This wiki has a number of extensions installed to facilitate the documentation process for which it is intended. The configuration of the wiki installation can found at Special:Version. For the purpose of this wiki there are a number of aspects that are relevant. These include Links, Picturs.
"},{"location":"Guidelines-for-Authors.html#links","title":"Links","text":""},{"location":"Guidelines-for-Authors.html#intra-wiki-links-to-other-pages","title":"Intra wiki links to other pages","text":""},{"location":"Guidelines-for-Authors.html#pictures","title":"Pictures","text":"There are a variety of situations where the best way to show something is to provide a picture. In order to do this the image file has to be uploaded (see the Upload page) to the wiki server. Next a link on the wiki page to the image file has be included. In order to avoid trampling over previously uploaded image files it is recommended to check the list of previously uploaded files at the ListFiles page.
As an example the (old) NWChem logo image is used. First the picture was included on with wiki page using
[[file:Nwchem_logo_dark.png|NWChem\u00a0logo]]
to give
NWChem`` ``logo
Alternatively the construct
[[media:Nwchem_logo_dark.png]]
gives
media:Nwchem_logo_dark.png
The effort to add movies to the Wiki pages is under development.
Media:Eric.mpg
Eric.mpg
"},{"location":"Guidelines-for-Authors.html#counters","title":"Counters","text":"Below is a list of files and the number of times they have been downloaded.
All Releases Downloads
Latest Release Downloads
Total Pre-Releases Downloads
v6.8-beta.3 Downloads
v6.8 Downloads
"},{"location":"Guidelines-for-Authors.html#references","title":"References","text":""},{"location":"Hartree-Fock-Theory-for-Molecules.html","title":"Hartree-Fock","text":""},{"location":"Hartree-Fock-Theory-for-Molecules.html#overview","title":"Overview","text":"The NWChem self-consistent field (SCF) module computes closed-shell restricted Hartree-Fock (RHF) wavefunctions, restricted high-spin open-shell Hartree-Fock (ROHF) wavefunctions, and spin-unrestricted Hartree-Fock (UHF) wavefunctions. The Hartree-Fock equations are solved using a conjugate-gradient method with an orbital Hessian based preconditioner1. The module supports both replicated data and distributed data Fock builders2.
The SCF directive provides input to the SCF module and is a compound directive that encloses additional directives specific to the SCF module:
SCF\n ... \n END\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#wavefunction-type","title":"Wavefunction type","text":"A spin-restricted, closed shell RHF calculation is performed by default. An error results if the number of electrons is inconsistent with this assumption. The number of electrons is inferred from the total charge on the system and the sum of the effective nuclear charges of all centers (atoms and dummy atoms, see GEOMETRY). The total charge on the system is zero by default, unless specified at some value by input on the CHARGE directive Total system charge.
The options available to define the SCF wavefunction and multiplicity are as follows:
SINGLET \n DOUBLET \n TRIPLET \n QUARTET \n QUINTET \n SEXTET\n SEPTET\n OCTET\n NOPEN <integer nopen default 0>\n RHF\n ROHF\n UHF\n
The optional keywords SINGLET, DOUBLET, \u2026, OCTET and NOPEN allow the user to specify the number of singly occupied orbitals for a particular calculation. SINGLET is the default, and specifies a closed shell; DOUBLET specifies one singly occupied orbital; TRIPLET specifies two singly occupied orbitals; and so forth. If there are more than seven singly occupied orbitals, the keyword NOPEN must be used, with the integer nopen defining the number of singly occupied orbitals (sometimes referred to as open shells).
If the multiplicity is any value other than SINGLET, the default calculation will be a spin-restricted, high-spin, open-shell SCF calculation (keyword ROHF). The open-shell orbitals must be the highest occupied orbitals. If necessary, any starting vectors may be rearranged through the use of the SWAP keyword on the VECTORS directive to accomplish this.
A spin-unrestricted solution can also be performed by specifying the keyword UHF. In UHF calculations, it is assumed that the number of singly occupied orbitals corresponds to the difference between the number of alpha-spin and beta-spin orbitals. For example, a UHF calculation with 2 more alpha-spin orbitals than beta-spin orbitals can be obtained by specifying
scf \n triplet ; uhf # (Note: two logical lines of input) \n ... \n end\n
The user should be aware that, by default, molecular orbitals are symmetry adapted in NWChem. This may not be desirable for fully unrestricted wavefunctions. In such cases, the user has the option of defeating the defaults by specifying the keywords ADAPT OFF and SYM OFF .
The keywords RHF and ROHF are provided in the code for completeness. It may be necessary to specify these in order to modify the behavior of a previous calculation (see NWChem Architecture for restart behavior).
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#sym-use-of-symmetry","title":"SYM: use of symmetry","text":" SYM <string (ON||OFF) default ON>\n
This directive enables/disables the use of symmetry to speed up Fock matrix construction (via the petite-list or skeleton algorithm) in the SCF, if symmetry was used in the specification of the geometry. Symmetry adaptation of the molecular orbitals is not affected by this option. The default is to use symmetry if it is specified in the geometry directive.
For example, to disable use of symmetry in Fock matrix construction:
sym off\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#adapt-symmetry-adaptation-of-mos","title":"ADAPT: symmetry adaptation of MOs","text":" ADAPT <string (ON||OFF) default ON>\n
The default in the SCF module calculation is to force symmetry adaption of the molecular orbitals. This does not affect the speed of the calculation, but without explicit adaption the resulting orbitals may be symmetry contaminated for some problems. This is especially likely if the calculation is started using orbitals from a distorted geometry.
The underlying assumption in the use of symmetry in Fock matrix construction is that the density is totally symmetric. If the orbitals are symmetry contaminated, this assumption may not be valid \u2013 which could result in incorrect energies and poor convergence of the calculation. It is thus advisable when specifying ADAPT OFF
to also specify SYM OFF
(Use of Symmetry).
TOL2E <real tol2e default min(10e-7 , 0.01*thresh)>\n
The variable tol2e is used in determining the integral screening threshold for the evaluation of the energy and related Fock-like matrices. The Schwarz inequality is used to screen the product of integrals and density matrices in a manner that results in an accuracy in the energy and Fock matrices that approximates the value specified for tol2e
.
It is generally not necessary to set this parameter directly. Specify instead the required precision in the wavefunction, using the THRESH
directive (Convergence threshold). The default threshold is the minimum of 10-7 and 0.01 times the requested convergence threshold for the SCF calculation (Convergence threshold).
The input to specify the threshold explicitly within the SCF directive is, for example:
tol2e 1e-9\n
For very diffuse basis sets, or for high-accuracy calculations it might be necessary to set this parameter. A value of 10-12 is sufficient for nearly all such purposes.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-inputoutput-of-mo-vectors","title":"VECTORS: input/output of MO vectors","text":" VECTORS [[input] (<string input_movecs default atomic>) || \\ \n (project <string basisname> <string filename>) || \\ \n (fragment <string file1> [<string file2> ...])] \\ \n [swap [alpha||beta] <integer vec1 vec2> ...] \\ \n [reorder <integer atom1 atom2> ...] \\ \n [output <string output_filename default input_movecs>] \\ \n [lock] \n [rotate <string input_geometry> <string input_movecs>]\n
The VECTORS directive allows the user to specify the source and destination of the molecular orbital vectors. In a startup calculation (see START), the default source for guess vectors is a diagonalized Fock matrix constructed from a superposition of the atomic density matrices for the particular problem. This is usually a very good guess. For a restarted calculation, the default is to use the previous MO vectors.
The optional keyword INPUT allows the user to specify the source of the input molecular orbital vectors as any of the following:
ATOMIC
\u2013 eigenvectors of a Fock-like matrix formed from a superposition of the atomic densities (the default guess). See Atomic guess and Accuracy of initial guess.HCORE
\u2013 eigenvectors of the bare-nucleus Hamiltonian or the one-electron Hamiltonian.PROJECT basisname filename
\u2013 projects the existing MO vectors in the file filename from the smaller basis with name basisname into the current basis. The definition of the basis basisname must be available in the current database, and the basis must be smaller than the current basis. In addition, the geometry used for the previous calculations must have the atoms in the same order and in the same orientation as the current geometry.FRAGMENT file1 ...
\u2013 assembles starting MO vectors from previously performed calculations on fragments of the system and is described in more detail in Superposition of fragment molecular orbitals. Even though there are some significant restrictions in the use of the initial implementation of this method, this is the most powerful initial guess option within the code. It is very effective for open shell metallic systems.ROTATE input_geometry input_movecs
\u2013 rotates MO vectors generated at a previous geometry to the current active geometry.The molecular orbitals are saved every iteration if more than 600 seconds have elapsed, and also at the end of the calculation. At completion (converged or not), the SCF module always canonically transforms the molecular orbitals by separately diagonalizing the closed-closed, open-open, and virtual-virtual blocks of the Fock matrix.
The name of the file used to store the MO vectors is determined as follows:
OUTPUT
keyword was specified on the VECTORS
directive, then the filename that follows this keyword is used, orThe name of this file is stored in the database so that a subsequent SCF calculation will automatically restart from these MO vectors.
Applications of this directive are illustrated in the following examples.
Example 1:
vectors output h2o.movecs\n
Assuming a start-up calculation, this directive will result in use of the default atomic density guess, and will output the vectors to the file h2o.movecs.
Example 2:
vectors input initial.movecs output final.movecs\n
This directive will result in the initial vectors being read from the file \u201cinitial.movecs\u201d. The results will be written to the file final.movecs. The contents of \u201cinitial.movecs\u201d will not be changed.
Example 3:
vectors input project \"small basis\" small.movecs\n
This directive will cause the calculation to start from vectors in the file \u201csmall.movecs\u201d which are in a basis named \u201csmall basis\u201d. The output vectors will be written to the default file \u201c\u201c."},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-swap-keyword","title":"VECTORS SWAP keyword","text":"
Once starting vectors have been obtained using any of the possible options, they may be reordered through use of the SWAP keyword. This optional keyword requires a list of orbital pairs that will be swapped. For UHF calculations, separate SWAP keywords may be provided for the alpha and beta orbitals, as necessary.
An example of use of the SWAP directive:
vectors input try1.movecs swap 173 175 174 176 output try2.movecs\n
This directive will cause the initial orbitals to be read from the file \u201ctry1.movecs\u201d. The vectors for the orbitals within the pairs 173-175 will be swapped with those within 174-176, so the resulting order is 175, 176, 173, 174. The final orbitals obtained in the calculation will be written to the file \u201ctry2.movecs\u201d.
The swapping of orbitals occurs as a sequential process in the order (left to right) input by the user. Thus, regarding each pair as an elementary transposition it is possible to construct arbitrary permutations of the orbitals. For instance, to apply the permutation (6 7 8 9)
we note that this permutation is equal to (6 7)(7 8)(8 9)
, and thus may be specified as
vectors swap 8 9 7 8 6 7\n
Another example, now illustrating this feature for a UHF calculation, is the directive
vectors swap beta 4 5 swap alpha 5 6\n
This input will result in the swapping of the 5-6 alpha orbital pair and the 4-5 beta orbital pair. (All other items in the input use the default values.)
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-lock-keyword","title":"VECTORS LOCK keyword","text":"The LOCK keyword allows the user to specify that the ordering of orbitals will be locked to that of the initial vectors, insofar as possible. The default is to order by ascending orbital energies within each orbital space. One application where locking might be desirable is a calculation where it is necessary to preserve the ordering of a previous geometry, despite flipping of the orbital energies. For such a case, the LOCK directive can be used to prevent the SCF calculation from changing the ordering, even if the orbital energies change.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-reorder-keyword","title":"VECTORS REORDER keyword","text":"The mapping of the MO\u2019s to the nuclei can be changed using the REORDER keyword. Once starting vectors have been obtained using any of the possible options, the REORDER keyword moves the MO coefficients between atoms listed in the integer list. This keyword is particularly useful for calculating localized electron and hole states.
This optional keyword requires a list containing the new atom ordering. It is not necessary to provide separate lists for alpha and beta orbitals.
An example of use of the REORDER keyword:
vectors input try1.movecs reorder 2 1 output try2.movecs\n
This directive will cause the initial orbitals to be read from the file \u201ctry1.movecs\u201d. The MO coefficients for the basis functions on atom 2 will be swapped with those on atom 1. The final orbitals obtained in the calculation will be written to the file \u201ctry2.movecs\u201d.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-rotate-keyword","title":"VECTORS ROTATE keyword","text":"The following example shows how the ROTATE keyword can be used to rotate MO vectors calculated at geometry geom1
to geometry geom2
, which has a different rotational orientation:
set geometry geom1\ndft\n vectors input atomic output geom1.mo\nend\ntask dft\nset geometry geom2\ndft\n vectors input rotate geom1 geom1.mo output geom2.mo\nend\ntask dft\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#vectors-fragment-superposition-of-fragment-molecular-orbitals","title":"VECTORS FRAGMENT: Superposition of fragment molecular orbitals","text":"The fragment initial guess is particularly useful in the following instances:
VECTORS [input] fragment <string file1> [<string file2> ...]\n
The molecular orbitals are formed by superimposing the previously generated orbitals of fragments of the molecule being studied. These fragment molecular orbitals must be in the same basis as the current calculation. The input specifies the files containing the fragment molecular orbitals. For instance, in a calculation on the water dimer, one might specify
vectors fragment h2o1.movecs h2o2.movecs\n
where h2o1.movecs contains the orbitals for the first fragment, and h2o2.movecs contains the orbitals for the second fragment.
A complete example of the input for a calculation on the water dimer using the fragment guess is as follows:
start dimer\ntitle \"Water dimer SCF using fragment initial guess\"\ngeometry dimer\n O -0.595 1.165 -0.048\n H 0.110 1.812 -0.170\n H -1.452 1.598 -0.154\n O 0.724 -1.284 0.034\n H 0.175 -2.013 0.348\n H 0.177 -0.480 0.010\nend\ngeometry h2o1\n O -0.595 1.165 -0.048\n H 0.110 1.812 -0.170\n H -1.452 1.598 -0.154\nend\ngeometry h2o2\n O 0.724 -1.284 0.034\n H 0.175 -2.013 0.348\n H 0.177 -0.480 0.010\nend\nbasis\n o library 3-21g\n h library 3-21g\nend\nset geometry h2o1\nscf; vectors input atomic output h2o1.movecs; end\ntask scf\nset geometry h2o2\nscf; vectors input atomic output h2o2.movecs; end\ntask scf\nset geometry dimer\nscf\nvectors input fragment h2o1.movecs h2o2.movecs \\\n output dimer.movecs\nend\ntask scf\n
First, the geometry of the dimer and the two monomers are specified and given names. Then, after the basis specification, calculations are performed on the fragments by setting the geometry to the appropriate fragment (SET) and redirecting the output molecular orbitals to an appropriately named file. Note also that use of the atomic initial guess is forced, since the default initial guess is to use any existing MOs which would not be appropriate for the second fragment calculation. Finally, the dimer calculation is performed by specifying the dimer geometry, indicating use of the fragment guess, and redirecting the output MOs.
The following points are important in using the fragment initial guess:
VECTORS
directive.VECTORS
directive, it is usually much better to do a separate calculation for each fragment.A more involved example is now presented. We wish to model the sextet state of Fe(III) complexed with water, imidazole and a heme with a net unit positive charge. The default atomic guess does not give the correct d5 occupation for the metal and also gives an incorrect state for the double anion of the heme. The following performs calculations on all of the fragments. Things to note are:
start heme6a1\ntitle \"heme-H2O (6A1) from M.Dupuis\"\n############################################################\n# Define the geometry of the full system and the fragments #\n############################################################\ngeometry full-system\n symmetry cs\n H 0.438 -0.002 4.549\n C 0.443 -0.001 3.457\n C 0.451 -1.251 2.828\n C 0.452 1.250 2.828\n H 0.455 2.652 4.586\n H 0.461 -2.649 4.586\n N1 0.455 -1.461 1.441\n N1 0.458 1.458 1.443\n C 0.460 2.530 3.505\n C 0.462 -2.530 3.506\n C 0.478 2.844 1.249\n C 0.478 3.510 2.534\n C 0.478 -2.848 1.248\n C 0.480 -3.513 2.536\n C 0.484 3.480 0.000\n C 0.485 -3.484 0.000\n H 0.489 4.590 2.664\n H 0.496 -4.592 2.669\n H 0.498 4.573 0.000\n H 0.503 -4.577 0.000\n H -4.925 1.235 0.000\n H -4.729 -1.338 0.000\n C -3.987 0.685 0.000\n N -3.930 -0.703 0.000\n C -2.678 1.111 0.000\n C -2.622 -1.076 0.000\n H -2.284 2.126 0.000\n H -2.277 -2.108 0.000\n N -1.838 0.007 0.000\n Fe 0.307 0.000 0.000\n O 2.673 -0.009 0.000\n H 3.238 -0.804 0.000\n H 3.254 0.777 0.000\nend\ngeometry ring-only\n symmetry cs\n H 0.438 -0.002 4.549\n C 0.443 -0.001 3.457\n C 0.451 -1.251 2.828\n C 0.452 1.250 2.828\n H 0.455 2.652 4.586\n H 0.461 -2.649 4.586\n N1 0.455 -1.461 1.441\n N1 0.458 1.458 1.443\n C 0.460 2.530 3.505\n C 0.462 -2.530 3.506\n C 0.478 2.844 1.249\n C 0.478 3.510 2.534\n C 0.478 -2.848 1.248\n C 0.480 -3.513 2.536\n C 0.484 3.480 0.000\n C 0.485 -3.484 0.000\n H 0.489 4.590 2.664\n H 0.496 -4.592 2.669\n Bq 0.307 0.0 0.0 charge 2 # simulate the iron\nend\ngeometry imid-only\n symmetry cs\n H 0.498 4.573 0.000\n H 0.503 -4.577 0.000\n H -4.925 1.235 0.000\n H -4.729 -1.338 0.000\n C -3.987 0.685 0.000\n N -3.930 -0.703 0.000\n C -2.678 1.111 0.000\n C -2.622 -1.076 0.000\n H -2.284 2.126 0.000\n H -2.277 -2.108 0.000\n N -1.838 0.007 0.000\nend\ngeometry fe-only\n symmetry cs\n Fe .307 0.000 0.000\nend\ngeometry water-only\n symmetry cs\n O 2.673 -0.009 0.000\n H 3.238 -0.804 0.000\n H 3.254 0.777 0.000\nend\n############################\n# Basis set for everything #\n############################\nbasis nosegment\n O library 6-31g*\n N library 6-31g*\n C library 6-31g*\n H library 6-31g*\n Fe library \"Ahlrichs pVDZ\"\nend\n##########################################################\n# SCF on the fragments for initial guess for full system #\n##########################################################\nscf; thresh 1e-2; end\nset geometry ring-only\nscf; vectors atomic swap 80 81 output ring.mo; end\ntask scf\nset geometry water-only\nscf; vectors atomic output water.mo; end\ntask scf\nset geometry imid-only\nscf; vectors atomic output imid.mo; end\ntask scf\ncharge 3\nset geometry fe-only\nscf; sextet; vectors atomic output fe.mo; end\ntask scf\n##########################\n# SCF on the full system #\n##########################\nunset scf:* # This restores the defaults\ncharge 1\nset geometry full-system\nscf\n sextet\n vectors fragment ring.mo imid.mo fe.mo water.mo\n maxiter 50\nend\ntask scf\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#example-of-projecting-smaller-basis-into-larger-basis","title":"Example of projecting smaller basis into larger basis","text":"Key ingredient needed: definition of both the smaller and the larger basis set, plus mention of the small basis set in the \u201cinput project
\u201d line.
start he\n\n geometry\n he 0 0 0\n symmetry oh\n end\n\n basis small\n * library sto-3g\n end\n basis large\n * library 3-21g\n end\n\n set \"ao basis\" small\n scf\n vectors input atomic output small.mos\n end\n task scf \n\n set \"ao basis\" large\n scf\n vectors input project small small.mos output large.mos\n end\n task scf\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#atomic-guess-orbitals-with-charged-atoms","title":"Atomic guess orbitals with charged atoms","text":"As noted above, the default guess vectors are based on superimposing the density matrices of the neutral atoms. If some atoms are significantly charged, this default guess may be improved upon by modifying the atomic densities. This is done by setting parameters that add fractional charges to the occupation of the valence atomic orbitals. Since the atomic SCF program does not have its own input block, the SET directive (SET) must be used to set these parameters.
The input specifies a list of tags (i.e., names of atoms in a geometry, see GEOMETRY) and the charges to be added to those centers. Two parameters must be set as follows:
set atomscf:tags_z <string list_of_tags> \n set atomscf:z <real list_of_charges>\n
The array of strings atomscf:tags_z should be set to the list of tags, and the array atomscf:z should be set to the list of charges which must be real numbers (not integers). All atoms that have a tag specified in the list of tags will be assigned the corresponding charge from the list of charges.
For example, the following specifies that all oxygen atoms with tag O be assigned a charge of -1 and all iron atoms with tag Fe be assigned a charge of +2
set atomscf:z -1 2.0 \n set atomscf:tags_z O Fe\n
There are some limitations to this feature. It is not possible to add electrons to closed shell atoms, nor is it possible to remove all electrons from a given atom. Attempts to do so will cause the code to report an error, and it will not report further errors in the input for modifying the charge even when they are detected.
Finally, recall that the database is persistent (Data persistence) and that the modified settings will be used in subsequent atomic guess calculations unless the data is deleted from the database with the UNSET directive (UNSET).
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#accuracy-of-initial-guess","title":"Accuracy of initial guess","text":"For SCF, the initial Fock-matrix construction from the atomic guess is performed to a default precision of 1e-7. However, other wavefunctions, notably DFT, use a lower precision. In charged, or diffuse basis sets, this precision may not be sufficient and could result in incorrect ordering of the initial orbitals. The accuracy may be increased with the following directive which should be inserted in the top-level of input (i.e., outside of the SCF input block) and before the TASK directive.
set tolguess 1e-7\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#thresh-convergence-threshold","title":"THRESH \u2013 convergence threshold","text":" THRESH <real thresh default 1.0e-4>\n
This directive specifies the convergence threshold for the calculation. The convergence threshold is the norm of the orbital gradient, and has a default value in the code of 10-4.
The norm of the orbital gradient corresponds roughly to the precision available in the wavefunction, and the energy should be converged to approximately the square of this number. It should be noted, however, that the precision in the energy will not exceed that of the integral screening tolerance. This tolerance (Integral screening threshold) is automatically set from the convergence threshold, so that sufficient precision is usually available by default.
The default convergence threshold suffices for most SCF energy and geometry optimization calculations, providing about 6-8 decimal places in the energy, and about four significant figures in the density and energy derivative with respect to nuclear coordinates. However, greater precision may be required for calculations involving weakly interacting systems, floppy molecules, finite-difference of gradients to compute the Hessian, and for post-Hartree-Fock calculations. A threshold of 10-6 is adequate for most such purposes, and a threshold of 10-8 might be necessary for very high accuracy or very weak interactions. A threshold of 10-8 should be regarded as the best that can be attained in most circumstances.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#maxiter-iteration-limit","title":"MAXITER \u2013 iteration limit","text":" MAXITER <integer maxiter default 8>\n
The maximum number of iterations for the SCF calculation defaults to 20 for both ROHF/RHF and UHF calculations. For most molecules, this number of iterations is more than sufficient for the quadratically convergent SCF algorithm to obtain a solution converged to the default threshold (see Convergence threshold above). If the SCF program detects that the quadratically convergent algorithm is not efficient, then it will resort to a linearly convergent algorithm and increase the maximum number of iterations by 10.
Convergence may not be reached in the maximum number of iterations for many reasons, including input error (e.g., an incorrect geometry or a linearly dependent basis), a very low convergence threshold, a poor initial guess, or the fact that the system is intrinsically hard to converge due to the presence of many states with similar energies.
The following sets the maximum number of SCF iterations to 50:
maxiter 50\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#profile-performance-profile","title":"PROFILE \u2013 performance profile","text":"This directive allows the user to obtain timing and parallel execution information about the SCF module. It is specified by the simple keyword
PROFILE\n
This option can be helpful in understanding the computational performance of an SCF calculation. However, it can introduce a significant overhead on machines that have expensive timing routines, such as the SUN.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#diis-diis-convergence","title":"DIIS \u2013 DIIS convergence","text":"This directive allows the user to specify DIIS convergence rather than second-order convergence for the SCF calculation. The form of the directive is as follows:
DIIS\n
The implementation of this option is currently fairly rudimentary. It does not have level-shifting and damping, and does not support open shells or UHF. It is provided on an \u201cas is\u201d basis, and should be used with caution.
When the DIIS directive is specified in the input, the user has the additional option of specifying the size of the subspace for the DIIS extrapolation. This is accomplished with the DIISBAS directive, which is of the form:
DIISBAS <integer diisbas default 5>\n
The default of 5 should be adequate for most applications, but may be increased if convergence is poor. On large systems, it may be necessary to specify a lower value for diisbas, to conserve memory.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#direct-and-semidirect-recomputation-of-integrals","title":"DIRECT and SEMIDIRECT: recomputation of integrals","text":"In the context of SCF calculations direct means that all integrals are recomputed as required and none are stored. The other extreme are disk- or memory-resident (sometimes termed conventional) calculations in which all integrals are computed once and stored. Semi-direct calculations are between these two extremes with some integrals being precomputed and stored, and all other integrals being recomputed as necessary.
The default behavior of the SCF module is
The integral file is deleted at the end of a calculation, so it is not possible to restart a semidirect calculation when the integrals are cached in memory or on disk. Many modern computer systems clear the fast scratch space at the end of each job, adding a further complication to the problem of restarting a parallel semidirect calculation.
A fully direct calculation (with recomputation of the integrals at each iteration) is forced by specifying the directive
DIRECT\n
Alternatively, the SEMIDIRECT directive can be used to control the default semidirect calculation by defining the amount of disk space and the cache memory size. The form of this directive is as follows:
SEMIDIRECT [filesize <integer filesize default disksize>] \n [memsize <integer memsize default available>] \n [filename <string filename default $file_prefix.aoints$]\n
The keyword FILESIZE allows the user to specify the amount of disk space to be used per process for storing the integrals in 64-bit words. Similarly, the keyword MEMSIZE allows the user to specify the number of 64-bit words to be used per process for caching integrals in memory. (Note: If the amount of storage space specified by the entry for memsize is not available, the code cuts the value in half and checks again for available space. This process is repeated until the request is satisfied.)
By default, the integral files are placed into the scratch directory (see File directories). Specifying the keyword FILENAME overrides this default. The user-specified name entered in the string filename has the process number appended to it, so that each process has a distinct file but with a common base-name and directory. Therefore, it is not possible to use this keyword to specify different disks for different processes. The SCRATCH_DIR
directive (see File directories) can be used for this purpose.
For example, to force full recomputation of all integrals:
direct\n
Exactly the same result could be obtained by entering the directive:
semidirect filesize 0 memsize 0\n
To disable the use of memory for caching integrals and limit disk usage by each process to 100 megawords (MW):
semidirect memsize 0 filesize 100000000\n
The integral records are typically 32769 words long and any non-zero value for filesize or memsize should be enough to hold at least one record.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#integral-file-size-and-format-for-the-scf-module","title":"Integral File Size and Format for the SCF Module","text":"The file format is rather complex, since it accommodates a variety of packing and compression options and the distribution of data. This section presents some information that may help the user understand the output, and illustrates how to use the output information to estimate file sizes.
If integrals are stored with a threshold of greater than 10-10, then the integrals are stored in a 32-bit fixed-point format (with appropriate treatment for large values to retain precision). If integrals are stored with a threshold less than 10-10, however, the values are stored in 64-bit floating-point format. If a replicated-data calculation is being run, then 8 bits are used for each basis function label, unless there are more than 256 functions, in which case 16 bits are used. If distributed data is being used, then the labels are always packed to 8 bits (the distributed blocks always being less than 256; labels are relative to the start of the block).
Thus, the number (W) of 64-bit words required to store N integrals, may be computed as
no. 64-bit words labels values N 8-bit 32-bit 1.5N 16-bit 32-bit 1.5N 8-bit 64-bit 2N 16-bit 64-bitTable 1: number (W) of 64-bit words required to store N integrals
The actual number of words required can exceed this computed value by up to one percent, due to bookkeeping overhead, and because the file itself is organized into fixed-size records.
With at least the default print level, all semidirect (not direct) calculations will print out information about the integral file and the number of integrals computed. The form of this output is as follows:
Integral file = ./c6h6.aoints.0\nRecord size in doubles = 32769 No. of integs per rec = 32768\nMax. records in memory = 3 Max. records in file = 5\nNo. of bits per label = 8 No. of bits per value = 32\n#quartets = 2.0D+04 #integrals = 7.9D+05 direct = 63.6% cached = 36.4%\n
The file information above relates only to process 0. The line of information about the number of quartets, integrals, etc., is a sum over all processes.
When the integral file is closed, additional information of the following form is printed:
------------------------------------------------------------\nEAF file 0: \"./c6h6.aoints.0\" size=262152 bytes\n------------------------------------------------------------\n write read awrite aread wait\n ----- ---- ------ ----- ----\n calls: 6 12 0 0 0\n data(b): 1.57e+06 3.15e+06 0.00e+00 0.00e+00\n time(s): 1.09e-01 3.12e-02 0.00e+00\nrate(mb/s): 1.44e+01 1.01e+02\n------------------------------------------------------------\n Parallel integral file used 4 records with 0 large values\n
Again, the detailed file information relates just to process 0, but the final line indicates the total number of integral records stored by all processes.
This information may be used to optimize subsequent calculations, for instance by assigning more memory or disk space.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#scf-convergence-control-options","title":"SCF Convergence Control Options","text":"Note to users: It is desired that the SCF program converge reliably with the default options for a wide variety of molecules. In addition, it should be guaranteed to converge for any system, with sufficient iterations.
The SCF program uses a preconditioned conjugate gradient (PCG) method that is unconditionally convergent. Basically, a search direction is generated by multiplying the orbital gradient (the derivative of the energy with respect to the orbital rotations) by an approximation to the inverse of the level-shifted orbital Hessian. In the initial iterations (see Controlling the Newton-Raphson), an inexpensive one-electron approximation to the inverse orbital Hessian is used. Closer to convergence, the full orbital Hessian is used, which should provide quadratic convergence. For both the full or one-electron orbital Hessians, the inverse-Hessian matrix-vector product is formed iteratively. Subsequently, an approximate line search is performed along the new search direction. If the exact Hessian is being employed, then the line search should require a single step (of unity). Preconditioning with approximate Hessians may require additional steps, especially in the initial iterations. It is the (approximate) line search that provides the convergence guarantee. The iterations required to solve the linear equations are referred to as micro-iterations. A macro-iteration comprises both the iterative solution and a line search.
Level-shifting plays the same role in this algorithm as it does in the conventional iterative solution of the SCF equations. The approximate Hessian used for preconditioning should be positive definite. If this is not the case, then level-shifting by a positive constant (\u0394) serves to make the preconditioning matrix positive definite, by adding \u0394 to all of its eigenvalues. The level-shifts employed for the RHF orbital Hessian should be approximately four times (only twice for UHF) the value that one would employ in a conventional SCF. Level-shifting is automatically enabled in the early iterations, and the default options suffice for most test cases.
So why do things go wrong and what can be done to fix convergence problems? Most problems encountered so far arise either poor initial guesses or from small or negative eigenvalues of the orbital Hessian. The atomic orbital guess is usually very good. However, in calculations on charged systems, especially with open shells, incorrect initial occupations may result. The SCF might then converge very slowly since very large orbital rotations might be required to achieve the correct occupation or move charge large distances in the molecule. Possible actions are
Small or negative Hessian eigenvalues can occur even though the calculation seem to be close to convergence (as measured by the gradient norm, or the off-diagonal Fock matrix elements). Small eigenvalues will cause the iterative linear equation solver to converge slowly, resulting in an excessive number of micro-iterations. This makes the SCF expensive in terms of computation time, and it is possible to exceed the maximum number of iterations without achieving the accuracy required for quadratic convergence \u2013 which causes more macro-iterations to be performed.
Two main options are available when a problem will not converge: Newton-Raphson can be disabled temporarily or permanently (see Controlling the Newton-Raphson), and level-shifting can be applied to the matrix (see Level-shifting). In some cases, both options may be necessary to achieve final convergence.
If there is reason to suspect a negative eigenvalue, the first course is to disable the Newton-Raphson iteration until the solution is closer to convergence. It may be necessary to disable it completely. At some point close to convergence, the Hessian will be positive definite, so disabling Newton-Raphson should yield a solution with approximately the same convergence rate as DIIS.
If temporarily disabling Newton-Raphson is not sufficient to achieve convergence, it may be necessary to disable it entirely and apply a small level-shift to the approximate Hessian. This should improve the convergence rate of the micro-iterations and stabilize the macro-iterations. The level-shifting will destroy exact quadratic convergence, but the optimization process is automatically adjusted to reflect this by enforcing conjugacy and reducing the accuracy to which the linear equations are solved. The net result of this is that the solution will do more macro-iterations, but each one should take less time than it would with the unshifted Hessian.
The following sections describe the directives needed to disable the Newton-Raphson iteration and specify level-shifting.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#nr-controlling-the-newton-raphson","title":"NR: controlling the Newton-Raphson","text":" NR <real nr_switch default 0.1>\n
The exact orbital Hessian is adopted as the preconditioner when the maximum element of the orbital gradient is below the value specified for nr_switch. The default value is 0.1, which means that Newton-Raphson will be disabled until the maximum value of the orbital gradient (twice the largest off-diagonal Fock matrix element) is less than 0.1. To disable the Newton-Raphson entirely, the value of nr_switch must be set to zero. The directive to accomplish this is as follows:
nr 0\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#level-level-shifting-the-orbital-hessian","title":"LEVEL: level-shifting the orbital Hessian","text":"This directive allows the user to specify level-shifting to obtain a positive-definite preconditioning matrix for the SCF solution procedure. Separate level shifts can be set for the first-order convergent one-electron approximation to the Hessian used with the preconditioned conjugate gradient (PCG) method, and for the full Hessian used with the Newton-Raphson (NR) approach. It is also possible to change the level-shift automatically as the solution attains some specified accuracy. The form of the directive is as follows:
LEVEL [pcg <real initial default 20.0> \\\n [<real tol default 0.5> <real final default 0.0>]] \\\n [nr <real initial default 0.0> \\\n [<real tol default 0.0> <real final default 0.0>]]\n
This directive contains only two keywords: one for the PCG method and the other for the exact Hessian (Newton Raphson, or NR). Use of PCG or NR is determined by the input specified for nr_switch on the NR directive, Controlling the Newton-Raphson above.
Specifying the keyword pcg on the LEVEL directive allows the user to define the level shifting for the approximate (i.e., PCG) method. Specifying the keyword nr allows the user to define the level shifting for the exact Hessians. In both options, the initial level shift is defined by the value specified for the variable initial. Optionally, tol can be specified independently with each keyword to define the level of accuracy that must be attained in the solution before the level shifting is changed to the value specified by input in the real variable final. Level shifts and gradient thresholds are specified in atomic units.
For the PCG method (as specified using the keyword pcg
), the defaults for this input are 20.0 for initial, 0.5 for tol, and 0.0 for final. This means that the approximate Hessian will be shifted by 20.0 until the maximum element of the gradient falls below 0.5, at which point the shift will be set to zero.
For the exact Hessian (as specified using the keyword nr
), the defaults are all zero. The exact Hessian is usually not shifted since this destroys quadratic convergence. An example of an input directive that applies a shift of 0.2 to the exact Hessian is as follows:
level nr 0.2\n
To apply this shift to the exact Hessian only until the maximum element of the gradient falls below 0.005, the required input directive is as follows:
level nr 0.2 0.005 0\n
Note that in both of these examples, the parameters for the PCG method are at the default values. To obtain values different from the defaults, the keyword pcg must also be specified. For example, to specify the level shifting in the above example for the exact Hessian and non-default shifting for the PCG method, the directive would be something like the following:
level pcg 20 0.3 0.0 nr 0.2 0.005 0.0\n
This input will cause the PCG method to be level-shifted by 20.0 until the maximum element of the gradient falls below 0.3, then the shift will be zero. For the exact Hessian, the level shifting is initially 0.2, until the maximum element falls below 0.005, after which the shift is zero.
The default options correspond to
level pcg 20 0.5 0 nr 0 0 0\n
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#orbital-localization","title":"Orbital Localization","text":"The SCF module includes an experimental implementation of orbital localization, including Foster-Boys and Pipek-Mezey which only works for closed-shell (RHF) wavefunctions. There is currently no input in the SCF block to control this so the SET directive (SET) must be used.
The directive
set scf:localize t\n
will separately localize the core, valence, and virtual orbital spaces using the Pipek-Mezey algorithm. If the additional directive
set scf:loctype FB\n
is included, then the Foster-boys algorithm is used. The partitioning of core-orbitals is performed using the atomic information described in the section describing how to freeze the orbitals .
In the next release, this functionality will be extended to included all wavefunctions using molecular orbitals.
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#printing-information-from-the-scf-module","title":"Printing Information from the SCF Module","text":"All output from the SCF module is controlled using the PRINT directive described in Print control. The following list describes the items from SCF that are currently under direct print control, along with the print level for each one.
Name Print Level Description \u201catomic guess density\u201d debug guess density matrix \u201catomic scf\u201d debug details of atomic SCF \u201cmo guess\u201d default brief info from mo guess \u201cinformation\u201d low results \u201cinitial vectors\u201d debug \u201cintermediate vectors\u201d debug \u201cfinal vectors\u201d debug \u201cfinal vectors analysis\u201d default \u201cinitial vectors analysis\u201d never \u201cintermediate evals\u201d debug \u201cfinal evals\u201d default \u201cschwarz\u201d high integral screening info stats at completion \u201cscreening statistics\u201d debug display stats after every Fock build \u201cgeometry\u201d high \u201csymmetry\u201d debug detailed symmetry info \u201cbasis\u201d high \u201cgeombas\u201d debug detailed basis map info \u201cvectors i/o\u201d default report vectors I/O \u201cparameters\u201d default convergence parameters \u201cconvergence\u201d default info each iteration \u201cmulliken ao\u201d never Mulliken population of basis functionsTable 2: SCF Print Control Specifications
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#hartree-fock-or-scf-mcscf-and-mp2-gradients","title":"Hartree-Fock or SCF, MCSCF and MP2 Gradients","text":"The input for this directive allows the user to adjust the print control for the SCF, UHF, ROHF, MCSCF and MP2 gradients. The form of the directive is as follows:
GRADIENTS \n [print || noprint] ... \n END\n
The complementary keyword pair print and noprint allows the user some additional control on the information that can be included in the print output from the SCF calculation. Currently, only a few items can be explicitly invoked via print control. These are as follows:
Name Print Level Description \u201cinformation\u201d low calculation info \u201cgeometry\u201d high geometry information \u201cbasis\u201d high basis set(s) used \u201cforces\u201d low details of force components \u201ctiming\u201d default timing for each phaseTable 3: Gradient Print Control Specifications
"},{"location":"Hartree-Fock-Theory-for-Molecules.html#references","title":"References","text":"Wong, A. T. and Harrison, R. J. (1995) \u201cApproaches to large-scale parallel self-consistent field calculation\u201d, J. Comp. Chem. 16, 1291-1300, DOI: 10.1002/jcc.540161010 \u21a9
Foster, I. T.; Tilson, J. L.; Wagner, A. F.; Shepard, R. L.; Harrison, R. J.; Kendall, R. A. and Littlefield, R. J. (1996) \u201cToward high-performance computational chemistry: I. Scalable Fock matrix construction algorithms\u201d, J. Comp. Chem. 17, 109-123, DOI: 10.1002/(SICI)1096-987X(19960115)17:1<109::AID-JCC9>3.0.CO;2-V \u21a9
This section relates to the computation of analytic hessians which are available for open and closed shell SCF, except ROHF and for closed shell and unrestricted open shell DFT [1]. Analytic hessians are not currently available for SCF or DFT calculations relativistic all-electron methodologies or for charge fitting with DFT. The current algorithm is fully in-core and does not use symmetry.
There is no required input for the Hessian module. This module only impacts the hessian calculation. For options for calculating the frequencies, please see the Vibrational module.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#hessian-module-input","title":"Hessian Module Input","text":"All input for the Hessian Module is optional since the default definitions are usually correct for most purposes. The generic module input begins with hessian and has the form:
hessian \n thresh <real tol default 1d-6>\n print ... \n profile \n end\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#defining-the-wavefunction-threshold","title":"Defining the wavefunction threshold","text":"You may modify the default threshold for the wavefunction. This keyword is identical to THRESH in the SCF, and the CONVERGENCE gradient in the DFT. The usual defaults for the convergence of the wavefunction for single point and gradient calculations is generally not tight enough for analytic hessians. Therefore, the hessian, by default, tightens these up to 1d-6 and runs an additional energy point if needed. If, during an analytic hessian calculation, you encounter an error:
cphf_solve:the available MOs do not satisfy the SCF equations\n
the convergence criteria of the wavefunction generally needs to be tightened.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#profile","title":"Profile","text":"The PROFILE keyword provides additional information concerning the computation times of different sections of the hessian code. Summary information is given about the maximum, minimum and average times that a particular section of the code took to complete. This is normally only useful for developers.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#print-control","title":"Print Control","text":"Known controllable print options are shown in the table below:
Name Print Level Description \u201chess_follow\u201d high more information about where the calculation is \u201ccphf_cont\u201d debug detailed CPHF information \u201cnucdd_cont\u201d debug detailed nuclear contribution information \u201conedd_cont\u201d debug detailed one electron contribution information \u201ctwodd_cont\u201d debug detailed two electron contribution information \u201cfock_xc\u201d debug detailed XC information during the fock builds
Hessian Print Control Specifications
"},{"location":"Hessians-and-Vibrational-Frequencies.html#vibrational-frequencies","title":"Vibrational frequencies","text":"The nuclear hessian which is used to compute the vibrational frequencies can be computed by finite difference for any ab initio wave-function that has analytic gradients or by analytic methods for SCF and DFT (see Hessians for details). The appropriate nuclear hessian generation algorithm is chosen based on the user input when TASK frequencies is the task directive.
The vibrational package was integrated from the Utah Messkit and can use any nuclear hessian generated from the driver routines, finite difference routines or any analytic hessian modules. There is no required input for the \u201cVIB\u201d package. VIB computes the Infra Red frequencies and intensities for the computed nuclear hessian and the \u201cprojected\u201d nuclear hessian. The VIB module projects out the translations and rotations of the nuclear hessian using the standard Eckart projection algorithm. It also computes the zero point energy for the molecular system based on the frequencies obtained from the projected hessian.
The default mass of each atom is used unless an alternative mass is provided via the geometry input or redefined using the vibrational module input. The default mass is the mass of the most abundant isotope of each element. If the abundance was roughly equal, the mass of the isotope with the longest half life was used.
In addition, the vibrational analysis is given at the default standard temperature of 298.15 degrees.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#vibrational-module-input","title":"Vibrational Module Input","text":"All input for the Vibrational Module is optional since the default definitions will compute the frequencies and IR intensities. The generic module input can begin with vib, freq, frequency and has the form:
{freq || vib || frequency}` \n [reuse [<string hessian_filename>]] \n [mass <integer lexical_index> <real new_mass>] \n [mass <string tag_identifier> <real new_mass>] \n [{temp || temperature} <integer number_of_temperatures>\\ \n <real temperature1 temperature2 ...>] \n [animate [<real step_size_for_animation>]] \n [fd_delta [<real step_size_for_fd_hessian>]] \n [filename <string file_set_name> [overwrite]] \n end\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#hessian-file-reuse","title":"Hessian File Reuse","text":"By default the task frequencies directive will recompute the hessian. To reuse the previously computed hessian you need only specify reuse in the module input block. If you have stored the hessian in an alternate place you may redirect the reuse directive to that file by specifying the path to that file.
reuse /path_to_hessian_file\n
This will reuse your saved Hessian data but one caveat is that the geometry specification at the point where the hessian is computed must be the default \u201cgeometry\u201d on the current run-time-data-base for the projection to work properly.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#redefining-masses-of-elements","title":"Redefining Masses of Elements","text":"You may also modify the mass of a specific center or a group of centers via the input.
To modify the mass of a specific center you can simply use:
mass 3 4.00260324\n
which will set the mass of center 3 to 4.00260324 AMUs. The lexical index of centers is determined by the geometry object.
To modify all Hydrogen atoms in a molecule you may use the tag based mechanism:
mass hydrogen 2.014101779\n
The mass redefinitions always start with the default masses and change the masses in the order given in the input. Care must be taken to change the masses properly. For example, if you want all hydrogens to have the mass of Deuterium and the third hydrogen (which is the 6th atomic center) to have the mass of Tritium you must set the Deuterium masses first with the tag based mechanism and then set the 6th center\u2019s mass to that of Tritium using the lexical center index mechanism.
The mass redefinitions are not fully persistent on the run-time-data-base. Each input block that redefines masses will invalidate the mass definitions of the previous input block. For example,
freq\n reuse\n mass hydrogen 2.014101779\nend\ntask scf frequencies\nfreq\n reuse\n mass oxygen 17.9991603\nend\ntask scf frequencies\n
will use the new mass for all hydrogens in the first frequency analysis. The mass of the oxygen atoms will be redefined in the second frequency analysis but the hydrogen atoms will use the default mass. To get a modified oxygen and hydrogen analysis you would have to use:
freq\n reuse\n mass hydrogen 2.014101779\nend\ntask scf frequencies\nfreq\n reuse\n mass hydrogen 2.014101779\n mass oxygen 17.9991603\nend\ntask scf frequencies\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#temp-or-temperature","title":"Temp or Temperature","text":"The \u201cVIB\u201d module can generate the vibrational analysis at various temperatures other than at standard room temperature. Either temp or temperature can be used to initiate this command.
To modify the temperature of the computation you can simply use:
temp 4 298.15 300.0 350.0 400.0\n
At this point, the temperatures are persistant and so the user must \u201creset\u201d the temperature if the standard behavior is required after setting the temperatures in a previous \u201cVIB\u201d command, i.e.
temp 1 298.15\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#animation","title":"Animation","text":"The \u201cVIB\u201d module also can generate mode animation input files in the standard xyz file format for graphics packages like RasMol or XMol There are scripts to automate this for RasMol in $NWCHEM_TOP/contrib/rasmolmovie
. Each mode will have 20 xyz files generated that cycle from the equilibrium geometry to 5 steps in the positive direction of the mode vector, back to 5 steps in the negative direction of the mode vector, and finally back to the equilibrium geometry. By default these files are not generated. To activate this mechanism simply use the following input directive
animate\n
anywhere in the frequency/vib input block.
Given an ordered list of files containing molecular coordinates in XYZ format, the rasmolmovie shell script generates an animated gif for each of the six possible views down a Cartesian axis.
It uses the free utilities
It should be easy to modify the script to other file formats or animation tools.
"},{"location":"Hessians-and-Vibrational-Frequencies.html#controlling-the-step-size-along-the-mode-vector","title":"Controlling the Step Size Along the Mode Vector","text":"By default, the step size used is 0.15 a.u. which will give reliable animations for most systems. This can be changed via the animate input directive, e.g.
vib\n animate 0.20\nend\n
where is the real number that is the magnitude of each step along the eigenvector of each nuclear hessian mode in atomic units."},{"location":"Hessians-and-Vibrational-Frequencies.html#specifying-filenames-for-animated-normal-modes","title":"Specifying filenames for animated normal modes","text":"
By default, normal modes will be stored in files that start with \u201cfreq.m-\u201c. This is inconvenient if more than vibrational analysis is run in a single input file. To specify different filename for a particular vibrational analysis use the directive
filename <file_set_name> [overwrite]\n
where is the name that will be prepended to the usual filenames. In addition the code by default requires all files to be new files. When the option \u201coverwrite\u201d is provided any pre-existing files will simply be overwritten."},{"location":"Hessians-and-Vibrational-Frequencies.html#controlling-the-step-size-of-the-finite-difference-hessian","title":"Controlling the Step Size of the Finite difference Hessian","text":"
By default, the step size used for calculating the finite difference Hessian is 0.010 a.u. for DFT and NWPW modules, and 0.001 a.u. otherwise This can be changed via the fd_delta input directive, e.g.
vib\n fd_delta 0.005\nend\n
where is the real number that is the magnitude of each displacement in atomic units for the calculation of the finite difference Hessian. For older versions of NWChem without the fd_delta option just set the \u201cstpr_gen:delta\u201d value on the runtime database, e.g.
set stpr_gen:delta 0.005\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#an-example-input-deck","title":"An Example Input Deck","text":"This example input deck will optimize the geometry for the given basis set, compute the frequencies for H2O, H2O at different temperatures, D2O, HDO, and TDO.
start h2o\ntitle Water \ngeometry units au autosym\n O 0.00000000 0.00000000 0.00000000\n H 0.00000000 1.93042809 -1.10715266\n H 0.00000000 -1.93042809 -1.10715266\nend\nbasis noprint\n H library sto-3g \n O library sto-3g\nend\nscf; thresh 1e-6; end\ndriver; tight; end\ntask scf optimize\n\nscf; thresh 1e-8; print none; end\ntask scf freq \n\nfreq\n reuse; temp 4 298.15 300.0 350.0 400.0\nend\ntask scf freq\n\nfreq \n reuse; mass H 2.014101779\n temp 1 298.15\nend\ntask scf freq\n\nfreq\n reuse; mass 2 2.014101779\nend\ntask scf freq\n\nfreq\n reuse; mass 2 2.014101779 ; mass 3 3.01604927\nend\ntask scf freq\n
"},{"location":"Hessians-and-Vibrational-Frequencies.html#references","title":"References","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a082\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I-42d.html","title":"I 42d","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0122\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-42d\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x+1/2,+y,-z+3/4\n+x+1/2,-y,-z+3/4\n-y+1/2,-x,+z+3/4\n+y+1/2,+x,+z+3/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n-x+1,+y+1/2,-z+5/4\n+x+1,-y+1/2,-z+5/4\n-y+1,-x+1/2,+z+5/4\n+y+1,+x+1/2,+z+5/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25 \n
"},{"location":"I-42m.html","title":"I 42m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0121\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-42m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x,+y,-z\n+x,-y,-z\n-y,-x,+z\n+y,+x,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"I-43d.html","title":"I 43d","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0220\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-43d\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25 \n
"},{"location":"I-43m.html","title":"I 43m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0217\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-43m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"I-4c2.html","title":"I 4c2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0120\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-4c2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n+y,+x,-z+1/2\n-y,-x,-z+1/2\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1\n-x+1/2,+y+1/2,+z+1\n+y+1/2,+x+1/2,-z+1\n-y+1/2,-x+1/2,-z+1\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0 \n
"},{"location":"I-4m2.html","title":"I 4m2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0119\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I-4m2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x,-y,+z\n-x,+y,+z\n+y,+x,-z\n-y,-x,-z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-y+1/2,+x+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n+y+1/2,+x+1/2,-z+1/2\n-y+1/2,-x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I222.html","title":"I222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a023\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I23.html","title":"I23","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0197\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I23\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"I2_12_12_1.html","title":"I2 12 12 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a024\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0I2_12_12_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I2_13.html","title":"I2 13","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0199\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I2_13\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0 \n
"},{"location":"I4.html","title":"I4","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a079\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"I422.html","title":"I422","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a097\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I422\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n-x,+y,-z\n+x,-y,-z\n+y,+x,-z\n-y,-x,-z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n+y+1/2,+x+1/2,-z+1/2\n-y+1/2,-x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I432.html","title":"I432","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0211\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I432\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"I4Sm.html","title":"I4Sm","text":" group number = 87\n group name = I4/m\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x+1/2,+y+1/2,+z+1/2\n -x+1/2,-y+1/2,+z+1/2\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 10 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 11 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 12 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 13 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 14 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 15 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 16 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n
"},{"location":"I4Smcm.html","title":"I4Smcm","text":" group number = 140\n group name = I4/mcm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 32\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z+1/2\n +x,-y,-z+1/2\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y,-x,+z+1/2\n +y,+x,+z+1/2\n +x+1/2,+y+1/2,+z+1/2\n -x+1/2,-y+1/2,+z+1/2\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z+1\n +x+1/2,-y+1/2,-z+1\n +y+1/2,+x+1/2,-z+1\n -y+1/2,-x+1/2,-z+1\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,-y+1/2,+z+1\n -x+1/2,+y+1/2,+z+1\n -y+1/2,-x+1/2,+z+1\n +y+1/2,+x+1/2,+z+1\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 17 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 18 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 19 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 20 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 21 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 22 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 23 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 24 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 25 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 26 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 27 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 28 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 29 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n\n = operator 30 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n\n = operator 31 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n\n = operator 32 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n
"},{"location":"I4Smmm.html","title":"I4Smmm","text":" group number = 139\n group name = I4/mmm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 32\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z\n -y,-x,-z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z\n -x,+y,+z\n -y,-x,+z\n +y,+x,+z\n +x+1/2,+y+1/2,+z+1/2\n -x+1/2,-y+1/2,+z+1/2\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y+1/2,+x+1/2,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 17 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 18 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 19 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 20 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 21 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 22 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 23 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 24 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 25 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 26 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 27 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 28 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 29 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 30 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 31 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 32 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"I4_1.html","title":"I4 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a080\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I4_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-y,+x+1/2,+z+1/4\n+y+1/2,-x,+z+3/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1,+z+1\n-y+1/2,+x+1,+z+3/4\n+y+1,-x+1/2,+z+5/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25 \n
"},{"location":"I4_122.html","title":"I4 122","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a098\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0I4_122\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-y,+x+1/2,+z+1/4\n+y+1/2,-x,+z+3/4\n-x+1/2,+y,-z+3/4\n+x,-y+1/2,-z+1/4\n+y+1/2,+x+1/2,-z+1/2\n-y,-x,-z\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1,+z+1\n-y+1/2,+x+1,+z+3/4\n+y+1,-x+1/2,+z+5/4\n-x+1,+y+1/2,-z+5/4\n+x+1/2,-y+1,-z+3/4\n+y+1,+x+1,-z+1\n-y+1/2,-x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"I4_132.html","title":"I4 132","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0214\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0I4_132\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a042\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a044\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25 \n
"},{"location":"I4_1Sa.html","title":"I4 1Sa","text":" group number = 88\n group name = I4_1/a\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z+1/2\n -y,+x+1/2,+z+1/4\n +y+1/2,-x,+z+3/4\n -x,-y+1/2,-z+1/4\n +x+1/2,+y,-z+3/4\n +y,-x,-z\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,+y+1/2,+z+1/2\n -x+1,-y+1,+z+1\n -y+1/2,+x+1,+z+3/4\n +y+1,-x+1/2,+z+5/4\n -x+1/2,-y+1,-z+3/4\n +x+1,+y+1/2,-z+5/4\n +y+1/2,-x+1/2,-z+1/2\n -y+1,+x+1,-z+1\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.25\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.75\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.25\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.75\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 10 =\n -1.0 0.0 0.0 1.0\n 0.0 -1.0 0.0 1.0\n 0.0 0.0 1.0 1.0\n\n = operator 11 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 1.0\n 0.0 0.0 1.0 0.75\n\n = operator 12 =\n 0.0 1.0 0.0 1.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 1.25\n\n = operator 13 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 1.0\n 0.0 0.0 -1.0 0.75\n\n = operator 14 =\n 1.0 0.0 0.0 1.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 1.25\n\n = operator 15 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 16 =\n 0.0 -1.0 0.0 1.0\n 1.0 0.0 0.0 1.0\n 0.0 0.0 -1.0 1.0\n\n group number = 88\n group name = I4_1/a\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y,+z+1/2\n -y+3/4,+x+1/4,+z+1/4\n +y+3/4,-x+3/4,+z+3/4\n -x,-y,-z\n +x+1/2,+y,-z+1/2\n +y+1/4,-x+3/4,-z+3/4\n -y+1/4,+x+1/4,-z+1/4\n +x+1/2,+y+1/2,+z+1/2\n -x+1,-y+1/2,+z+1\n -y+5/4,+x+3/4,+z+3/4\n +y+5/4,-x+5/4,+z+5/4\n -x+1/2,-y+1/2,-z+1/2\n +x+1,+y+1/2,-z+1\n +y+3/4,-x+5/4,-z+5/4\n -y+3/4,+x+3/4,-z+3/4\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 3 =\n 0.0 -1.0 0.0 0.75\n 1.0 0.0 0.0 0.25\n 0.0 0.0 1.0 0.25\n\n = operator 4 =\n 0.0 1.0 0.0 0.75\n -1.0 0.0 0.0 0.75\n 0.0 0.0 1.0 0.75\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.25\n -1.0 0.0 0.0 0.75\n 0.0 0.0 -1.0 0.75\n\n = operator 8 =\n 0.0 -1.0 0.0 0.25\n 1.0 0.0 0.0 0.25\n 0.0 0.0 -1.0 0.25\n\n = operator 9 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 10 =\n -1.0 0.0 0.0 1.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 1.0\n\n = operator 11 =\n 0.0 -1.0 0.0 1.25\n 1.0 0.0 0.0 0.75\n 0.0 0.0 1.0 0.75\n\n = operator 12 =\n 0.0 1.0 0.0 1.25\n -1.0 0.0 0.0 1.25\n 0.0 0.0 1.0 1.25\n\n = operator 13 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 14 =\n 1.0 0.0 0.0 1.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 1.0\n\n = operator 15 =\n 0.0 1.0 0.0 0.75\n -1.0 0.0 0.0 1.25\n 0.0 0.0 -1.0 1.25\n\n = operator 16 =\n 0.0 -1.0 0.0 0.75\n 1.0 0.0 0.0 0.75\n 0.0 0.0 -1.0 0.75\n
"},{"location":"I4_1Sacd.html","title":"I4 1Sacd","text":"group number = 142 group name = I4_1/acd crystal system = Tetragonal setting number = 1 number of symmetry operators = 32
+x,+y,+z -x+1/2,-y+1/2,+z+1/2 -y,+x+1/2,+z+1/4 +y+1/2,-x,+z+3/4 -x+1/2,+y,-z+1/4 +x,-y+1/2,-z+3/4 +y+1/2,+x+1/2,-z -y,-x,-z+1/2 -x,-y+1/2,-z+1/4 +x+1/2,+y,-z+3/4 +y,-x,-z -y+1/2,+x+1/2,-z+1/2 +x+1/2,-y+1/2,+z -x,+y,+z+1/2 -y+1/2,-x,+z+1/4 +y,+x+1/2,+z+3/4 +x+1/2,+y+1/2,+z+1/2 -x+1,-y+1,+z+1 -y+1/2,+x+1,+z+3/4 +y+1,-x+1/2,+z+5/4 -x+1,+y+1/2,-z+3/4 +x+1/2,-y+1,-z+5/4 +y+1,+x+1,-z+1/2 -y+1/2,-x+1/2,-z+1 -x+1/2,-y+1,-z+3/4 +x+1,+y+1/2,-z+5/4 +y+1/2,-x+1/2,-z+1/2 -y+1,+x+1,-z+1 +x+1,-y+1,+z+1/2 -x+1/2,+y+1/2,+z+1 -y+1,-x+1/2,+z+3/4 +y+1/2,+x+1,+z+5/4
= operator 1 = 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0
= operator 2 = -1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.5 0.0 0.0 1.0 0.5
= operator 3 = 0.0 -1.0 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 1.0 0.25
= operator 4 = 0.0 1.0 0.0 0.5 -1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.75
= operator 5 = -1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 0.25
= operator 6 = 1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.5 0.0 0.0 -1.0 0.75
= operator 7 = 0.0 1.0 0.0 0.5 1.0 0.0 0.0 0.5 0.0 0.0 -1.0 0.0
= operator 8 = 0.0 -1.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.5
= operator 9 = -1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.5 0.0 0.0 -1.0 0.25
= operator 10 = 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 0.75
= operator 11 = 0.0 1.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0
= operator 12 = 0.0 -1.0 0.0 0.5 1.0 0.0 0.0 0.5 0.0 0.0 -1.0 0.5
= operator 13 = 1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.5 0.0 0.0 1.0 0.0
= operator 14 = -1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.5
= operator 15 = 0.0 -1.0 0.0 0.5 -1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.25
= operator 16 = 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 1.0 0.75
= operator 17 = 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.0 1.0 0.5
= operator 18 = -1.0 0.0 0.0 1.0 0.0 -1.0 0.0 1.0 0.0 0.0 1.0 1.0
= operator 19 = 0.0 -1.0 0.0 0.5 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.75
= operator 20 = 0.0 1.0 0.0 1.0 -1.0 0.0 0.0 0.5 0.0 0.0 1.0 1.25
= operator 21 = -1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.0 -1.0 0.75
= operator 22 = 1.0 0.0 0.0 0.5 0.0 -1.0 0.0 1.0 0.0 0.0 -1.0 1.25
= operator 23 = 0.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 -1.0 0.5
= operator 24 = 0.0 -1.0 0.0 0.5 -1.0 0.0 0.0 0.5 0.0 0.0 -1.0 1.0
= operator 25 = -1.0 0.0 0.0 0.5 0.0 -1.0 0.0 1.0 0.0 0.0 -1.0 0.75
= operator 26 = 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.0 -1.0 1.25
= operator 27 = 0.0 1.0 0.0 0.5 -1.0 0.0 0.0 0.5 0.0 0.0 -1.0 0.5
= operator 28 = 0.0 -1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 -1.0 1.0
= operator 29 = 1.0 0.0 0.0 1.0 0.0 -1.0 0.0 1.0 0.0 0.0 1.0 0.5
= operator 30 = -1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.0 1.0 1.0
= operator 31 = 0.0 -1.0 0.0 1.0 -1.0 0.0 0.0 0.5 0.0 0.0 1.0 0.75
= operator 32 = 0.0 1.0 0.0 0.5 1.0 0.0 0.0 1.0 0.0 0.0 1.0 1.25
group number = 142 group name = I4_1/acd crystal system = Tetragonal setting number = 2 number of symmetry operators = 32
+x,+y,+z -x+1/2,-y,+z+1/2 -y+1/4,+x+3/4,+z+1/4 +y+1/4,-x+1/4,+z+3/4 -x+1/2,+y,-z +x,-y,-z+1/2 +y+1/4,+x+3/4,-z+3/4 -y+1/4,-x+1/4,-z+1/4 -x,-y,-z +x+1/2,+y,-z+1/2 +y+3/4,-x+1/4,-z+3/4 -y+3/4,+x+3/4,-z+1/4 +x+1/2,-y,+z -x,+y,+z+1/2 -y+3/4,-x+1/4,+z+1/4 +y+3/4,+x+3/4,+z+3/4 +x+1/2,+y+1/2,+z+1/2 -x+1,-y+1/2,+z+1 -y+3/4,+x+5/4,+z+3/4 +y+3/4,-x+3/4,+z+5/4 -x+1,+y+1/2,-z+1/2 +x+1/2,-y+1/2,-z+1 +y+3/4,+x+5/4,-z+5/4 -y+3/4,-x+3/4,-z+3/4 -x+1/2,-y+1/2,-z+1/2 +x+1,+y+1/2,-z+1 +y+5/4,-x+3/4,-z+5/4 -y+5/4,+x+5/4,-z+3/4 +x+1,-y+1/2,+z+1/2 -x+1/2,+y+1/2,+z+1 -y+5/4,-x+3/4,+z+3/4 +y+5/4,+x+5/4,+z+5/4
= operator 1 = 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0
= operator 2 = -1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.0 0.0 0.0 1.0 0.5
= operator 3 = 0.0 -1.0 0.0 0.25 1.0 0.0 0.0 0.75 0.0 0.0 1.0 0.25
= operator 4 = 0.0 1.0 0.0 0.25 -1.0 0.0 0.0 0.25 0.0 0.0 1.0 0.75
= operator 5 = -1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 0.0
= operator 6 = 1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 -1.0 0.5
= operator 7 = 0.0 1.0 0.0 0.25 1.0 0.0 0.0 0.75 0.0 0.0 -1.0 0.75
= operator 8 = 0.0 -1.0 0.0 0.25 -1.0 0.0 0.0 0.25 0.0 0.0 -1.0 0.25
= operator 9 = -1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 -1.0 0.0
= operator 10 = 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 0.5
= operator 11 = 0.0 1.0 0.0 0.75 -1.0 0.0 0.0 0.25 0.0 0.0 -1.0 0.75
= operator 12 = 0.0 -1.0 0.0 0.75 1.0 0.0 0.0 0.75 0.0 0.0 -1.0 0.25
= operator 13 = 1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.0 0.0 0.0 1.0 0.0
= operator 14 = -1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.5
= operator 15 = 0.0 -1.0 0.0 0.75 -1.0 0.0 0.0 0.25 0.0 0.0 1.0 0.25
= operator 16 = 0.0 1.0 0.0 0.75 1.0 0.0 0.0 0.75 0.0 0.0 1.0 0.75
= operator 17 = 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.0 1.0 0.5
= operator 18 = -1.0 0.0 0.0 1.0 0.0 -1.0 0.0 0.5 0.0 0.0 1.0 1.0
= operator 19 = 0.0 -1.0 0.0 0.75 1.0 0.0 0.0 1.25 0.0 0.0 1.0 0.75
= operator 20 = 0.0 1.0 0.0 0.75 -1.0 0.0 0.0 0.75 0.0 0.0 1.0 1.25
= operator 21 = -1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.0 -1.0 0.5
= operator 22 = 1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.5 0.0 0.0 -1.0 1.0
= operator 23 = 0.0 1.0 0.0 0.75 1.0 0.0 0.0 1.25 0.0 0.0 -1.0 1.25
= operator 24 = 0.0 -1.0 0.0 0.75 -1.0 0.0 0.0 0.75 0.0 0.0 -1.0 0.75
= operator 25 = -1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.5 0.0 0.0 -1.0 0.5
= operator 26 = 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.0 -1.0 1.0
= operator 27 = 0.0 1.0 0.0 1.25 -1.0 0.0 0.0 0.75 0.0 0.0 -1.0 1.25
= operator 28 = 0.0 -1.0 0.0 1.25 1.0 0.0 0.0 1.25 0.0 0.0 -1.0 0.75
= operator 29 = 1.0 0.0 0.0 1.0 0.0 -1.0 0.0 0.5 0.0 0.0 1.0 0.5
= operator 30 = -1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.0 1.0 1.0
= operator 31 = 0.0 -1.0 0.0 1.25 -1.0 0.0 0.0 0.75 0.0 0.0 1.0 0.75
= operator 32 = 0.0 1.0 0.0 1.25 1.0 0.0 0.0 1.25 0.0 0.0 1.0 1.25 ```
"},{"location":"I4_1cd.html","title":"I4 1cd","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0110\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0I4_1cd\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-y,+x+1/2,+z+1/4\n+y+1/2,-x,+z+3/4\n+x,-y,+z+1/2\n-x+1/2,+y+1/2,+z\n-y,-x+1/2,+z+3/4\n+y+1/2,+x,+z+1/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1,+z+1\n-y+1/2,+x+1,+z+3/4\n+y+1,-x+1/2,+z+5/4\n+x+1/2,-y+1/2,+z+1\n-x+1,+y+1,+z+1/2\n-y+1/2,-x+1,+z+5/4\n+y+1,+x+1/2,+z+3/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75 \n
"},{"location":"I4_1md.html","title":"I4 1md","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0109\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0I4_1md\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-y,+x+1/2,+z+1/4\n+y+1/2,-x,+z+3/4\n+x,-y,+z\n-x+1/2,+y+1/2,+z+1/2\n-y,-x+1/2,+z+1/4\n+y+1/2,+x,+z+3/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1,+z+1\n-y+1/2,+x+1,+z+3/4\n+y+1,-x+1/2,+z+5/4\n+x+1/2,-y+1/2,+z+1/2\n-x+1,+y+1,+z+1\n-y+1/2,-x+1,+z+3/4\n+y+1,+x+1/2,+z+5/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25 \n
"},{"location":"I4cm.html","title":"I4cm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0108\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I4cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n-y,-x,+z+1/2\n+y,+x,+z+1/2\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1\n-x+1/2,+y+1/2,+z+1\n-y+1/2,-x+1/2,+z+1\n+y+1/2,+x+1/2,+z+1\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0 \n
"},{"location":"I4mm.html","title":"I4mm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0107\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0I4mm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x,-y,+z\n-x,+y,+z\n-y,-x,+z\n+y,+x,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ia-3.html","title":"Ia 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0206\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ia-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0 \n
"},{"location":"Ia-3d.html","title":"Ia 3d","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0230\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ia-3d\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z\n+z,+x,+y\n+z+1/2,-x+1/2,-y\n-z+1/2,-x,+y+1/2\n-z,+x+1/2,-y+1/2\n+y,+z,+x\n-y,+z+1/2,-x+1/2\n+y+1/2,-z+1/2,-x\n-y+1/2,-z,+x+1/2\n+y+3/4,+x+1/4,-z+1/4\n-y+3/4,-x+3/4,-z+3/4\n+y+1/4,-x+1/4,+z+3/4\n-y+1/4,+x+3/4,+z+1/4\n+x+3/4,+z+1/4,-y+1/4\n-x+1/4,+z+3/4,+y+1/4\n-x+3/4,-z+3/4,-y+3/4\n+x+1/4,-z+1/4,+y+3/4\n+z+3/4,+y+1/4,-x+1/4\n+z+1/4,-y+1/4,+x+3/4\n-z+1/4,+y+3/4,+x+1/4\n-z+3/4,-y+3/4,-x+3/4\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z\n-z,-x,-y\n-z+1/2,+x+1/2,+y\n+z+1/2,+x,-y+1/2\n+z,-x+1/2,+y+1/2\n-y,-z,-x\n+y,-z+1/2,+x+1/2\n-y+1/2,+z+1/2,+x\n+y+1/2,+z,-x+1/2\n-y+1/4,-x+3/4,+z+3/4\n+y+1/4,+x+1/4,+z+1/4\n-y+3/4,+x+3/4,-z+1/4\n+y+3/4,-x+1/4,-z+3/4\n-x+1/4,-z+3/4,+y+3/4\n+x+3/4,-z+1/4,-y+3/4\n+x+1/4,+z+1/4,+y+1/4\n-x+3/4,+z+3/4,-y+1/4\n-z+1/4,-y+3/4,+x+3/4\n-z+3/4,+y+3/4,-x+1/4\n+z+3/4,-y+1/4,-x+3/4\n+z+1/4,+y+1/4,+x+1/4\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1/2,+z+1\n-x+1/2,+y+1,-z+1\n+x+1,-y+1,-z+1/2\n+z+1/2,+x+1/2,+y+1/2\n+z+1,-x+1,-y+1/2\n-z+1,-x+1/2,+y+1\n-z+1/2,+x+1,-y+1\n+y+1/2,+z+1/2,+x+1/2\n-y+1/2,+z+1,-x+1\n+y+1,-z+1,-x+1/2\n-y+1,-z+1/2,+x+1\n+y+5/4,+x+3/4,-z+3/4\n-y+5/4,-x+5/4,-z+5/4\n+y+3/4,-x+3/4,+z+5/4\n-y+3/4,+x+5/4,+z+3/4\n+x+5/4,+z+3/4,-y+3/4\n-x+3/4,+z+5/4,+y+3/4\n-x+5/4,-z+5/4,-y+5/4\n+x+3/4,-z+3/4,+y+5/4\n+z+5/4,+y+3/4,-x+3/4\n+z+3/4,-y+3/4,+x+5/4\n-z+3/4,+y+5/4,+x+3/4\n-z+5/4,-y+5/4,-x+5/4\n-x+1/2,-y+1/2,-z+1/2\n+x+1,+y+1/2,-z+1\n+x+1/2,-y+1,+z+1\n-x+1,+y+1,+z+1/2\n-z+1/2,-x+1/2,-y+1/2\n-z+1,+x+1,+y+1/2\n+z+1,+x+1/2,-y+1\n+z+1/2,-x+1,+y+1\n-y+1/2,-z+1/2,-x+1/2\n+y+1/2,-z+1,+x+1\n-y+1,+z+1,+x+1/2\n+y+1,+z+1/2,-x+1\n-y+3/4,-x+5/4,+z+5/4\n+y+3/4,+x+3/4,+z+3/4\n-y+5/4,+x+5/4,-z+3/4\n+y+5/4,-x+3/4,-z+5/4\n-x+3/4,-z+5/4,+y+5/4\n+x+5/4,-z+3/4,-y+5/4\n+x+3/4,+z+3/4,+y+3/4\n-x+5/4,+z+5/4,-y+3/4\n-z+3/4,-y+5/4,+x+5/4\n-z+5/4,+y+5/4,-x+3/4\n+z+5/4,-y+3/4,-x+5/4\n+z+3/4,+y+3/4,+x+3/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.25\n\u00a01.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.25\n\u00a00.0\u00a01.0\u00a00.0\u00a01.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a01.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.25\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75 \n
"},{"location":"Iba2.html","title":"Iba2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a045\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Iba2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+x+1,-y+1,+z+1/2\n-x+1,+y+1,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ibam.html","title":"Ibam","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a072\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ibam\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x,+y,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-x+1,+y+1,-z+1/2\n+x+1,-y+1,-z+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1/2,-z+1/2\n+x+1,-y+1,+z+1/2\n-x+1,+y+1,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Ibca.html","title":"Ibca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a073\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ibca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1,-y+1/2,+z+1\n-x+1/2,+y+1,-z+1\n+x+1,-y+1,-z+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1,+y+1/2,-z+1\n+x+1/2,-y+1,+z+1\n-x+1,+y+1,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a01.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Im-3.html","title":"Im 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0204\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Im-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Im-3m.html","title":"Im 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0229\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Im-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a096\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n+z,+x,+y\n+z,-x,-y\n-z,-x,+y\n-z,+x,-y\n+y,+z,+x\n-y,+z,-x\n+y,-z,-x\n-y,-z,+x\n+y,+x,-z\n-y,-x,-z\n+y,-x,+z\n-y,+x,+z\n+x,+z,-y\n-x,+z,+y\n-x,-z,-y\n+x,-z,+y\n+z,+y,-x\n+z,-y,+x\n-z,+y,+x\n-z,-y,-x\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n-z,-x,-y\n-z,+x,+y\n+z,+x,-y\n+z,-x,+y\n-y,-z,-x\n+y,-z,+x\n-y,+z,+x\n+y,+z,-x\n-y,-x,+z\n+y,+x,+z\n-y,+x,-z\n+y,-x,-z\n-x,-z,+y\n+x,-z,-y\n+x,+z,+y\n-x,+z,-y\n-z,-y,+x\n-z,+y,-x\n+z,-y,-x\n+z,+y,+x\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n+z+1/2,+x+1/2,+y+1/2\n+z+1/2,-x+1/2,-y+1/2\n-z+1/2,-x+1/2,+y+1/2\n-z+1/2,+x+1/2,-y+1/2\n+y+1/2,+z+1/2,+x+1/2\n-y+1/2,+z+1/2,-x+1/2\n+y+1/2,-z+1/2,-x+1/2\n-y+1/2,-z+1/2,+x+1/2\n+y+1/2,+x+1/2,-z+1/2\n-y+1/2,-x+1/2,-z+1/2\n+y+1/2,-x+1/2,+z+1/2\n-y+1/2,+x+1/2,+z+1/2\n+x+1/2,+z+1/2,-y+1/2\n-x+1/2,+z+1/2,+y+1/2\n-x+1/2,-z+1/2,-y+1/2\n+x+1/2,-z+1/2,+y+1/2\n+z+1/2,+y+1/2,-x+1/2\n+z+1/2,-y+1/2,+x+1/2\n-z+1/2,+y+1/2,+x+1/2\n-z+1/2,-y+1/2,-x+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n-z+1/2,-x+1/2,-y+1/2\n-z+1/2,+x+1/2,+y+1/2\n+z+1/2,+x+1/2,-y+1/2\n+z+1/2,-x+1/2,+y+1/2\n-y+1/2,-z+1/2,-x+1/2\n+y+1/2,-z+1/2,+x+1/2\n-y+1/2,+z+1/2,+x+1/2\n+y+1/2,+z+1/2,-x+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n-y+1/2,+x+1/2,-z+1/2\n+y+1/2,-x+1/2,-z+1/2\n-x+1/2,-z+1/2,+y+1/2\n+x+1/2,-z+1/2,-y+1/2\n+x+1/2,+z+1/2,+y+1/2\n-x+1/2,+z+1/2,-y+1/2\n-z+1/2,-y+1/2,+x+1/2\n-z+1/2,+y+1/2,-x+1/2\n+z+1/2,-y+1/2,-x+1/2\n+z+1/2,+y+1/2,+x+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a049\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a050\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a051\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a052\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a053\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a054\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a055\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a056\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a057\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a058\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a059\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a060\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a061\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a062\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a063\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a064\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a065\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a066\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a067\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a068\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a069\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a070\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a071\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a072\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a073\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a074\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a075\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a076\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a077\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a078\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a079\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a080\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a081\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a082\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a083\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a084\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a085\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a086\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a087\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a088\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a089\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a090\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a091\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a092\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a093\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a094\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a095\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a096\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Ima2.html","title":"Ima2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a046\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Ima2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a01.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Imm2.html","title":"Imm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a044\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Imm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Imma.html","title":"Imma","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a074\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Imma\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y+1/2,+z\n-x,+y+1/2,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y+1/2,-z\n+x,-y+1/2,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1,+z+1/2\n-x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1,-z+1/2\n+x+1/2,-y+1,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a01.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Immm.html","title":"Immm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a071\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Immm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a016\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n+x+1/2,+y+1/2,+z+1/2\n-x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Interface.html","title":"Interfaces to Other Programs","text":"NWChem has interfaces to several different packages which are listed below. In general, the NWChem authors work with the authors of the other packages to make sure that the interface works. However, any problems with the interface should be reported through the github issue page https://github.com/nwchemgit/nwchem/issues
"},{"location":"Interface.html#dirdyvtst-direct-dynamics-for-variational-transition-state-theory","title":"DIRDYVTST \u2013 DIRect Dynamics for Variational Transition State Theory","text":"by Bruce C. Garrett, Environmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, Richland, Washington
Yao-Yuan Chuang and Donald G. Truhlar, Department of Chemistry and Super Computer Institute, University of Minnesota, MN 55455-0431
and interfaced to NWChem by
Ricky A. Kendall, Scalable Computing Laboratory, Ames Laboratory and Iowa State University, Ames, IA 50011
Theresa L. Windus, Environmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, Richland, Washington
If you use the DIRDYVTST portion of NWChem, please use following citation in addition to the usual NWChem citation:
DIRDYVTST, Yao-Yuan Chuang and Donald G. Truhlar, Department of Chemistry and Super Computer Institute, \n University of Minnesota; Ricky A. Kendall,Scalable Computing Laboratory, Ames Laboratory and Iowa State \n University; Bruce C. Garrett and Theresa L. Windus, Environmental Molecular Sciences Laboratory, \n Pacific Northwest Laboratory. `\n
"},{"location":"Interface.html#introduction","title":"Introduction","text":"By using DIRDYVTST, a user can carry out electronic structure calculations with NWChem and use the resulting energies, gradients, and Hessians for direct dynamics calculations with POLYRATE. This program prepares the file30 input for POLYRATE from NWChem electronic structure calculations of energies, gradients and Hessians at the reactant, product, and saddle point geometries and along the minimum energy path. Cartesian geometries for the reactants, products, and saddle points need to be input to this program; optimization of geometries is not performed in this program. Note that DIRDYVTST is based on the DIRDYGAUSS program and is similar to two other programs: DDUTILITIES and GAUSSRATE. Users of this module are encouraged to read the POLYRATE manual since they will need to create the file fu5 input to run calculations with POLYRATE.
Notes about the code:
Input. The code has been written to parallel, as much as possible, the POLYRATE code.
Output. There is one default output file for each DIRDYVTST run - .file30.
Integrators for following the reaction path. Currently the Euler and three Page-McIver (PM) methods are implemented. The PM methods are the local quadratic approximation (LQA), the corrected LQA (CLQA), and the cubic (CUBE) algorithm. The PM methods are implemented so that the Hessian can be reused at intermediate steps at which only the gradient is updated.
"},{"location":"Interface.html#files","title":"Files","text":"Test runs are located in directories in $NWCHEM_TOP/QA/tests. Test runs are available for two systems: H + H2 and OH + H2.
The H + H2 test uses the Euler integration method at the SCF/3-21G level of theory to calculate points along the reaction path. This test is located in the $NWCHEM_TOP/QA/tests/h3tr1 directory.
The OH + H2 test uses the Page-McIver CUBE algorithm to calculate points on the SCF/3-21G surface and does additional single point calculations at the SCF/6-31G* level of theory. This test is located in the $NWCHEM_TOP/QA/tests/oh3tr3 directory.
Note: These tests are set up with SCF, however, other levels of theory can be used. The initial hessian calculations at the reactants, products and saddle point can cause some problems when numerical hessians are required (especially when there is symmetry breaking in the wavefunction).
"},{"location":"Interface.html#detailed-description-of-the-input","title":"Detailed description of the input","text":"The input consists of keywords for NWChem and keywords related to POLYRATE input. The first set of inputs are for NWChem with the general input block of the form:
DIRDYVTST [autosym [real tol default 1d-2] | noautosym] \n [THEORY <string theory> [basis <string basis default \"ao basis\">] \\ \n [ecp <string ecp>] [input <string input>]] \n [SPTHEORY <string theory> [basis <string basis default \"ao basis\">] \n [ecp <string ecp>] [input <string input>`]] \n ...\n END\n
"},{"location":"Interface.html#use-of-symmetry","title":"Use of symmetry","text":"The use of symmetry in the calculation is controlled by the keyword autosym | noautosym
which is used as described in the geometry directive. Autosym
is on by default. A couple words of warning here. The tolerance related to autosym
can cause problems when taking the initial step off of the transition state. If the tolerance is too large and the initial step relatively small, the resulting geometry will be close to a higher symmetry than is really wanted and the molecule will be symmetrized into the higher symmetry. To check this, the code prints out the symmetry at each geometry along the path. It is up to the user to check the symmetry and make sure that it is the required one. In perverse cases, the user may need to turn autosym off (noautosym) if changing the tolerance doesn\u2019t produce the desired results. In the case that autosym is used, the user does not need to worry about the different alignment of the molecule between NWChem and POLYRATE, this is taken care of internally in the DIRDYVTST module.
The basis name on the theory or sptheory directive is that specified on a basis set directive and not the name of a standard basis in the library. If not specified, the basis set for the sptheory defaults to the theory basis which defaults to \u201cao basis\u201d.
"},{"location":"Interface.html#effective-core-potentials","title":"Effective core potentials","text":"If an effective core potential is specified in the usual fashion outside of the DIRDYVTST input then this will be used in all calculations. If an alternative ECP name (the name specified on the ECP directive in the same manner as done for basis sets) is specified on one of the theory directives, then this ECP will be used in preference for that level of theory.
"},{"location":"Interface.html#general-input-strings","title":"General input strings","text":"For many purposes, the ability to specify the theory, basis and effective core potential is adequate. All of the options for each theory are determined from their independent input blocks. However, if the same theory (e.g., DFT) is to be used with different options for theory and sptheory, then the general input strings must be used. These strings are processed as NWChem input each time the theoretical calculation is invoked. The strings may contain any NWChem input, except for options pertaining to DIRDYVTST and the task directive. The intent is that the strings be used just to control the options pertaining to the theory being used.
A word of caution. Be sure to check that the options are producing the desired results. Since the NWChem database is persistent, the input strings should fully define the calculation you wish to have happen.
For instance, if the theory model is DFT/LDA/3-21g and the sptheory model is DFT/B3LYP/6-311g**, the DIRDYVTST input might look like this
dirdyvtst \n theory dft basis 3-21g input \"dft\\; xc\\; end\" \n sptheory dft basis 6-311g** input \"dft\\; xc b3lyp\\; end\" \n .... \n end\n
The empty XC directive restores the default LDA exchange-correlation functional. Note that semi-colons and other quotation marks inside the input string must be preceded by a backslash to avoid special interpretation.
"},{"location":"Interface.html#polyrate-related-options","title":"POLYRATE related options","text":"These keyword options are simlar to the POLYRATE input format, except there are no ENERGETICS, OPTIMIZATION, SECOND, TUNNELING, and RATE sections.
"},{"location":"Interface.html#general-section","title":"GENERAL section","text":"The GENERAL section has the following format:
* GENERAL\n\n [TITLE <string title>] \n ATOMS \n <integer num> <string tag> [<real mass>] \n ... \n END \n [SINGLEPOINT] \n [SAVEFILE (vecs || hess || spc)\n
Descriptions
TITLE is a keyword that allows the user to input a description of the calculation. In this version, the user can only have a single-line description.
For example:
TITLE Calculation of D + HCl reaction
ATOMS is a list keyword that is used to input a list of the atoms. It is similar to POLYRATE in that the order of the atom and the atomic symbol are required in a single line. If isotope of the element is considered then the atomic mass is required in units of amu.
For example:
ATOMS \n 1 H 2.014 \n 2 H \n 3 Cl \n END`\n
SINGLEPOINT is a keyword that specifies that a single point calculation is to be performed at the reactants, products and saddle point geometries. The type of single point calculation is specified in the sptheory line.
SAVEFILE is a keyword that specifies that NWChem files are to be saved. Allowed values of variable input to SAVEFILE are vecs, hess, and spc for saving the files base theory movecs, base theory hessian and singlepoint calculation movecs.
"},{"location":"Interface.html#react1-react2-prod1-prod2-and-start-sections","title":"REACT1, REACT2, PROD1, PROD2, and START sections","text":"These sections have the following format:
*(REACT1 || REACT2 || PROD1 || PROD2 || START) \n GEOM \n <integer num> <real x y z> \n ... \n END \n SPECIES (ATOMIC || LINRP || NONLINRP || LINTS || NONLINTS default NONLINRP)\n
REACT1 and REACT2 are input for each of the reactants and PROD1 and PROD2 are input for each of the products. REACT1 and PROD1 are required. START is the input for the transition state if one exists, or starting point to follow downhill the MEP.
Descriptions
GEOM is a list keyword that indicates the geometry of the molecule in Cartesian coordinates with atomic unit.
For example:
GEOM \n 1 0.0 0.0 0.0 \n 2 0.0 0.0 1.5 \n END\n
SPECIES is a variable keyword that indicates the type of the molecule. Options are: ATOMIC (atomic reactant or product), LINRP (linear reactant or product), NONLINRP (nonlinear reactant or product), LINTS (linear transition state), and NONLINTS (nonlinear transition state).
For example:
SPECIES atomic
The Path section has the format:
*PATH \n [SCALEMASS <real scalemass default 1.0>] \n [SSTEP <real sstep default 0.01>] \n [SSAVE <real ssave default 0.1>] \n [SHESS <real shess default SSAVE>] \n [SLP <real slp default 1.0>] \n [SLM <real slm default -1.0>] \n [SIGN (REACTANT || PRODUCT default REACTANT)] \n [INTEGRA (EULER || LQA || CLQA || CUBE default EULER)] \n [PRINTFREQ (on || off default off)]\n
Descriptions
SCALEMASS is a variable keyword that indicates the arbitrary mass (in amu) used for mass-scaled Cartesian coordinates. This is the variable called mu in published papers. Normally, this is taken as either 1.0 amu or, for bimolecular reactions, as the reduced mass of relative translation of the reactants.
SSTEP is a variable keyword that indicates the numerical step size (in bohrs) for the gradient grid. This is the step size for following the minimum energy path.
SSAVE is a variable keyword that indicates the numerical step size (in bohrs) for saving the Hessian grid. At each save point the potential and its first and second derivatives are recalculated and written to the .file30 file. For example, if SSTEP=0.01 and SSAVE=0.1, then the potential information is written to .file30 every 10 steps along the gradient grid.
SHESS is a variable keyword that indicates the numerical step size (in bohrs) for recomputing the Hessian when using a Page-McIver integrator (e.g., LQA, CLQA, or CUBE). For Euler integration SHESS = SSAVE. For intermediate points along the gradient grid, the Hessian matrix from the last Hessian calculation is reused. For example, if SSTEP=0.01 and SHESS=0.05, then the Hessian matrix is recomputed every 5 steps along the gradient grid.
SLP is a variable keyword that indicates the positive limit of the reaction coordinate (in bohrs).
SLM is a variable keyword that indicates the negative limit of the reaction coordinate (in bohrs).
SIGN is a variable keyword used to ensure the conventional definition of the sign of s, s \\< 0 for the reactant side and s > 0 for the product side, is followed. PRODUCT should be used if the eigenvector at the saddle point points toward the product side and REACTANT if the eigenvector points toward the reactant side.
INTEGRA is a variable keyword that indicates the integration method used to follow the reaction path. Options are: EULER, LQA, CLQA, and CUBE.
PRINTFREQ is a variable keyword that indicates that projected frequencies and eigenvectors will be printed along the MEP.
"},{"location":"Interface.html#restart","title":"Restart","text":"DIRDYVTST calculations should be restarted through the normal NWChem mechanism. The user needs to change the start directive to a restart directive and get rid of any information that will overwrite important information in the RTDB. The file.db and file.file30 need to be available for the calculation to restart properly.
"},{"location":"Interface.html#example","title":"Example","text":"This is an example that creates the file30 file for POLYRATE for H + H2. Note that the multiplicity is that of the entire supermolecule, a doublet. In this example, the initial energies, gradients, and Hessians are calculated at the UHF/3-21G level of theory and the singlepoint calculations are calculated at the MP2/cc-pVDZ level of theory with a tighter convergence threshold than the first SCF.
start h3test \n\nbasis \n h library 3-21G \nend \n\nbasis singlepoint \n h library cc-pVDZ \nend \n\nscf \n uhf \n doublet \n thresh 1.0e-6 \nend \n\ndirdyvtst autosym 0.001 \n theory scf input \"scf\\; uhf\\; doublet\\; thresh 1.0e-06\\; end\" \n sptheory mp2 basis singlepoint input \\ \n \"scf\\; uhf\\; doublet\\; thresh 1.0e-07\\; end\" \n*GENERAL \n TITLE \n Test run: H+H2 reaction, Page-McIver CLQA algorithm, no restart \n\n ATOMS \n 1 H \n 2 H \n 3 H \n END \n\n SINGLEPOINT \n\n*REACT1 \n GEOM \n 1 0.0 0.0 0.0 \n 2 0.0 0.0 1.3886144 \n END \n\n SPECIES LINRP \n\n*REACT2 \n GEOM \n 3 0.0 0.0 190.3612132 \n END \n\n SPECIES ATOMIC \n\n*PROD2 \n GEOM \n 1 0.0 0.0 190.3612132 \n END \n\n SPECIES ATOMIC \n\n*PROD1 \n\n GEOM \n 2 0.0 0.0 1.3886144 \n 3 0.0 0.0 0.0 \n END \n\n SPECIES LINRP \n\n*START \n\n GEOM \n 1 0.0 0.0 -1.76531973 \n 2 0.0 0.0 0.0 \n 3 0.0 0.0 1.76531973 \n END \n\n SPECIES LINTS \n\n*PATH \n SSTEP 0.05 \n SSAVE 0.05 \n SLP 0.50 \n SLM -0.50 \n SCALEMASS 0.6718993 \n INTEGRA CLQA \nend \n\ntask dirdyvtst\n
"},{"location":"Interfaces-with-External-Software.html","title":"Interfaces with External Software","text":""},{"location":"Interfaces-with-External-Software.html#overview","title":"Overview","text":"NWChem can be interfaced with external software packages by following the instructions below.
The interface can be set either using a pre-exisiting software package or by downloading and compiling the software from the NWChem makefile infrastructure.
"},{"location":"Interfaces-with-External-Software.html#simint-integrals-library","title":"Simint integrals library","text":"To generate the Simint library and enable the NWChem interface (only for energy and first derivative code), you need to define the following environment variables at compile time:
USE_SIMINT=y
(mandatory)SIMINT_MAXAM=
\u201cMaximum angular momentum\u201d (optional, default is 3, therefore up to f orbitals)The following set directives are required in the input file to trigger use of Simint
set int:cando_txs f\nset int:cando_nw f\n
"},{"location":"Interfaces-with-External-Software.html#openblas","title":"OpenBLAS","text":"To build NWChem with the optimized BLAS and Lapack OpenBLAS library, you need to define the following environment variables at compile time:
BUILD_OPENBLAS=1\nBLAS_SIZE=8\n
This procedure requires an internet connection to dowload the OpenBLAS source. Instead, to use a pre-compiled OpenBLAS library, the BLASOPT
, LAPACK_LIB
and BLAS_SIZE
environment variable need to be set.
To build NWChem with the ScaLAPACK library, you need to define the following environment variables at compile time:
BUILD_SCALAPACK=1\nSCALAPACK_SIZE=8\n
This procedure requires an internet connection to dowload the OpenBLAS source. Instead, to use a pre-compiled ScaLAPACK library, the SCALAPACK_LIB
and SCALAPACK_SIZE
environment variable need to be set.
To build NWChem with the ELPA eigensolver library, you need first to set the ScaLAPACK settings as described in the previous section and then you need to define the following environment variables at compile time:
BUILD_ELPA=1\n
This procedure requires an internet connection to dowload the OpenBLAS source. Instead, to use a pre-compiled ELPA library, the ELPA
and ELPA_SIZE
environment variable need to be set.
The BUILD_PLUMED
environment variable installs Plumed and interfaces it with the qmd module. This procedure requires an internet connection to dowload the Plumed source.
Instead, if you wish to use an existing Plumed installation, the following environment variables must be set (after having unset BUILD_PLUMED
):
USE_PLUMED=1\n
Requirements: * The environment variable PATH
should to point to the location of the plumed
command and LD_LIBRARY_PATH
should point to the location of the plumed libraries. * BLAS_SIZE
and SCALAPACK_SIZE
must be equal to 4 (this is not a requirement when using BUILD_PLUMED
)
Building NWChem with the libxc DFT library requires setting the environment variable USE_LIBXC=1
.
This procedure requires an internet connection to dowload the Libxc source.
Instead, if you wish to use an existing libxc library, the following environment variables must be set, after having unset USE_LIBXC
:
LIBXC_INCLUDE
location of the libxc C header filesLIBXC_MODDIR
location of the libxc fortran90 module filesLIBXC_LIB
location of the libxc libraries filesFor example, for Debian/Ubuntu systems, the following is needed after having installed the libxc-dev
package
unset USE_LIBXC\n export LIBXC_LIB=/usr/lib/x86_64-linux-gnu\n export LIBXC_INCLUDE=/usr/include\n
For example, for Fedora systems, the following is needed after having installed the libxc-devel
package
unset USE_LIBXC\n export LIBXC_LIB=/usr/lib64\n export LIBXC_INCLUDE=/usr/include \n export LIBXC_MODDIR=/usr/lib64/gfortran/modules\n
"},{"location":"Interfaces-with-External-Software.html#xtb","title":"XTB","text":"Building NWChem with the Light-weight tight-binding framework tblite requires
USE_TBLITE=1
xtb
to list of NWCHEM_MODULES
Example:
make nwchem_config NWCHEM_MODULES='tinyqmpw xtb'\nexport USE_TBLITE=1\nmake\n
"},{"location":"Introduction.html","title":"NWChem Introduction","text":""},{"location":"Introduction.html#getting-started","title":"Getting Started","text":""},{"location":"Introduction.html#nwchem-architecture","title":"NWChem Architecture","text":""},{"location":"Keywords-on-the-GEOMETRY-directive.html","title":"Keywords on the GEOMETRY directive","text":""},{"location":"Keywords-on-the-GEOMETRY-directive.html#keywords-on-the-geometry-directive","title":"Keywords on the GEOMETRY directive","text":"This section presents the options that can be specified using the keywords and optional input on the main line of the GEOMETRY directive. As described above, the first line of the directive has the general form,
GEOMETRY [<string name default geometry>] \\ \n [units <string units default angstroms>] \\ \n [bqbq] \\ \n [print [xyz] || noprint] \\ \n [center || nocenter] \\\n [autosym [real tol default 1d-2] || noautosym] \n [autoz || noautoz] \\ \n [adjust] \\ \n [(nuc || nucl || nucleus) <string nucmodel>]\n
All of the keywords and input on this line are optional. The following list describes all options and their defaults.
<name>
- user-supplied name for the geometry; the default name is geometry, and all NWChem modules look for a geometry with this name. However, multiple geometries may be specified by using a different name for each. Subsequently, the user can direct a module to a named geometry by using the SET directive (see the example in the SET Section) to associate the default name of geometry with the alternate name.units
- keyword specifying that a value will be entered by the user for the string variable . The default units for the geometry input are Angstr\u00f8ms (Note: atomic units or Bohr are used within the code, regardless of the option specified for the input units. The default conversion factor used in the code to convert from Angstr\u00f8ms to Bohr is 1.8897265 which may be overidden with the angstrom_to_au
keyword described below.). The code recognizes the following possible values for the string variable :angstroms
or an
\u2013 Angstroms , the default (converts to A.U. using the Angstrom to A.U. conversion factor)au
or atomic
or bohr
\u2013 Atomic units (A.U.)nm
or nanometers
\u2013 nanometers (converts to A.U. using a conversion factor computed as 10.0 times the Angstrom to A.U. conversion factor)pm
or picometers
\u2013 picometers
(converts to A.U. using a conversion factor computed as 0.01 times the Angstrom to A.U. conversion factor)angstrom_to_au
- may also be specified as ang2au
. This enables the user to modify the conversion factors used to convert between Angstrom and A.U.. The default value is 1.8897265.bqbq
- keyword to specify the treatment of interactions between dummy centers. The default in NWChem is to ignore such interactions when computing energies or energy derivatives. These interactions will be included if the keyword bqbq
is specified.print
and noprint
- complementary keyword pair to enable or disable printing of the geometry. The default is to print the output associated with the geometry. In addition, the keyword print may be qualified by the additional keyword xyz, which specifies that the coordinates should be printed in the XYZ format of molecular graphics program XMolcenter
and nocenter
- complementary keyword pair to enable or disable translation of the center of nuclear charge to the origin. With the origin at this position, all three components of the nuclear dipole are zero. The default is to move the center of nuclear charge to the origin.autosym
and noautosym
- keyword to specify that the symmetry of the geometric system should be automatically determined. This option is on by default, but can be turned off with noautosym. Only groups up to and including Oh are recognized. Occasionally NWChem will be unable to determine the full symmetry of a molecular system, but will find a proper subgroup of the full symmetry. The default tolerance is set to work for most cases, but may need to be decreased to find the full symmetry of a geometry. Note that autosym will be turned off if the SYMMETRY group input is given (See Symmetry Group Input). Also note that if symmetry equivalent atoms have different tags in the geometry they will not be detected as symmetry equivalent by the autosym
capability. The reason for this is that atoms with different tags might be assigned different basis sets, for example, after which they are no longer symmetry equivalent. Therefore autosym chooses to make the save choice.noautoz
- by default NWChem (release 3.3 and later) will generate redundant internal coordinates from user input Cartesian coordinates. The internal coordinates will be used in geometry optimizations. The noautoz
keyword disables use of internal coordinates. The autoz
keyword is provided only for backward compatibility. See Forcing internal coordinates for a more detailed description of redundant internal coordinates, including how to force the definition of specific internal variables in combination with automatically generated variables.adjust
- This indicates that an existing geometry is to be adjusted. Only new input for the redundant internal coordinates may be provided (ZCOORD: Forcing internal coordinates). It is not possible to define new centers or to modify the point group using this keyword. See Forcing internal coordinates for an example of its usage.nucleus
- keyword to specify the default model for the nuclear charge distribution. The following values are recognized:point
or pt
\u2013 point nuclear charge distribution. This is the default.finite
or fi
\u2013 finite nuclear charge distribution with a Gaussian shape. The RMS radius of the Gaussian is determined from the nuclear mass number A by the expression r RMS = 0.836*A1/3+0.57 fm
NOTE: If you specify a finite nuclear size, you should ensure that the basis set you use is contracted for a finite nuclear size.
The following examples illustrate some of the various options that the user can specify on the first input line of the GEOMETRY directive, using the keywords and input options described above.
The following directives all specify the same geometry for H2 (a bond length of 0.732556 \u00c5):
geometry geometry units nm \n h 0 0 0 h 0 0 0 \n h 0 0 0.732556 h 0 0 0.0732556 \n end end \n\n geometry units pm geometry units atomic \n h 0 0 0 h 0 0 0 \n h 0 0 73.2556 h 0 0 1.3843305 \n end end\n
"},{"location":"Known-Bugs.html","title":"Known Bugs","text":""},{"location":"Known-Bugs.html#how-to-report-bugs","title":"How to report bugs","text":"Use our Github issue tracker to report new bugs.
Also check there for other issues that may not have made it into these lists.
See the FAQ page for solutions to common issues.
"},{"location":"Known-Bugs.html#bugs-present-in-nwchem-binary-packages","title":"Bugs present in NWChem binary packages","text":"spcart_bra2etran: nbf_xj.ne.nbf_sj (xj-sj) = 5\n
https://groups.google.com/g/nwchem-forum/c/RA0tYxdfvaw https://nwchemgit.github.io/Special_AWCforum/st/id3386/Ubuntu_18.html https://bugs.launchpad.net/ubuntu/+source/nwchem/+bug/1675817
Please use commands to install an updated version (as described at the NWChem 7.0.0 release page)
sudo apt -y install curl python3-dev gfortran mpi-default-bin mpi-default-dev libopenblas-dev ssh\n\ncurl -LJO https://github.com/nwchemgit/nwchem/releases/download/v7.0.0-release/nwchem-data_7.0.0-3_all.ubuntu_bionic.deb\ncurl -LJO https://github.com/nwchemgit/nwchem/releases/download/v7.0.0-release/nwchem_7.0.0-3_amd64.ubuntu_bionic.deb\n\nsudo dpkg -i nwchem-data_7.0.0-3*_bionic.deb nwchem_7.0.0-3*_bionic.deb\n
"},{"location":"Known-Bugs.html#known-bugs-for-nwchem-68","title":"Known bugs for NWChem 6.8","text":"make USE_ARUR=n\n
Fix available in the branches master and hotfix/release-6-8
The molecular dynamics module of NWChem uses a distribution of data based on a spacial decomposition of the molecular system, offering an efficient parallel implementation in terms of both memory requirements and communication costs, especially for simulations of large molecular systems.
Inter-processor communication using the global array tools and the design of a data structure allowing distribution based on spacial decomposition are the key elements in taking advantage of the distribution of memory requirements and computational work with minimal communication.
In the spacial decomposition approach, the physical simulation volume is divided into rectangular cells, each of which is assigned to a processor. Depending on the conditions of the calculation and the number of available processors, each processor contains one or more of these spacially grouped cells. The most important aspects of this decomposition are the dependence of the cell sizes and communication cost on the number of processors and the shape of the cells, the frequent reassignment of atoms to cells leading to a fluctuating number of atoms per cell, and the locality of communication which is the main reason for the efficiency of this approach for very large molecular systems.
To improve efficiency, molecular systems are broken up into separately treated solvent and solute parts. Solvent molecules are assigned to the domains according to their center of geometry and are always owned by a one node. This avoids solvent-solvent bonded interactions crossing node boundaries. Solute molecules are broken up into segments, with each segment assigned to a processor based on its center of geometry. This limits the number of solute bonded interactions that cross node boundaries. The processor to which a particular cell is assigned is responsible for the calculation of all interactions between atoms within that cell. For the calculation of forces and energies in which atoms in cells assigned to different processors are involved, data are exchanged between processors. The number of neighboring cells is determined by the size and shape of the cells and the range of interaction. The data exchange that takes place every simulation time step represents the main communication requirements. Consequently, one of the main efforts is to design algorithms and data structures to minimize the cost of this communication. However, for very large molecular systems, memory requirements also need to be taken into account.
To compromise between these requirements exchange of data is performed in successive point to point communications rather than using the shift algorithm which reduces the number of communication calls for the same amount of communicated data.
For inhomogeneous systems, the computational load of evaluating atomic interactions will generally differ between cell pairs. This will lead to load imbalance between processors. Two algorithms have been implemented that allow for dynamically balancing the workload of each processor. One method is the dynamic resizing of cells such that cells gradually become smaller on the busiest node, thereby reducing the computational load of that node. Disadvantages of this method are that the efficiency depends on the solute distribution in the simulation volume and the redistribution of work depends on the number of nodes which could lead to results that depend on the number of nodes used. The second method is based on the dynamic redistribution of intra-node cell-cell interactions. This method represents a more coarse load balancing scheme, but does not have the disadvantages of the cell resizing algorithm. For most molecular systems the cell pair redistribution is the more efficient and preferred method.
The description of a molecular system consists of static and dynamic information. The static information does not change during a simulation and includes items such as connectivity, excluded and third neighbor lists, equilibrium values and force constants for all bonded and non-bonded interactions. The static information is called the topology of the molecular system, and is kept on a separate topology file. The dynamic information includes coordinates and velocities for all atoms in the molecular system, and is kept in a so-called restart file.
"},{"location":"MD.html#topology","title":"Topology","text":"The static information about a molecular system that is needed for a molecular simulation is provided to the simulation module in a topology file. Items in this file include, among many other things, a list of atoms, their non-bonded parameters for van der Waals and electrostatic interactions, and the complete connectivity in terms of bonds, angles and dihedrals.
In molecular systems, a distinction is made between solvent and solute, which are treated separately. A solvent molecule is defined only once in the topology file, even though many solvent molecules usually are included in the actual molecular system. In the current implementation only one solvent can be defined. Everything that is not solvent in the molecular system is solute. Each solute atom in the system must be explicitly defined in the topology.
Molecules are defined in terms of one or more segments. Typically, repetitive parts of a molecule are each defined as a single segment, such as the amino acid residues in a protein. Segments can be quite complicated to define and are, therefore, collected in a set of database files. The definition of a molecular system in terms of segments is a sequence.
Topology files are created using the prepare module.
"},{"location":"MD.html#files","title":"Files","text":"File names used have the form system_calc.ext, with exception of the topology file, which is named system.top. Anything that refers to the definition of the chemical system can be used for system, as long as no periods or underlines are used. The identifier calc can be anything that refers to the type of calculation to be performed for the system with the topology defined. This file naming convention allows for the creation of a single topology file system.top that can be used for a number of different calculations, each identified with a different calc. For example, if crown.top is the name of the topology file for a crown ether, crown_em, crown_md, crown_ti could be used with appropriate extensions for the filenames for energy minimization, molecular dynamics simulation and multi-configuration thermodynamic integration, respectively. All of these calculations would use the same topology file crown.top.
The extensions <ext>
identify the kind of information on a file, and are pre-determined.
Database file supplied with NWChem and used by the prepare module are found in directories with name ffield_level, where ffield is any of the supported force fields. The source of the data is identified by level, and can be
level Description s original published data x additional published data q contributed data u user preferred data t user defined temporary dataThe user is can replace these directories or add additional database files by specifying them in the .nwchemrc file. or in the prepare input file.
The extension 1-9 defines the priority of database file.
frg fragments par parameters seq sequences sgm segments"},{"location":"MD.html#force-fields","title":"Force fields","text":"Force fields recognized are
Keyword Force field Status amber AMBER99 AMBER95,GLYCAM also available charmm CHARMM"},{"location":"MD.html#format-of-fragment-files","title":"Format of fragment files","text":"Fragment files contain the basic information needed to specify all interactions that need to be considered in a molecular simulation. Normally these files are created by the prepare module. Manual editing is needed when, for example, the prepare module could not complete atom typing, or when modified charges are required.
The formats of files used in NWChem are listed here.
"},{"location":"MD.html#creating-segment-files","title":"Creating segment files","text":"The prepare module is used to generate segment files from corresponding fragment files. A segment file contains all information for the calculation of bonded and non-bonded interactions for a given chemical system using a specific force field.
Which atoms form a fragment is specified in the coordinate file, currently only in PDB format. The segment entries define three sets of parameters for each interaction.
Free energy perturbations can be performed using set 1 for the generation of the ensemble while using sets 2 and/or 3 as perturbations. Free energy multiconfiguration thermodynamic integration and multistep thermodynamic perturbation calculations are performed by gradually changing the interactions in the system from parameter set 2 to parameter set 3. These modifications can be edited into the segment files manually, or introduced directly into the topology file using the modify commands in the input for the prepare module.
"},{"location":"MD.html#creating-sequence-files","title":"Creating sequence files","text":"A sequence file describes a molecular system in terms of segments. This file is generated by the prepare module for the molecular system provided on a PDB-formatted coordinate file
"},{"location":"MD.html#creating-topology-files","title":"Creating topology files","text":"The topology describes all static information that describes a molecular system. This includes the connectivity in terms of bond-stretching, angle-bending and torsional interactions, as well as the non-bonded van der Waals and Coulombic interactions.
The topology of a molecular system is generated by the prepare module from the sequence in terms of segments as specified on the PDB file. For each unique segment specified in this file the segment database directories are searched for the segment definition. For segments not found in one of the database directories a segment definition is generated in the temporary directory if a fragment file was found. If a fragment file could not be found, it is generated by the prepare module base on what is found on the PDB file.
When all segments are found or created, the parameter substitutions are performed, using force field parameters taken from the parameter databases. After all lists have been generated the topology is written to a local topology file <system>
.top.
Restart files contain all dynamical information about a molecular system and are created by the prepare module if a topology file is available. The prepare module will automatically generate coordinates for hydrogen atoms and monatomic counter ions not found on the PDB formatted coordinate file, if no fragment or segment files were generated using that PDB file.
The prepare module has a number of other optional input command, including solvation.
"},{"location":"MD.html#molecular-simulations","title":"Molecular simulations","text":"The type of molecular dynamics simulation is specified by the NWChem task directive.
task md [ energy | optimize | dynamics | thermodynamics ]\n
where the theory keyword md specifies use of the molecular dynamics module, and the operation keyword is one of
The chemical system for a calculation is specified in the topology and restart files. These files should be created using the utilities nwtop and nwrst before a simulation can be performed. The names of these files are determined from the required system directive.
system <string systemid>_<string calcid>\n
where the strings systemid and calcid are user defined names for the chemical system and the type of calculation to ber performed, respectively. These names are used to derive the filenames used for the calculation. The topoly file used will be systemid.top, while all other files are named systemid_calcid.ext.
"},{"location":"MD.html#restarting-and-continuing-simulations","title":"Restarting and continuing simulations","text":" finish\n
Specifies that the current job will finish a previous, incomplete simulation, using the input data that have been recorded by that previous run in the restart file. Most of the input in the current md input block will be ignored.
resume\n
Specifies that the current job will be an extension of a previous simulation, using most of the input data that have been recorded by that previous run in the restart file. Typically the input in the current md input block defines a larger number of steps than the previous job.
"},{"location":"MD.html#parameter-set","title":"Parameter set","text":"set <integer iset>\n
Specifies the use of parameter set <iset>
for the molecular dynamics simulation. The topology file contains three separate parameters sets that can be used. The default for <iset>
is 1.
lambda <integer ilambda> <integer ilambda>\n
Specifies the use of parameter set for the ilambda-th of mlambda steps.
pset <integer isetp1> [<integer isetp2>]\n
Specifies the parameter sets to be used as perturbation potentials in single step thermodynamic perturbation free energy evaluations, where <isetp1>
specifies the first perturbation parameter set and <isetp2>
specifies the second perturbation parameter set. Legal values for <isetp1>
are 2 and 3. Legal value for <isetp2>
is 3, in which case <isetp1>
can only be 2. If specified, <iset>
is automatically set to 1.
pmf [ equilharm <integer npmfc> | scale <real facpmf>]\n
Specifies that any potential of mean force functions defined in the topology files are to be used. If equilharm is specified, the first npmfc dynamics steps will use a harmonic potential in stead of any pmf constraint. If scale is specified, all pmf force constants are scaled by a factor facpmf.
distar [draver [<integer ndaver default 1>]] \n [scale <real drsscl>]\n [after <integer nfdrss>]\n
Specifies that any distance restraint functions defined in the topology files are to be used.
qhop [<integer nfhop default 10>] \n [<real rhop default 0.35>]\n [<real thop default 0.02>]\n
Specifies that a Q-HOP simulation is to be carried out with attempted proton hops every nfhop steps, a cutoff for the donor-acceptor pair distance of rhop nm, and a minimum time before back hopping can occur of thop ps.
"},{"location":"MD.html#energy-minimization-algorithms","title":"Energy minimization algorithms","text":"The energy minimization of the system as found in the restart file is performed with the following directives. If both are specified, steepest descent energy minimization precedes conjugate gradient minimization.
sd <integer msdit> [init <real dx0sd>] [min <real dxsdmx>] \\\n [max <real dxmsd>]\n
Specifies the variables for steepest descent energy minimizations, where <msdit>
is the maximum number of steepest descent steps taken, for which the default is 100, <dx0sd>
is the initial step size in nm for which the default is 0.001, <dxsdmx>
is the threshold for the step size in nm for which the default is 0.0001, and <dxmsd>
is the maximum allowed step size in nm for which the default is 0.05.
cg <integer mcgit> [init <real dx0cg>] [min <real dxcgmx>] \\\n [cy <integer ncgcy>]\n
Specifies the variables for conjugate gradient energy minimizations, where <mcgit>
is the maximum number of conjugate gradient steps taken, for which the default is 100, <dx0cg>
is the initial search interval size in nm for which the default is 0.001, <dxcgmx>
is the threshold for the step size in nm for which the default is 0.0001, and <ncgcy>
is the number of conjugate gradient steps after which the gradient history is discarded for which the default is 10. If conjugate gradient energy minimization is preceded by steepest descent energy minimization, the search interval is set to twice the final step of the steepest descent energy minimization.
The following keywords control free energy difference simulations. Multi-configuration thermodynamic integrations are always combined with multiple step thermodynamic perturbations.
(forward | reverse) [[<integer mrun> of] <integer maxlam>]\n
Specifies the direction and number of integration steps in free energy evaluations, with forward being the default direction. <mrun>
is the number of ensembles that will be generated in this calculation, and <maxlam>
is the total number of ensembles to complete the thermodynamic integration. The default value for <maxlam>
is 21. The default value of <mrun>
is the value of <maxlam>
.
error <real edacq>\n
Specifies the maximum allowed statistical error in each generated ensemble, where <edacq>
is the maximum error allowed in the ensemble average derivative of the Hamiltonian with respect to \u03bb with a default of 5.0 kJ mol-1.
drift <real ddacq>\n
Specifies the maximum allowed drift in the free energy result, where is the maximum drift allowed in the ensemble average derivative of the Hamiltonian with respect to \u03bb with a default of 5.0 kJ mol-1 ps-1.
factor <real fdacq>\n
Specifies the maximum allowed change in ensemble size where <fdacq>
is the minimum size of an ensemble relative to the previous ensemble in the calculation with a default value of 0.75.
decomp\n
Specifies that a free energy decomposition is to be carried out. Since free energy contributions are path dependent, results from a decomposition analysis can no be unambiguously interpreted, and the default is not to perform this decomposition.
sss [delta <real delta>]\n
Specifies that atomic non-bonded interactions describe a dummy atom in either the initial or final state of the thermodynamic calculation will be calculated using separation-shifted scaling, where <delta>
is the separation-shifted scaling factor with a default of 0.075 nm2. This scaling method prevents problems associated with singularities in the interaction potentials.
new | renew | extend\n
Specifies the initial conditions for thermodynamic calculations. new indicates that this is an initial mcti calculation, which is the default. renew instructs to obtain the initial conditions for each \u03bb from the mro-file from a previous mcti calculation, which has to be renamed to an mri-file. The keyword extend will extend a previous mcti calculation from the data read from an mri-file.
"},{"location":"MD.html#time-and-integration-algorithm-directives","title":"Time and integration algorithm directives","text":"Following directives control the integration of the equations of motion.
leapfrog | leapfrog_bc\n
Specifies the integration algorithm, where leapfrog specifies the default leap frog integration, and leapfrog_bc specifies the Brown-Clarke leap frog integrator.
guided [<real fguide default 0.2> [<real tguide default 0.2>]]\n
Specifies the use of the guided molecular dynamics simulation technique. Variable fguide defines the fraction of the averaged forces g to be added to the forces ff evaluated using the force field functions to obtain the forces f used to advance the coordinates.
Variable tguide defines the length of the averaging relative to the timestep \u0394 t.
The current implementation is still under development.
equil <integer mequi>\n
Specifies the number of equilibration steps <mequi>
, with a default of 100.
data <integer mdacq> [over <integer ldacq>]]\n
Specifies the number of data gathering steps <mdacq>
with a default of 500. In multi-configuration thermodynamic integrations <mequi>
and <mdacq>
are for each of the ensembles, and variable <ldacq>
specifies the minimum number of data gathering steps in each ensemble. In regular molecular dynamics simulations <ldacq>
is not used. The default value for <ldacq>
is the value of <mdacq>
.
time <real stime>\n
Specifies the initial time <stime>
of a molecular simulation in ps, with a default of 0.0.
step <real tstep>\n
Specifies the time step <tstep>
in ps, with 0.001 as the default value.
Following directives control the ensemble type.
isotherm [<real tmpext> [<real tmpext2>]] [trelax <real tmprlx> [<real tmsrlx>]] \\\n [anneal [<real tann1>] <real tann2>]\n
Specifies a constant temperature ensemble using Berendsen\u2019s thermostat, where <tmpext>
is the external temperature with a default of 298.15 K, and <tmprlx>
and <tmsrlx>
are temperature relaxation times in ps with a default of 0.1. If only <tmprlx>
is given the complete system is coupled to the heat bath with relaxation time <tmprlx>
. If both relaxation times are supplied, solvent and solute are independently coupled to the heat bath with relaxation times <tmprlx>
and <tmsrlx>
, respectively. If keyword anneal is specified, the external temperature will change from tmpext to tempext2 between simulation time tann1 and tann2
isobar [<real prsext>] [trelax <real prsrlx> ] \\\n [compress <real compr>] [anisotropic] [xy | z | xy-z]\n
Specifies a constant pressure ensemble using Berendsen\u2019s piston, where <prsext>
is the external pressure with a default of 1.025 105 Pa, <prsrlx>
is the pressure relaxation time in ps with a default of 0.5, and <compr>
is the system compressibility in with a default of 4.53E-10. Optional keywords xy, z and xy-z may be used to specify that pressure scaling is to be applied in the x and y dimension only, the z dimension only, or, in all three dimensions with identical scaling in the x and y dimension. The last option requires that anisotropic is also specified.
Velocities can be periodically reassigned to reflect a certain temperature.
vreass <integer nfgaus> <real tgauss>\n [fraction [<real frgaus default 0.5]]\n [once]\n [(first | initial)] [(last | final)]\n
Specifies that velocities will be reassigned every <nfgaus>
molecular dynamics steps, reflecting a temperature of <tgauss>
K. The default is not to reassign velocities, i.e. <nfgaus>
is 0. Keyword fraction allows the specification of the fraction of the new velocities are random. Keyword once specifies that velocity reassignment only should be done in the first step. Keywords first or initial and last or final specify that velocity reassigment should only be applied in the first and last window of multiple run simulations.
Cutoff radii can be specified for short range and long range interactions.
cutoff [short] <real rshort> [long <real rlong>] \\\n [qmmm <real rqmmm>]\n
Specifies the short range cutoff radius <rshort>
, and the long range cutoff radius <rlong>
in nm. If the long range cutoff radius is larger than the short range cutoff radius the twin range method will be used, in which short range forces and energies are evaluated every molecular dynamics step, and long range forces and energies with a frequency of <nflong>
molecular dynamics steps. Keyword qmmm specifies the radius of the zone around quantum atoms defining the QM/MM bare charges. The default value for <rshort>
, <rlong>
and <rqmmm>
is 0.9 nm.
First order and self consistent electronic polarization models have been implemented.
polar (first | scf [[<integer mpolit>] <real ptol>])\n
Specifies the use of polarization potentials, where the keyword first specifies the first order polarization model, and scf specifies the self consistent polarization field model, iteratively determined with a maximum of <mpolit>
iterations to within a tolerance of <ptol>
D in the generated induced dipoles. The default is not to use polarization models.
field <real xfield> [freq <real xffreq>] [vector <real xfvect(1:3)>]\n
Specifies an external electrostatic field, where <xfield>
is the field strength, <xffreq>
is the frequency in MHz and <xfvect>
is the external field vector.
Constraints are satisfied using the SHAKE coordinate resetting procedure.
shake [<integer mshitw> [<integer mshits>]] \\\n [<real tlwsha> [<real tlssha>]]\n
Specifies the use of SHAKE constraints, where <mshitw>
is the maximum number of solvent SHAKE iterations, and <mshits>
is the maximum number of solute SHAKE iterations. If only <mshitw>
is specified, the value will also be used for <mshits>
. The default maximum number of iterations is 100 for both. <tlwsha>
is the solvent SHAKE tolerance in nm, and <tlssha>
is the solute SHAKE tolerance in nm. If only <tlwsha>
is specified, the value given will also be used for <tlssha>
. The default tolerance is 0.001 nm for both.
noshake (solvent | solute)\n
Disables SHAKE and treats the bonded interaction according to the force field.
"},{"location":"MD.html#long-range-interaction-corrections","title":"Long range interaction corrections","text":"Long range electrostatic interactions are implemented using the smooth particle mesh Ewald technique, for neutral periodic cubic systems in the constant volume ensemble, using pair interaction potentials. Particle-mesh Ewald long range interactions can only be used in molecular dynamics simulations using effective pair potentials, and not in free energy simulations, QMD or QM/MM simulations.
pme [grid <integer ng>] [alpha <real ealpha>] \\\n [order <integer morder>] [fft <integer imfft>]\\\n [procs <integer nprocs>] [solvent]\n
Specifies the use of smooth particle-mesh Ewald long range interaction treatment, where ng is the number of grid points per dimension, ealpha is the Ewald coefficient in , with a default that leads to a tolerance of at the short range cutoff radius, and morder is order of the Cardinal B-spline interpolation which must be an even number and at least 4 (default value). A platform specific 3D fast Fourier transform is used, if available, when imfft is set to 2. nprocs can be used to define a subset of processors to be used to do the FFT calculations. If solvent is specified, the charge grid will be calculated from the solvent charges only.
react [<real dielec default 80.0>]\n
Specifies that a simple reaction field correction is used with a dielectric constant dielec. This is an experimental option that has not been well tested.
"},{"location":"MD.html#fixing-coordinates","title":"Fixing coordinates","text":"Solvent or solute may be fixed using the following keywords.
( fix | free ) \n solvent ( [<integer idfirst> [<integer idlast>]] | \n ( within | beyond) <real rfix> <string atomname> ) | \\\n solute ( [<integer idfirst> [<integer idlast>]] [ heavy | {<string atomname>}] |\n ( within | beyond) <real rfix> <string atomname> )\n [permanent]\n
For solvent the molecule numbers idfirst and idlastmay be specified to be the first and last molecule to which the directive applies. If omitted, the directive applies to all molecules. For solute, the segment numbers idfirst and idlastmay be specified to be the first and last segment to which the directive applies. If omitted, the directive applies to all segments. In addition, the keyword heavy may be specified to apply to all non hydrogen atoms in the solute, or a set of atom names may be specified in which a wildcard character ? may be used. Keyword permanent is used to keep the specification on the restart file for subsequent simulations.
"},{"location":"MD.html#special-options","title":"Special options","text":" import [<integer impfr default 1> [<integer impto default impfr> \\\n [<integer nftri default 1>]]]\n
Specifies the import of frames impfr to impto with frequency nftri from a trajectory file with extension tri for which energies and forces are to be recalculated. This option only applied to task md energy.
detail\n
Specifies that moments of inertia and radii of gyration will be part of the recorded properties.
profile\n
Specifies that execution time profiling data will be part of the recorded properties.
scale <real scaleq>\n
Specifies that all charges will be scaled by the factro scaleq.
collapse [<real fcoll default 10.0> [ segment | z | xy ]\n
Specifies that additional forces directed to the origin of the simulation cell with strength fcoll will be applied to all solute molecules. If z or xy is specified, these forces will only apply in the specified dimension(s).
include fixed\n
Specifies that energies will be evaluated between fixed atoms. Normally these interactions are excluded from the pairlists.
eqm <real eqm>\n
Specifies the zero point of energy in QMD simulations.
atomlist\n
Specifies that pairlists will be atom based. Normally pairlist are charge group based.
"},{"location":"MD.html#autocorrelation-function","title":"Autocorrelation function","text":"For the evaluation of the statistical error of multi-configuration thermodynamic integration free energy results a correlated data analysis is carried out, involving the calculation of the autocorrelation function of the derivative of the Hamiltonian with respect to the control variable \u03bb.
auto <integer lacf> [fit <integer nfit>] [weight <real weight>]\n
Controls the calculation of the autocorrelation, where <lacf>
is the length of the autocorrelation function, with a default of 1000, <nfit>
is the number of functions used in the fit of the autocorrelation function, with a default of 15, and <weight>
is the weight factor for the autocorrelation function, with a default value of 0.0.
Keywords that control print to the output file, with extension out. Print directives may be combined to a single directive.
print [topol [nonbond] [solvent] [solute]] \\\n [step <integer nfoutp> [extra] [energy]] \\\n [stat <integer nfstat>] \\\n [energies [<integer nfener>]] \\\n [forces [<integer nfforce>]] \\\n [matrix] \\\n [expect <integer npxpct>] \\\n [timing] \\\n [pmf [<integer iprpmf>]] \\\n [out6] \\\n [dayout]\n
<nfstat>
of printing statistical information of properties that are calculated during the simulation. For molecular dynamics simulation this frequency is in time steps, for multi-configuration thermodynamic integration in \u03bb-steps.Following keywords control periodic events during a molecular dynamics or thermodynamic integration simulation. Update directives may be combined to a single directive.
update [pairs <integer nfpair default 1>] \\\n\n [long <integer nflong default 1>] \\\n\n [center <integer nfcntr default 0> [zonly | xyonly] \\\n\n [fraction <integer idscb(1:5)>] \\\n\n [motion <integer nfslow default 0>] \\\n\n [analysis <integer nfanal default 0>] \\\n\n [rdf <integer nfrdf default 0> \\\n\n [range <real rrdf>] [bins <integer ngl>] \\\n
<nfpair>
in molecular dynamics steps of updating the pair lists. The default for the frequency is 1. In addition, pair lists are also updated after each step in which recording of the restart or trajectory files is performed. Updating the pair lists includes the redistribution of atoms that changed domain and load balancing, if specified.<nflong>
in molecular dynamics steps of updating the long range forces. The default frequency is 1. The distinction of short range and long range forces is only made if the long range cutoff radius was specified to be larger than the short range cutoff radius. Updating the long range forces is also done in every molecular dynamics step in which the pair lists are regenerated.<nfcntr>
in molecular dynamics steps in which the center of geometry of the solute(s) is translated to the center of the simulation volume. Optional keyword zonly or xyonly can be used to specify that centering will take place in the z-direction or in the xy-plane only. The solute fractions determining the solutes that will be centered are specified by the keyword fraction and the vector <idscb>
, with a maximum of 5 entries. This translation is implemented such that it has no effect on any aspect of the simulation. The default is not to center, i.e. nfcntr is 0. The default fraction used to center solute is 1.<nfslow>
in molecular dynamics steps of removing the overall rotational and center of mass translational motion.<nfanal>
in molecular dynamics steps of invoking the analysis module. This option is obsolete.<nfrdf>
in molecular dynamics steps of calculating contributions to the radial distribution functions. The default is 0. The range of the radial distribution functions is given by <rrdf>
in nm, with a default of the short range cutoff radius. Note that radial distribution functions are not evaluated beyond the short range cutoff radius. The number of bins in each radial distribution function is given by <ngl>
, with a default of 1000. This option is no longer supported. If radial distribution function are to be calculated, a rdi files needs to be available in which the contributions are specified as follows.The following keywords control recording data to file. Record directives may be combined to a single directive.
record [rest <integer nfrest> [keep]] \\\n\n [coord <integer nfcoor default 0>] \\\n\n [wcoor <integer nfwcoo default 0>] \\\n\n [scoor <integer nfscoo default 0>] \\\n\n [veloc <integer nfvelo default 0>] \\\n\n [wvelo <integer nfwvel default 0>] \\\n\n [svelo <integer nfsvel default 0>] \\\n\n [force <integer nfvelo default 0>] \\\n\n [wforc <integer nfwvel default 0>] \\\n\n [sforc <integer nfsvel default 0>] \\\n\n [(prop | prop_average) <integer nfprop default 0>] \\\n\n [free <integer nffree default 1>] \\\n\n [sync <integer nfsync default 0>] \\\n\n [times <integer nftime default 0>] \\\n\n [acf] [cnv] [fet]\n\n [binary] [ascii] [ecce] [argos]\n
<nfrest>
in molecular dynamics steps of rewriting the restart file, with extension rst. For multi-configuration thermodynamic integration simulations the frequency is in steps in \u03bb. The default is not to record. The restart file is used to start or restart simulations. The keyword keep causes all restart files written to be kept on disk, rather than to be overwritten.<nfcoor>
in molecular dynamics steps of writing coordinates to the trajectory file. This directive redefines previous coord, wcoor and scoor directives. The default is not to record.<nfcoor>
in molecular dynamics steps of writing solvent coordinates to the trajectory file. This keyword takes precedent over coord. This directive redefines previous coord, wcoor and scoor directives. The default is not to record.<nfscoo>
in molecular dynamics steps of writing solute coordinates to the trajectory file. This keyword takes precedent over coord. This directive redefines previous coord, wcoor and scoor directives. The default is not to record.<nfvelo>
in molecular dynamics steps of writing velocities to the trajectory file. This directive redefines previous veloc, wvelo and svelo directives. The default is not to record.<nfvelo>
in molecular dynamics steps of writing solvent velocitiesto the trajectory file. This keyword takes precedent over veloc. This directive redefines previous veloc, wvelo and svelo directives. The default is not to record.<nfsvel>
in molecular dynamics steps of writing solute velocities to the trajectory file. This keyword takes precedent over veloc. This directive redefines previous veloc, wvelo and svelo directives. The default is not to record.<nfvelo>
in molecular dynamics steps of writing forces to the trajectory file. This directive redefines previous vforce, wforc and sforc directives. The default is not to record.<nfvelo>
in molecular dynamics steps of writing solvent forcesto the trajectory file. This keyword takes precedent over force. This directive redefines previous vforce, wforc and sforc directives. The default is not to record.<nfsvel>
in molecular dynamics steps of writing solute forces to the trajectory file. This keyword takes precedent over force. This directive redefines previous vforce, wforc and sforc directives. The default is not to record.<nfprop>
in molecular dynamics steps of writing information to the property file, with extension prp. The default is not to record.<nfprop>
in molecular dynamics steps of writing average information to the property file, with extension prp. The default is not to record.<nffree>
in multi-configuration thermodynamic integration steps to record data to the free energy data file, with extension gib. The default is 1, i.e. to record at every \u03bb. This option is obsolete. All data are required to do the final analysis.<nfsync>
in molecular dynamics steps of writing information to the synchronization file, with extension syn. The default is not to record. The information written is the simulation time, the wall clock time of the previous MD step, the wall clock time of the previous force evaluation, the total synchronization time, the largest synchronization time and the node on which the largest synchronization time was found. The recording of synchronization times is part of the load balancing algorithm. Since load balancing is only performed when pair-lists are updated, the frequency <nfsync>
is correlated with the frequency of pair-list updates <nfpair>
. This directive is only needed for analysis of the load balancing performance. For normal use this directive is not used.<nfsync>
in molecular dynamics steps of writing information to the timings file, with extension tim. The default is not to record. The information written is wall clock time used by each of the processors for the different components in the force evaluation. This directive is only needed for analysis of the wall clock time distribution. For normal use this directive is not used. load [reset] \n ( none | \n size [<real factld>] |\n sizez [<real factld>] | pairs | \n (pairs [<integer ldpair>] size [<real factld>]) )\n [last]\n [minimum]\n [average]\n [combination]\n [iotime]\n [experimental]\n
Determines the type of dynamic load balancing performed, where the default is none. Load balancing option size is resizing cells on a node, and pairs redistributes the cell-cell interactions over nodes. Keyword reset will reset the load balancing read from the restart file. The level of cell resizing can be influenced with factld. The cells on the busiest node are resized with a factor
Where is the accumulated synchronization time of all nodes, is the total number of nodes, is the synchronization time of the busiest node, and is the wall clock time of the molecular dynamics step. For the combined load balancing, ldpair is the number of successive pair redistribution load balancing steps in which the accumulated synchronization time increases, before a resizing load balancing step will be attempted. Load balancing is only performed in molecular dynamics steps in which the pair-list is updated. The default load balancing is equivalent to specifying
load pairs 10 size 0.75\n
Keyword last specifies that the load balancing is based on the synchronization times of the last step. This is the default. Keyword average specifies that the load balancing is based on the average synchronization times since the last load balancing step. Keyword minimum specifies that the load balancing is based on the minimum synchronization times since the last load balancing step. Keywords combination, iotime and experimental are experimental load balancing options that should not be used in production runs.
(pack | nopack)\n
Specifies if data are communicated in packed or unpacked form. The default is pack.
procs <integer npx> <integer npy> <integer npz>\n
Specifies the distribution of the available processors over the three Cartesian dimensions. The default distribution is chosen such that, <npx>
*<npy>
*<npz>
=<np>
and <npx>
<=
<npy>
<= <npz>
, where <npx>
, <npy>
and <npz>
are the processors in the x, y and z dimension respectively, and <np>
is the number of processors allocated for the calculation. Where more than one combination of <npx>
, <npy>
and <npz>
are possible, the combination is chosen with the minimum value of <npx>+<npy>+<npz>
. To change the default setting the following optional input option is provided.
cells <integer nbx> <integer nby> <integer nbz>\n
Specifies the distribution of cells, where <nbx>
, <nby>
and <nbz>
are the number of cells in x, y and z direction, respectively. The molecular system is decomposed into cells that form the smallest unit for communication of atomic data between nodes. The size of the cells is per default set to the short-range cutoff radius. If long-range cutoff radii are used the cell size is set to half the long-range cutoff radius if it is larger than the short-range cutoff. If the number of cells in a dimension is less than the number of processors in that dimension, the number of cells is set to the number of processors.
extra <integer madbox>\n
Sets the number of additional cells for which memory is allocated. In rare events the amount of memory set aside per node is insufficient to hold all atomic coordinates assigned to that node. This leads to execution which aborts with the message that mwm or msa is too small. Jobs may be restarted with additional space allocated by where <madbox>
is the number of additional cells that are allocated on each node. The default for <madbox>
is 6. In some cases <madbox>
can be reduced to 4 if memory usage is a concern. Values of 2 or less will almost certainly result in memory shortage.
mwm <integer mwmreq>\n
Sets the maximum number of solvent molecules <mwmreq>
per node, allowing increased memory to be allocated for solvent molecules. This option can be used if execution aborted because mwm was too small.
msa <integer msareq>\n
Sets the maximum number of solute atoms <msareq>
per node, allowing increased memory to be allocated for solute atoms. This option can be used if execution aborted because msa was too small.
mcells <integer mbbreq>\n
Sets the maximum number of cell pairs <mbbreq>
per node, allowing increased memory to be allocated for the cell pair lists. This option can be used if execution aborted because mbbl was too small.
boxmin <real rbox>\n
Sets the minimum size of a cell. This directive is obsolete. The use of mcells is preferred.
segmentsize <real rsgm>\n
Sets the maximum size of a segment. This value is used to determine which segments at the boundary of the cutoff radius should be considered in the generation of the pairlists. This value is also determined by the prepare module and written to the restart file. Use of this directive is not needed for simulations that use the current prepare module to generate the restart file.
memory <integer memlim>\n
Sets a limit <memlim>
in kB on the allocated amount of memory used by the molecular dynamics module. Per default all available memory is allocated. Use of this command is required for QM/MM simulations only.
expert\n
Enables the use of certain combinations of features that are considered unsafe. This directive should not be used for production runs.
develop <integer idevel>\n
Enables the use of certain development options specified by the integer idevel. This option is for development purposes only, and should not be used for production runs.
control <integer icntrl>\n
Enables the use of certain development options specified by the integer icntrl. This option is for development purposes only, and should not be used for production runs.
numerical\n
Writes out analytical and finite difference forces for test purposes.
server <string servername> <integer serverport>\n
Allows monitoring over a socket connection to the specified port on the named server of basic data as a simulation is running.
For development purposes debug information can be written to the debug file with extension dbg with
debug <integer idebug>\n
where idebug specifies the type of debug information being written.
For testing purposes test information can be written to the test file with extension tst with
test <integer itest>\n
where itest specifies the number of steps test information is written.
On some platforms prefetching of data can improve the efficiency. This feature can be turned on using
prefetch [<integer nbget>]\n
where nbget is the number of outstanding communication operations.
Application of periodic boundary conditions for the evaluation of forces can be controlled with
pbc ( atom | residue | molecule )\n
This option rarely needs to be used.
Autocorrelation functions for error analysis are controlled using
auto [ fit <integer iapprx> | weight <real weight> ]\n
This option is disabled in the current release.
Membrane system equilibration can be made more efficient using
membrane [ rotations ]\n
Constraining the center of mass of solute molecules in the xy plane is accomplished using
scmxy [<integer icmopt default 1>]\n
where icmopt determines if the constraint is mass weighted (2).
Radius of gyration calculations are enabled using
radius_gyration\n
Calculations of diffusion coefficients is enabled using
diffusion\n
This option is disabled in the current release.
comlim ( on | off )\n
is disabled
To limit the size of recoding files, new files are opened every nfnewf md steps using
batch <integer nfnewf>\n
"},{"location":"MM_Parameters.html","title":"MM Parameters","text":"The molecular mechanics parameters are given in the form of standard MD input block as used by the MD module. At the basic level the molecular mechanics input block specifies the restart and topology file that were generated during QM/MM preparation stage. It also contains information relevant to the calculation of the classical region (e.g. cutoff distances, constraints, optimization and dynamics parameters, etc) in the system. In this input block one can also set fixed atom constraints on classical atoms. Continuing with our prepare example for ethanol molecule here is a simple input block that may be used for this system.
md
#\u00a0this\u00a0specifies\u00a0that\u00a0etl_md.rst\u00a0will\u00a0be\u00a0used\u00a0as\u00a0a\u00a0restart\u00a0file
#\u00a0\u00a0and\u00a0etl.top\u00a0will\u00a0be\u00a0a\u00a0topology\u00a0file
system\u00a0etl_md
#\u00a0if\u00a0we\u00a0ever\u00a0wanted\u00a0to\u00a0fix\u00a0C1\u00a0atom
fix\u00a0solute\u00a01\u00a0_C1
noshake\u00a0solute
end
The noshake solute, shown in the above example is a recommended directive for QM/MM simulations that involve optimizations. Otherwise user has to ensure that the optimization method for classical solute atoms is a steepest descent
"},{"location":"MP2.html","title":"MP2","text":""},{"location":"MP2.html#overview","title":"Overview","text":"There are (at least) three algorithms within NWChem that compute the M\u00f8ller-Plesset (or many-body) perturbation theory second-order correction1 to the Hartree-Fock energy (MP2). They vary in capability, the size of system that can be treated and use of other approximations
TASK\u00a0MP2\n
direct_mp2
on the task directive, e.g.TASK\u00a0DIRECT_MP2\n
TASK\u00a0RIMP2\n
All three MP2 tasks share the same input block.
MP2 \n [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\ \n [virtual <integer nfzv default 0>]] \n [TIGHT] \n [PRINT] \n [NOPRINT] \n [VECTORS <string filename default scf-output-vectors> \\ \n [swap [(alpha||beta)] <integer pair-list>] ] \n [RIAPPROX <string riapprox default V>] \n [FILE3C <string filename default $file_prefix$.mo3cint> \n [SCRATCHDISK <integer>] \n END\n
"},{"location":"MP2.html#freeze-freezing-orbitals","title":"FREEZE: Freezing orbitals","text":"All MP2 modules support frozen core orbitals, however, only the direct MP2 and RI-MP2 modules support frozen virtual orbitals.
By default, no orbitals are frozen. The atomic keyword causes orbitals to be frozen according to the rules in the table below. Note that no orbitals are frozen on atoms on which the nuclear charge has been modified either by the user or due to the presence of an ECP. The actual input would be
freeze atomic\n
For example, in a calculation on Si(OH)2, by default the lowest seven orbitals would be frozen (the oxygen 1s, and the silicon 1s, 2s and 2p).
"},{"location":"MP2.html#number-of-orbitals-considered-core-in-the-freeze-by-atoms-algorithm","title":"Number of orbitals considered \u201ccore\u201d in the \u201cfreeze by atoms\u201d algorithm","text":"Period Elements Core Orbitals Number of Core 0 H - He - 0 1 Li - Ne 1s 1 2 Na - Ar 1s2s2p 5 3 K - Kr 1s2s2p3s3p 9 4 Rb - Xe 1s2s2p3s3p4s3d4p 18 5 Cs - Rn 1s2s2p3s3p4s3d4p5s4d5p 27 6 Fr - Lr 1s2s2p3s3p4s3d4p5s4d5p6s4f5d6p 43Caution: The rule for freezing orbitals \u201cby atoms\u201d are rather unsophisticated since the number of orbitals to be frozen is computed from the table above by summing the number of core orbitals in each atom present. Therefore, the corresponding number of lowest-energy orbitals are frozen. If for some reason the actual core orbitals are not the lowest lying, then correct results will not be obtained. It is likely that special attention should be paid to systems including third- and higher- period atoms.
The user may also specify the number of orbitals to be frozen by atom. Following the Si(OH)2 example, the user could specify
freeze atomic O 1 Si 3\n
In this case only the lowest four orbitals would be frozen. If the user does not specify the orbitals by atom, the rules default to values reported in the Table above.
Caution: The system does not check for a valid number of orbitals per atom. If the user specifies to freeze more orbitals then are available for the atom, the system will not catch the error. The user must specify a logical number of orbitals to be frozen for the atom.
The FREEZE directive may also be used to specify the number of core orbitals to freeze. For instance, to freeze the first 10 orbitals
freeze 10\n
or equivalently, using the optional keyword core
freeze core 10\n
Again, note that if the 10 orbitals to be frozen do not correspond to the first 10 orbitals, then the swap keyword of the VECTORS directive must be used to order the input orbitals correctly (MO vectors).
To freeze the highest virtual orbitals, use the virtual keyword. For instance, to freeze the top 5 virtuals
freeze virtual 5\n
Again, note that this only works for the direct-MP2 and RI-MP2 energy codes.
"},{"location":"MP2.html#tight-increased-precision","title":"TIGHT: Increased precision","text":"The TIGHT directive can be used to increase the precision in the MP2 energy and gradients.
By default the MP2 gradient package should compute energies accurate to better than a micro-Hartree, and gradients accurate to about five decimal places (atomic units). However, if there is significant linear dependence in the basis set the precision might not be this good. Also, for computing very accurate geometries or numerical frequencies, greater precision may be desirable.
This option increases the precision to which both the SCF (from 10-6 to 10-8 and CPHF 10-4 to $10-6 are solved, and also tightens thresholds for computation of the AO and MO integrals (from 10-9 to 10-11 within the MP2 code.
"},{"location":"MP2.html#scratchdisk-limiting-io-usage","title":"SCRATCHDISK: Limiting I/O usage","text":"This directive - used only in the semi-direct algorithm - allows to limit the per process disk usage. Mandatory argument for this keyword is the maximum number of MBytes. For example, the following input line
scratchdisk 512\n
puts an upper limit of 512 MBytes to the semi-direct MP2 usage of disk (again, on a per process base).
"},{"location":"MP2.html#print-and-noprint","title":"PRINT and NOPRINT","text":"The standard print control options are recognized. The list of recognized names are given in the table below.
Item Print Level Description RI-MP2 \u201c2/3 ints\u201d debug Partial 3-center integrals \u201c3c ints\u201d debug MO 3-center integrals \u201c4c ints b\u201d debug \u201cB\u201d matrix with approx. 4c integrals \u201c4c ints\u201d debug Approximate 4-center integrals \u201camplitudes\u201d debug \u201cB\u201d matrix with denominators \u201cbasis\u201d high \u201cfit xf\u201d debug Transformation for fitting basis \u201cgeombas\u201d debug Detailed basis map info \u201cgeometry\u201d high \u201cinformation\u201d low General information about calc. \u201cintegral i/o\u201d high File size information \u201cmo ints\u201d debug \u201cpair energies\u201d debug (working only in direct_mp2
) \u201cpartial pair energies\u201d debug Pair energy matrix each time it is updated \u201cprogress reports\u201d default Report completion of time-consuming steps \u201creference\u201d high Details about reference wavefunction \u201cwarnings\u201d low Non-fatal warnings
Printable items in the MP2 modules and their default print levels
"},{"location":"MP2.html#vectors-mo-vectors","title":"VECTORS: MO vectors","text":"All of the (supported) MP2 modules require use of converged canonical SCF (RHF or UHF) orbitals for correct results. The vectors are by default obtained from the preceding SCF calculation, but it is possible to specify a different source using the VECTORS directive. For instance, to obtain vectors from the file /tmp/h2o.movecs, use the directive
vectors /tmp/h2o.movecs\n
As noted above (FREEZE) if the SCF orbitals are not in the correct order, it is necessary to permute the input orbitals using the swap keyword of the VECTORS directive. For instance, if it is desired to freeze a total six orbitals corresponding to the SCF orbitals 1-5, and 7, it is necessary to swap orbital 7 into the 6th position. This is accomplished by
vectors swap 6 7\n
The swap capability is examined in more detail in Input/output of MO vectors.
"},{"location":"MP2.html#ri-mp2-fitting-basis","title":"RI-MP2 fitting basis","text":"The RI-MP2 method requires a fitting basis, which must be specified with the name \u201cri-mp2 basis\u201d (see Basis). For instance,
basis \"ri-mp2 basis\"\n O s; 10000.0 1\n O s; 1000.0 1\n O s; 100.0 1\n ...\n end\n
Alternatively, using a standard capability of basis sets (Basis) another named basis may be associated with the fitting basis. For instance, the following input specifies a basis with the name \u201csmall fitting basis\u201d and then defines this to be the \u201cri-mp2 basis\u201d.
basis \"small fitting basis\"\n H s; 10 1\n H s; 3 1\n H s; 1 1\n H s; 0.1 1\n H s; 0.01 1\n end\n
set \"ri-mp2 basis\" \"small fitting basis\"\n
"},{"location":"MP2.html#file3c-ri-mp2-3-center-integral-filename","title":"FILE3C: RI-MP2 3-center integral filename","text":"The default name for the file used to store the transformed 3-center integrals is \u201cfile_prefix.mo3cint\u201d in the scratch directory. This may be overridden using the FILE3C directive. For instance, to specify the file /scratch/h2o.3c, use this directive
file3c /scratch/h2o.3c\n
"},{"location":"MP2.html#riapprox-ri-mp2-approximation","title":"RIAPPROX: RI-MP2 Approximation","text":"The type of RI approximation used in the RI-MP2 calculation is controlled by means of the RIAPPROX directive. The two possible values are V and SVS (case sensitive), which correspond to the approximations with the same names described by Vahtras et al.4. The default is V.
"},{"location":"MP2.html#advanced-options-for-ri-mp2","title":"Advanced options for RI-MP2","text":"These options, which functioned at the time of writing, are not currently supported.
"},{"location":"MP2.html#control-of-linear-dependence","title":"Control of linear dependence","text":"Construction of the RI fit requires the inversion of a matrix of fitting basis integrals which is carried out via diagonalization. If the fitting basis includes near linear dependencies, there will be small eigenvalues which can ultimately lead to non-physical RI-MP2 correlation energies. Eigenvectors of the fitting matrix are discarded if the corresponding eigenvalue is less than min eval
which defaults to 10-8. This parameter may be changed by setting the a parameter in the database. For instance, to set it to 10-10
set \"mp2:fit min eval\" 1e-10\n
"},{"location":"MP2.html#reference-spin-mapping-for-ri-mp2-calculations","title":"Reference Spin Mapping for RI-MP2 Calculations","text":"The user has the option of specifying that the RI-MP2 calculations are to be done with variations of the SCF reference wavefunction. This is accomplished with a SET directive of the form,
set \"mp2:reference spin mapping\" <integer array default 0>\n
Each element specified for array is the SCF spin case to be used for the corresponding spin case of the correlated calculation. The number of elements set determines the overall type of correlated calculation to be performed. The default is to use the unadulterated SCF reference wavefunction.
For example, to perform a spin-unrestricted calculation (two elements) using the alpha spin orbitals (spin case 1) from the reference for both of the correlated reference spin cases, the SET directive would be as follows,
set \"mp2:reference spin mapping\" 1 1\n
The SCF calculation to produce the reference wavefunction could be either RHF or UHF in this case.
The SET directive for a similar case, but this time using the beta-spin SCF orbitals for both correlated spin cases, is as follows,
set \"mp2:reference spin mapping\" 2 2\n
The SCF reference calculation must be UHF in this case.
The SET directive for a spin-restricted calculation (one element) from the beta-spin SCF orbitals using this option is as follows,
set \"mp2:reference spin mapping\" 2\n
The SET directive for a spin-unrestricted calculation with the spins flipped from the original SCF reference wavefunction is as follows,
set \"mp2:reference spin mapping\" 2 1\n
"},{"location":"MP2.html#batch-sizes-for-the-ri-mp2-calculation","title":"Batch Sizes for the RI-MP2 Calculation","text":"The user can control the size of each batch in the transformation and energy evaluation in the MP2 calculation, and consequently the memory requirements and number of passes required. This is done using two SET directives of the following form,
set \"mp2:transformation batch size\" <integer size default -1>\n set \"mp2:energy batch size\" <integer isize jsize default -1 -1>\n
The default is for the code to determine the batch size based on the available memory. Should there be problems with the program-determined batch sizes, these variables allow the user to override them. The program will always use the smaller of the user\u2019s value of these entries and the internally computed batch size.
The transformation batch size computed in the code is the number of occupied orbitals in the (occ vir|fit) three-center integrals to be produced at a time. If this entry is less than the number of occupied orbitals in the system, the transformation will require multiple passes through the two-electron integrals. The memory requirements of this stage are two global arrays of dimension batch size
x vir x fit with the \u201cfit\u201d dimension distributed across all processors (on shell-block boundaries). The compromise here is memory space versus multiple integral evaluations.
The energy evaluation batch sizes are computed in the code from the number of occupied orbitals in the two sets of three-center integrals to be multiplied together to produce a matrix of approximate four-center integrals. Two blocks of integrals of dimension (batch isize
x vir) and (batch jsize
x vir) by fit are read in from disk and multiplied together to produce batch isize
batch jsize
vir^2 approximate integrals. The compromise here is performance of the distributed matrix multiplication (which requires large matrices) versus memory space.
The user must choose a strategy for the memory allocation in the energy evaluation phase of the RI-MP2 calculation, either by minimizing the amount of I/O, or minimizing the amount of computation. This can be accomplished using a SET directive of the form,
set \"mp2:energy mem minimize\" <string mem_opt default I>\n
A value of I entered for the string mem_opt
means that a strategy to minimize I/O will be employed. A value of C tells the code to use a strategy that minimizes computation.
When the option to minimize I/O is selected, the block sizes are made as large as possible so that the total number of passes through the integral files is as small as possible. When the option to minimize computation is selected, the blocks are chosen as close to square as possible so that permutational symmetry in the energy evaluation can be used most effectively.
"},{"location":"MP2.html#local-memory-usage-in-three-center-transformation","title":"Local Memory Usage in Three-Center Transformation","text":"For most applications, the code will be able to size the blocks without help from the user. Therefore, it is unlikely that users will have any reason to specify values for these entries except when doing very particular performance measurements.
The size of xf3ci:AO 1 batch size
is the most important of the three, in terms of the effect on performance.
Local memory usage in the first two steps of the transformation is controlled in the RI-MP2 calculation using the following SET directives,
set \"xf3ci:AO 1 batch size\" <integer max>\n set \"xf3ci:AO 2 batch size\" <integer max>\n set \"xf3ci:fit batch size\" <integer max>\n
The size of the local arrays determines the sizes of the two matrix multiplications. These entries set limits on the size of blocks to be used in each index. The listing above is in order of importance of the parameters to performance, with xf3ci:AO 1 batch size being most important.
Note that these entries are only upper bounds and that the program will size the blocks according to what it determines as the best usage of the available local memory. The absolute maximum for a block size is the number of functions in the AO basis, or the number of fitting basis functions on a node. The absolute minimum value for block size is the size of the largest shell in the appropriate basis. Batch size entries specified for max that are larger than these limits are automatically reset to an appropriate value.
"},{"location":"MP2.html#one-electron-properties-and-natural-orbitals","title":"One-electron properties and natural orbitals","text":"If an MP2 energy gradient is computed, all contributions are available to form the MP2 linear-response density. This is the density that when contracted with any spin-free, one-electron operator yields the associated property defined as the derivative of the energy. Thus, the reported MP2 dipole moment is the derivative of the energy w.r.t. an external electric field and is not the expectation value of the operator over the wavefunction. It has been shown that evaluating the MP2 density through a derivative provides more accurate results, presumably because this matches the way experiments probe the electron density more closely[raghavachari1981]567.
Only dipole moments are printed by the MP2 gradient code, but natural orbitals are produced and stored in the permanent directory with a file extension of \u201c.mp2nos\u201d. These may be fed into the property package to compute more general properties as in the following example.
start h2o\ngeometry\n O 2.15950 0.88132 0.00000\n H 3.12950 0.88132 0.00000\n H 1.83617 0.89369 -0.91444\nend\n\nbasis spherical\n * library aug-cc-pVDZ\nend\n\nmp2\n freeze atomic\nend\n\ntask mp2 gradient\n\nproperty\n vectors h2o.mp2nos\n mulliken\nend\n\ntask mp2 property\n
Note that the MP2 linear response density matrix is not necessarily positive definite so it is not unusual to see a few small negative natural orbital occupation numbers. Significant negative occupation numbers have been argued to be a sign that the system might be near degenerate8.
"},{"location":"MP2.html#scs-mp2-spin-component-scaled-mp2","title":"SCS-MP2: Spin-Component Scaled MP2","text":"Each MP2 output contains the calculation of the SCS-MP2 correlation energies as suggested by S.Grimme9
The SCS keyword is only required for gradients calculations:
MP2 \n [SCS] \n END\n
Scaling factors for the two components (parallel and opposite spin) can be defined by using the keywords FSS (same spin factor) and FOS (opposite spin factor):
mp2 \n scs \n fss 1.13 \n fos 0.56 \nend\n
Default values are FSS=0.333333333, FOS=1.2 for MP2, and FSS=1.13, FOS=1.27 for CCSD.
"},{"location":"MP2.html#references","title":"References","text":"M\u00f8ller, Chr.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Physical Review 1934, 46 (7), 618\u2013622. https://doi.org/10.1103/PhysRev.46.618.\u00a0\u21a9
Wong, A. T.; Harrison, R. J.; Rendell, A. P. Parallel Direct Four-Index Transformations. Theoretica Chimica Acta 1996, 93 (6), 317\u2013331. https://doi.org/10.1007/BF01129213.\u00a0\u21a9
Bernholdt, D. E.; Harrison, R. J. Large-Scale Correlated Electronic Structure Calculations: The RI-MP2 Method on Parallel Computers. Chemical Physics Letters 1996, 250 (5-6), 477\u2013484. https://doi.org/10.1016/0009-2614(96)00054-1.\u00a0\u21a9
Vahtras, O.; Alml\u00f6f, J.; Feyereisen, M. W. Integral Approximations for LCAO-SCF Calculations. Chemical Physics Letters 1993, 213 (5-6), 514\u2013518. https://doi.org/10.1016/0009-2614(93)89151-7.\u00a0\u21a9
Diercksen, G. H. F.; Roos, B. O.; Sadlej, A. J. Legitimate Calculation of First-Order Molecular Properties in the Case of Limited CI Functions. Dipole Moments. Chemical Physics 1981, 59 (1-2), 29\u201339. https://doi.org/10.1016/0301-0104(81)80082-1.\u00a0\u21a9
Rice, J. E.; Amos, R. D. On the Efficient Evaluation of Analytic Energy Gradients. Chemical Physics Letters 1985, 122 (6), 585\u2013590. https://doi.org/10.1016/0009-2614(85)87275-4.\u00a0\u21a9
Wiberg, K. B.; Hadad, C. M.; LePage, T. J.; Breneman, C. M.; Frisch, M. J. Analysis of the Effect of Electron Correlation on Charge Density Distributions. The Journal of Physical Chemistry 1992, 96 (2), 671\u2013679. https://doi.org/10.1021/j100181a030.\u00a0\u21a9
Gordon, M. S.; Schmidt, M. W.; Chaban, G. M.; Glaesemann, K. R.; Stevens, W. J.; Gonzalez, C. A Natural Orbital Diagnostic for Multiconfigurational Character in Correlated Wave Functions. The Journal of Chemical Physics 1999, 110 (9), 4199\u20134207. https://doi.org/10.1063/1.478301.\u00a0\u21a9
Grimme, S. Improved Second-Order M\u00f8ller-Plesset Perturbation Theory by Separate Scaling of Parallel- and Antiparallel-Spin Pair Correlation Energies. The Journal of Chemical Physics 2003, 118 (20), 9095\u20139102. https://doi.org/10.1063/1.1569242.\u00a0\u21a9
This is a start-up directive that allows the user to specify the amount of memory PER PROCESSOR CORE that NWChem can use for the job. If this directive is not specified, memory is allocated according to installation-dependent defaults. The defaults should generally suffice for most calculations, since the defaults usually correspond to the total amount of memory available on the machine.
The general form of the directive is as follows:
MEMORY\u00a0[[total]\u00a0<integer total_size>]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[stack\u00a0<integer stack_size>]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[heap\u00a0<integer heap_size>]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[global\u00a0<integer global_size>]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[units\u00a0<string units default real>]\u00a0\u00a0\\\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(verify||noverify)]\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\\ \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0[(nohardfail||hardfail)]\n
NWChem recognizes the following memory units:
In most cases, the user need specify only the total memory limit to adjust the amount of memory used by NWChem. The following specifications all provide for eight megabytes of total memory (assuming 64-bit floating point numbers), which will be distributed according to the default partitioning:
memory\u00a0total\u00a08\u00a0mb\u00a0 \nmemory\u00a0total\u00a01048576\nmemory total 1 gb\n
In NWChem there are three distinct regions of memory: stack, heap, and global. Stack and heap are node-private, while the union of the global region on all processors is used to provide globally-shared memory. The allowed limits on each category are determined from a default partitioning (currently 25% heap, 25% stack, and 50% global). Alternatively, the keywords stack, heap, and global can be used to define specific allocations for each of these categories. If the user sets only one of the stack, heap, or global limits by input, the limits for the other two categories are obtained by partitioning the remainder of the total memory available in proportion to the weight of those two categories in the default memory partitioning. If two of the category limits are given, the third is obtained by subtracting the two given limits from the total limit (which may have been specified or may be a default value). If all three category limits are specified, they determine the total memory allocated. However, if the total memory is also specified, it must be larger than the sum of all three categories. The code will abort if it detects an inconsistent memory specification.
The following memory directives also allocate 8 megabytes, but specify a complete partitioning as well:
memory\u00a0total\u00a08 mb\u00a0stack\u00a02 mb \u00a0heap\u00a02 mb\u00a0global\u00a04\u00a0mb\u00a0 \nmemory\u00a0stack\u00a02\u00a0mb heap\u00a02\u00a0mb global\u00a04\u00a0mb\n
The optional keywords verify and noverify in the directive give the user the option of enabling or disabling automatic detection of corruption of allocated memory. The default is verify, which enables the feature. This incurs some overhead (which can be around 10% increase in walltime on some platforms), which can be eliminated by specifying noverify.
The keywords hardfail and nohardfail give the user the option of forcing (or not forcing) the local memory management routines to generate an internal fatal error if any memory operation fails. The default is nohardfail, which allows the code to continue past any memory operation failure, and perhaps generate a more meaningful error message before terminating the calculation. Forcing a hard-fail can be useful when poorly coded applications do not check the return status of memory management routines.
When assigning the specific memory allocations using the keywords stack, heap, and global in the MEMORY directive, the user should be aware that some of the distinctions among these categories of memory have been blurred in their actual implementation in the code. The memory allocator (MA) allocates both the heap and the stack from a single memory region of size heap+stack, without enforcing the partition. The heap vs. stack partition is meaningful only to applications developers, and can be ignored by most users. Further complicating matters, the global array (GA) toolkit is allocated from within the MA space on distributed memory machines, while on shared-memory machines it is separate. This is because on true shared-memory machines there is no choice but to allocate GAs from within a shared-memory segment, which is managed differently by the operating system.
On distributed memory platforms, the MA region is actually the total size of stack+heap+global. All three types of memory allocation compete for the same pool of memory, with no limits except on the total available memory. This relaxation of the memory category definitions usually benefits the user, since it can allow allocation requests to succeed where a stricter memory model would cause the directive to fail. These implementation characteristics must be kept in mind when reading program output that relates to memory usage.
Standard default for memory is currently 512 MB.
"},{"location":"Multiconfiguration_SCF.html","title":"MCSCF","text":""},{"location":"Multiconfiguration_SCF.html#overview","title":"Overview","text":"The NWChem multiconfiguration SCF (MCSCF) module can currently perform complete active space SCF (CASSCF) calculations with at most 20 active orbitals and about 500 basis functions.
MCSCF \n STATE <string state> \n ACTIVE <integer nactive> \n ACTELEC <integer nactelec> \n MULTIPLICITY <integer multiplicity> \n [SYMMETRY <integer symmetry default 1>] \n [VECTORS [[input] <string input_file default file_prefix.movecs>] \n [swap <integer vec1 vec2> ...] \\ \n [output <string output_file default input_file>] \\ \n [lock] \n [HESSIAN (exact||onel)] \n [MAXITER <integer maxiter default 20>] \n [THRESH <real thresh default 1.0e-4>] \n [TOL2E <real tol2e default 1.0e-9>] \n [LEVEL <real shift default 0.1d0>] \n END\n
Note that the ACTIVE
, ACTELEC
, and MULTIPLICITY
directives are required. The symmetry and multiplicity may alternatively be entered using the STATE directive.
The number of orbitals in the CASSCF active space must be specified using the ACTIVE directive.
E.g.,
active 10\n
The input molecular orbitals (see the vectors directive in MCSCF Vectors and SCF Vectors) must be arranged in order
The number of electrons in the CASSCF active space must be specified using the ACTELEC
directive. An error is reported if the number of active electrons and the multiplicity are inconsistent.
The number of closed shells is determined by subtracting the number of active electrons from the total number of electrons (which in turn is derived from the sum of the nuclear charges minus the total system charge).
"},{"location":"Multiconfiguration_SCF.html#multiplicity","title":"MULTIPLICITY","text":"The spin multiplicity must be specified and is enforced by projection of the determinant wavefunction.
E.g., to obtain a triplet state
multiplicity 3\n
"},{"location":"Multiconfiguration_SCF.html#symmetry-spatial-symmetry-of-the-wavefunction","title":"SYMMETRY: Spatial symmetry of the wavefunction","text":"This species the irreducible representation of the wavefunction as an integer in the range 1\u20138 using the same numbering of representations as output by the SCF program. Note that only Abelian point groups are supported.
E.g., to specify a B1 state when using the C2v group
symmetry 3\n
"},{"location":"Multiconfiguration_SCF.html#state-symmetry-and-multiplicity","title":"STATE: Symmetry and multiplicity","text":"The electronic state (spatial symmetry and multiplicity) may alternatively be specified using the conventional notation for an electronic state, such as 3B2 for a triplet state of B2 symmetry. This would be accomplished with the input
state 3b2\n
which is equivalent to
symmetry 4 \n multiplicity 3\n
"},{"location":"Multiconfiguration_SCF.html#vectors-inputoutput-of-mo-vectors","title":"VECTORS: Input/output of MO vectors","text":"Calculations are best started from RHF/ROHF molecular orbitals (see SCF), and by default vectors are taken from the previous MCSCF or SCF calculation. To specify another input file use the VECTORS
directive. Vectors are by default output to the input file, and may be redirected using the output keyword. The swap keyword of the VECTORS directive may be used to reorder orbitals to obtain the correct active space.
The LOCK keyword allows the user to specify that the ordering of orbitals will be locked to that of the initial vectors, insofar as possible. The default is to order by ascending orbital energies within each orbital space. One application where locking might be desirable is a calculation where it is necessary to preserve the ordering of a previous geometry, despite flipping of the orbital energies. For such a case, the LOCK
directive can be used to prevent the SCF calculation from changing the ordering, even if the orbital energies change.
Output orbitals of a converged MCSCF calculation are canonicalized as follows:
The MCSCF will use a one-electron approximation to the orbital-orbital Hessian until some degree of convergence is obtained, whereupon it will attempt to use the exact orbital-orbital Hessian which makes the micro iterations more expensive but potentially reduces the total number of macro iterations. Either choice may be forced throughout the calculation by specifying the appropriate keyword on the HESSIAN
directive.
E.g., to specify the one-electron approximation throughout
hessian onel\n
"},{"location":"Multiconfiguration_SCF.html#level-level-shift-for-convergence","title":"LEVEL: Level shift for convergence","text":"The Hessian used in the MCSCF optimization is by default level shifted by 0.1 until the orbital gradient norm falls below 0.01, at which point the level shift is reduced to zero. The initial value of 0.1 may be changed using the LEVEL directive. Increasing the level shift may make convergence more stable in some instances.
E.g., to set the initial level shift to 0.5
level 0.5\n
"},{"location":"Multiconfiguration_SCF.html#print-and-noprint","title":"PRINT and NOPRINT","text":"Specific output items can be selectively enabled or disabled using the print control mechanism with the available print options listed in the table below.
MCSCF Print Options Option Class Synopsis ci energy default CI energy eigenvalue fock energy default Energy derived from Fock matrices gradient norm default Gradient norm movecs default Converged occupied MO vectors trace energy high Trace Energy converge info high Convergence data and monitoring precondition high Orbital preconditioner iterations microci high CI iterations in line search canonical high Canonicalization information new movecs debug MO vectors at each macro-iteration ci guess debug Initial guess CI vector density matrix debug One- and Two-particle density matrices
"},{"location":"NWChem-Architecture.html","title":"NWChem Architecture","text":"As described in the Getting Started section, NWChem consists of independent modules that perform the various functions of the code. Examples include the input parser, self-consistent field (SCF) energy, SCF analytic gradient, and density functional theory (DFT) energy modules. The independent NWChem modules can share data only through a disk-resident database, which is similar to the GAMESS-UK dumpfile or the Gaussian checkpoint file. This allows the modules to share data, or to share access to files containing data.
It is not necessary for the user to be intimately familiar with the contents of the database in order to run NWChem. However, a nodding acquaintance with the design of the code will help in clarifying the logic behind the input requirements, especially when restarting jobs or performing multiple tasks within one job.
As detailed in the section describing the (input file structure), all start-up directives are processed at the beginning of the job by the main program, and then the input module is invoked. Each input directive usually results in one or more entries being made in the database. When a TASK directive is encountered, control is passed to the appropriate module, which extracts relevant data from the database and any associated files. Upon completion of the task, the module will store significant results in the database, and may also modify other database entries in order to affect the behavior of subsequent computations.
"},{"location":"NWChem-Architecture.html#database-structure","title":"Database Structure","text":"Data is shared between modules of NWChem by means of the database. Three main types of information are stored in the data base: (1) arrays of data, (2) names of files that contain data, and (3) objects. Arrays are stored directly in the database, and contain the following information:
It is possible to enter data directly into the database using the SET directive. For example, to store a (64-bit precision) three-element real array with the name \u201creference energies\u201d in the database, the directive is as follows:
set \"reference energies\" 0.0 1.0 -76.2
NWChem determines the data to be real (based on the type of the first element, 0.0), counts the number of elements in the array, and enters the array into the database.
Much of the data stored in the database is internally managed by NWChem and should not be modified by the user. However, other data, including some NWChem input options, can be freely modified.
Objects are built in the database by storing associated data as multiple entries, using an internally consistent naming convention. This data is managed exclusively by the subroutines (or methods) that are associated with the object. Currently, the code has two main objects: basis sets and geometries. GEOMETRY and BASIS present a complete discussion of the input to describe these objects.
As an illustration of what comprises a geometry object, the following table contains a partial listing of the database contents for a water molecule geometry named \u201ctest geom\u201d. Each entry contains the field test geom, which is the unique name of the object.
Contents of RTDB h2o.db \n----------------------- \nEntry Type[nelem] \n--------------------------- ---------------------- \ngeometry:test geom:efield double[3] \ngeometry:test geom:coords double[9] \ngeometry:test geom:ncenter int[1] \ngeometry:test geom:charges double[3] \ngeometry:test geom:tags char[6] \n...\n
Using this convention, multiple instances of objects may be stored with different names in the same database. For example, if a user needed to do calculations considering alternative geometries for the water molecule, an input file could be constructed containing all the geometries of interest by storing them in the database under different names.
The runtime database contents for the file h2o.db listed above were generated from the user-specified input directive,
geometry \"test geom\" \n O 0.00000000 0.00000000 0.00000000 \n H 0.00000000 1.43042809 -1.10715266 \n H 0.00000000 -1.43042809 -1.10715266 \n end\n
The GEOMETRY directive allows the user to specify the coordinates of the atoms (or centers), and identify the geometry with a unique name.
Unless a specific name is defined for the geometry, (such as the name \"test geom\"
shown in the example), the default name of geometry is assigned. This is the geometry name that computational modules will look for when executing a calculation. The SET directive can be used in the input to force NWChem to look for a geometry with a name other than geometry. For example, to specify use of the geometry with the name \"test geom\"
in the example above, the SET directive is as follows:
set geometry \"test geom\"\n
NWChem will automatically check for such indirections when loading geometries. Storage of data associated with basis sets, the other database resident object, functions in a similar fashion, using the default name \"ao basis\"
.
The database is persistent, meaning that all input data and output data (calculation results) that are not destroyed in the course of execution are permanently stored. These data are therefore available to subsequent tasks or jobs. This makes the input for restart jobs very simple, since only new or changed data must be provided. It also makes the behavior of successive restart jobs identical to that of multiple tasks within one job.
Sometimes, however, this persistence is undesirable, and it is necessary to return an NWChem module to its default behavior by restoring the database to its input-free state. In such a case, the UNSET directive can be used to delete all database entries associated with a given module (including both inputs and outputs).
"},{"location":"Names-of-3-dimensional-space-groups.html","title":"Names of 3 dimensional space groups","text":""},{"location":"Names-of-3-dimensional-space-groups.html#names-of-3-dimensional-space-groups","title":"Names of 3-dimensional space groups","text":"Web resources:
For many of the space groups there are multiple choices of symmetry transformations. They are denoted as settings for each of the groups. By default, the code will use the first setting. By defining setting <integer setting>
on the symmetry input line (see Symmetry Group Input paragraph), you can tell the code to choose a different setting/symmetry transformation.
P1
P-1
P2
P2_1
C2
Pm
Pc
Cm
Cc
P2/m
P2_1/m
C2/m
P2/c
P2_1/c
C2/c
P222
P222_1
P2_12_12
P2_12_12_1
C222_1
C222
F222
I222
I2_12_12_1
Pmm2
Pmc2_1
Pcc2
Pma2
Pca2_1
Pnc2
Pmn2_1
Pba2
Pna2_1
Pnn2
Cmm2
Cmc2_1
Ccc2
Amm2
Abm2
Ama2
Aba2
Fmm2
Fdd2
Imm2
Iba2
Ima2
Pmmm
Pnnn
Pccm
Pban
Pmma
Pnna
Pmna
Pcca
Pbam
Pccn
Pbcm
Pnnm
Pmmn
Pbcn
Pbca
Pnma
Cmcm
Cmca
Cmmm
Cccm
Cmma
Ccca
Fmmm
Fddd
Immm
Ibam
Ibca
Imma
P4
P4_1
P4_2
P4_3
I4
I4_1
P-4
I-4
P4/m
P4_2/m
P4/n
P4_2/n
I4/m
I4_1/a
P422
P42_12
P4_122
P4_12_12
P4_222
P4_22_12
P4_322
P4_32_12
I422
I4_122
P4mm
P4bm
P4_2cm
P4_2nm
P4cc
P4nc
P4_2mc
P4_2bc
I4mm
I4cm
I4_1md
I4_1cd
P-42m
P-42c
P-42_1m
P-42_1c
P-4m2
P-4c2
P-4b2
P-4n2
I-4m2
I-4c2
I-42m
I-42d
P4/mmm
P4/mcc
P4/nbm
P4/nnc
P4/mbm
P4/mnc
P4/nmm
P4/ncc
P4_2/mmc
P4_2/mcm
P4_2/nbc
P4_2/nnm
P4_2/mbc
P4_2/mnm
P4_2/nmc
P4_2/ncm
I4/mmm
I4/mcm
I4_1/amd
I4_1/acd
P3
P3_1
P3_2
R3
P-3
R-3
P312
P321
P3_112
P3_121
P3_212
P3_221
R32
P3m1
P31m
P3c1
P31c
R3m
R3c
P-31m
P-31c
P-3m1
P-3c1
R-3m
R-3c
P6
P6_1
P6_5
P6_2
P6_4
P6_3
P-6
P6/m
P6_3/m
P622
P6_122
P6_522
P6_222
P6_422
P6_322
P6mm
P6cc
P6_3cm
P6_3mc
P-6m2
P-6c2
P-62m
P-62c
P6/mmm
P6/mcc
P6_3/mcm
P6_3/mmc
P23
F23
I23
P2_13
I2_13
Pm-3
Pn-3
Fm-3
Fd-3
Im-3
Pa-3
Ia-3
P432
P4_232
F432
F4_132
I432
P4_332
P4_132
I4_132
P-43m
F-43m
I-43m
P-43n
F-43c
I-43d
Pm-3m
Pn-3n
Pm-3n
Pn-3m
Fm-3m
Fm-3c
Fd-3m
Fd-3c
Im-3m
Ia-3d
The NEB module is an implementation of the nudged elastic band (NEB) method of Jonsson et al., and it is one of two drivers in NWChem that can be used to perform minimum energy path optimizations. NEB can be used at all levels of theory, including SCF, HF, DFT, PSPW, BAND, MP2, RIMP2, CCSD, TCE.
Input to the NEB modules is contained with the NEB block
NEB \n ... \n END\n
To run a NEB calculation the following the following task directives is used
TASK <theory> NEB \nTASK <theory> NEB ignore\n
where <theory>
is SCF, HF, DFT, PSPW, BAND, MP2, CCSD, TCE, etc.. The Task directive with the ignore option is recommended, otherwise NWChem will crash if the path is not optimized in the allowed maximum number of iterations.
Optional input for this module is specified within the compound directive,
NEB \n NBEADS <integer nbeads default 5> \n KBEADS <float kbeads default 0.1> \n MAXITER <integer maxiter default 5> \n\n STEPSIZE <integer stepsize default 1.0> \n NHIST <integer nhist default 5> \n ALGORITHM <integer algorithm default 0> \n\n [loose | default | tight] \n GMAX <float gmax default 0.00045> \n GRMS <float grms default 0.00030> \n XMAX <float xmax default 0.00018> \n XMRS <float xmrs default 0.00012> \n\n [IMPOSE] \n [HASMIDDLE] \n [XYZ_PATH <string xyzfilename>] \n [RESET] \n [PRINT_SHIFT <integer print_shift default 0>] \n END\n
The following list describes the input for the NEB block
PRINT_SHIFT
directive causes the path energies and geometries to be outputed every <print_shift>
steps. The current path energies are appended to the file jobname.neb_epath
and the current geometries are appended to the file jobname.nebpath_\"current iteration\".xyz
.There are three different ways to define the initial path for NEB optimization.
The geometries in the path are defined by
where the starting geometry is entered in the geometry block labeled geometry
, e.g.
geometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend\n
and the last geometry in the path is entered in the geometry block label endgeom
, e.g.
geometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend\n
The geometries for this path are defined by
and
where the starting , middle and last geometries are entered in the geometry blocks geometry
, midgeom
and endgeom
respectively, e.g.
geometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend\n\ngeometry midgeom nocenter noautosym noautoz \nO 0.00000000 0.00000000 0.00000000 \nH 0.00000000 0.00000000 1.00000000 \nH 0.00000000 0.00000000 -1.00000000 \nend\n\ngeometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend\n
xyz_path
to explicitly input a path of geometriesThe xyz_path
option can also be used to define the initial path.
... \nNEB \n ... \n XYZ_PATH path.xyz\nEND \n...\n
where path.xyz contains a list of geometries in xyz format, e.g.
--------------- path.xyz ------------------ \n 3 \nenergy= -17.107207699285738 \nO 0.000000 -0.022939 0.000000 \nH 0.000000 0.550469 0.754065 \nH 0.000000 0.550469 -0.754065 \n 3 \nenergy= -17.094903833074170 \nO -0.000003 -0.110080 -0.000000 \nH -0.000000 0.273180 0.847029 \nH -0.000000 0.273180 -0.847029 \n 3 \nenergy= -17.063823686395292 \nO -0.000000 -0.000080 -0.000000 \nH 0.000000 -0.000002 0.941236 \nH 0.000000 -0.000002 -0.941236 \n 3 \nenergy= -17.094944036147005 \nO -0.000000 0.110472 -0.000000 \nH -0.000000 -0.273172 0.846957 \nH -0.000000 -0.273172 -0.846957 \n 3 \nenergy= -17.107208157343706 \nO 0.000000 0.022939 0.000000 \nH 0.000000 -0.550469 0.754065 \nH 0.000000 -0.550469 -0.754065 \n--------------- path.xyz ------------------\n
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#convergence-criteria","title":"Convergence criteria","text":"The defaults may be used, or the directives LOOSE, DEFAULT, or TIGHT specified to use standard sets of values, or the individual criteria adjusted. All criteria are in atomic units. GMAX and GRMS control the maximum and root mean square gradient in the coordinates. XMAX and XRMS control the maximum and root mean square of the Cartesian step.
LOOSE DEFAULT TIGHT GMAX 0.0045d0 0.00045 0.000015 GRMS 0.0030d0 0.00030 0.00001 XMAX 0.0054d0 0.00180 0.00006 XRMS 0.0036d0 0.00120 0.00004"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#neb-tutorial-1-h2o-inversion","title":"NEB Tutorial 1: H2O Inversion","text":"(input:h2o-neb.nw, output:h2o-neb.nwout, datafiles: h2o-neb.neb_epath.dat h2o-neb.neb_final_epath.dat )
(xyzfiles: h2o-neb.nebpath_000001.xyz h2o-neb.nebpath_000005.xyz h2o-neb.nebpath_000010.xyz h2o-neb.nebpath_000020.xyz h2o-neb.nebpath_final.xyz )
Title \"H2O inversion calculation\"\necho\nstart h2o-neb\n\ngeometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend \n\ngeometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend \n#### Gaussian DFT #### \nbasis \n* library 3-21G \nend \n\ndft \n xc b3lyp \n maxiter 5001 \n cgmin \nend \n\nneb \n nbeads 10 \n kbeads 1.0 \n maxiter 10 \n stepsize 0.10 \n print_shift 1 \nend \ntask dft neb ignore\nneb \n # increase the number of images \n nbeads 20 \n kbeads 1.0 \n stepsize 1.0 \n maxiter 30 \n loose \nend \ntask dft neb ignore\n
After each optimization step the path energies are outputed as follows
neb: Path Energy # 9 \nneb: 1 -75.970000166349976 \nneb: 2 -75.973958450556779 \nneb: 3 -75.973964391052448 \nneb: 4 -75.973965560274110 \nneb: 5 -75.973961077512683 \nneb: 6 -75.973087554095144 \nneb: 7 -75.965847261117744 \nneb: 8 -75.950292780255126 \nneb: 9 -75.932932759963109 \nneb: 10 -75.921912278179292 \nneb: 11 -75.921834552460439 \nneb: 12 -75.932680002200939 \nneb: 13 -75.949868818688529 \nneb: 14 -75.965372754426866 \nneb: 15 -75.972788885848303 \nneb: 16 -75.973958649400714 \nneb: 17 -75.973965255113598 \nneb: 18 -75.973964962774133 \nneb: 19 -75.973959526041568 \nneb: 20 -75.970000163960066 \n
Another way to keep track of the optimization process is to run the following grep command on the output file.
[WE24397:NWChem/NEB/Example2] bylaska% grep @ h2o-neb.nwout \n@neb \n@neb NEB Method \n@neb algorithm = 0 \n@neb maxiter = 10 \n@neb nbeads = 10 \n@neb nhist = 5 \n@neb natoms = 3 \n@neb stepsize = 0.100E+01 \n@neb trust = 0.100E+00 \n@neb kbeads = 0.100E+00 \n@neb Gmax tolerance = 0.450E-03 \n@neb Grms tolerance = 0.300E-03 \n@neb Xmax tolerance = 0.180E-03 \n@neb Xrms tolerance = 0.120E-03 \n@neb \n@neb Step Intrinsic E Mid-Point E Minimum E Maximum E Gmax Grms Xrms Xmax Walltime \n@neb ---- -------------- -------------- -------------- -------------- -------- -------- -------- -------- -------- \n@neb 1 -75.951572 -75.921109 -75.970632 -75.921109 0.55875 0.01606 0.14221 1.54029 454.9 \n@neb 2 -75.953755 -75.923180 -75.972590 -75.923177 0.38930 0.01116 0.01588 0.45644 624.4 \n@neb 3 -75.956726 -75.924391 -75.972861 -75.924387 0.25587 0.00961 0.03673 0.83118 805.2 \n@neb 4 -75.957861 -75.924279 -75.973059 -75.924275 0.23572 0.00894 0.01793 0.24399 971.8 \n@neb 5 -75.959613 -75.925045 -75.973869 -75.925036 0.10257 0.00464 0.03197 0.20350 1152.8 \n@neb 6 -75.959964 -75.925503 -75.973957 -75.925486 0.04762 0.00196 0.00905 0.10433 1316.4 \n@neb 7 -75.960068 -75.925822 -75.973956 -75.925791 0.03897 0.00141 0.00308 0.04432 1519.9 \n@neb 8 -75.960091 -75.925914 -75.973959 -75.925877 0.03707 0.00127 0.00070 0.01691 2055.8 \n@neb 9 -75.960129 -75.926078 -75.973962 -75.926028 0.03353 0.00108 0.00127 0.03707 2297.2 \n@neb 10 -75.960142 -75.926142 -75.973963 -75.926085 0.03199 0.00101 0.00054 0.00420 2756.6 \n@neb NEB calculation not converged \n@neb \n@neb NEB Method \n@neb algorithm = 0 \n@neb maxiter = 30 \n@neb nbeads = 20 \n@neb nhist = 5 \n@neb natoms = 3 \n@neb stepsize = 0.100E+01 \n@neb trust = 0.100E+00 \n@neb kbeads = 0.100E+01 \n@neb Gmax tolerance = 0.450E-02 \n@neb Grms tolerance = 0.300E-02 \n@neb Xmax tolerance = 0.540E-02 \n@neb Xrms tolerance = 0.360E-02 \n@neb \n@neb Step Intrinsic E Mid-Point E Minimum E Maximum E Gmax Grms Xrms Xmax Walltime \n@neb ---- -------------- -------------- -------------- -------------- -------- -------- -------- -------- -------- \n@neb 1 -75.960225 -75.921704 -75.973965 -75.921669 0.24799 0.00398 0.00272 0.08741 3966.5 \n@neb 2 -75.960339 -75.921782 -75.973965 -75.921745 0.24794 0.00328 0.00199 0.12148 5023.2 \n@neb 3 -75.960424 -75.921742 -75.973965 -75.921701 0.19390 0.00286 0.00164 0.08342 5741.4 \n@neb 4 -75.960494 -75.921849 -75.973965 -75.921804 0.19681 0.00266 0.00143 0.09030 6079.7 \n@neb 5 -75.960646 -75.921874 -75.973965 -75.921820 0.17459 0.00240 0.00241 0.22047 6751.5 \n@neb 6 -75.960674 -75.921856 -75.973965 -75.921797 0.14246 0.00165 0.00060 0.00256 7572.3 \n@neb 7 -75.960724 -75.921884 -75.973966 -75.921817 0.13004 0.00153 0.00082 0.05401 7893.3 \n@neb 8 -75.960747 -75.921892 -75.973966 -75.921822 0.12809 0.00149 0.00038 0.00237 8631.2 \n@neb 9 -75.960792 -75.921912 -75.973966 -75.921835 0.12267 0.00142 0.00075 0.05081 9222.0 \n@neb 10 -75.960813 -75.921923 -75.973966 -75.921841 0.11902 0.00138 0.00035 0.00212 10163.2 \n@neb 11 -75.960834 -75.921934 -75.973966 -75.921846 0.11569 0.00135 0.00035 0.00203 10478.3 \n@neb 12 -75.961060 -75.922060 -75.973966 -75.921889 0.07709 0.00104 0.00365 0.30944 10863.8 \n@neb 13 -75.961255 -75.922186 -75.973966 -75.921919 0.04600 0.00087 0.00309 0.19999 11357.0 \n@neb 14 -75.961405 -75.922286 -75.973966 -75.921927 0.03549 0.00079 0.00244 0.03857 11860.0 \n@neb NEB calculation converged\n
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#zero-temperature-string-method","title":"Zero Temperature String Method","text":"The STRING module is an implementation of the zero temperature string method of vanden Eijden et al., and it is one of two drivers in NWChem that can be used to perform minimum energy path optimizations. STRING can be used at all levels of theory, including SCF, HF, DFT, PSPW, BAND, MP2, RIMP2, CCSD, TCE.
Input to the STRING module is contained with the STRING block
STRING\n ...\n END\n
To run a STRING calculation the following the following task directives is used
TASK <theory> STRING\nTASK <theory> STRING ignore\n
where <theory>
is SCF, HF, DFT, PSPW, BAND, MP2, CCSD, TCE, etc.. The Task directive with the ignore option is recommended, otherwise NWChem will crash if the path is not optimized in the allowed maximum number of iterations.
Optional input for this module is specified within the compound directive,
STRING \n NBEADS <integer nbeads default 5> \n MAXITER <integer maxiter default 5> \n\n STEPSIZE <integer stepsize default 1.0> \n NHIST <integer nhist default 5> \n INTERPOL <integer algorithm default 1> \n\n FREEZE1 <logical freeze1 default .false.> \n FREEZEN <logical freezen default .false.> \n\n TOL <float tol default 0.00045> \n\n [IMPOSE] \n [HASMIDDLE] \n [XYZ_PATH <string xyzfilename>] \n [RESET] \n PRINT_SHIFT <integer print_shift default 0> \n END\n
The following list describes the input for the STRING block
.true.
: first bead of simulation frozen, .false.
:first bead of simulation not frozen..true.
:last bead of simulation frozen, .false.
:last bead of simulation not frozen<print_shift>
steps. The current path energies are appended to the file jobname.neb_epath
and the current geometries are appended to the file jobname.nebpath _\"current iteration\".xyz
There are three different ways to define the initial path for NEB optimization.
The geometries in the path are defined by
where the starting geometry is entered in the geometry block labeled geometry
, e.g.
geometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend\n
and the last geometry in the path is entered in the geometry block label endgeom
, e.g.
geometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend\n
The geometries for this path are defined by
and
where the starting , middle and last \u201d geometries are entered in the geometry blocks geometry
, midgeom
and endgeom
respectively, e.g.
geometry nocenter noautosym noautoz \nO 0.00000000 -0.02293938 0.00000000 \nH 0.00000000 0.55046969 0.75406534 \nH 0.00000000 0.55046969 -0.75406534 \nend\n\ngeometry midgeom nocenter noautosym noautoz \nO 0.00000000 0.00000000 0.00000000 \nH 0.00000000 0.00000000 1.00000000 \nH 0.00000000 0.00000000 -1.00000000 \nend\n\ngeometry endgeom nocenter noautosym noautoz \nO 0.00000000 0.02293938 0.00000000 \nH 0.00000000 -0.55046969 0.75406534 \nH 0.00000000 -0.55046969 -0.75406534 \nend\n
xyz_path
to explicitly input a path of geometriesThe xyz_path
option can also be used to define the initial path, e.g.
...\nSTRING\n ...\n XYZ_PATH path.xyz\nEND\n...\n
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#string-tutorial-1hcn-hnc-path-optimization","title":"String Tutorial 1:HCN \u2013> HNC path optimization","text":"(input:HCN-string1.nw, output:HCN-string1.nwout, datafiles: HCN-string1.string_epath.dat HCN-string1.string_final_epath.dat )
(xyzfiles: HCN-string1.stringpath_000001.xyz HCN-string1.stringpath_000005.xyz HCN-string1.stringpath_000010.xyz HCN-string1.stringpath_000020.xyz HCN-string1.stringpath_000030.xyz HCN-string1.stringpath_final.xyz )
In this example, the path energy for the reaction HCN \u2013> HNC is calculated.
# \n# The initial path has the Carbon moving through the Nitrogen. \n# So for this simulation to work that atom avoidance code needs to work. \n# Because the initial path is so stiff the wavefunction optimizer needs to requires \n# lots of iterations during the early stages of the path optimization. \n# \n# \nTitle \"HCN --> HNC Zero-Temperature String Simulation\" \necho \nstart hcn-hnc-dft \n\ngeometry noautoz noautosym \nC 0.00000000 0.00000000 -0.49484657 \nN 0.00000000 0.00000000 0.64616359 \nH 0.00000000 0.00000000 -1.56151539 \nend \n\ngeometry endgeom noautoz noautosym \nC 0.00000000 0.00000000 0.73225318 \nN 0.00000000 0.00000000 -0.42552059 \nH 0.00000000 0.00000000 -1.42351006 \nend \n\n#### Gaussian DFT #### \nbasis \n* library 3-21G \nend \n\ndft \n xc b3lyp \n maxiter 501 \nend \n\nstring \n nhist 10 \n nbeads 10 \n maxiter 10 \n stepsize 0.10 \n print_shift 1 \n\n # don't allow the end points of the path to move \n freeze1 .true. \n freezeN .true. \nend \ntask dft string ignore\n\nstring \n # increase the number of images \n nbeads 20 \n maxiter 20 \n\n # allow the end points of the path to move \n freeze1 .false. \n freezeN .false. \nend \ntask dft string ignore\n
After each optimization step the path energies are outputed as follows
string: Path Energy # 2 \n string: 1 -92.906682492969779 \n string: 2 -92.743446565848473 \n string: 3 -92.751945829987775 \n string: 4 -92.756507971834026 \n string: 5 -92.726984154346979 \n string: 6 -92.701651474021503 \n string: 7 -92.672613497521183 \n string: 8 -92.825096796032099 \n string: 9 -92.716422030970662 \n string: 10 -92.881713271394148\n
Another way to keep track of the optimization process is to run the following grep command on the output file.
[WE24397:NWChem/NEB/Example2] bylaska% grep @ HCN-dft.out \n@zts \n@zts String method. \n@zts Temperature = 0.00000 \n@zts Covergence Tolerance = 0.00010 \n@zts Step Size = 0.10000 \n@zts Maximum Time Steps = 10 \n@zts Number of replicas = 10 \n@zts Number of histories = 10 \n@zts String Interpolator = 1 \n@zts First Replica = frozen \n@zts Last Replica = frozen \n@zts \n@zts Step xrms xmax E start E middle E end E max E average \n@zts 1 0.460700 2.602234 -92.9066825 -83.4767173 -92.8817133 -83.4767173 -91.6169775 \n@zts 2 0.862226 5.405612 -92.9066825 -92.3028437 -92.8817133 -92.3028437 -92.6631831 \n@zts 3 0.105285 0.530157 -92.9066825 -92.3289676 -92.8817133 -92.3289676 -92.6702949 \n@zts 4 0.134687 0.740991 -92.9066825 -92.3512584 -92.8817133 -92.3512584 -92.6821949 \n@zts 5 0.117113 0.916210 -92.9066825 -92.3767826 -92.8817133 -92.3767826 -92.6899234 \n@zts 6 0.124464 0.844439 -92.9066825 -92.4195957 -92.8817133 -92.4195957 -92.7045117 \n@zts 7 0.092105 0.731434 -92.9066825 -92.4510785 -92.8817133 -92.4510785 -92.7156403 \n@zts 8 0.049227 0.330651 -92.9066825 -92.4690983 -92.8817133 -92.4690983 -92.7288274 \n@zts 9 0.032819 0.177356 -92.9066825 -92.4827444 -92.8817133 -92.4827444 -92.7344806 \n@zts 10 0.076249 0.444246 -92.9066825 -92.4930430 -92.8817133 -92.4930430 -92.7381477 \n@zts The string calculation failed to converge \n@zts Bead number 1 Potential Energy = -92.906682487840 \n@zts Bead number 2 Potential Energy = -92.850640135623 \n@zts Bead number 3 Potential Energy = -92.819370566454 \n@zts Bead number 4 Potential Energy = -92.680821335407 \n@zts Bead number 5 Potential Energy = -92.505231918657 \n@zts Bead number 6 Potential Energy = -92.493042984646 \n@zts Bead number 7 Potential Energy = -92.637367419044 \n@zts Bead number 8 Potential Energy = -92.775376312982 \n@zts Bead number 9 Potential Energy = -92.831230727986 \n@zts Bead number 10 Potential Energy = -92.881713271394 \n@zts \n@zts String method. \n@zts Temperature = 0.00000 \n@zts Covergence Tolerance = 0.00010 \n@zts Step Size = 0.10000 \n@zts Maximum Time Steps = 20 \n@zts Number of replicas = 20 \n@zts Number of histories = 10 \n@zts String Interpolator = 1 \n@zts First Replica = moves \n@zts Last Replica = moves \n@zts \n@zts Step xrms xmax E start E middle E end E max E average \n@zts 1 1.039809 5.039486 -92.9071472 -92.4998400 -92.8820628 -92.4998400 -92.7500136 \n@zts 2 0.192562 0.999019 -92.9073958 -92.5259828 -92.8821500 -92.5259828 -92.7624061 \n@zts 3 0.244943 1.236459 -92.9075306 -92.5735140 -92.8821223 -92.5735140 -92.7816692 \n@zts 4 0.207031 1.093667 -92.9075888 -92.6229190 -92.8821177 -92.6154678 -92.7979112 \n@zts 5 0.056648 0.293829 -92.9075975 -92.6672565 -92.8821033 -92.6507897 -92.8101666 \n@zts 6 0.078950 0.555245 -92.9076044 -92.7245122 -92.8822536 -92.7014407 -92.8241914 \n@zts 7 0.065564 0.521110 -92.9076101 -92.7539982 -92.8822915 -92.7376310 -92.8326007 \n@zts 8 0.050188 0.319477 -92.9076113 -92.7695725 -92.8824219 -92.7612604 -92.8378464 \n@zts 9 0.055301 0.322130 -92.9076168 -92.7754581 -92.8825732 -92.7740099 -92.8408900 \n@zts 10 0.038769 0.195102 -92.9076177 -92.7775695 -92.8826652 -92.7775695 -92.8425440 \n@zts 11 0.064900 0.273480 -92.9076215 -92.7800330 -92.8827175 -92.7800330 -92.8443574 \n@zts 12 0.062593 0.266337 -92.9076224 -92.7823972 -92.8826993 -92.7823972 -92.8458976 \n@zts 13 0.205437 0.948190 -92.9076243 -92.7842034 -92.8826408 -92.7842034 -92.8469810 \n@zts 14 0.015025 0.068924 -92.9076247 -92.7844362 -92.8826536 -92.7844362 -92.8472227 \n@zts 15 0.129208 0.602636 -92.9076254 -92.7849856 -92.8826676 -92.7849856 -92.8477169 \n@zts 16 0.013479 0.056561 -92.9076260 -92.7855201 -92.8826783 -92.7855201 -92.8481626 \n@zts 17 0.472858 2.220715 -92.9076271 -92.7878088 -92.8826913 -92.7878088 -92.8497919 \n@zts 18 0.162617 0.766201 -92.9076273 -92.7879912 -92.8826934 -92.7879912 -92.8499197 \n@zts 19 0.013204 0.060562 -92.9076276 -92.7885097 -92.8826994 -92.7885097 -92.8502675 \n@zts 20 0.718205 3.423813 -92.9076278 -92.7905066 -92.8827009 -92.7895258 -92.8514863 \n@zts The string calculation failed to converge \n@zts Bead number 1 Potential Energy = -92.907627751439 \n@zts Bead number 2 Potential Energy = -92.905047596626 \n@zts Bead number 3 Potential Energy = -92.897944354806 \n@zts Bead number 4 Potential Energy = -92.887494117302 \n@zts Bead number 5 Potential Energy = -92.874059841858 \n@zts Bead number 6 Potential Energy = -92.857382758537 \n@zts Bead number 7 Potential Energy = -92.837207959079 \n@zts Bead number 8 Potential Energy = -92.815902497386 \n@zts Bead number 9 Potential Energy = -92.798474907121 \n@zts Bead number 10 Potential Energy = -92.789525765222 \n@zts Bead number 11 Potential Energy = -92.790506632257 \n@zts Bead number 12 Potential Energy = -92.799861168980 \n@zts Bead number 13 Potential Energy = -92.814252430183 \n@zts Bead number 14 Potential Energy = -92.830704548760 \n@zts Bead number 15 Potential Energy = -92.847248091296 \n@zts Bead number 16 Potential Energy = -92.861557132126 \n@zts Bead number 17 Potential Energy = -92.871838446832 \n@zts Bead number 18 Potential Energy = -92.878543965696 \n@zts Bead number 19 Potential Energy = -92.881844751735 \n@zts Bead number 20 Potential Energy = -92.882700859222\n
A plotting program (e.g. gnuplot, xmgrace) can be used to look at final path as well as the the convergence of the path i.e.,
[WE24397:NEB/Example2/perm] bylaska% gnuplot \n\n G N U P L O T \n Version 4.6 patchlevel 0 last modified 2012-03-04 \n Build System: Darwin x86_64 \n\n Copyright (C) 1986-1993, 1998, 2004, 2007-2012 \n Thomas Williams, Colin Kelley and many others \n\n gnuplot home: <http://www.gnuplot.info> \n faq, bugs, etc: type \"help FAQ\" \n immediate help: type \"help\" (plot window: hit 'h') \n\nTerminal type set to 'aqua' \ngnuplot> set xlabel \"Reaction Coordinate\" \ngnuplot> set ylabel \"Energy (kcal/mol)\" \ngnuplot> set yrange [0:100] \ngnuplot> set grid \ngnuplot> set style data linespoints \ngnuplot> plot \"hcn-hnc-dft.string_epath\" using 1:($2+92.908)*27.2116*23.06,\"hcn-hnc-dft.string_final_epath\" using 1:($2+92.908)*27.2116*23.06 \ngnuplot> \n
400px
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#string-tutorial-2","title":"String Tutorial 2:","text":"Title \"2SiO4H4 --> H3O3Si-O-SiO3H3 + H2O\" \necho \nstart sio4h4-dimer \n\ngeometry noautoz noautosym \nSi -3.90592 -0.11789 0.03791 \nO -2.32450 -0.24327 -0.05259 \nO -4.45956 -1.13247 1.13159 \nO -4.53584 -0.45118 -1.38472 \nO -4.28179 1.37363 0.44838 \nSi 1.27960 0.06912 0.14555 \nO 2.85122 0.23514 0.32761 \nO 0.54278 0.38513 1.52092 \nO 0.94484 -1.42248 -0.29913 \nO 0.75605 1.07390 -0.97272 \nH -1.66762 -0.74425 -0.29362 \nH -4.05734 2.06481 0.90983 \nH -4.30983 -1.85807 1.57116 \nH -4.43621 -0.88060 -2.12508 \nH 3.59374 -0.16315 0.50572 \nH 0.36896 0.10990 2.31839 \nH 0.53993 -2.15495 -0.09488 \nH 0.43207 1.85525 -1.13531 \nend \n\ngeometry endgeom noautoz noautosym \nSi -3.07373 0.18232 -0.24945 \nO -1.50797 0.23823 -0.53062 \nO -3.36758 -0.93058 0.85023 \nO -3.83958 -0.20093 -1.59101 \nO -3.57993 1.59735 0.27471 \nSi -0.05186 0.25441 0.11277 \nO 0.94679 -0.58168 -0.80206 \nO -0.10091 -0.40972 1.55838 \nO 1.41035 -3.75872 1.22931 \nO 0.47135 1.75206 0.24209 \nH 1.03624 -4.62405 0.92620 \nH -3.81554 2.06192 0.96069 \nH -3.97094 -1.38510 1.26383 \nH -4.39754 -0.73964 -1.96563 \nH 1.45990 -0.57144 -1.49361 \nH -0.44444 -0.37536 2.34765 \nH 2.15751 -4.00850 1.82933 \nH 0.77180 2.44229 -0.17616 \nend \n\nnwpw \n simulation_cell \n SC 18.0 \n end \n cutoff 30.0 \n lmbfgs \nend \n\nstring \n nhist 10 \n nbeads 10 \n maxiter 10 \n stepsize 0.10 \n print_shift 1 \n\n # don't allow the end points of the path to move \n freeze1 .true. \n freezeN .true. \nend \ntask pspw string ignore\n\nstring \n # increase the number of images \n nbeads 20 \n maxiter 20 \n\n # allow the end points of the path to move \n freeze1 .false. \n freezeN .false. \nend \ntask pspw string ignore\n
"},{"location":"Nudged-Elastic-Band-and-Zero-Temperature-String-Methods.html#string-tutorial-3-combining-neb-and-string-path-optimizations","title":"String Tutorial 3: Combining NEB and String path optimizations","text":""},{"location":"ONIOM.html","title":"Hybrid Calculations with ONIOM","text":""},{"location":"ONIOM.html#overview","title":"Overview","text":"ONIOM is the hybrid method of Morokuma and co-workers that enables different levels of theory to be applied to different parts of a molecule/system and combined to produce a consistent energy expression. The objective is to perform a high-level calculation on just a small part of the system and to include the effects of the remainder at lower levels of theory, with the end result being of similar accuracy to a high-level calculation on the full system.
The NWChem ONIOM module implements two- and three-layer ONIOM models for use in energy, gradient, geometry optimization, and vibrational frequency calculations with any of the pure quantum mechanical methods within NWChem. At the present time, it is not possible to perform ONIOM calculations with either solvation models or classical force fields. Nor is it yet possible to compute properties except as derivatives of the total energy.
Using the terminology of Morokuma et al., the full molecular geometry including all atoms is referred to as the \u201creal\u201d geometry and it is treated using a \u201clow\u201d-level of theory. A subset of these atoms (referred to as the \u201cmodel\u201d geometry) are treated using both the \u201clow\u201d-level and a \u201chigh\u201d-level of theory. A three-layer model also introduces an \u201cintermediate\u201d model geometry and a \u201cmedium\u201d level of theory.
The two-layer model requires a high and low level of theory and a real and model molecular geometry. The energy at the high-level of theory for the real geometry is estimated as
E(High,Real) = E(Low,Real) + [E(High,Model) - E(Low,Model)].\n
The three-layer model requires high, medium and low levels of theory, and real, intermediate and model geometries and the corresponding energy estimate is
E(High,Real) = E(Low,Real) + [E(High,Model) - E(Medium,Model)]\n + [E(Medium,Inter) - E(Low,Inter)].\n
When does ONIOM work well? The approximation for a two-layer model will be good if
ONIOM is used to compute energy differences and the absolute energies are not all that meaningful even though they are well defined. Due to cancellation of errors, ONIOM actually works better than you might expect, but a poorly designed calculation can yield very bad results. Please read and heed the caution at the end of the article by Dapprich et al.
The input options are as follows
ONIOM \n HIGH <string theory> [basis <string basis default \"ao basis\">] \\ \n [ecp <string ecp>] [input <string input>] \n [MEDIUM <string theory> [basis <string basis default \"ao basis\">] \\ \n [ecp <string ecp>] [input <string input>]] \n LOW <string theory> [basis <string basis default \"ao basis\">] \\ \n [ecp <string ecp>] [input <string input>] \n MODEL <integer natoms> [charge <double charge>] \\ \n [<integer i1 j1> <real g1> [<string tag1>] ...] \n [INTER <integer natoms> [charge <double charge>] \\ \n [<integer i1 j1> <real g1> [<string tag1>] ...]] \n [VECTORS [low-real <string mofile>] [low-model <string mofile>] \\ \n [high-model <string mofile>] [medium-model <string mofile]\\ \n [medium-inter <string mofile>] [low-inter <string mofile>]] \n [PRINT ...] \n [NOPRINT ...] \nEND\n
which are described in detail below.
For better validation of user input, the HIGH
, LOW
and MODEL
directives must always be specified. If the one of the MEDIUM
or INTER
directives are specified, then so must the other.
The geometry and total charge of the full or real system should be specified as normal using the geometry directive. If of the atoms are to be included in the model system, then these should be specified first in the geometry. Similarly, in a three-layer calculation, if there are atoms to be included in the intermediate system, then these should also be arranged together at the beginning of the geometry. The implict assumption is that the model system is a subset of the intermediate system which is a subset of the real system. The number of atoms to be included in the model and intemediate systems are specified using the MODEL and INTER directives. Optionally, the total charge of the model and intermediate systems may be adjusted. The default is that all three systems have the same total charge.
Example 1. A two-layer calculation on taking the potassium ion as the model system. Note that no bonds are broken so no link atoms are introduced. The real geometry would be specified with potassium (the model) first.
geometry autosym \n K 0 0.00 1.37 \n O 0 0.00 -1.07 \n H 0 -0.76 -1.68 \n H 0 0.76 -1.68 \n end\n
and the following directive in the ONIOM input block indicates that one atom (implicitly the first in the geometry) is in the model system
model 1\n
"},{"location":"ONIOM.html#link-atoms","title":"Link atoms","text":"Link atoms for bonds spanning two regions are automatically generated from the bond information. The additional parameters on the MODEL
and INTER
directives describe the broken bonds including scale factors for placement of the link atom and, optionally, the type of link atom. The type of link atom defaults to hydrogen, but any type may be specified (actually here you are specifying a geometry tag which is used to associate a geometrical center with an atom type and basis sets, etc. For each broken bond specify the numbers of the two atoms (i and j), the scale factor (g) and optionally the tag of the link atom. Link atoms are placed along the vector connecting the the first to the second atom of the bond according to the equation
where g is the scale factor. If the scale factor is one, then the link atom is placed where the second atom was. More usually, the scale factor is less than one, in which case the link atom is placed between the original two atoms. The scale factor should be chosen so that the link atom (usually hydrogen) is placed near its equilibrium bond length from the model atom. E.g., when breaking a single carbon-carbon bond (typical length 1.528 Angstr\u00f8ms) using a hydrogen link atom we will want a carbon-hydrogen bond length of about 1.084 Angstr\u00f8ms, so the scale factor should be chosen as 1.084/1.528 ~ 0.709.
Example 2. A calculation on acetaldehyde (H3C-CHO) using aldehyde (H-CHO) as the model system. The covalent bond between the two carbon atoms is broken and a link atom must be introduced to replace the methyl group. The link atom is automatically generated \u2013 all you need to do is specify the atoms in the model system that are also in the real system (here CHO) and the broken bonds. Here is the geometry of acetaldehyde with the CHO of aldehyde first
geometry \n C -0.383 0.288 0.021 \n H -1.425 0.381 0.376 \n O 0.259 1.263 -0.321 \n\n H 0.115 -1.570 1.007 \n H -0.465 -1.768 -0.642 \n H 1.176 -1.171 -0.352 \n C 0.152 -1.150 0.005 \n end\n
There are three atoms (the first three) of the real geometry included in the model geometry, and we are breaking the bond between atoms 1 and 7, replacing atom 7 with a hydrogen link atom. This is all accomplished by the directive
model 3 1 7 0.709 H\n
Since the default link atom is hydrogen there is actually no need to specify the \u201cH\u201d.
See also the ONIOM three layer example for a more complex example.
"},{"location":"ONIOM.html#numbering-of-the-link-atoms","title":"Numbering of the link atoms","text":"The link atoms are appended to the atoms of the model or intermediate systems in the order that the broken bonds are specified in the input. This is of importance only if manually constructing an initial guess.
"},{"location":"ONIOM.html#high-medium-and-low-theories","title":"High, medium and low theories","text":"The two-layer model requires both the high-level and low-level theories be specified. The three-layer model also requires the medium-level theory. Each of these includes a theory (such as SCF, MP2, DFT, CCSD, CCSD(T), etc.), an optional basis set, an optional ECP, and an optional string containing general NWChem input.
"},{"location":"ONIOM.html#basis-specification","title":"Basis specification","text":"The basis name on the theory directive (high, medium, or low) is that specified on a basis set directive (see Section 7) and not the name of a standard basis in the library. If not specified, the basis set for the high-level theory defaults to the standard \u201cao basis\u201d. That for the medium level defaults to the high-level basis, and the low-level basis defaults to the medium-level basis. Other wavefunction parameters are obtained from the standard wavefunction input blocks. See Effective core potentials for an example.
"},{"location":"ONIOM.html#effective-core-potentials","title":"Effective core potentials","text":"If an effective core potential is specified in the usual fashion outside of the ONIOM input then this will be used in all calculations. If an alternative ECP name (the name specified on the ECP directive in the same manner as done for basis sets) is specified on one of the theory directives, then this ECP will be used in preference for that level of theory. See the ONIOM three layer example for sample input.
"},{"location":"ONIOM.html#general-input-strings","title":"General input strings","text":"For many purposes, the ability to specify the theory, basis and effective core potential is adequate. All of the options for each theory are determined from their independent input blocks. However, if the same theory (e.g., DFT) is to be used with different options for the ONIOM theoretical models, then the general input strings must be used. These strings are processed as NWChem input each time the theoretical model is invoked. The strings may contain any NWChem input, except for options pertaining to ONIOM and the task
directive. The intent that the strings be used just to control the options pertaining to the theory being used.
A word of caution. Be sure to check that the options are producing the desired results. Since the NWChem database is persistent and the ONIOM calculations happen in an undefined order, the input strings should fully define the calculation you wish to have happen.
For instance, if the high model is DFT/B3LYP/6-311g** and the low model is DFT/LDA/3-21g, the ONIOM input might look like this
oniom \n model 3 \n low dft basis 3-21g input \"dft; xc; end\" \n high dft basis 6-311g** input \"dft; xc b3lyp; end\" \n end\n
The empty XC directive restores the default LDA exchange-correlation option (see Section 11.3). Note that semi-colons and other quotation marks inside the input string must be preceded by a backslash to avoid special interpretation.
See |DFT with and without charge fitting for another example.
"},{"location":"ONIOM.html#use-of-symmetry","title":"Use of symmetry","text":"Symmetry should work just fine as long as the model and intermediate regions respect the symmetry \u2013 i.e., symmetry equivalent atoms need to be treated equivalently. If symmetry equivalent atoms must be treated in separate regions then the symmetry must be lowered (or completely switched off).
"},{"location":"ONIOM.html#molecular-orbital-files","title":"Molecular orbital files","text":"The VECTORS directive in the ONIOM block is different to that elsewhere in NWChem. For each of the necessary combinations of theory and geometry you can specify a different file for the molecular orbitals. By default each combination will store the MO vectors in the permanent directory using a file name created by appending to the name of the calculation the following string
Each calculation will utilize the appropriate vectors which is more efficient during geometry optimizations and frequency calculations, and is also useful for the initial calculation. In the absence of existing MO vectors files, the default atomic guess is used (see |Input/output of MO vectors).
If special measures must be taken to converge the initial SCF, DFT or MCSCF calculation for one or more of the systems, then initial vectors may be saved in a file with the default name, or another name may be specified using the VECTORS directive. Note that subsequent vectors (e.g., from a geometry optimization) will be written back to this file, so take a copy if you wish to preserve it. To generate the initial guess for the model or intermediate systems it is necessary to generate the geometries which is most readily done, if there are link atoms, by just running NWChem on the input for the ONIOM calculation on your workstation. It will print these geometries before starting any calculations which you can then terminate.
E.g., in a calculation on Fe(III) surrounded by some ligands, it is hard to converge the full (real) system from the atomic guess so as to obtain a configuration for the iron atom since the d orbitals are often nominally lower in energy than some of the ligand orbitals. The most effective mechanism is to converge the isolated Fe(III) and then to use the fragment guess as a starting guess for the real system. The resulting converged molecular orbitals can be saved either with the default name (as described above in this section), in which case no additional input is necessary. If an alternative name is desired, then the VECTORS
directive may be used as follows
vectors low-real /u/rjh/jobs/fe_ether_water.mos\n
"},{"location":"ONIOM.html#restarting","title":"Restarting","text":"Restart of ONIOM calculations does not currently work as smoothly as we would like. For geometry optimizations that terminated gracefully by running out of iterations, the restart will work as normal. Otherwise, specify in the input of the restart job the last geometry of the optimization. The Hessian information will be reused and the calculation should proceed losing at most the cost of one ONIOM gradient evaluation. For energy or frequency calculations, restart may not currently be possible.
"},{"location":"ONIOM.html#examples","title":"Examples","text":""},{"location":"ONIOM.html#hydrocarbon-bond-energy","title":"Hydrocarbon bond energy","text":"A simple two-layer model changing just the wavefunction with one link atom.
This reproduces the two-layer ONIOM (MP2:HF) result from Dapprich et al. for the reaction with using as the model. The geometries of and are optimized at the DFT-B3LYP/6-311++G** level of theory, and then ONIOM is used to compute the binding energy using UMP2 for the model system and HF for the real system. The results, including MP2 calculations on the full system for comparison, are as given in the table below.
Theory Me-CH2 Me-Me H De(Hartree) De(kcal/mol) B3LYP -79.185062 -79.856575 -0.502256 0.169257 106.2 HF -78.620141 -79.251701 -0.499817 0.131741 82.7 MP2 -78.904716 -79.571654 -0.499817 0.167120 104.9 MP2:HF -78.755223 -79.422559 -0.499817 0.167518 105.1
Energies for ONIOM example 1, hydrocarbon bond energy using MP2:HF two-layer model.
The following input first performs a calculation on , and then on . Note that in the second calculation we cannot use the full symmetry since we are breaking the C-C bond in forming the model system (the non-equivalence of the methyl groups is perhaps more apparent if we write ).
start \n\n basis spherical \n H library 6-311++G**; C library 6-311++G** \n end \n\n title \"ONIOM Me-CH2\" \n\n geometry autosym \n H -0.23429328 1.32498565 0.92634814 \n H -0.23429328 1.32498565 -0.92634814 \n C -0.13064265 0.77330370 0.00000000 \n H -1.01618703 -1.19260361 0.00000000 \n H 0.49856072 -1.08196901 -0.88665533 \n H 0.49856072 -1.08196901 0.88665533 \n C -0.02434414 -0.71063687 0.00000000 \n end \n\n scf; uhf; doublet; thresh 1e-6; end \n mp2; freeze atomic; end \n\n oniom \n high mp2 \n low scf \n model 3 3 7 0.724 \n end \n\n task oniom \n\n title \"ONIOM Me-Me\" \n\n geometry # Note cannot use full D3D symmetry here, either specify noautosym, or change an atom tag (here C -> C1) \n H -0.72023641 0.72023641 -1.16373235 \n H 0.98386124 0.26362482 -1.16373235 \n H -0.26362482 -0.98386124 -1.16373235 \n C 0.00000000 0.00000000 -0.76537515 \n H 0.72023641 -0.72023641 1.16373235 \n H -0.98386124 -0.26362482 1.16373235 \n H 0.26362482 0.98386124 1.16373235 \n C1 0.00000000 0.00000000 0.76537515 \n end \n\n scf; rhf; singlet; end \n\n oniom \n high mp2 \n low scf \n model 4 4 8 0.724 \n end \n\n task oniom\n
"},{"location":"ONIOM.html#optimization-and-frequencies","title":"Optimization and frequencies","text":"A two-layer model including modification of theory, basis, ECP and total charge and no link atoms.
This input reproduces the ONIOM optimization and vibrational frequency calculation of Rh(CO)2Cp of Dapprich et al. The model system is Rh(CO)2+. The low theory is the Gaussian LANL2MB model (Hay-Wadt n+1 ECP with minimal basis on Rh, STO-3G on others) with SCF. The high theory is the Gaussian LANL2DZ model (another Hay-Wadt ECP with a DZ basis set on Rh, Dunning split valence on the other atoms) with DFT/B3LYP. Note that different names should be used for the basis set and ECP since the same mechanism is used to store them in the database.
start \n\n ecp LANL2DZ_ECP \n rh library LANL2DZ_ECP \n end \n\n basis LANL2DZ spherical \n rh library LANL2DZ_ECP \n o library SV_(Dunning-Hay); c library SV_(Dunning-Hay); h library SV_(Dunning-Hay) \n end \n\n ecp Hay-Wadt_MB_(n+1)_ECP \n rh library Hay-Wadt_MB_(n+1)_ECP \n end \n\n # This is the minimal basis used by Gaussian. It is not the same \n # as the one in the EMSL basis set library for this ECP. \n basis Hay-Wadt_MB_(n+1) spherical \n Rh s; .264600D+01 -.135541D+01; .175100D+01 .161122D+01; .571300D+00 .589381D+00 \n Rh s; .264600D+01 .456934D+00; .175100D+01 -.595199D+00; .571300D+00 -.342127D+00 \n .143800D+00 .410138D+00; .428000D-01 .780486D+00 \n Rh p; .544000D+01 -.987699D-01; .132900D+01 .743359D+00; .484500D+00 .366846D+00 \n Rh p; .659500D+00 -.370046D-01; .869000D-01 .452364D+00; .257000D-01 .653822D+00 \n Rh d; .366900D+01 .670480D-01; .142300D+01 .455084D+00; .509100D+00 .479584D+00 \n .161000D+00 .233826D+00 \n o library sto-3g; c library sto-3g; h library sto-3g \n end \n\n charge 0 \n geometry autosym \n rh 0.00445705 -0.15119674 0.00000000 \n c -0.01380554 -1.45254070 1.35171818 \n c -0.01380554 -1.45254070 -1.35171818 \n o -0.01805883 -2.26420212 2.20818932 \n o -0.01805883 -2.26420212 -2.20818932 \n c 1.23209566 1.89314720 0.00000000 \n c 0.37739392 1.84262319 -1.15286640 \n c -1.01479160 1.93086461 -0.70666350 \n c -1.01479160 1.93086461 0.70666350 \n c 0.37739392 1.84262319 1.15286640 \n h 2.31251453 1.89903673 0.00000000 \n h 0.70378132 1.86131979 -2.18414218 \n h -1.88154273 1.96919306 -1.35203550 \n h -1.88154273 1.96919306 1.35203550 \n h 0.70378132 1.86131979 2.18414218 \n end \n\n dft; grid fine; convergence gradient 1e-6 density 1e-6; xc b3lyp; end \n scf; thresh 1e-6; end \n\n oniom \n low scf basis Hay-Wadt_MB_(n+1) ecp Hay-Wadt_MB_(n+1)_ECP \n high dft basis LANL2DZ ecp LANL2DZ_ECP \n model 5 charge 1 \n print low \n end \n\n task oniom optimize \n task oniom freq\n
"},{"location":"ONIOM.html#a-three-layer-example","title":"A three-layer example","text":"A three layer example combining CCSD(T), and MP2 with two different quality basis sets, and using multiple link atoms.
The full system is tetra-dimethyl-amino-ethylene (TAME) or (N(Me)2)2-C=C-(N(Me)2)2. The intermediate system is (NH2)2-C=C-(NH2)2 and H2C=CH2 is the model system. CCSD(T)+aug-cc-pvtz is used for the model region, MP2+aug-cc-pvtz for the intermediate region, and MP2+aug-cc-pvdz for everything.
In the real geometry the first two atoms (C, C) are the model system (link atoms will be added automatically). The first six atoms (C, C, N, N, N, N) describe the intermediate system (again with link atoms to be added automatically). The atoms have been numbered using comments to make the bonding input easier to generate.
To make the model system, four C-N bonds are broken between the ethylene fragment and the dimethyl-amino groups and replaced with C-H bonds. To make the intermediate system, eight C-N bonds are broken between the nitrogens and the methyl groups and replaced with N-H bonds. The scaling factor could be chosen differently for each of the bonds.
start \n\n geometry \n C 0.40337795 -0.17516305 -0.51505208 # 1 \n C -0.40328664 0.17555927 0.51466084 # 2 \n N 1.87154979 -0.17516305 -0.51505208 # 3 \n N -0.18694782 -0.60488524 -1.79258692 # 4 \n N 0.18692927 0.60488318 1.79247594 # 5 \n N -1.87148219 0.17564718 0.51496494 # 6 \n C 2.46636552 1.18039452 -0.51505208 # 7 \n C 2.48067731 -1.10425355 0.46161675 # 8 \n C -2.46642715 -1.17982091 0.51473105 # 9 \n C -2.48054940 1.10495864 -0.46156202 # 10 \n C 0.30027136 0.14582197 -2.97072148 # 11 \n C -0.14245927 -2.07576980 -1.96730852 # 12 \n C -0.29948109 -0.14689874 2.97021079 # 13 \n C 0.14140463 2.07558249 1.96815181 # 14 \n H 0.78955302 2.52533887 1.19760764 \n H -0.86543435 2.50958894 1.88075113 \n ... and 22 other hydrogen atoms on the methyl groups \n end \n\n basis aug-cc-pvtz spherical \n C library aug-cc-pvtz; H library aug-cc-pvtz \n end \n\n basis aug-cc-pvdz spherical \n C library aug-cc-pvtz; H library aug-cc-pvtz \n end \n\n oniom \n high ccsd(t) basis aug-cc-pvtz \n medium mp2 basis aug-cc-pvtz \n low mp2 basis aug-cc-pvdz \n model 2 1 3 0.87 1 4 0.87 2 5 0.87 2 6 0.87 \n\n inter 6 3 7 0.69 3 8 0.69 4 11 0.69 4 12 0.69 \\ \n 5 13 0.69 5 14 0.69 6 9 0.69 6 10 0.69 \n end \n\n task oniom\n
"},{"location":"ONIOM.html#dft-with-and-without-charge-fitting","title":"DFT with and without charge fitting","text":"Demonstrates use of general input strings.
A two-layer model for anthracene (a linear chain of three fused benzene rings) using benzene as the model system. The high-level theory is DFT/B3LYP/TZVP with exact Coulomb. The low level is DFT/LDA/DZVP2 with charge fitting.
Note the following.
start \n geometry \n symmetry d2h \n C 0.71237329 -1.21458940 0.0 \n C -0.71237329 -1.21458940 0.0 \n C 0.71237329 1.21458940 0.0 \n C -0.71237329 1.21458940 0.0 \n C -1.39414269 0.00000000 0.0 \n C 1.39414269 0.00000000 0.0 \n H -2.47680865 0.00000000 0.0 \n H 2.47680865 0.00000000 0.0 \n C 1.40340535 -2.48997027 0.0 \n C -1.40340535 -2.48997027 0.0 \n C 1.40340535 2.48997027 0.0 \n C -1.40340535 2.48997027 0.0 \n C 0.72211503 3.64518615 0.0 \n C -0.72211503 3.64518615 0.0 \n C 0.72211503 -3.64518615 0.0 \n C -0.72211503 -3.64518615 0.0 \n H 2.48612947 2.48094825 0.0 \n H 1.24157357 4.59507342 0.0 \n H -1.24157357 4.59507342 0.0 \n H -2.48612947 2.48094825 0.0 \n H 2.48612947 -2.48094825 0.0 \n H 1.24157357 -4.59507342 0.0 \n H -1.24157357 -4.59507342 0.0 \n H -2.48612947 -2.48094825 0.0 \n end \n\n basis small \n h library DZVP_(DFT_Orbital) \n c library DZVP_(DFT_Orbital) \n end \n\n basis fitting \n h library DGauss_A1_DFT_Coulomb_Fitting \n c library DGauss_A1_DFT_Coulomb_Fitting \n end \n\n basis big \n h library TZVP_(DFT_Orbital) \n c library TZVP_(DFT_Orbital) \n end \n\n oniom \n model 8 1 9 0.75 2 10 0.75 3 11 0.75 4 12 0.75 \n high dft basis big input \"unset \"cd basis\"; dft; xc b3lyp; end\" \n low dft basis small input \"set \"cd basis\" fitting; dft; xc; end\" \n end \n\n task oniom\n
"},{"location":"Ongoing_Projects.html","title":"Ongoing Projects and Future Directions (Obsolete content dating from 2018)","text":""},{"location":"Ongoing_Projects.html#density-functional-theory-dft-time-dependent-dft-td-dft-and-properties","title":"Density functional theory (DFT), time-dependent DFT (TD-DFT) and properties","text":"Dynamics on excited-state surfaces, surface hopping, GW/BSE for molecular systems, Spin-flip TDDFT, Non-collinear DFT, spin-orbit TDDFT, interface to QWalk Quantum Monte-Carlo Program (w/ Lucas Wagner University of Illinois, Urbana-Champaign)
"},{"location":"Ongoing_Projects.html#plane-wave-density-functional-theory-dft-ab-initio-molecular-dynamics-and-nwphys","title":"Plane-Wave Density Functional Theory (DFT), Ab Initio Molecular Dynamics, and NWPhys","text":"New NWPhys module development (w/ John Rehr University of Washington) which will include new methods to calculate XPS and XANES spectra. Interface to QWalk Quantum Monte-Carlo Program (w/ Lubos Mitas University of North Carolina).
"},{"location":"Ongoing_Projects.html#high-level-coupled-cluster-methods","title":"High-level Coupled-Cluster methods","text":"CC/EOMCC analytical gradients, Multi-reference CC formulations employing incomplete model spaces.
"},{"location":"Ongoing_Projects.html#long-term-nwchem-development-plans","title":"Long-term NWChem development plans","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Triclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-3.html","title":"P 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0147\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-31c.html","title":"P 31c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0163\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-31c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,-z+1/2\n-x+y,+y,-z+1/2\n+x,+x-y,-z+1/2\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-31m.html","title":"P 31m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0162\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-31m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-3c1.html","title":"P 3c1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0165\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-3c1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z+1/2\n+x-y,-y,-z+1/2\n-x,-x+y,-z+1/2\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-3m1.html","title":"P 3m1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0164\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-3m1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-4.html","title":"P 4","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a081\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-42_1c.html","title":"P 42 1c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0114\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0P-42_1c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-42_1m.html","title":"P 42 1m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0113\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0P-42_1m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-y+1/2,-x+1/2,+z\n+y+1/2,+x+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-42c.html","title":"P 42c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0112\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-42c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x,+y,-z+1/2\n+x,-y,-z+1/2\n-y,-x,+z+1/2\n+y,+x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-42m.html","title":"P 42m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0111\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-42m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n-x,+y,-z\n+x,-y,-z\n-y,-x,+z\n+y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-43m.html","title":"P 43m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0215\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-43m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"P-43n.html","title":"P 43n","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0218\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-43n\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"P-4b2.html","title":"P 4b2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0117\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4b2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n+y+1/2,+x+1/2,-z\n-y+1/2,-x+1/2,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-4c2.html","title":"P 4c2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0116\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4c2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n+y,+x,-z+1/2\n-y,-x,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P-4m2.html","title":"P 4m2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0115\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4m2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x,-y,+z\n-x,+y,+z\n+y,+x,-z\n-y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-4n2.html","title":"P 4n2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0118\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-4n2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n+y,-x,-z\n-y,+x,-z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n+y+1/2,+x+1/2,-z+1/2\n-y+1/2,-x+1/2,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P-6.html","title":"P 6","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0174\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-6\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z\n-y,+x-y,-z\n-x+y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-62c.html","title":"P 62c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0190\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-62c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z+1/2\n-y,+x-y,-z+1/2\n-x+y,-x,-z+1/2\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P-62m.html","title":"P 62m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0189\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-62m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z\n-y,+x-y,-z\n-x+y,-x,-z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P-6c2.html","title":"P 6c2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0188\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-6c2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z+1/2\n-y,+x-y,-z+1/2\n-x+y,-x,-z+1/2\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P-6m2.html","title":"P 6m2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0187\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P-6m2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x,+y,-z\n-y,+x-y,-z\n-x+y,-x,-z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P1.html","title":"P1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Triclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a01\n\n+x,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n
"},{"location":"P2.html","title":"P2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a03\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,+y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a03\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,-y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P222.html","title":"P222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a016\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P222_1.html","title":"P222 1","text":"\u00a0group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a017\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P222_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n-x,+y,-z+1/2\n+x,-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P23.html","title":"P23","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0195\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P23\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n+z,+x,+y\n+z,-x,-y\n-z,-x,+y\n-z,+x,-y\n+y,+z,+x\n-y,+z,-x\n+y,-z,-x\n-y,-z,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"P2Sc.html","title":"P2Sc","text":" group number = 13\n group name = P2/c\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,+y,-z+1/2\n -x,-y,-z\n +x,-y,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n group number = 13\n group name = P2/c\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 4\n\n +x,+y,+z\n -x+1/2,-y,+z\n -x,-y,-z\n +x+1/2,+y,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P2Sm.html","title":"P2Sm","text":"group name = P2/m\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,+y,-z\n -x,-y,-z\n +x,-y,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n group number = 10\n group name = P2/m\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,-y,+z\n -x,-y,-z\n +x,+y,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P2_1.html","title":"P2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a04\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,+y+1/2,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a04\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n-x,-y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P2_12_12.html","title":"P2 12 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a018\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0P2_12_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P2_12_12_1.html","title":"P2 12 12 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a019\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0P2_12_12_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P2_13.html","title":"P2 13","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0198\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P2_13\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"P2_1Sc.html","title":"P2 1Sc","text":" group number = 14\n group name = P2_1/c\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,+y+1/2,-z+1/2\n -x,-y,-z\n +x,-y+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 14\n group name = P2_1/c\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 4\n\n +x,+y,+z\n -x+1/2,-y,+z+1/2\n -x,-y,-z\n +x+1/2,+y,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P2_1Sm.html","title":"P2 1Sm","text":" group number = 11\n group name = P2_1/m\n crystal system = Monoclinic\n setting number = 1\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,+y+1/2,-z\n -x,-y,-z\n +x,-y+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 11\n group name = P2_1/m\n crystal system = Monoclinic\n setting number = 2\n number of symmetry operators = 4\n\n +x,+y,+z\n -x,-y,+z+1/2\n -x,-y,-z\n +x,+y,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 3 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 4 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P3.html","title":"P3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0143\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a03\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P312.html","title":"P312","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0149\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P312\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P31c.html","title":"P31c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0159\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P31c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P31m.html","title":"P31m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0157\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P31m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P321.html","title":"P321","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0150\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P321\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P3_1.html","title":"P3 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0144\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a03\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667 \n
"},{"location":"P3_112.html","title":"P3 112","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0151\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P3_112\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-y,-x,-z+2/3\n-x+y,+y,-z+1/3\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P3_121.html","title":"P3 121","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0152\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P3_121\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n+y,+x,-z\n+x-y,-y,-z+2/3\n-x,-x+y,-z+1/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333 \n
"},{"location":"P3_2.html","title":"P3 2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0145\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3_2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a03\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333 \n
"},{"location":"P3_212.html","title":"P3 212","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0153\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P3_212\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-y,-x,-z+1/3\n-x+y,+y,-z+2/3\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P3_221.html","title":"P3 221","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0154\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P3_221\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n+y,+x,-z\n+x-y,-y,-z+1/3\n-x,-x+y,-z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667 \n
"},{"location":"P3c1.html","title":"P3c1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0158\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3c1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P3m1.html","title":"P3m1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0156\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P3m1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4.html","title":"P4","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a075\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P422.html","title":"P422","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a089\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P422\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n-x,+y,-z\n+x,-y,-z\n+y,+x,-z\n-y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P42_12.html","title":"P42 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a090\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P42_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y+1/2,+x+1/2,+z\n+y+1/2,-x+1/2,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n+y,+x,-z\n-y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P432.html","title":"P432","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0207\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P432\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"P4Sm.html","title":"P4Sm","text":" group number = 83\n group name = P4/m\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P4Smbm.html","title":"P4Smbm","text":" group number = 127\n group name = P4/mbm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x+1/2,+y+1/2,-z\n +x+1/2,-y+1/2,-z\n +y+1/2,+x+1/2,-z\n -y+1/2,-x+1/2,-z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x+1/2,-y+1/2,+z\n -x+1/2,+y+1/2,+z\n -y+1/2,-x+1/2,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4Smcc.html","title":"P4Smcc","text":" group number = 124\n group name = P4/mcc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z+1/2\n +x,-y,-z+1/2\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y,-x,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4Smmm.html","title":"P4Smmm","text":" group number = 123\n group name = P4/mmm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z\n -y,-x,-z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z\n -x,+y,+z\n -y,-x,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4Smnc.html","title":"P4Smnc","text":" group number = 128\n group name = P4/mnc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y+1/2,+x+1/2,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z\n -y,+x,-z\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4Sn.html","title":"P4Sn","text":" group number = 85\n group name = P4/n\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z\n +y+1/2,-x+1/2,+z\n -x+1/2,-y+1/2,-z\n +x+1/2,+y+1/2,-z\n +y,-x,-z\n -y,+x,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n group number = 85\n group name = P4/n\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 8\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P4Snbm.html","title":"P4Snbm","text":" group number = 125\n group name = P4/nbm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z\n -y,-x,-z\n -x+1/2,-y+1/2,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x+1/2,-z\n -y+1/2,+x+1/2,-z\n +x+1/2,-y+1/2,+z\n -x+1/2,+y+1/2,+z\n -y+1/2,-x+1/2,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 125\n group name = P4/nbm\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x+1/2,+y,-z\n +x,-y+1/2,-z\n +y,+x,-z\n -y+1/2,-x+1/2,-z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n +x+1/2,-y,+z\n -x,+y+1/2,+z\n -y,-x,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4Sncc.html","title":"P4Sncc","text":" group number = 130\n group name = P4/ncc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z\n +y+1/2,-x+1/2,+z\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x+1/2,-y+1/2,-z\n +x+1/2,+y+1/2,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 130\n group name = P4/ncc\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x,+y+1/2,-z+1/2\n +x+1/2,-y,-z+1/2\n +y+1/2,+x+1/2,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n +x,-y+1/2,+z+1/2\n -x+1/2,+y,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4Snmm.html","title":"P4Snmm","text":" group number = 129\n group name = P4/nmm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z\n +y+1/2,-x+1/2,+z\n -x+1/2,+y+1/2,-z\n +x+1/2,-y+1/2,-z\n +y,+x,-z\n -y,-x,-z\n -x+1/2,-y+1/2,-z\n +x+1/2,+y+1/2,-z\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z\n -x,+y,+z\n -y+1/2,-x+1/2,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 129\n group name = P4/nmm\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x,+y+1/2,-z\n +x+1/2,-y,-z\n +y+1/2,+x+1/2,-z\n -y,-x,-z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n +x,-y+1/2,+z\n -x+1/2,+y,+z\n -y+1/2,-x+1/2,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4Snnc.html","title":"P4Snnc","text":" group number = 126\n group name = P4/nnc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z\n +y,-x,+z\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z\n -y,-x,-z\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 126\n group name = P4/nnc\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z\n +y,-x+1/2,+z\n -x+1/2,+y,-z+1/2\n +x,-y+1/2,-z+1/2\n +y,+x,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z\n -y,+x+1/2,-z\n +x+1/2,-y,+z+1/2\n -x,+y+1/2,+z+1/2\n -y,-x,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_1.html","title":"P4 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a076\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y,+x,+z+1/4\n+y,-x,+z+3/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75 \n
"},{"location":"P4_122.html","title":"P4 122","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a091\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_122\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y,+x,+z+1/4\n+y,-x,+z+3/4\n-x,+y,-z\n+x,-y,-z+1/2\n+y,+x,-z+3/4\n-y,-x,-z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25 \n
"},{"location":"P4_12_12.html","title":"P4 12 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a092\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0P4_12_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y+1/2,+x+1/2,+z+1/4\n+y+1/2,-x+1/2,+z+3/4\n-x+1/2,+y+1/2,-z+1/4\n+x+1/2,-y+1/2,-z+3/4\n+y,+x,-z\n-y,-x,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P4_132.html","title":"P4 132","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0213\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_132\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75 \n
"},{"location":"P4_2.html","title":"P4 2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a077\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4_2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P4_222.html","title":"P4 222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a093\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n-x,+y,-z\n+x,-y,-z\n+y,+x,-z+1/2\n-y,-x,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P4_22_12.html","title":"P4 22 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a094\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0P4_22_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n+y,+x,-z\n-y,-x,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P4_232.html","title":"P4 232","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0208\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_232\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"P4_2Sm.html","title":"P4 2Sm","text":" group number = 84\n group name = P4_2/m\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z+1/2\n +y,-x,+z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z+1/2\n -y,+x,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P4_2Smbc.html","title":"P4 2Smbc","text":" group number = 135\n group name = P4_2/mbc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z+1/2\n +y,-x,+z+1/2\n -x+1/2,+y+1/2,-z\n +x+1/2,-y+1/2,-z\n +y+1/2,+x+1/2,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z+1/2\n -y,+x,-z+1/2\n +x+1/2,-y+1/2,+z\n -x+1/2,+y+1/2,+z\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_2Smcm.html","title":"P4 2Smcm","text":" group number = 132\n group name = P4_2/mcm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z+1/2\n +y,-x,+z+1/2\n -x,+y,-z+1/2\n +x,-y,-z+1/2\n +y,+x,-z\n -y,-x,-z\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z+1/2\n -y,+x,-z+1/2\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y,-x,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4_2Smmc.html","title":"P4 2Smmc","text":" group number = 131\n group name = P4_2/mmc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y,+x,+z+1/2\n +y,-x,+z+1/2\n -x,+y,-z\n +x,-y,-z\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x,+y,-z\n +y,-x,-z+1/2\n -y,+x,-z+1/2\n +x,-y,+z\n -x,+y,+z\n -y,-x,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_2Smnm.html","title":"P4 2Smnm","text":" group number = 136\n group name = P4_2/mnm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y,+x,-z\n -y,-x,-z\n -x,-y,-z\n +x,+y,-z\n +y+1/2,-x+1/2,-z+1/2\n -y+1/2,+x+1/2,-z+1/2\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y,-x,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4_2Sn.html","title":"P4 2Sn","text":" group number = 86\n group name = P4_2/n\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 8\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n group number = 86\n group name = P4_2/n\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 8\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y,+x+1/2,+z+1/2\n +y+1/2,-x,+z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y,-x+1/2,-z+1/2\n -y+1/2,+x,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P4_2Snbc.html","title":"P4 2Snbc","text":" group number = 133\n group name = P4_2/nbc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x,+y,-z+1/2\n +x,-y,-z+1/2\n +y+1/2,+x+1/2,-z\n -y+1/2,-x+1/2,-z\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n +x+1/2,-y+1/2,+z\n -x+1/2,+y+1/2,+z\n -y,-x,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n group number = 133\n group name = P4_2/nbc\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z+1/2\n +y,-x+1/2,+z+1/2\n -x+1/2,+y,-z\n +x,-y+1/2,-z\n +y,+x,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z+1/2\n -y,+x+1/2,-z+1/2\n +x+1/2,-y,+z\n -x,+y+1/2,+z\n -y,-x,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_2Sncm.html","title":"P4 2Sncm","text":" group number = 138\n group name = P4_2/ncm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z\n +x+1/2,-y+1/2,-z\n +y,+x,-z+1/2\n -y,-x,-z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z+1/2\n -x,+y,+z+1/2\n -y+1/2,-x+1/2,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n group number = 138\n group name = P4_2/ncm\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z+1/2\n +y,-x+1/2,+z+1/2\n -x,+y+1/2,-z+1/2\n +x+1/2,-y,-z+1/2\n +y+1/2,+x+1/2,-z\n -y,-x,-z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z+1/2\n -y,+x+1/2,-z+1/2\n +x,-y+1/2,+z+1/2\n -x+1/2,+y,+z+1/2\n -y+1/2,-x+1/2,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4_2Snmc.html","title":"P4 2Snmc","text":" group number = 137\n group name = P4_2/nmc\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x+1/2,+y+1/2,-z+1/2\n +x+1/2,-y+1/2,-z+1/2\n +y,+x,-z\n -y,-x,-z\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n +x,-y,+z\n -x,+y,+z\n -y+1/2,-x+1/2,+z+1/2\n +y+1/2,+x+1/2,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n group number = 137\n group name = P4_2/nmc\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z+1/2\n +y,-x+1/2,+z+1/2\n -x,+y+1/2,-z\n +x+1/2,-y,-z\n +y+1/2,+x+1/2,-z+1/2\n -y,-x,-z+1/2\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z+1/2\n -y,+x+1/2,-z+1/2\n +x,-y+1/2,+z\n -x+1/2,+y,+z\n -y+1/2,-x+1/2,+z+1/2\n +y,+x,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 15 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P4_2Snnm.html","title":"P4 2Snnm","text":" group number = 134\n group name = P4_2/nnm\n crystal system = Tetragonal\n setting number = 1\n number of symmetry operators = 16\n\n +x,+y,+z\n -x,-y,+z\n -y+1/2,+x+1/2,+z+1/2\n +y+1/2,-x+1/2,+z+1/2\n -x,+y,-z\n +x,-y,-z\n +y+1/2,+x+1/2,-z+1/2\n -y+1/2,-x+1/2,-z+1/2\n -x+1/2,-y+1/2,-z+1/2\n +x+1/2,+y+1/2,-z+1/2\n +y,-x,-z\n -y,+x,-z\n +x+1/2,-y+1/2,+z+1/2\n -x+1/2,+y+1/2,+z+1/2\n -y,-x,+z\n +y,+x,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n group number = 134\n group name = P4_2/nnm\n crystal system = Tetragonal\n setting number = 2\n number of symmetry operators = 16\n\n +x,+y,+z\n -x+1/2,-y+1/2,+z\n -y+1/2,+x,+z+1/2\n +y,-x+1/2,+z+1/2\n -x+1/2,+y,-z+1/2\n +x,-y+1/2,-z+1/2\n +y,+x,-z\n -y+1/2,-x+1/2,-z\n -x,-y,-z\n +x+1/2,+y+1/2,-z\n +y+1/2,-x,-z+1/2\n -y,+x+1/2,-z+1/2\n +x+1/2,-y,+z+1/2\n -x,+y+1/2,+z+1/2\n -y,-x,+z\n +y+1/2,+x+1/2,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n -1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n 0.0 -1.0 0.0 0.5\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 4 =\n 0.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n -1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 6 =\n 1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 -1.0 0.0 0.5\n -1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.5\n 0.0 1.0 0.0 0.5\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 1.0 0.0 0.5\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 0.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.5\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n 1.0 0.0 0.0 0.5\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 14 =\n -1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.5\n 0.0 0.0 1.0 0.5\n\n = operator 15 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 16 =\n 0.0 1.0 0.0 0.5\n 1.0 0.0 0.0 0.5\n 0.0 0.0 1.0 0.0\n
"},{"location":"P4_2bc.html","title":"P4 2bc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0106\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_2bc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P4_2cm.html","title":"P4 2cm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0101\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_2cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n-y,-x,+z\n+y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4_2mc.html","title":"P4 2mc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0105\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_2mc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z+1/2\n+y,-x,+z+1/2\n+x,-y,+z\n-x,+y,+z\n-y,-x,+z+1/2\n+y,+x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P4_2nm.html","title":"P4 2nm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0102\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_2nm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y+1/2,+x+1/2,+z+1/2\n+y+1/2,-x+1/2,+z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n-y,-x,+z\n+y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4_3.html","title":"P4 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a078\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4_3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y,+x,+z+3/4\n+y,-x,+z+1/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25 \n
"},{"location":"P4_322.html","title":"P4 322","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a095\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_322\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y,+x,+z+3/4\n+y,-x,+z+1/4\n-x,+y,-z\n+x,-y,-z+1/2\n+y,+x,-z+1/4\n-y,-x,-z+3/4\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75 \n
"},{"location":"P4_32_12.html","title":"P4 32 12","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a096\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0P4_32_12\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-y+1/2,+x+1/2,+z+3/4\n+y+1/2,-x+1/2,+z+1/4\n-x+1/2,+y+1/2,-z+3/4\n+x+1/2,-y+1/2,-z+1/4\n+y,+x,-z\n-y,-x,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P4_332.html","title":"P4 332","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0212\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P4_332\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.25\n\u00a00.0\u00a01.0\u00a00.0\u00a00.75\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.75\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.75\n\u00a01.0\u00a00.0\u00a00.0\u00a00.25\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.75\n\u00a00.0\u00a01.0\u00a00.0\u00a00.25\n\u00a01.0\u00a00.0\u00a00.0\u00a00.75\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.25\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.25\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.25 \n
"},{"location":"P4bm.html","title":"P4bm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0100\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4bm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n-y+1/2,-x+1/2,+z\n+y+1/2,+x+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4cc.html","title":"P4cc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0103\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4cc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n-y,-x,+z+1/2\n+y,+x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P4mm.html","title":"P4mm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a099\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4mm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x,-y,+z\n-x,+y,+z\n-y,-x,+z\n+y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P4nc.html","title":"P4nc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0104\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P4nc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Tetragonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-y,+x,+z\n+y,-x,+z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n-y+1/2,-x+1/2,+z+1/2\n+y+1/2,+x+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P6.html","title":"P6","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0168\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z\n+y,-x+y,+z\n+x-y,+x,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P622.html","title":"P622","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0177\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P622\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z\n+y,-x+y,+z\n+x-y,+x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n-y,-x,-z\n-x+y,+y,-z\n+x,+x-y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"P6Sm.html","title":"P6Sm","text":" group number = 175\n group name = P6/m\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 12\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z\n +y,-x+y,+z\n +x-y,+x,+z\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z\n -y,+x-y,-z\n -x+y,-x,-z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 7 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n
"},{"location":"P6Smcc.html","title":"P6Smcc","text":" group number = 192\n group name = P6/mcc\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 24\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z\n +y,-x+y,+z\n +x-y,+x,+z\n +y,+x,-z+1/2\n +x-y,-y,-z+1/2\n -x,-x+y,-z+1/2\n -y,-x,-z+1/2\n -x+y,+y,-z+1/2\n +x,+x-y,-z+1/2\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z\n -y,+x-y,-z\n -x+y,-x,-z\n -y,-x,+z+1/2\n -x+y,+y,+z+1/2\n +x,+x-y,+z+1/2\n +y,+x,+z+1/2\n +x-y,-y,+z+1/2\n -x,-x+y,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 14 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 15 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 16 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 17 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 18 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 19 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 20 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 21 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 22 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 23 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 24 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P6Smmm.html","title":"P6Smmm","text":" group number = 191\n group name = P6/mmm\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 24\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z\n +y,-x+y,+z\n +x-y,+x,+z\n +y,+x,-z\n +x-y,-y,-z\n -x,-x+y,-z\n -y,-x,-z\n -x+y,+y,-z\n +x,+x-y,-z\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z\n -y,+x-y,-z\n -x+y,-x,-z\n -y,-x,+z\n -x+y,+y,+z\n +x,+x-y,+z\n +y,+x,+z\n +x-y,-y,+z\n -x,-x+y,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 14 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 15 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 16 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 17 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 18 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 19 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 20 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 21 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 22 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 23 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 24 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P6_1.html","title":"P6 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0169\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-x,-y,+z+1/2\n+y,-x+y,+z+5/6\n+x-y,+x,+z+1/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.166666666667 \n
"},{"location":"P6_122.html","title":"P6 122","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0178\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_122\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-x,-y,+z+1/2\n+y,-x+y,+z+5/6\n+x-y,+x,+z+1/6\n+y,+x,-z+1/3\n+x-y,-y,-z\n-x,-x+y,-z+2/3\n-y,-x,-z+5/6\n-x+y,+y,-z+1/2\n+x,+x-y,-z+1/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.166666666667\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.166666666667 \n
"},{"location":"P6_2.html","title":"P6 2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0171\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-x,-y,+z\n+y,-x+y,+z+2/3\n+x-y,+x,+z+1/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333 \n
"},{"location":"P6_222.html","title":"P6 222","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0180\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_222\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-x,-y,+z\n+y,-x+y,+z+2/3\n+x-y,+x,+z+1/3\n+y,+x,-z+2/3\n+x-y,-y,-z\n-x,-x+y,-z+1/3\n-y,-x,-z+2/3\n-x+y,+y,-z\n+x,+x-y,-z+1/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333 \n
"},{"location":"P6_3.html","title":"P6 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0173\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z+1/2\n+y,-x+y,+z+1/2\n+x-y,+x,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P6_322.html","title":"P6 322","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0182\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_322\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z+1/2\n+y,-x+y,+z+1/2\n+x-y,+x,+z+1/2\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n-y,-x,-z+1/2\n-x+y,+y,-z+1/2\n+x,+x-y,-z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5 \n
"},{"location":"P6_3Sm.html","title":"P6 3Sm","text":" group number = 176\n group name = P6_3/m\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 12\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z+1/2\n +y,-x+y,+z+1/2\n +x-y,+x,+z+1/2\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z+1/2\n -y,+x-y,-z+1/2\n -x+y,-x,-z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n
"},{"location":"P6_3Smcm.html","title":"P6 3Smcm","text":" group number = 193\n group name = P6_3/mcm\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 24\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z+1/2\n +y,-x+y,+z+1/2\n +x-y,+x,+z+1/2\n +y,+x,-z+1/2\n +x-y,-y,-z+1/2\n -x,-x+y,-z+1/2\n -y,-x,-z\n -x+y,+y,-z\n +x,+x-y,-z\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z+1/2\n -y,+x-y,-z+1/2\n -x+y,-x,-z+1/2\n -y,-x,+z+1/2\n -x+y,+y,+z+1/2\n +x,+x-y,+z+1/2\n +y,+x,+z\n +x-y,-y,+z\n -x,-x+y,+z\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 8 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 10 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 11 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 12 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 13 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 14 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 15 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 16 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 17 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 18 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 19 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 20 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 21 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 22 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 23 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 24 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n
"},{"location":"P6_3Smmc.html","title":"P6 3Smmc","text":" group number = 194\n group name = P6_3/mmc\n crystal system = Hexagonal\n setting number = 1\n number of symmetry operators = 24\n\n +x,+y,+z\n -y,+x-y,+z\n -x+y,-x,+z\n -x,-y,+z+1/2\n +y,-x+y,+z+1/2\n +x-y,+x,+z+1/2\n +y,+x,-z\n +x-y,-y,-z\n -x,-x+y,-z\n -y,-x,-z+1/2\n -x+y,+y,-z+1/2\n +x,+x-y,-z+1/2\n -x,-y,-z\n +y,-x+y,-z\n +x-y,+x,-z\n +x,+y,-z+1/2\n -y,+x-y,-z+1/2\n -x+y,-x,-z+1/2\n -y,-x,+z\n -x+y,+y,+z\n +x,+x-y,+z\n +y,+x,+z+1/2\n +x-y,-y,+z+1/2\n -x,-x+y,+z+1/2\n\n = operator 1 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 2 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 3 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 4 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 5 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 6 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 7 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 8 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 9 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 10 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 11 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 12 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 13 =\n -1.0 0.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 14 =\n 0.0 1.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 15 =\n 1.0 -1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.0\n\n = operator 16 =\n 1.0 0.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 17 =\n 0.0 -1.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 18 =\n -1.0 1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 -1.0 0.5\n\n = operator 19 =\n 0.0 -1.0 0.0 0.0\n -1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 20 =\n -1.0 1.0 0.0 0.0\n 0.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 21 =\n 1.0 0.0 0.0 0.0\n 1.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.0\n\n = operator 22 =\n 0.0 1.0 0.0 0.0\n 1.0 0.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 23 =\n 1.0 -1.0 0.0 0.0\n 0.0 -1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n\n = operator 24 =\n -1.0 0.0 0.0 0.0\n -1.0 1.0 0.0 0.0\n 0.0 0.0 1.0 0.5\n
"},{"location":"P6_3cm.html","title":"P6 3cm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0185\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_3cm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z+1/2\n+y,-x+y,+z+1/2\n+x-y,+x,+z+1/2\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"P6_3mc.html","title":"P6 3mc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0186\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_3mc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z+1/2\n+y,-x+y,+z+1/2\n+x-y,+x,+z+1/2\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P6_4.html","title":"P6 4","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0172\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_4\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-x,-y,+z\n+y,-x+y,+z+1/3\n+x-y,+x,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667 \n
"},{"location":"P6_422.html","title":"P6 422","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0181\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_422\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z+1/3\n-x+y,-x,+z+2/3\n-x,-y,+z\n+y,-x+y,+z+1/3\n+x-y,+x,+z+2/3\n+y,+x,-z+1/3\n+x-y,-y,-z\n-x,-x+y,-z+2/3\n-y,-x,-z+1/3\n-x+y,+y,-z\n+x,+x-y,-z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667 \n
"},{"location":"P6_5.html","title":"P6 5","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0170\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6_5\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-x,-y,+z+1/2\n+y,-x+y,+z+1/6\n+x-y,+x,+z+5/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.166666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333 \n
"},{"location":"P6_522.html","title":"P6 522","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0179\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0P6_522\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z+2/3\n-x+y,-x,+z+1/3\n-x,-y,+z+1/2\n+y,-x+y,+z+1/6\n+x-y,+x,+z+5/6\n+y,+x,-z+2/3\n+x-y,-y,-z\n-x,-x+y,-z+1/3\n-y,-x,-z+1/6\n-x+y,+y,-z+1/2\n+x,+x-y,-z+5/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.166666666667\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a08\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.166666666667\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333 \n
"},{"location":"P6cc.html","title":"P6cc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0184\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6cc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z\n+y,-x+y,+z\n+x-y,+x,+z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n+y,+x,+z+1/2\n+x-y,-y,+z+1/2\n-x,-x+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"P6mm.html","title":"P6mm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0183\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0P6mm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Hexagonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,+z\n+y,-x+y,+z\n+x-y,+x,+z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n+y,+x,+z\n+x-y,-y,+z\n-x,-x+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"PDF.html","title":"NWChem manual in PDF format","text":"Manual in PDF format
"},{"location":"Pa-3.html","title":"Pa 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0205\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pa-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Pba2.html","title":"Pba2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a032\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pba2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pbam.html","title":"Pbam","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a055\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pbam\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x,+y,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pban.html","title":"Pban","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a050\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pban\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a050\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pban\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y,-z\n+x,-y+1/2,-z\n-x,-y,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y,+z\n-x,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pbca.html","title":"Pbca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a061\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pbca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pbcm.html","title":"Pbcm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a057\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pbcm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z+1/2\n-x,+y+1/2,-z+1/2\n+x,-y+1/2,-z\n-x,-y,-z\n+x,+y,-z+1/2\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pbcn.html","title":"Pbcn","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a060\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pbcn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z+1/2\n-x,+y,-z+1/2\n+x+1/2,-y+1/2,-z\n-x,-y,-z\n+x+1/2,+y+1/2,-z+1/2\n+x,-y,+z+1/2\n-x+1/2,+y+1/2,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pc.html","title":"Pc","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a07\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n+x,-y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a07\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pc\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n+x+1/2,+y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"Pca2_1.html","title":"Pca2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a029\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Pca2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n+x+1/2,-y,+z\n-x+1/2,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pcc2.html","title":"Pcc2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a027\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pcc2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pcca.html","title":"Pcca","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a054\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pcca\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z\n-x,+y,-z+1/2\n+x+1/2,-y,-z+1/2\n-x,-y,-z\n+x+1/2,+y,-z\n+x,-y,+z+1/2\n-x+1/2,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pccm.html","title":"Pccm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a049\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pccm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z+1/2\n+x,-y,-z+1/2\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z+1/2\n-x,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pccn.html","title":"Pccn","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a056\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pccn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x,+y+1/2,-z+1/2\n+x+1/2,-y,-z+1/2\n-x,-y,-z\n+x+1/2,+y+1/2,-z\n+x,-y+1/2,+z+1/2\n-x+1/2,+y,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Permanent_Dir.html","title":"Permanent Dir","text":""},{"location":"Permanent_Dir.html#permanent_dir","title":"PERMANENT_DIR","text":"This start-up directive allows the user to specify the directory location of permanent files created by NWChem. NWChem distinguishes between permanent (or persistent) files and scratch (or temporary) files, and allows the user the option of putting them in different locations. In most installations, however, permanent and scratch files are all written to the current directory by default. What constitutes \u201clocal\u201d disk space may also differ from machine to machine.
The PERMANENT_DIR
directive enable the user to specify a single directory for all processes or different directories for different processes. The general form of the directive is as follows:
(PERMANENT_DIR)\u00a0[(<string\u00a0host>||<integer process>):]\u00a0\u00a0<string directory>\u00a0\u00a0[...]\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html","title":"Pseudopotential plane-wave density functional theory (NWPW)","text":"The NWChem plane-wave (NWPW) module uses pseudopotentials and plane-wave basis sets to perform Density Functional Theory calculations (simple introduction pw-lecture.pdf). This module complements the capabilities of the more traditional Gaussian function based approaches by having an accuracy at least as good for many applications, yet is still fast enough to treat systems containing hundreds of atoms. Another significant advantage is its ability to simulate dynamics on a ground state potential surface directly at run-time using the Car-Parrinello algorithm. This method\u2019s efficiency and accuracy make it a desirable first principles method of simulation in the study of complex molecular, liquid, and solid state systems. Applications for this first principles method include the calculation of free energies, search for global minima, explicit simulation of solvated molecules, and simulations of complex vibrational modes that cannot be described within the harmonic approximation.
The NWPW module is a collection of three modules.
The PSPW, Band, and PAW modules can be used to compute the energy and optimize the geometry. Both the PSPW and Band modules can also be used to find saddle points, and compute numerical second derivatives. In addition the PSPW module can also be used to perform Car-Parrinello molecular dynamics. Section PSPW Tasks describes the tasks contained within the PSPW module, section Band Tasks describes the tasks contained within the Band module, section PAW Tasks describes the tasks contained within the PAW module, and section Pseudopotential and PAW basis Libraries describes the pseudopotential library included with NWChem. The datafiles used by the PSPW module are described in section NWPW RTDB Entries and DataFiles. Car-Parrinello output data files are described in section Car-Parrinello Output Datafiles, and the minimization and Car-Parrinello algorithms are described in section Car-Parrinello Scheme for Ab Initio Molecular Dynamics. Examples of how to setup and run a PSPW geometry optimization, a Car-Parrinello simulation, a band structure minimization, and a PAW geometry optimization are presented at the end. Finally in section NWPW Capabilities and Limitations the capabilities and limitations of the NWPW module are discussed.
As of NWChem 6.6 to use PAW potentials the user is recommended to use the implementation contained in the PSPW module (see Sections ). PAW potentials are also being integrated into the BAND module. Unfortunately, the porting to BAND was not completed for the NWChem 6.6 release.
If you are a first time user of this module it is recommended that you skip the next five sections and proceed directly to the tutorials.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#pspw-tasks-gamma-point-calculations","title":"PSPW Tasks: Gamma Point Calculations","text":"All input to the PSPW Tasks is contained within the compound PSPW block,
PSPW \n ...\nEND\n
To perform an actual calculation a TASK PSPW directive is used (Section Task).
TASK PSPW
In addition to the directives listed in Task, i.e.
TASK PSPW energy \nTASK PSPW gradient \nTASK PSPW optimize \nTASK PSPW saddle \nTASK PSPW freqencies\nTASK PSPW vib \n
there are additional directives that are specific to the PSPW module, which are:
TASK PSPW [Car-Parrinello || \n Born-Oppenheimer ||\n Metropolis ||\n pspw_et ||\n noit_energy ||\n stress ||\n pspw_dplot || \n wannier ||\n expand_cell || \n exafs ||\n ionize ||\n lcao ||\n rdf ||\n aimd_properties ||\n translate ||\n psp_generator || \n steepest_descent || \n psp_formatter || \n wavefunction_initializer || \n v_wavefunction_initializer || \n wavefunction_expander ]\n
Once a user has specified a geometry, the PSPW module can be invoked with no input directives (defaults invoked throughout). However, the user will probably always specify the simulation cell used in the computation, since the default simulation cell is not well suited for most systems. There are sub-directives which allow for customized application; those currently provided as options for the PSPW module are:
NWPW \n SIMULATION_CELL ... (see section [Simulation Cell](#Simulation_Cell)) END\n CELL_NAME <string cell_name default 'cell_default'>\n VECTORS [[input (<string input_wavefunctions default file_prefix.movecs>) || \n [output(<string output_wavefunctions default file_prefix.movecs>)]] \n XC (Vosko || LDA || PBE96 || revPBE || PBEsol || \n LDA-SIC || LDA-SIC/2 || LDA-0.4SIC || LDA-SIC/4 || LDA-0.2SIC || \n PBE96-SIC || PBE96-SIC/2 || PBE96-0.4SIC || PBE96-SIC/4 || PBE96-0.2SIC || \n revPBE-SIC || revPBE-SIC/2 || revPBE-0.4SIC || revPBE-SIC/4 || revPBE-0.2SIC || \n PBE96-Grimme2 || PBE96-Grimme3 || PBE96-Grimme4 || BLYP-Grimme2 || BLYP-Grimme3 || BLYP-Grimme4 || \n revPBE-Grimme2 || revPBE-Grimme3 || revPBE-Grimme4 || PBEsol-Grimme2 || PBEsol-Grimme3 || PBEsol-Grimme4 || \n PBE0-Grimme2 || PBE0-Grimme3 || PBE0-Grimme4 || B3LYP-Grimme2 || B3LYP-Grimme3 || B3LYP-Grimme4 ||\n revPBE0-Grimme2 || revPBE0-Grimme3 || revPBE0-Grimme4 ||\n PBE0 || revPBE0 || HSE || HF || default Vosko) \n XC new ...(see section [Using Exchange-Correlation Potentials Available in the DFT Module](#Using_Exchange-Correlation_Potentials_Available_in_the_DFT_Module))\n DFT||ODFT||RESTRICTED||UNRESTRICTED \n MULT <integer mult default 1> \n CG \n LMBFGS \n SCF [Anderson|| simple || Broyden] \n [CG || RMM-DIIS] \n [density || potential]\n [ALPHA real alpha default 0.25]\n [Kerker real ekerk nodefault] \n [ITERATIONS integer inner_iterations default 5] \n [OUTER_ITERATIONS integer outer_iterations default 0]\n LOOP <integer inner_iteration outer_iteration default 10 100> \n TOLERANCES <real tole tolc default 1.0e-7 1.0e-7> \n FAKE_MASS <real fake_mass default 400000.0> \n TIME_STEP <real time_step default 5.8> \n EWALD_NCUT <integer ncut default 1> \n EWALD_RCUT <real rcut default (see input description)> \n CUTOFF <real cutoff> \n ENERGY_CUTOFF <real ecut default (see input description)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n ALLOW_TRANSLATION \n TRANSLATION (ON || OFF)\n ROTATION (ON || OFF) \n MULLIKEN [OFF]\n EFIELD \n\n BO_STEPS <integer bo_inner_iteration bo_outer_iteration default 10 100> \n MC_STEPS <integer mc_inner_iteration mc_outer_iteration default 10 100>\n BO_TIME_STEP <real bo_time_step default 5.0> \n BO_ALGORITHM [verlet|| velocity-verlet || leap-frog]\n BO_FAKE_MASS <real bo_fake_mass default 500.0> \n\n SOCKET (UNIX || IPI_CLIENT) <string socketname default (see input description)> \n\n MAPPING <integer mapping default 1> \n NP_DIMENSIONS <integer npi npj default -1 -1> \n CAR-PARRINELLO ... (see section [Car-Parrinello](#Car-Parrinello)) END \n STEEPEST_DESCENT ... (see section [Steepest Descent](#STEEPEST_DESCENT)) END\n DPLOT ... (see section [DPLOT](#DPLOT)) END \n WANNIER ... (see section [Wannier](#Wannier)) END \n PSP_GENERATOR ... (see section [PSP Generator](#PSP_GENERATOR))) END \n\n WAVEFUNCTION_INITIALIZER ... (see section [Wavefunction Initializer](NWPW_RETIRED.md#WAVEFUNCTION_INITIALIZER) - retired) END \n V_WAVEFUNCTION_INITIATIZER ... (see section [Wavefunction Velocity Initializer (NWPW_RETIRED#V_WAVEFUNCTION_INITIALIZER) - retired) END \n WAVEFUNCTION_EXPANDER ... (see section [Wavefunction Expander](NWPW_RETIRED.md#WAVEFUNCTION_EXPANDER) - retired) END \n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default file_prefix.movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default file_prefix.movecs> \nEND\n
The following list describes the keywords contained in the PSPW input block.
cell_name
- name of the simulation_cell named cell_name
. See section Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name of the file that will contain the one-electron orbitals at the end of the run.fake_mass
- value for the electronic fake mass This parameter is not presently used in a conjugate gradient simulation.time_step
- value for the time step . This parameter is not presently used in a conjugate gradient simulation.inner_iteration
- number of iterations between the printing out of energies and tolerancesouter_iteration
- number of outer iterationstole
- value for the energy tolerance.tolc
- value for the one-electron orbital tolerance.cutoff
- value for the cutoff energy used to define the wavefunction. In addition using the CUTOFF keyword automatically sets the cutoff energy for the density to be twice the wavefunction cutoff.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.ncut
- value for the number of unit cells to sum over (in each direction) for the real space part of the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.rcut
- value for the cutoff radius used in the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.Default set to be .
mapping
- for a value of 1 slab FFT is used, for a value of 2 a 2d-hilbert FFT is used.A variety of prototype minimizers can be used to minimize the energy. To use these other optimizers the following SET directive needs to be specified:
set nwpw:mimimizer 1 # Default - Grassman conjugate gradient minimizer is used to minimize the energy. \nset nwpw:mimimizer 2 # Grassman LMBFGS minimimzer is used to minimize the energy.\nset nwpw:minimizer 4 # Stiefel conjugate gradient minimizer is used to minimize the energy. \nset nwpw:minimizer 5 # Band-by-band (potential) minimizer is used to minimize the energy.\nset nwpw:minimizer 6 # Projected Grassman LMBFGS minimizer is used to minimize the energy.\nset nwpw:minimizer 7 # Stiefel LMBFGS minimizer is used to minimize the energy.\nset nwpw:minimizer 8 # Band-by-band (density) minimizer is used to minimize the energy.\n
Limited testing suggests that the Grassman LMBFGS minimizer is about twice as fast as the conjugate gradient minimizer. However, there are several known cases where this optimizer fails, so it is currently not a default option, and should be used with caution.
In addition the following SET directives can be specified:
set nwpw:lcao_skip .false. # Initial wavefunctions generated using an LCAO guess. \nset nwpw:lcao_skip .true. # Default - Initial wavefunctions generated using a random plane-wave guess.\nset nwpw:lcao_print .false. # Default - Output not produced during the generation of the LCAO guess. \nset nwpw:lcao_print .true. # Output produced during the generation of the LCAO guess.\nset nwpw:lcao_iterations 2 #specifies the number of LCAO iterations.\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#paw-potentials","title":"PAW Potentials","text":"The PSPW code can now handle PAW potentials. To use them the pseudopotentials input block is used to redirect the code to use the paw potentials located in the default paw potential library ($NWCHEM_TOP/src/nwpw/libraryp/paw_default
). For example, to redirect the code to use PAW potentials for carbon and hydrogen, the following input would be used.
nwpw \n pseudopotentials \n C library paw_default \n H library paw_default \n end \nend\n
Most of the capabilities of PSPW will work with PAW potentials including geometry optimization, Car-Parrinello ab initio molecular dynamics, Born-Oppenheimer ab initio molecular dynamics, Metropolis Monte-Carlo, and AIMD/MM. Unfortunately, some of the functionality is missing at this point in time such as Mulliken analysis, and analytic stresses. However these small number of missing capabilities should become available over the next couple of months in the development tree of NWChem.
Even though analytic stresses are not currently available with PAW potentials unit cell optimization can still be carried out using numerical stresses. The following SET directives can be used to tell the code to calculate stresses numerically.
set includestress .true. #this option tells driver to optimize the unit cell \nset includelattice .true. #this option tells driver to optimize cell using a,b,c,alpha,beta,gamma \nset nwpw:frozen_lattice:thresh 999.0 #large number guarentees the lattice gridding does not adjust during optimization\nset nwpw:cif_filename pspw_corundum\nset nwpw:stress_numerical .true. \nset nwpw:lstress_numerical .true.\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#paw-implementation-notes","title":"PAW Implementation Notes","text":"The main idea in the PAW method(Blochl 1994) is to project out the high-frequency components of the wavefunction in the atomic sphere region. Effectively this splits the original wavefunction into two parts:
The first part is smooth and can be represented using a plane wave basis set of practical size. The second term is localized with the atomic spheres and is represented on radial grids centered on the atoms as
where the coefficients are given by
This decomposition can be expressed using an invertible linear transformation, , is defined which relates the stiff one-electron wavefunctions to a set of smooth one-electron wavefunctions
which can be represented by fairly small plane-wave basis. The transformation is defined using a local PAW basis, which consists of atomic orbitals, , smooth atomic orbitals, \u03b1I(r) which coincide with the atomic orbitals outside a defined atomic sphere, and projector functions, . Where I is the atomic index and \u03b1 is the orbital index. The projector functions are constructed such that they are localized within the defined atomic sphere and in addition are orthonormal to the atomic orbitals. Bl\u00f6chl defined the invertible linear transformations by
The main effect of the PAW transformation is that the fast variations of the valence wave function in the atomic sphere region are projected out using local basis set, thereby producing a smoothly varying wavefunction that may be expanded in a plane wave basis set of a manageable size.
The expression for the total energy in PAW method can be separated into the following 15 terms.
The first five terms are essentially the same as for a standard pseudopotential plane-wave program, minus the non-local pseudopotential, where
The local potential in the term is the Fourier transform of
It turns out that for many atoms needs to be fairly small. This results in being stiff. However, since in the integral above this function is multiplied by a smooth density the expansion of Vlocal(G) only needs to be the same as the smooth density. The auxiliary pseudoptential is defined to be localized within the atomic sphere and is introduced to remove ghost states due to local basis set incompleteness.
The next four terms are atomic based and they essentially take into account the difference between the true valence wavefunctions and the pseudowavefunctions.
The next three terms are the terms containing the compensation charge densities.
In the first two formulas the first terms are computed using plane-waves and the second terms are computed using Gaussian two center integrals. The smooth local potential in the term is the Fourier transform of
The stiff and smooth compensation charge densities in the above formula are
where
The decay parameter is defined the same as above, and I is defined to be smooth enough in order that \u03c1\u0303cmp(r) and local(r) can readily be expanded in terms of plane-waves.
The final three terms are the energies that contain the core densities
The matrix elements contained in the above formula are
"},{"location":"Plane-Wave-Density-Functional-Theory.html#exchange-correlation-potentials","title":"Exchange-Correlation Potentials","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#dft-u-corrections","title":"DFT + U Corrections","text":"
TO DO
nwpw \n uterm d 0.13634 0.0036749 1 \nend\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#langreth-style-vdw-and-vdw-van-der-wall-functionals","title":"Langreth style vdw and vdw van der Wall functionals","text":"These potenials that are used to augment standard exchange-correlation potentials area calculated from a double integral over a nonlocal interaction kernel,
that is evaluated using the fast Fourier transformation method of Roman-Perez and Soler.
G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).
Langreth vdw and vdw2 van der Wall functionals are currently available for the BEEF, PBE96, revPBE, PBEsol, BLYP, PBE0, revPBE0, HSE, and B3LYP exchange-correlation functionals. To use them the following keywords BEEF-vdw, BEEF-vdw2, PBE96-vdw, PBE96-vdw2, BLYP-vdw, BLYP-vdw2, revPBE-vdw, revPBE-vdw, PBEsol-vdw PBEsol-vdw2, PBE0-vdw, PBE0-vdw2, revPBE0-vdw, revPBE0-vdw2, HSE-vdw, HSE-vdw2, B3LYP-vdw, and B3LYP-vdw2 can be used in the XC input directive, e.g.
nwpw\n xc beef-vdw \nend\n
nwpw\n xc beef-vdw2 \nend\n
the vdw and vdw2 functionals are defined in
(vdw) Dion M, Rydberg H, Schr\u00f6der E, Langreth DC, Lundqvist BI. Van der Waals density functional for general geometries. Physical review letters. 2004 Jun 16;92(24):246401.
(vdw2) K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
"},{"location":"Plane-Wave-Density-Functional-Theory.html#grimme-dispersion-corrections","title":"Grimme Dispersion Corrections","text":"Grimme dispersion corrections are currently available for the PBE96, revPBE, PBEsol, BLYP, PBE0, revPBE0, HSE, and B3LYP exchange-correlation functionals. To use them the following keywords PBE96-Grimme2, PBE96-Grimme3, PBE96-Grimme4, BLYP-Grimme2, BLYP-Grimme3, BLYP-Grimme4, revPBE-Grimme2, revPBE-Grimme3, revPBE-Grimme4, PBEsol-Grimme2, PBEsol-Grimme3, PBEsol-Grimme4, PBE0-Grimme2, PBE0-Grimme3, PBE0-Grimme4, revPBE0-Grimme2, revPBE0-Grimme3, revPBE0-Grimme4, HSE-Grimme2, HSE-Grimme3, HSE-Grimme4, B3LYP-Grimme2, B3LYP-Grimme3, and B3LYP-Grimme4 can be used in the XC input directive, e.g.
nwpw\n xc pbe96-grimme2 \nend\n
In these functionals Grimme2, Grimme3 and Grimme4 are defined in the following papers by S. Grimme.
Grimme2 - Commonly known as DFT-D2, S. Grimme, J. Comput. Chem., 27 (2006), 1787-1799.
Grimme3 - Commonly known as DFT-D3, S. Grimme, J. Antony, S. Ehrlich and H. Krieg A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, 132 (2010), 154104
Grimme4 - Commonly known as DFT-D3 with BJ damping. This correction augments the Grimme3 correction by including BJ-damping, S. Grimme, J. Antony, S. Ehrlich and H. Krieg A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, 132 (2010), 154104. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem, 32 (2011), 1456-1465. This correction augments the Grimme3 correction by including BJ-damping.
If these functionals are used in a publication please include in your citations the references to Grimme\u2019s work.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#using-exchange-correlation-potentials-available-in-the-dft-module","title":"Using Exchange-Correlation Potentials Available in the DFT Module","text":"(Warning - To use this capability in NWChem 6.6 the user must explicitly include the nwxc module in the NWCHEM_MODULES list when compiling. Unfortunately, there was too much uncertainty in how the nwxc computed higher-order derivatives used by some of the functionality in nwdft module to include it in a release for all the functionality in NWChem. We are planning to have a debug release in winter 2016 to take fix this problem. This capability is still included by default in NWChem 6.5)
The user has the option of using many of the exchange-correlation potentials available in DFT Module (see Section XC and DECOMP \u2013 Exchange-Correlation Potentials).
XC [[acm] [b3lyp] [beckehandh] [pbe0] [bhlyp]\\\n [becke97] [becke97-1] [becke97-2] [becke97-3] [becke98] [hcth] [hcth120] [hcth147] \\ \n [hcth407] [becke97gga1] [hcth407p] \\\n [optx] [hcthp14] [mpw91] [mpw1k] [xft97] [cft97] [ft97] [op] [bop] [pbeop]\\\n [HFexch <real prefactor default 1.0>] \\\n [becke88 [nonlocal] <real prefactor default 1.0>] \\\n [xperdew91 [nonlocal] <real prefactor default 1.0>] \\\n [xpbe96 [nonlocal] <real prefactor default 1.0>] \\\n [gill96 [nonlocal] <real prefactor default 1.0>] \\\n [lyp <real prefactor default 1.0>] \\\n [perdew81 <real prefactor default 1.0>] \\\n [perdew86 [nonlocal] <real prefactor default 1.0>] \\\n [perdew91 [nonlocal] <real prefactor default 1.0>] \\\n [cpbe96 [nonlocal] <real prefactor default 1.0>] \\\n [pw91lda <real prefactor default 1.0>] \\\n [slater <real prefactor default 1.0>] \\\n [vwn_1 <real prefactor default 1.0>] \\\n [vwn_2 <real prefactor default 1.0>] \\\n [vwn_3 <real prefactor default 1.0>] \\\n [vwn_4 <real prefactor default 1.0>] \\\n [vwn_5 <real prefactor default 1.0>] \\\n [vwn_1_rpa <real prefactor default 1.0>]]\n
These functional can be invoked by prepending the \u201cnew\u201d directive before the exchange correlation potetntials in the input directive, XC new slater vwn_5.
That is, this statement in the input file
nwpw \n XC new slater vwn_5 \nend \ntask pspw energy\n
Using this input the user has ability to include only the local or nonlocal contributions of a given functional. The user can also specify a multiplicative prefactor (the variable prefactor
in the input) for the local/nonlocal component or total (for more details see Section XC and DECOMP \u2013 Exchange-Correlation Potentials). An example of this might be,
XC new becke88 nonlocal 0.72
The user should be aware that the Becke88 local component is simply the Slater exchange and should be input as such.
Any combination of the supported exchange functional options can be used. For example the popular Gaussian B3 exchange could be specified as:
XC new slater 0.8 becke88 nonlocal 0.72 HFexch 0.2
Any combination of the supported correlation functional options can be used. For example B3LYP could be specified as:
XC new vwn_1_rpa 0.19 lyp 0.81 HFexch 0.20 slater 0.80 becke88 nonlocal 0.72
and X3LYP as:
xc new vwn_1_rpa 0.129 lyp 0.871 hfexch 0.218 slater 0.782 \\ \nbecke88 nonlocal 0.542 xperdew91 nonlocal 0.167\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#exact-exchange","title":"Exact Exchange","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#self-interaction-corrections","title":"Self-Interaction Corrections","text":"The SET directive is used to specify the molecular orbitals contribute to the self-interaction-correction (SIC) term.
set pspw:SIC_orbitals <integer list_of_molecular_orbital_numbers>\n
This defines only the molecular orbitals in the list as SIC active. All other molecular orbitals will not contribute to the SIC term. For example the following directive specifies that the molecular orbitals numbered 1,5,6,7,8, and 15 are SIC active.
set pspw:SIC_orbitals 1 5:8 15
or equivalently
set pspw:SIC_orbitals 1 5 6 7 8 15
The following directive turns on self-consistent SIC.
set pspw:SIC_relax .false. # Default - Perturbative SIC calculation \nset pspw:SIC_relax .true. # Self-consistent SIC calculation\n
Two types of solvers can be used and they are specified using the following SET directive
set pspw:SIC_solver_type 1 # Default - cutoff coulomb kernel \nset pspw:SIC_solver_type 2 # Free-space boundary condition kernel\n
The parameters for the cutoff coulomb kernel are defined by the following SET directives:
set pspw:SIC_screening_radius <real rcut> \nset pspw:SIC_screening_power <real rpower>\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#wannier","title":"Wannier","text":"The pspw wannier task is generate maximally localized (Wannier) molecular orbitals. The algorithm proposed by Silvestrelli et al is use to generate the Wannier orbitals.
Input to the Wannier task is contained within the Wannier sub-block.
NWPW \n... \n Wannier \n ... \n END \n... \nEND\n
To run a Wannier calculation the following directive is used:
TASK PSPW Wannier
Listed below is the format of a Wannier sub-block.
NWPW \n... \n Wannier \n OLD_WAVEFUNCTION_FILENAME <string input_wavefunctions default input_movecs> \n NEW_WAVEFUNCTION_FILENAME <string output_wavefunctions default input_movecs> \n END\n... \nEND\n
The following list describes the input for the Wannier sub-block.
input_wavefunctions
- name of pspw wavefunction file.output_wavefunctions
- name of pspw wavefunction file that will contain the Wannier orbitals.The \u201cdos\u201d option is used to turn on a density of states analysis. This option can be specified without additional parameters, i.e.
nwpw \n dos \nend\n
in which case default values are used, or it can be specified with additional parameters, e.g.
nwpw\n dos 0.002 700 -0.80000 0.8000 \nend\n
The parameters are
nwpw \n dos [<alpha> <npoints> <emin> <emax>] \nend\n
where
alpha
value for the broadening the eigenvalues, default 0.05/27.2116 aunpoints
number of plotting points in dos files, default 500emin
minimum energy in dos plots, default min(eigenvalues)-0.1 auemax
maximimum energy in dos plots, default max(eigenvalues)+0.1 auThe units for dos parameters are in atomic units. Note that if virtual states are specified in the pspw calculation then the virtual density of states will also be generated in addition to the filled density of states.
The following files are generated and written to the permanent_dir for restricted calculations
For unrestricted calculations
The nwpw:dos:actlist variable is used to specify the atoms used to determine weights for dos generation. If the variable is not set then all the atoms are used, e.g.
set nwpw:dos:actlist 1 2 3 4
For projected density of states the \u201cMulliken\u201d keyword needs to be set, e.g.
nwpw \n Mulliken \n dos\nend\n
The following additional files are generated and written to the permanent_dir for restricted calculations
\u2026
Similarly for unrestricted calculations
\u2026
\u2026
\u2026
The MULLIKEN option can be used to generate derived atomic point charges from a plane-wave density. This analysis is based on a strategy suggested in the work of P.E. Blochl, J. Chem. Phys. vol. 103, page 7422 (1995). In this strategy the low-frequency components a plane-wave density are fit to a linear combination of atom centered Gaussian functions.
The following SET directives are used to define the fitting.
set nwpw_APC:Gc <real Gc_cutoff> # specifies the maximum frequency component of the density to be used in the fitting in units of au. \nset nwpw_APC:nga <integer number_gauss> # specifies the the number of Gaussian functions per atom.\nset nwpw_APC:gamma <real gamma_list> # specifies the decay lengths of each atom centered Gaussian. \n
We suggest using the following parameters.
set nwpw_APC:Gc 2.5\nset nwpw_APC:nga 3 \nset nwpw_APC:gamma 0.6 0.9 1.35 \n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#pspw_dplot-generate-gaussian-cube-files","title":"PSPW_DPLOT: Generate Gaussian Cube Files","text":"The pspw dplot task is used to generate plots of various types of electron densities (or orbitals) of a molecule. The electron density is calculated on the specified set of grid points from a PSPW calculation. The output file generated is in the Gaussian Cube format. Input to the DPLOT task is contained within the DPLOT sub-block.
NWPW \n... \n DPLOT \n ... \n END \n... \nEND\n
To run a DPLOT calculation the following directive is used:
TASK PSPW PSPW_DPLOT
Listed below is the format of a DPLOT sub-block.
NWPW \n... \n DPLOT \n VECTORS <string input_wavefunctions default input_movecs> \n DENSITY [total||diff||alpha||beta||laplacian||potential default total] \n <string density_name no default> \n ELF [restricted|alpha|beta] <string elf_name no default>\n ORBITAL <integer orbital_number no default> <string orbital_name no default> \n [LIMITXYZ [units <string Units default au>] \n <real X_From> <real X_To> <integer No_Of_Spacings_X> \n <real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n <real Z_From> <real Z_To> <integer No_Of_Spacings_Z>] \n NCELL <integer nx default 0> <integer ny default 0> <integer nz default 0>\n POSITION_TOLERANCE <real rtol default 0.001>\n END \n... \nEND\n
The following list describes the input for the DPLOT sub-block.
VECTORS <string input_wavefunctions default input_movecs>\n
This sub-directive specifies the name of the molecular orbital file. If the second file is optionally given the density is computed as the difference between the corresponding electron densities. The vector files have to match.
DENSITY [total||difference||alpha||beta||laplacian||potential default total] \n <string density_name no default>\n
This sub-directive specifies, what kind of density is to be plotted. The known names for total, difference, alpha, beta, laplacian, and potential.
ELF [restricted|alpha|beta] <string elf_name no default>\n
This sub-directive specifies that an electron localization function (ELF) is to be plotted.
ORBITAL <integer orbital_number no default> <string orbital_name no default>\n
This sub-directive specifies the molecular orbital number that is to be plotted.
LIMITXYZ [units <string Units default angstroms>] \n<real X_From> <real X_To> <integer No_Of_Spacings_X> \n<real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n<real Z_From> <real Z_To> <integer No_Of_Spacings_Z>\n
By default the grid spacing and the limits of the cell to be plotted are defined by the input wavefunctions. Alternatively the user can use the LIMITXYZ sub-directive to specify other limits. The grid is generated using No_Of_Spacings + 1 points along each direction. The known names for Units are angstroms, au and bohr.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#band-tasks-multiple-k-point-calculations","title":"Band Tasks: Multiple k-point Calculations","text":"All input to the Band Tasks is contained within the compound NWPW block,
NWPW \n ... \nEND\n
To perform an actual calculation a Task Band directive is used (Section Task).
Task Band
Once a user has specified a geometry, the Band module can be invoked with no input directives (defaults invoked throughout). There are sub-directives which allow for customized application; those currently provided as options for the Band module are:
NWPW \n CELL_NAME <string cell_name default cell_default> \n ZONE_NAME <string zone_name default zone_default> \n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default input_movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default input_movecs> \n FAKE_MASS <real fake_mass default 400000.0> \n TIME_STEP <real time_step default 5.8> \n LOOP <integer inner_iteration outer_iteration default 10 100> \n TOLERANCES <real tole tolc default 1.0e-7 1.0e-7> \n CUTOFF <real cutoff> \n ENERGY_CUTOFF <real ecut default (see input description)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n EWALD_NCUT <integer ncut default 1>] \n EWALD_RCUT <real rcut default (see input description)> \n\n XC (Vosko || LDA || PBE96 || revPBE || PBEsol || ` \n || HSE || default Vosko) ` \n #Note that HSE is the only hybrid functional implemented in BAND\n\n DFT||ODFT||RESTRICTED||UNRESTRICTED \n MULT <integer mult default 1> \n CG \n LMBFGS \n SCF [Anderson|| simple || Broyden] \n [CG || RMM-DIIS] [density || potential] \n [ALPHA real alpha default 0.25] \n [ITERATIONS integer inner_iterations default 5] \n [OUTER_ITERATIONS integer outer_iterations default 0]\n\n SIMULATION_CELL [units <string units default bohrs>]\n ... (see input description) \n END \n BRILLOUIN_ZONE \n ... (see input description) \n END \n MONKHORST-PACK <real n1 n2 n3 default 1 1 1>\n BAND_DPLOT \n ... (see input description) \n END \n MAPPING <integer mapping default 1> \n SMEAR <sigma default 0.001> \n [TEMPERATURE <temperature>] \n [FERMI || GAUSSIAN || MARZARI-VANDERBILT default FERMI] \n [ORBITALS <integer orbitals default 4>] \nEND \n
The following list describes these keywords.
cell_name
- name of the simulation_cell named cell_name
. See Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name that will point to file containing the one-electron orbitals at the end of the run.fake_mass
- value for the electronic fake mass . This parameter is not presently used in a conjugate gradient simulationtime_step
- value for the time step . This parameter is not presently used in a conjugate gradient simulation.inner_iteration
- number of iterations between the printing out of energies and tolerancesouter_iteration
- number of outer iterationstole
- value for the energy tolerance.tolc
- value for the one-electron orbital tolerance.cutoff
- value for the cutoff energy used to define the wavefunction. In addition using the CUTOFF keyword automatically sets the cutoff energy for the density to be twice the wavefunction cutoff.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fix within the simulation_cell cell_name
.ncut
- value for the number of unit cells to sum over (in each direction) for the real space part of the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.rcut
- value for the cutoff radius used in the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.Default set to be .
smear
- value for smearing broadendingtemperature
- same as smear but in units of K.To supply the special points of the Brillouin zone, the user defines a brillouin_zone sub-block within the NWPW block. Listed below is the format of a brillouin_zone sub-block.
NWPW \n... \n BRILLOUIN_ZONE \n ZONE_NAME <string name default zone_default> \n (KVECTOR <real k1 k2 k3 no default> <real weight default (see input description)> \n ...) \n END \n... \nEND\n
The user enters the special points and weights of the Brillouin zone. The following list describes the input in detail.
name
- user-supplied name for the simulation block.k1 k2 k3
- user-supplied values for a special point in the Brillouin zone.weight
- user-supplied weight. Default is to set the weight so that the sum of all the weights for the entered special points adds up to unity.SC: gamma, m, r, x
FCC: gamma, k, l, u, w, x
BCC: gamma, h, n, p
Rhombohedral: not currently implemented
Hexagonal: gamma, a, h, k, l, m
Simple Tetragonal: gamma, a, m, r, x, z
Simple Orthorhombic: gamma, r, s, t, u, x, y, z
Body-Centered Tetragonal: gamma, m, n, p, x
"},{"location":"Plane-Wave-Density-Functional-Theory.html#special-points-of-different-space-groups-conventional-cells","title":"Special Points of Different Space Groups (Conventional Cells)","text":"(1) P1
(2) P-1
(3)
"},{"location":"Plane-Wave-Density-Functional-Theory.html#screened-exchange","title":"Screened Exchange","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#density-of-states-and-projected-density-of-states","title":"Density of States and Projected Density of States","text":"The \u201cdos\u201d option is used to calculate density of states using broadening of the eigenvalues . This option can be specified without additional parameters, i.e.
nwpw \n dos\nend\n
in which case default values are used, or it can be specified with additional parameters, e.g.
nwpw \n dos 0.002 700 -0.80000 0.8000\nend\n
The parameters are
nwpw \n dos [<alpha> <npoints> <emin> <emax>]\nend\n
where
alpha
- value for the broadening the eigenvalues, default 0.05/27.2116 aunpoints
- number of plotting points in dos files, default 500emin
- minimum energy in dos plots, default min(eigenvalues)-0.1 auemax
- maximimum energy in dos plots, default max(eigenvalues)+0.1 auThe units for dos parameters are in atomic units. Note that if virtual states are specified in the pspw calculation then the virtual density of states will also be generated in addition to the filled density of states.
The following files are generated and written to the permanent_dir for restricted calculations
For unrestricted calculations
The nwpw:dos:actlist variable is used to specify the atoms used to determine weights for dos generation. If the variable is not set then all the atoms are used, e.g.
set nwpw:dos:actlist 1 2 3 4
For projected density of states the \u201cMulliken\u201d keyword needs to be set, e.g.
nwpw\n Mulliken\n dos \nend\n
The following additional files are generated and written to the permanent_dir for restricted calculations
\u2026
Similarly for unrestricted calculations
\u2026
\u2026
\u2026
The BAND BAND_DPLOT task is used to generate plots of various types of electron densities (or orbitals) of a crystal. The electron density is calculated on the specified set of grid points from a Band calculation. The output file generated is in the Gaussian Cube format. Input to the BAND_DPLOT task is contained within the BAND_DPLOT sub-block.
NWPW \n... \n BAND_DPLOT \n ... \n END \n...\nEND\n
To run a BAND_DPLOT calculation the following directive is used:
TASK BAND BAND_DPLOT
Listed below is the format of a BAND_DPLOT sub-block.
NWPW\n... \n BAND_DPLOT \n VECTORS <string input_wavefunctions default input_movecs>\n DENSITY [total||difference||alpha||beta||laplacian||potential default total] <string density_name no default>\n ELF [restricted|alpha|beta] <string elf_name no default> \n ORBITAL (density || real || complex default density) \n <integer orbital_number no default> \n <integer brillion_number default 1> \n <string orbital_name no default> \n [LIMITXYZ [units <string Units default angstroms>] \n <real X_From> <real X_To> <integer No_Of_Spacings_X> \n <real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n <real Z_From> <real Z_To> <integer No_Of_Spacings_Z>] \n END\n...\nEND\n
The following list describes the input for the BAND_DPLOT sub-block.
VECTORS <string input_wavefunctions default input_movecs>
This sub-directive specifies the name of the molecular orbital file. If the second file is optionally given the density is computed as the difference between the corresponding electron densities. The vector files have to match.
DENSITY [total||difference||alpha||beta||laplacian||potential default total] <string density_name no default>\n
This sub-directive specifies, what kind of density is to be plotted. The known names for total, difference, alpha, beta, laplacian, and potential.
ELF [restricted|alpha|beta] <string elf_name no default>\n
This sub-directive specifies that an electron localization function (ELF) is to be plotted.
ORBITAL (density || real || complex default density) <integer orbital_number no default><integer brillion_number default 1> <string orbital_name no default>\n
This sub-directive specifies the molecular orbital number that is to be plotted.
LIMITXYZ [units <string Units default angstroms>] \n<real X_From> <real X_To> <integer No_Of_Spacings_X> \n<real Y_From> <real Y_To> <integer No_Of_Spacings_Y> \n<real Z_From> <real Z_To> <integer No_Of_Spacings_Z>\n
By default the grid spacing and the limits of the cell to be plotted are defined by the input wavefunctions. Alternatively the user can use the LIMITXYZ sub-directive to specify other limits. The grid is generated using No_Of_Spacings + 1 points along each direction. The known names for Units are angstroms, au and bohr.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#car-parrinello","title":"Car-Parrinello","text":"The Car-Parrinello task is used to perform ab initio molecular dynamics using the scheme developed by Car and Parrinello. In this unified ab initio molecular dynamics scheme the motion of the ion cores is coupled to a fictitious motion for the Kohn-Sham orbitals of density functional theory. Constant energy or constant temperature simulations can be performed. A detailed description of this method is described in section Car-Parrinello Scheme for Ab Initio Molecular Dynamics.
Input to the Car-Parrinello simulation is contained within the Car-Parrinello sub-block.
NWPW \n... \n Car-Parrinello \n ... \n END \n...\nEND\n
To run a Car-Parrinello calculation the following directives are used:
TASK PSPW Car-Parrinello \n TASK BAND Car-Parrinello\n TASK PAW Car-Parrinello\n
The Car-Parrinello sub-block contains a great deal of input, including pointers to data, as well as parameter input. Listed below is the format of a Car-Parrinello sub-block.
NWPW \n... \n Car-Parrinello \n CELL_NAME <string cell_name default 'cell_default'>\n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default file_prefix.movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default file_prefix.movecs> \n INPUT_V_WAVEFUNCTION_FILENAME <string input_v_wavefunctions default file_prefix.vmovecs> \n OUTPUT_V_WAVEFUNCTION_FILENAME <string output_v_wavefunctions default file_prefix.vmovecs> \n FAKE_MASS <real fake_mass default default 1000.0>\n TIME_STEP <real time_step default 5.0> \n LOOP <integer inner_iteration outer_iteration default 10 1> \n SCALING <real scale_c scale_r default 1.0 1.0> \n ENERGY_CUTOFF <real ecut default (see input description)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n EWALD_NCUT <integer ncut default 1> \n EWALD_RCUT <real rcut default (see input description)> \n XC (Vosko || LDA || PBE96 || revPBE || HF || \n LDA-SIC || LDA-SIC/2 || LDA-0.4SIC || LDA-SIC/4 || LDA-0.2SIC || \n PBE96-SIC || PBE96-SIC/2 || PBE96-0.4SIC || PBE96-SIC/4 || PBE96-0.2SIC || \n revPBE-SIC || revPBE-SIC/2 || revPBE-0.4SIC || revPBE-SIC/4 || revPBE-0.2SIC || \n PBE0 || revPBE0 || default Vosko) \n [Nose-Hoover <real Period_electron real Temperature_electron \n real Period_ion real Temperature_ion \n integer Chainlength_electron integer Chainlength_ion default 100.0 298.15 100.0 298.15 1 1>] \n [TEMPERATURE <real Temperature_ion real Period_ion \n real Temperature_electron real Period_electron \n integer Chainlength_ion integer Chainlength_electron default 298.15 1200 298.15 1200.0 1 1>] \n [SA_decay <real sa_scale_c sa_scale_r default 1.0 1.0>] \n XYZ_FILENAME <string xyz_filename default file_prefix.xyz> \n ION_MOTION_FILENAME <string ion_motion_filename default file_prefix.ion_motion\n EMOTION_FILENAME <string emotion_filename default file_prefix.emotion> \n HMOTION_FILENAME <string hmotion_filename nodefault>\n OMOTION_FILENAME <string omotion_filename nodefault>\n EIGMOTION_FILENAME <string eigmotion_filename nodefault> \n END \n... \nEND\n
The following list describes the input for the Car-Parrinello sub-block.
cell_name
- name of the the simulation_cell named cell_name
. See section Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name of the file that will contain the one-electron orbitals at the end of the run.input_v_wavefunctions
- name of the file containing one-electron orbital velocities.output_v_wavefunctions
- name of the file that will contain the one-electron orbital velocities at the end of the run.fake_mass
- value for the electronic fake mass ( ).time_step
- value for the Verlet integration time step ().inner_iteration
- number of iterations between the printing out of energies.outer_iteration
- number of outer iterationsscale_c
- value for the initial velocity scaling of the one-electron orbital velocities.scale_r
- value for the initial velocity scaling of the ion velocities.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.ncut
- value for the number of unit cells to sum over (in each direction) for the real space part of the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.rcut
- value for the cutoff radius used in the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.Default set to be .
Period_electron
- estimated period for fictitious electron thermostat.Temperature_electron
- temperature for fictitious electron motionPeriod_ion
- estimated period for ionic thermostatTemperature_ion
- temperature for ion motionChainlength_electron
- number of electron thermostat chainsChainlength_ion
- number of ion thermostat chainssa_scale_c
- decay rate in atomic units for electronic temperature.sa_scale_r
- decay rate in atomic units for the ionic temperature. xyz_filename
- name of the XYZ motion file generatedemotion_filename
- name of the emotion motion file. See section EMOTION motion file for a description of the datafile.hmotion_filenameh
- name of the hmotion motion file. See section HMOTION motion file for a description of the datafile.eigmotion_filename
- name of the eigmotion motion file. See section EIGMOTION motion file for a description of the datafile.ion_motion_filename
- name of the ion_motion motion file. See section ION_MOTION motion file- for a description of the datafile.omotion_filename
- name of the omotion motion file. See section OMOTION motion file for a description of the datafile.When a DPLOT sub-block is specified the following SET directive can be used to output dplot data during a PSPW Car-Parrinello simulation:
set pspw_dplot:iteration_list <integer list_of_iteration_numbers>\n
The Gaussian cube files specified in the DPLOT sub-block are appended with the specified iteration number.
For example, the following directive specifies that at the 3,10,11,12,13,14,15, and 50 iterations Gaussian cube files are to be produced.
set pspw_dplot:iteration_list 3,10:15,50
The Car-Parrinello module allows users to freeze the cartesian coordinates in a simulation (Note - the Car-Parrinello code recognizes Cartesian constraints, but it does not recognize internal coordinate constraints). The +SET+ directive (Section Applying constraints in geometry optimizations) is used to freeze atoms, by specifying a directive of the form:
set geometry:actlist <integer list_of_center_numbers>\n
This defines only the centers in the list as active. All other centers will have zero force assigned to them, and will remain frozen at their starting coordinates during a Car-Parrinello simulation.
For example, the following directive specifies that atoms numbered 1, 5, 6, 7, 8, and 15 are active and all other atoms are frozen:
set geometry:actlist 1 5:8 15
or equivalently,
set geometry:actlist 1 5 6 7 8 15
If this option is not specified by entering a +SET+ directive, the default behavior in the code is to treat all atoms as active. To revert to this default behavior after the option to define frozen atoms has been invoked, the +UNSET+ directive must be used (since the database is persistent, see Section NWChem Architecture). The form of the +UNSET+ directive is as follows:
unset geometry:actlist
In addition, the Car-Parrinello module allows users to freeze bond lengths via a Shake algorithm. The following +SET+ directive shows how to do this.
set nwpw:shake_constraint \"2 6 L 6.9334\"
This input fixes the bond length between atoms 2 and 6 to be 6.9334 bohrs. Note that this input only recognizes bohrs.
When using constraints it is usually necessary to turn off center of mass shifting. This can be done by the following +SET+ directive.
set nwpw:com_shift .false.
Data file that stores ion positions and velocities as a function of time in XYZ format.
[line 1: ] n_ion\n[line 2: ] do ii=1,n_ion\n[line 2+ii: ] atom_name(ii), x(ii),y(ii),z(ii),vx(ii),vy(ii),vz(ii)\nend do \n[line n_ion+3 ] n_nion \n do ii=1,n_ion\n[line n_ion+3+ii: ] atom_name(ii), x(ii),y(ii),z(ii), vx(ii),vy(ii),vz(ii) \nend do\n[line 2*n_ion+4: ] ....\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ion_motion-motion-file","title":"ION_MOTION motion file","text":"Datafile that stores ion positions and velocities as a function of time
[line 1: ] it_out, n_ion, omega, a1.x,a1.y,a1.z, a2.x,a2,y,a2.z, a3.x,a3.y,a3.z \n[line 2: ] time \ndo ii=1,n_ion\n[line 2+ii: ] ii, atom_symbol(ii),atom_name(ii), x(ii),y(ii),z(ii), vx(ii),vy(ii),vz(ii) \nend do\n[line n_ion+3 ] time \ndo do ii=1,n_ion \n[line n_ion+3+ii: ] ii, atom_symbol(ii),atom_name(ii), x(ii),y(ii),z(ii), vx(ii),vy(ii),vz(ii) \nend do \n[line 2*n_ion+4: ] ....\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#emotion-motion-file","title":"EMOTION motion file","text":"Datafile that store energies as a function of time.
[line 1: ] time, E1,E2,E3,E4,E5,E6,E7,E8,(E9,E10, if Nose-Hoover),eave,evar,have,hvar,ion_Temp \n[line 2: ] ...\n
where
E1 = total energy\nE2 = potential energy\nE3 = ficticious kinetic energy\nE4 = ionic kinetic energy\nE5 = orbital energy\nE6 = hartree energy\nE7 = exchange-correlation energy \nE8 = ionic energy\neave = average potential energy \nevar = variance of potential energy\nhave = average total energy\nhvar = variance of total energy\nion_Temp = temperature\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#hmotion-motion-file","title":"HMOTION motion file","text":"Datafile that stores the rotation matrix as a function of time.
[line 1: ] time\n[line 2: ] ms,ne(ms),ne(ms)\ndo i=1,ne(ms)\n[line 2+i: ] (hml(i,j), j=1,ne(ms)\nend do\n[line 3+ne(ms): ] time\n[line 4+ne(ms): ] ....\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#eigmotion-motion-file","title":"EIGMOTION motion file","text":"Datafile that stores the eigenvalues for the one-electron orbitals as a function of time.
[line 1: ] time, (eig(i), i=1,number_orbitals) \n[line 2: ] ...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#omotion-motion-file","title":"OMOTION motion file","text":"Datafile that stores a reduced representation of the one-electron orbitals. To be used with a molecular orbital viewer that will be ported to NWChem in the near future.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#born-oppenheimer-molecular-dynamics","title":"Born-Oppenheimer Molecular Dynamics","text":"NWPW\n...\n BO_STEPS <integer bo_inner_iteration bo_outer_iteration default 10 100> \n BO_TIME_STEP <real bo_time_step default 5.0> \n BO_ALGORITHM [verlet|| velocity-verlet || leap-frog]\n BO_FAKE_MASS <real bo_fake_mass default 500.0> \nEND\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#i-pi-socket-communication","title":"i-PI Socket Communication","text":"NWPW\n SOCKET (UNIX || IPI_CLIENT) <string socketname default (see input description)>\nEND\n
The NWPW
module provides native communication via the i-PI socket protocol. The behavior is identical to the i-PI socket communication provided by the DRIVER
module. The NWPW
implementation of the SOCKET
directive is better optimized for plane-wave calculations.
For proper behavior, the TASK
directive should be set to GRADIENT
, e.g. TASK PSPW GRADIENT
or TASK BAND GRADIENT
.
NWPW\n...\n MC_STEPS <integer mc_inner_iteration mc_outer_iteration default 10 100> \nEND\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#free-energy-simulations","title":"Free Energy Simulations","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#metadynamics","title":"MetaDynamics","text":"Metadynamics234 is a powerful, non-equilibrium molecular dynamics method which accelerates the sampling of the multidimensional free energy surfaces of chemical reactions. This is achieved by adding an external time-dependent bias potential that is a function of user defined collective variables, . The bias potential discourages the system from sampling previously visited values of (i.e., encourages the system to explore new values of . During the simulation the bias potential accumulates in low energy wells which then allows the system to cross energy barriers much more quickly than would occur in standard dynamics. The collective variable is a generic function of the system coordinates, (e.g. bond distance, bond angle, coordination numbers, etc.) that is capable of describing the chemical reaction of interest. can be regarded as a reaction coordinate if it can distinguish between the reactant, transition, and products states, and also capture the kinetics of the reaction.
The biasing is achieved by \u201cflooding\u201d the energy landscape with repulsive Gaussian \u201chills\u201d centered on the current location of at a constant time interval . If the height of the Gaussians is constant in time then we have standard metadynamics; if the heights vary (slowly decreased) over time then we have well-tempered metadynamics. In between the addition of Gaussians, the system is propagated by normal (but out of equilibrium) dynamics. Suppose that the dimension of the collective space is , i.e. and that prior to any time during the simulation, Gaussians centered on are deposited along the trajectory of at times . Then, the value of the bias potential, , at an arbitrary point, , along the trajectory of at time is given by
where is the time-dependent Gaussian height. and are width and initial height respectively of Gaussians, and is the tempered metadynamics temperature. corresponds to standard molecular dynamics because and therfore there is no bias. corresponds to standard metadynamics since in this case =constant. A positive, finite value of (eg. >=1500 K) corresponds to well-tempered metadynamics in which .
For sufficiently large , the history potential will nearly flatten the free energy surface, , along and an unbiased estimator of F(s) is given by
"},{"location":"Plane-Wave-Density-Functional-Theory.html#input","title":"Input","text":"
Input to a metadynamics simulation is contained within the METADYNAMICS sub-block. Listed below is the the format of a METADYNAMICS sub-block,
NWPW \n METADYNAMICS\n [\n BOND <integer atom1_index no default> <integer atom2_index no default> \n [W <real w default 0.00005>] \n [SIGMA <real sigma default 0.1>] \n [RANGE <real a b default (see input description)>] \n [NRANGE <integer nrange default 501>] \n ...] \n [\n ANGLE <integer atom1_index no default> <integer atom2_index no default> <integer atom3_index no default> \n [W <real w default 0.00005>] \n [SIGMA <real sigma default 0.1>]\n [RANGE <real a b default 0]\n [NRANGE <integer nrange default 501>] \n ...]\n [\n COORD_NUMBER [INDEX1 <integer_list atom1_indexes no default>][INDEX2 <integer_list atom2_indexes no default>] \n [SPRIK] \n [N <real n default 6.0>]\n [M <real m default 12.0>]\n [R0 <real r0 default 3.0>] \n\n [W <real w default 0.00005>] \n [SIGMA <real sigma default 0.1>] \n [RANGE <real a b no default>] \n [NRANGE <integer nrange default 501>] \n ...] \n [ \n N-PLANE <integer atom1_index no default> <integer_list atom_indexes no default> \n [W <real w default 0.00005>] \n [SIGMA <real sigma default 0.1>] \n [RANGE <real a b no default>] \n [NRANGE <integer nrange default 501>] \n [NVECTOR <real(3) nx ny nz>] \n ...] \n [UPDATE <integer meta_update default 1>] \n [PRINT_SHIFT <integer print_shift default 0>]\n [TEMPERED <real tempered_temperature no default>] \n [BOUNDARY <real w_boundary sigma_boundary no default>]\n END\nEND\n
Multiple collective variables can be defined at the same time, e.g.
NWPW \n METADYNAMICS \n BOND 1 8 W 0.0005 SIGMA 0.1 \n BOND 1 15 W 0.0005 SIGMA 0.1 \n END\nEND\n
will produce a two-dimensional potential energy surface.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#tamd-temperature-accelerated-molecular-dynamics","title":"TAMD - Temperature Accelerated Molecular Dynamics","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#input_1","title":"Input","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#collective-variables","title":"Collective Variables","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#bond-distance-collective-variable","title":"Bond Distance Collective Variable","text":"This describes the bond distance between any pair of atoms and :
"},{"location":"Plane-Wave-Density-Functional-Theory.html#angle-collective-variable","title":"Angle Collective Variable","text":"
This describes the bond angle formed at by the triplet
"},{"location":"Plane-Wave-Density-Functional-Theory.html#coordination-collective-variable","title":"Coordination Collective Variable","text":"
The coordination number collective variable is defined as
where the summation over and runs over two types of atoms, is the weighting function, and is the cut-off distance. In the standard procedure for computing the coordination number, =1 if , otherwise =0, implying that is not continuous when . To ensure a smooth and continuous definition of the coordination number, we adopt two variants of the weighting function. The first variant is
where and are integers (m > n) chosen such that when and when is much larger than . For example, the parameters of the O-H coordination in water is well described by =1.6 \u00c5, and . In practice, and must tuned for a given to ensure that is smooth and satisfies the above mentioned properties, particularly the large
The second form of the weighting function, which is due to Sprik, is
In this definition is analogous to the Fermi function and its width is controlled by the parameter . Large and small values of respectively correspond to sharp and soft transitions at . Furthermore should approach 1 and 0 when and respectively. In practice =6-10 \u00c5 . For example, a good set of parameters of the O-H coordination in water is =1.4 \u00c5 and =10 \u00c5 .
"},{"location":"Plane-Wave-Density-Functional-Theory.html#n-plane-collective-variable","title":"N-Plane Collective Variable","text":"The N-Plane collective variable is useful for probing the adsorption of adatom/admolecules to a surface. It is defined as the average distance of the adatom/admolecule from a given layer in the slab along the surface normal:
where denotes the position of the adatom/admolecule/impurity along the surface normal (here, we assume the surface normal to be the z-axis) and the summation over runs over atoms at which form the layer. The layer could be on the face or in the interior of the slab.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#user-defined-collective-variable","title":"User defined Collective Variable","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#extended-x-ray-absorption-fine-structure-exafs-integration-with-feff6l","title":"Extended X-Ray Absorption Fine Structure (EXAFS) - Integration with FEFF6L","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#frozen-phonon-calculations","title":"Frozen Phonon Calculations","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#steepest-descent","title":"Steepest Descent","text":"The functionality of this task is now performed automatically by the PSPW and BAND. For backward compatibility, we provide a description of the input to this task.
The steepest_descent task is used to optimize the one-electron orbitals with respect to the total energy. In addition it can also be used to optimize geometries. This method is meant to be used for coarse optimization of the one-electron orbitals.
Input to the steepest_descent simulation is contained within the steepest_descent sub-block.
NWPW \n... \n STEEPEST_DESCENT \n ... \n END \n... \nEND\n
To run a steepest_descent calculation the following directive is used:
TASK PSPW steepest_descent \nTASK BAND steepest_descent \n
The steepest_descent sub-block contains a great deal of input, including pointers to data, as well as parameter input. Listed below is the format of a STEEPEST_DESCENT sub-block.
NWPW \n... \n STEEPEST_DESCENT \n CELL_NAME <string cell_name> \n [GEOMETRY_OPTIMIZE] \n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default file_prefix.movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default file_prefix.movecs> \n FAKE_MASS <real fake_mass default 400000.0> \n TIME_STEP <real time_step default 5.8> \n LOOP <integer inner_iteration outer_iteration default 10 1> \n TOLERANCES <real tole tolc tolr default 1.0d-9 1.0d-9 1.0d-4> \n ENERGY_CUTOFF <real ecut default (see input desciption)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n EWALD_NCUT <integer ncut default 1> \n EWALD_RCUT <real rcut default (see input description)> \n XC (Vosko || LDA || PBE96 || revPBE || HF || \n LDA-SIC || LDA-SIC/2 || LDA-0.4SIC || LDA-SIC/4 || LDA-0.2SIC || \n PBE96-SIC || PBE96-SIC/2 || PBE96-0.4SIC || PBE96-SIC/4 || PBE96-0.2SIC || \n revPBE-SIC || revPBE-SIC/2 || revPBE-0.4SIC || revPBE-SIC/4 || revPBE-0.2SIC || \n PBE0 || revPBE0 || default Vosko) \n [MULLIKEN] \n END \n... \nEND\n
The following list describes the input for the STEEPEST_DESCENT sub-block.
cell_name
- name of the simulation_cell named cell_name
. See Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name of the file tha will contain the one-electron orbitals at the end of the run.fake_mass
- value for the electronic fake mass time_step
- value for the time step .inner_iteration
- number of iterations between the printing out of energies and tolerancesouter_iteration
- number of outer iterationstole
- value for the energy tolerance.tolc
- value for the one-electron orbital tolerance.tolr
- value for the ion position tolerance.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.ncut
- value for the number of unit cells to sum over (in each direction) for the real space part of the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.rcut
- value for the cutoff radius used in the Ewald summation. Note Ewald summation is only used if the simulation_cell is periodic.Default set to be .
The simulation cell parameters are entered by defining a simulation_cell sub-block within the PSPW block. Listed below is the format of a simulation_cell sub-block.
NWPW \n... \n SIMULATION_CELL [units <string units default bohrs>]\n CELL_NAME <string name default 'cell_default'> \n BOUNDARY_CONDITIONS (periodic || aperiodic default periodic) \n LATTICE_VECTORS \n <real a1.x a1.y a1.z default 20.0 0.0 0.0> \n <real a2.x a2.y a2.z default 0.0 20.0 0.0> \n <real a3.x a3.y a3.z default 0.0 0.0 20.0> \n NGRID <integer na1 na2 na3 default 32 32 32> \n END \n... \nEND\n
Basically, the user needs to enter the dimensions, gridding and boundary conditions of the simulation cell. The following list describes the input in detail.
name
- user-supplied name for the simulation block.a1.x a1.y a1.z
- user-supplied values for the first lattice vectora2.x a2.y a2.z
- user-supplied values for the second lattice vectora3.x a3.y a3.z
- user-supplied values for the third lattice vectorna1 na2 na3
- user-supplied values for discretization along lattice vector directions.Alternatively, instead of explicitly entering lattice vectors, users can enter the unit cell using the standard cell parameters, a, b, c, , , and , by using the LATTICE block. The format for input is as follows:
NWPW \n... \n SIMULATION_CELL [units <string units default bohrs>] \n ... \n LATTICE \n [lat_a <real a default 20.0>] \n [lat_b <real b default 20.0>] \n [lat_c <real c default 20.0>] \n [alpha <real alpha default 90.0>] \n [beta <real beta default 90.0>] \n [gamma <real gamma default 90.0>] \n END \n ... \n END\n...\nEND\n
The user can also enter the lattice vectors of standard unit cells using the keywords SC, FCC, BCC, for simple cubic, face-centered cubic, and body-centered cubic respectively. Listed below is an example of the format of this type of input.
NWPW \n... \n SIMULATION_CELL [units <string units default bohrs>]\n SC 20.0 \n .... \n END\n...\nEND\n
Finally, the lattice vectors from the unit cell can also be defined using the fractional coordinate input in the GEOMETRY input (see section Geometry Lattice Parameters). Listed below is an example of the format of this type of input for an 8 atom silicon carbide unit cell.
geometry units au \n system crystal \n lat_a 8.277\n lat_b 8.277 \n lat_c 8.277 \n alpha 90.0 \n beta 90.0 \n gamma 90.0 \n end\n Si -0.50000 -0.50000 -0.50000\n Si 0.00000 0.00000 -0.50000 \n Si 0.00000 -0.50000 0.00000\n Si -0.50000 0.00000 0.00000 \n C -0.25000 -0.25000 -0.25000 \n C 0.25000 0.25000 -0.25000 \n C 0.25000 -0.25000 0.25000 \n C -0.25000 0.25000 0.25000 \nend\n
Warning - Currently only the \u201csystem crystal\u201d option is recognized by NWPW. The \u201csystem slab\u201d and \u201csystem polymer\u201d options will be supported in the future.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#unit-cell-optimization","title":"Unit Cell Optimization","text":"The PSPW module using the DRIVER geometry optimizer can optimize a crystal unit cell. Currently this type of optimization works only if the geometry is specified in fractional coordinates. The following SET directive is used to tell the DRIVER geometry optimizer to optimize the crystal unit cell in addition to the geometry.
set includestress .true.
The smear keyword to turn on fractional occupation of the molecular orbitals in PSPW and BAND calculations
SMEAR <sigma default 0.001> [TEMPERATURE <temperature>]\n [FERMI || GAUSSIAN || MARZARI-VANDERBILT default FERMI]\n [ORBITALS <integer orbitals default 4>]\n
Fermi-Dirac (FERMI), Gaussian, and Marzari-Vanderbilt broadening functions are available. The ORBITALS keyword is used to change the number of virtual orbitals to be used in the calculation. Note to use this option the user must currently use the SCF minimizer. The following SCF options are recommended for running fractional occupation
SCF Anderson outer_iterations 0 Kerker 2.0
Spin-penalty functions makes it easier to define antiferromagnetic structures. These functions are implemented by adding a scaling factor to the non-local psp for up/down spins on atoms and angular momentum that you specify.
Basically, the pseudopotential energy
was modified to
An example input is as follows:
title \"hematite 10 atoms\"\n\nstart hema10\n\nmemory 1900 mb\n\npermanent_dir ./perm\nscratch_dir ./perm\n\ngeometry center noautosym noautoz print\n system crystal\n lat_a 5.42 \n lat_b 5.42 \n lat_c 5.42 \n alpha 55.36 \n beta 55.36 \n gamma 55.36 \n end\nFe 0.355000 0.355000 0.355000\nFe 0.145000 0.145000 0.145000 \nFe -0.355000 -0.355000 -0.355000 \nFe 0.855000 0.855000 0.855000 \nO 0.550000 -0.050000 0.250000 \nO 0.250000 0.550000 -0.050000 \nO -0.050000 0.250000 0.550000 \nO -0.550000 0.050000 -0.250000 \nO -0.250000 -0.550000 0.050000 \nO 0.050000 -0.250000 -0.550000\\ \nend \n\nnwpw\n virtual 8\n odft\n ewald_rcut 3.0\n ewald_ncut 8 \n xc pbe96\n lmbfgs \n mult 1\n dplot\n density diff diff1.cube\n end\n\n #spin penalty functions \n pspspin up d -1.0 1:2 \n pspspin down d -1.0 3:4 \nend\ntask pspw energy \ntask pspw pspw_dplot \n\nnwpw\n pspspin off\n dplot\n density diff diff2.cube\n end \nend \ntask pspw energy\ntask pspw pspw_dplot\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#aimdmm-qmmm","title":"AIMD/MM (QM/MM)","text":"A QM/MM capability is available that is integrated with PSPW module and can be used with Car-Parrinello simulations. Currently, the input is not very robust but it is straightforward. The first step to run a QM/MM simulations is to define the MM atoms in the geometry block. The MM atoms must be at the end of the geometry and a carat, \u201d ^ \u201c, must be appended to the end of the atom name, e.g.
geometry units angstrom nocenter noautosym noautoz print xyz \n C -0.000283 0.000106 0.000047 \n Cl -0.868403 1.549888 0.254229 \n Cl 0.834043 -0.474413 1.517103 \n Cl -1.175480 -1.275747 -0.460606 \n Cl 1.209940 0.200235 -1.310743 \n O^ 0.3226E+01 -0.4419E+01 -0.5952E+01 \n H^ 0.3193E+01 -0.4836E+01 -0.5043E+01 \n H^ 0.4167E+01 -0.4428E+01 -0.6289E+01 \n O^ 0.5318E+01 -0.3334E+01 -0.1220E+01 \n H^ 0.4978E+01 -0.3040E+01 -0.2113E+01 \n H^ 0.5654E+01 -0.2540E+01 -0.7127E+00 \nend\n
Another way to specify the MM atoms is to use the mm_tags option which appends the atoms with a \u201d ^ \u201c.
geometry units angstrom nocenter noautosym noautoz print xyz \n C -0.000283 0.000106 0.000047 \n Cl -0.868403 1.549888 0.254229 \n Cl 0.834043 -0.474413 1.517103 \n Cl -1.175480 -1.275747 -0.460606 \n Cl 1.209940 0.200235 -1.310743 \n O 0.3226E+01 -0.4419E+01 -0.5952E+01 \n H 0.3193E+01 -0.4836E+01 -0.5043E+01 \n H 0.4167E+01 -0.4428E+01 -0.6289E+01 \n O 0.5318E+01 -0.3334E+01 -0.1220E+01 \n H 0.4978E+01 -0.3040E+01 -0.2113E+01 \n H 0.5654E+01 -0.2540E+01 -0.7127E+00 \nend \nNWPW \n QMMM \n mm_tags 6:11 \n END \nEND\n
The option \u201cmm_tags off\u201d can be used to remove the \u201d ^ \u201d from the atoms, i.e.
NWPW \n QMMM \n mm_tags 6:11 off \n END \nEND \n
Next the pseudopotentials have be defined for the every type of MM atom contained in the geometry blocks. The following local pseudopotential suggested by Laio, VandeVondele and Rothlisberger can be automatically generated.
The following input To define this pseudopo the O^ MM atom using the following input
NWPW \n QMMM \n mm_psp O^ -0.8476 4 0.70 \n END \nEND\n
defines the local pseudopotential for the O^ MM atom , where , , and . The following input can be used to define the local pseudopotentials for all the MM atoms in the geometry block defined above
NWPW \n QMMM \n mm_psp O^ -0.8476 4 0.70 \n mm_psp H^ 0.4238 4 0.40 \n END \nEND\n
Next the Lenard-Jones potentials for the QM and MM atoms need to be defined. This is done as as follows
NWPW \n QMMM \n lj_ion_parameters C 3.41000000d0 0.10d0 \n lj_ion_parameters Cl 3.45000000d0 0.16d0 \n lj_ion_parameters O^ 3.16555789d0 0.15539425d0 \n END \nEND\n
Note that the Lenard-Jones potential is not defined for the MM H atoms in this example. The final step is to define the MM fragments in the simulation. MM fragments are a set of atoms in which bonds and angle harmonic potentials are defined, or alternatively shake constraints are defined. The following input defines the fragments for the two water molecules in the above geometry,
NWPW \n QMMM \n fragment spc \n size 3 #size of fragment \n index_start 6:9:3 #atom index list that defines the start of \n # the fragments (start:final:stride) \n bond_spring 1 2 0.467307856 1.889726878 #bond i j Kspring r0 \n bond_spring 1 3 0.467307856 1.889726878 #bond i j Kspring r0 \n angle_spring 2 1 3 0.07293966 1.910611932 #angle i j k Kspring theta0 \n end \n END \nEND\n
The fragments can be defined using shake constraints as
NWPW \n QMMM \n fragment spc \n size 3 #size of fragment \n index_start 6:9:3 #atom index list that defines the start of \n # the fragments (start:final:stride) \n shake units angstroms 1 2 3 cyclic 1.0 1.632993125 1.0 \n end \n END \nEND\n
Alternatively, each water could be defined independently as follows.
NWPW \n QMMM \n fragment spc1 \n size 3 #size of fragment \n index_start 6 #atom index list that defines the start of \n #the fragments \n bond_spring 1 2 0.467307856 1.889726878 #bond i j Kspring r0 \n bond_spring 1 3 0.467307856 1.889726878 #bond i j Kspring r0 \n angle_spring 2 1 3 0.07293966 1.910611932 #angle i j k Kspring theta0 \n end \n fragment spc2 \n size 3 #size of fragment \n index_start 9 #atom index list that defines the start of \n #the fragments \n shake units angstroms 1 2 3 cyclic 1.0 1.632993125 1.0 \n end \n END \nEND\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#psp_generator","title":"PSP_GENERATOR","text":"A one-dimensional pseudopotential code has been integrated into NWChem. This code allows the user to modify and develop pseudopotentials. Currently, only the Hamann and Troullier-Martins norm-conserving pseudopotentials can be generated. In future releases, the pseudopotential library (section Pseudopotential and PAW basis Libraries) will be more complete, so that the user will not have explicitly generate pseudopotentials using this module.
Input to the PSP_GENERATOR task is contained within the PSP_GENERATOR sub-block.
NWPW \n... \n PSP_GENERATOR \n ... \n END \n... \nEND\n
To run a PSP_GENERATOR calculation the following directive is used:
TASK PSPW PSP_GENERATOR
Listed below is the format of a PSP_GENERATOR sub-block.
NWPW \n... \n PSP_GENERATOR \n PSEUDOPOTENTIAL_FILENAME: <string psp_name> \n ELEMENT: <string element> \n CHARGE: <real charge> \n MASS_NUMBER: <real mass_number> \n ATOMIC_FILLING: <integer ncore nvalence> ( (1||2||...) (s||p||d||f||...) <real filling> ...)\n\n [CUTOFF: <integer lmax> ( (s||p||d||f||g) <real rcut> ...) ] \n\n PSEUDOPOTENTIAL_TYPE: (TROULLIER-MARTINS || HAMANN default HAMANN) \n SOLVER_TYPE: (PAULI || SCHRODINGER default PAULI) \n EXCHANGE_TYPE: (dirac || PBE96 default DIRAC) \n CORRELATION_TYPE: (VOSKO || PBE96 default VOSKO) \n [SEMICORE_RADIUS: <real rcore>]\n\n END \n... \nEND\n
The following list describes the input for the PSP_GENERATOR sub-block.
psp_name
- name that points to a.element
- Atomic symbol.charge
- charge of the atommass
- mass number for the atomncore
- number of core statesnvalence
- number of valence states.filling
- occupation of atomic statercore
- value for the semicore radius (see below)This required block is used to define the reference atom which is used to define the pseudopotential. After the ATOMIC_FILLING: line, the core states are listed (one per line), and then the valence states are listed (one per line). Each state contains two integer and a value. The first integer specifies the radial quantum number, , the second integer specifies the angular momentum quantum number, , and the third value specifies the occupation of the state.
For example to define a pseudopotential for the Neon atom in the state could have the block
ATOMIC_FILLING: 1 2 \n 1 s 2.0 #core state - 1s^2 \n 2 s 2.0 #valence state - 2s^2 \n 2 p 6.0 #valence state - 2p^6\n
for a pseudopotential with a and valence electrons or the block
ATOMIC_FILLING: 3 0 \n 1 s 2.0 #core state \n 2 s 2.0 #core state \n 2 p 6.0 #core state\n
could be used for a pseudopotential with no valence electrons.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#cutoff","title":"CUTOFF","text":"This optional block specifies the cutoff distances used to match the all-electron atom to the pseudopotential atom. For Hamann pseudopotentials defines the distance where the all-electron potential is matched to the pseudopotential, and for Troullier-Martins pseudopotentials defines the distance where the all-electron orbital is matched to the pseudowavefunctions. Thus the definition of the radii depends on the type of pseudopotential. The cutoff radii used in Hamann pseudopotentials will be smaller than the cutoff radii used in Troullier-Martins pseudopotentials.
For example to define a softened Hamann pseudopotential for Carbon would be
ATOMIC_FILLING: 1 2 \n 1 s 2.0 \n 2 s 2.0 \n 2 p 2.0 \nCUTOFF: 2 \n s 0.8 \n p 0.85 \n d 0.85\n
while a similarly softened Troullier-Marting pseudopotential for Carbon would be
ATOMIC_FILLING: 1 2 \n 1 s 2.0 \n 2 s 2.0 \n 2 p 2.0 \nCUTOFF: 2 \n s 1.200 \n p 1.275 \n d 1.275\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#semicore_radius","title":"SEMICORE_RADIUS","text":"Specifying the SEMICORE_RADIUS option turns on the semicore correction approximation proposed by Louie et al (S.G. Louie, S. Froyen, and M.L. Cohen, Phys. Rev. B, 26(, 1738, (1982)). This approximation is known to dramatically improve results for systems containing alkali and transition metal atoms.
The implementation in the PSPW module defines the semi-core density, , by using the sixth-order polynomial
This expansion was suggested by Fuchs and Scheffler (M. Fuchs, and M. Scheffler, Comp. Phys. Comm.,119,67 (1999)), and is better behaved for taking derivatives (i.e. calculating ionic forces) than the expansion suggested by Louie et al.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#paw-tasks-legacy-implementation","title":"PAW Tasks: Legacy Implementation","text":"(This capability is now available in PSPW. It is recommended that this module only be used for testing purposes. )
All input to the PAW Tasks is contained within the compound NWPW block,
NWPW \n ... \nEND\n
To perform an actual calculation a TASK PAW directive is used (Task).
TASK PAW
In addition to the directives listed in Task, i.e.
TASK paw energy \nTASK paw gradient \nTASK paw optimize \nTASK paw saddle \nTASK paw freqencies \nTASK paw vib\n
there are additional directives that are specific to the PSPW module, which are:
TASK PAW [Car-Parrinello || steepest_descent ]
Once a user has specified a geometry, the PAW module can be invoked with no input directives (defaults invoked throughout). There are sub-directives which allow for customized application; those currently provided as options for the PAW module are:
NWPW \n CELL_NAME <string cell_name default 'cell_default'> \n [GEOMETRY_OPTIMIZE] \n INPUT_WAVEFUNCTION_FILENAME <string input_wavefunctions default input_movecs> \n OUTPUT_WAVEFUNCTION_FILENAME <string output_wavefunctions default input_movecs> \n FAKE_MASS <real fake_mass default 400000.0> \n TIME_STEP <real time_step default 5.8> \n LOOP <integer inner_iteration outer_iteration default 10 100> \n TOLERANCES <real tole tolc default 1.0e-7 1.0e-7> \n CUTOFF <real cutoff> \n ENERGY_CUTOFF <real ecut default (see input description)> \n WAVEFUNCTION_CUTOFF <real wcut default (see input description)> \n EWALD_NCUT <integer ncut default 1>] \n EWALD_RCUT <real rcut default (see input description)> \n XC (Vosko || PBE96 || revPBE default Vosko) \n DFT||ODFT||RESTRICTED||UNRESTRICTED \n MULT <integer mult default 1> \n INTEGRATE_MULT_L <integer imult default 1> \n SIMULATION_CELL \n ... (see input description) \n END \n CAR-PARRINELLO \n ... (see input description) \n END \n MAPPING <integer mapping default 1> \nEND \n
The following list describes these keywords.
cell_name
- name of the the simulation_cell named cell_name
. The current version of PAW only accepts periodic unit cells. See Simulation Cell.input_wavefunctions
- name of the file containing one-electron orbitalsoutput_wavefunctions
- name of the file that will contain the one-electron orbitals at the end of the run.fake_mass
- value for the electronic fake mass . This parameter is not presently used in a conjugate gradient simulationtime_step
- value for the time step (). This parameter is not presently used in a conjugate gradient simulation.inner_iteration
- number of iterations between the printing out of energies and tolerancesouter_iteration
- number of outer iterationstole
- value for the energy tolerance.tolc
- value for the one-electron orbital tolerance.cutoff
- value for the cutoff energy used to define the wavefunction. In addition using the CUTOFF keyword automatically sets the cutoff energy for the density to be twice the wavefunction cutoff.ecut
- value for the cutoff energy used to define the density. Default is set to be the maximum value that will fit within the simulation_cell cell_name
.wcut
- value for the cutoff energy used to define the one-electron orbitals. Default is set to be the maximum value that will fix within the simulation_cell cell_name
.ncuth
- value for the number of unit cells to sum over (in each direction) for the real space part of the smooth compensation summation.rcut
- value for the cutoff radius used in the smooth compensation summation.Default set to be .
mapping
- for a value of 1 slab FFT is used, for a value of 2 a 2d-Hilbert FFT is used.A library of pseudopotentials used by PSPW and BAND is currently available in the directory $NWCHEM_TOP/src/nwpw/libraryp/pspw_default
The elements listed in the following table are present:
H He \n------- ------------------ \n Li Be B C N O F Ne \n------- ------------------- \n Na Mg Al Si P S Cl Ar \n------------------------------------------------------- \n K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr \n------------------------------------------------------- \n Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe \n------------------------------------------------------- \n Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn \n------------------------------------------------------- \n Fr Ra . \n----------------- \n ------------------------------------------ \n . . . . . . Gd . . . . . . . \n ------------------------------------------ \n . . U . Pu . . . . . . . . . \n ------------------------------------------\n
The pseudopotential libraries are continually being tested and added. Also, the PSPW program can read in pseudopotentials in CPI and TETER format generated with pseudopotential generation programs such as the OPIUM package of Rappe et al. The user can request additional pseudopotentials from Eric J. Bylaska at (Eric.Bylaska@pnl.gov).
Similarly, a library of PAW basis used by PAW is currently available in the directory $NWCHEM_TOP/src/nwpw/libraryp/paw_default
H He \n------- ----------------- \n Li Be B C N O F Ne \n------- ------------------ \n Na Mg Al Si P S Cl Ar \n------------------------------------------------------ \n K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr \n------------------------------------------------------ \n . . . . . . . . . . . . . . . . . . \n------------------------------------------------------ \n . . . . . . . . . . . . . . . . . . \n------------------------------------------------------ \n . . . \n----------------- \n ------------------------------------------ \n . . . . . . . . . . . . . . \n ------------------------------------------ \n . . . . . . . . . . . . . . \n ------------------------------------------\n
Currently there are not very many elements available for PAW. However, the user can request additional basis sets from Eric J. Bylaska at (Eric.Bylaska@pnl.gov).
A preliminary implementation of the HGH pseudopotentials (Hartwigsen, Goedecker, and Hutter) has been implemented into the PSPW module. To access the pseudopotentials the pseudopotentials input block is used. For example, to redirect the code to use HGH pseudopotentials for carbon and hydrogen, the following input would be used.
nwpw \n... \n pseudopotentials \n C library HGH_LDA \n H library HGH_LDA \n end \n... \nend\n
The implementation of HGH pseudopotentials is rather limited in this release. HGH pseudopotentials cannot be used to optimize unit cells, and they do not work with the MULLIKEN option. They also have not yet been implemented into the BAND structure code. To read in pseudopotentials in CPI format the following input would be used.
nwpw \n... \n pseudopotentials \n C CPI c.cpi \n H CPI h.cpi \n end \n... \nend\n
In order for the program to recognize the CPI format the CPI files, e.g. c.cpi have to be prepended with the \u201c\u201d keyword.
To read in pseudopotentials in TETER format the following input would be used.
nwpw \n... \n pseudopotentials \n C TETER c.teter \n H TETER h.teter \n end \n... \nend\n
In order for the program to recognize the TETER format the TETER files, e.g. c.teter have to be prepended with the \u201c\u201d keyword.
If you wish to redirect the code to a different directory other than the default one, you need to set the environmental variable NWCHEM_NWPW_LIBRARY to the new location of the libraryps directory.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-rtdb-entries-and-miscellaneous-datafiles","title":"NWPW RTDB Entries and Miscellaneous DataFiles","text":"Input to the PSPW and Band modules are contained in both the RTDB and datafiles. The RTDB is used to store input that the user will need to directly specify. Input of this kind includes ion positions, ion velocities, and simulation cell parameters. The datafiles are used to store input, such the one-electron orbitals, one-electron orbital velocities, formatted pseudopotentials, and one-dimensional pseudopotentials, that the user will in most cases run a program to generate.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ion-positions","title":"Ion Positions","text":"The positions of the ions are stored in the default geometry structure in the RTDB and must be specified using the GEOMETRY directive.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ion-velocities","title":"Ion Velocities","text":"The velocities of the ions are stored in the default geometry structure in the RTDB, and must be specified using the GEOMETRY directive.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#wavefunction-datafile","title":"Wavefunction Datafile","text":"The one-electron orbitals are stored in a wavefunction datafile. This is a binary file and cannot be directly edited. This datafile is used by steepest_descent and Car-Parrinello tasks and can be generated using the wavefunction_initializer or wavefunction_expander tasks.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#velocity-wavefunction-datafile","title":"Velocity Wavefunction Datafile","text":"The one-electron orbital velocities are stored in a velocity wavefunction datafile. This is a binary file and cannot be directly edited. This datafile is automatically generated the first time a Car-Parrinello task is run.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#formatted-pseudopotential-datafile","title":"Formatted Pseudopotential Datafile","text":"The pseudopotentials in Kleinman-Bylander form expanded on a simulation cell (3d grid) are stored in a formatted pseudopotential datafile (PSPW-\u201catomname.vpp\u201d, BAND-\u201catomname.cpp\u201d, PAW-\u201catomname.jpp\u201d). These are binary files and cannot be directly edited. These datafiles are automatically generated.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#one-dimensional-pseudopotential-datafile","title":"One-Dimensional Pseudopotential Datafile","text":"The one-dimensional pseudopotentials are stored in a one-dimensional pseudopotential file (\u201catomname.psp\u201d). This is an ASCII file and can be directly edited with a text editor or can be generated using the pspw_generator task. However, these datafiles are usually atomatically generated.
The data stored in the one-dimensional pseudopotential file is
character*2 element :: element name \ninteger charge :: valence charge of ion \nreal mass :: mass of ion \ninteger lmax :: maximum angular component \nreal rcut(lmax) :: cutoff radii used to define pseudopotentials \ninteger nr :: number of points in the radial grid \nreal dr :: linear spacing of the radial grid \nreal r(nr):: one-dimensional radial grid \nreal Vpsp(nr,lmax) :: one-dimensional pseudopotentials \nreal psi(nr,lmax) :: one-dimensional pseudowavefunctions \nreal r_semicore :: semicore radius \nreal rho_semicore(nr) :: semicore density \n
and the format of it is:
[line 1: ] element [line 2: ] charge mass lmax \n[line 3: ] (rcut(l), l=1,lmax) \n[line 4: ] nr dr \n[line 5: ] r(1) (Vpsp(1,l), l=1,lmax) \n[line 6: ] .... \n[line nr+4: ] r(nr) (Vpsp(nr,l), l=1,lmax) \n[line nr+5: ] r(1) (psi(1,l), l=1,lmax) [line nr+6: ] .... \n[line 2*nr+4:] r(nr) (psi(nr,l), l=1,lmax) \n[line 2*nr+5:] r_semicore \nif (r_semicore read) then \n [line 2*nr+6:] r(1) rho_semicore(1) \n [line 2*nr+7:] .... \n [line 3*nr+5:] r(nr) rho_semicore(nr) \nend if\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#car-parrinello-scheme-for-ab-initio-molecular-dynamics","title":"Car-Parrinello Scheme for Ab Initio Molecular Dynamics","text":"Car and Parrinello developed a unified scheme for doing ab initio molecular dynamics by combining the motion of the ion cores and a fictitious motion for the Kohn-Sham orbitals of density-functional theory (R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471, (1985) - simple introduction cpmd-lecture.pdf). At the heart of this method they introduced a fictitious kinetic energy functional for the Kohn-Sham orbitals.
Given this kinetic energy the constrained equations of motion are found by taking the first variation of the auxiliary Lagrangian.
Which generates a dynamics for the wavefunctions and atoms positions through the constrained equations of motion:
where is the fictitious mass for the electronic degrees of freedom and are the ionic masses. The adjustable parameter is used to describe the relative rate at which the wavefunctions change with time. are the Lagrangian multipliers for the orthonormalization of the single-particle orbitals . They are defined by the orthonormalization constraint conditions and can be rigorously found. However, the equations of motion for the Lagrange multipliers depend on the specific algorithm used to integrate the Eqns. above.
For this method to give ionic motions that are physically meaningful the kinetic energy of the Kohn-Sham orbitals must be relatively small when compared to the kinetic energy of the ions. There are two ways where this criterion can fail. First, the numerical integrations for the Car-Parrinello equations of motion can often lead to large relative values of the kinetic energy of the Kohn-Sham orbitals relative to the kinetic energy of the ions. This kind of failure is easily fixed by requiring a more accurate numerical integration, i.e. use a smaller time step for the numerical integration. Second, during the motion of the system a the ions can be in locations where there is an Kohn-Sham orbital level crossing, i.e. the density-functional energy can have two states that are nearly degenerate. This kind of failure often occurs in the study of chemical reactions. This kind of failure is not easily fixed and requires the use of a more sophisticated density-functional energy that accounts for low-lying excited electronic states.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#verlet-algorithm-for-integration","title":"Verlet Algorithm for Integration","text":"Integrating the Eqns. above using the Verlet algorithm results in
In this molecular dynamic procedure we have to know variational derivative
and the matrix . The variational derivative
can be analytically found and is
To find the matrix impose the orthonormality constraint on obtain a matrix Riccatti equation, and then Riccatti equation is solved by an iterative solution.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#constant-temperature-simulations-nose-hoover-thermostats","title":"Constant Temperature Simulations: Nose-Hoover Thermostats","text":"Nose-Hoover Thermostats for the electrons and ions can also be added to the Car-Parrinello simulation. In this type of simulation thermostats variables and are added to the simulation by adding the auxiliary energy functionals to the total energy.
In these equations, the average kinetic energy for the ions is
where is the number of atomic degrees of freedom, \u201d is Boltzmann\u2019s constant, and T is the desired t emperature. Defining the average fictitious kinetic energy of the electrons is not as straightforward. Bl\u00f6chl and Parrinello (P.E. Bl\u00f6chl and M. Parrinello, Phys. Rev. B, 45, 9413, (1992)) have suggested the following formula for determining the average fictitious kinetic energy
where is the fictitious electronic mass, is average mass of one atom, and is the kinetic energy of the electrons.
Bl\u00f6chl and Parrinello suggested that the choice of mass parameters, , and should be made such that the period of oscillating thermostats should be chosen larger than the typical time scale for the dynamical events of interest but shorter than the simulation time.
where and are the periods of oscillation for the ionic and fictitious electronic thermostats.
In simulated annealing simulations the electronic and ionic Temperatures are scaled according to an exponential cooling schedule,
where and are the initial temperatures, and and are the cooling rates in atomic units.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-1-s2-dimer-examples-with-pspw","title":"NWPW Tutorial 1: S2 dimer examples with PSPW","text":"A description of all the examples in NWPW Tutorial 1 can be found in the attached pdf nwpwexample1.pdf
"},{"location":"Plane-Wave-Density-Functional-Theory.html#total-energy-of-s2-dimer-with-lda-approximation","title":"Total energy of S2 dimer with LDA approximation","text":"(input:Media:s2-example1.nw, output:Media:s2-example1.nwout)
In this example, the total energy of the S2 dimer using LDA approximation for the exchange-correlation functional is calculated.
echo \n title \"total energy of s2-dimer LDA/30Ry with PSPW method\" \n scratch_dir ./scratch \n permanent_dir ./perm \n start s2-pspw-energy \n geometry \n S 0.0 0.0 0.0 \n S 0.0 0.0 1.88 \n end \n nwpw \n simulation_cell \n SC 20.0 \n end \n cutoff 15.0 \n mult 3 \n xc lda \n lmbfgs \n end \n task pspw energy\n
The energies from the simulation will be
... \n == Summary Of Results == \n\n number of electrons: spin up= 7.00000 down= 5.00000 (real space) \n\n total energy : -0.2041363137E+02 ( -0.10207E+02/ion) \n total orbital energy: -0.4944372503E+01 ( -0.41203E+00/electron) \n hartree energy : 0.1680529987E+02 ( 0.14004E+01/electron) \n exc-corr energy : -0.4320620600E+01 ( -0.36005E+00/electron) \n ion-ion energy : 0.8455644190E-02 ( 0.42278E-02/ion) \n\n kinetic (planewave) : 0.7529965882E+01 ( 0.62750E+00/electron) \n V_local (planewave) : -0.4506036741E+02 ( -0.37550E+01/electron) \n V_nl (planewave) : 0.4623635248E+01 ( 0.38530E+00/electron) \n V_Coul (planewave) : 0.3361059973E+02 ( 0.28009E+01/electron) \n V_xc. (planewave) : -0.5648205953E+01 ( -0.47068E+00/electron) \n Virial Coefficient : -0.1656626150E+01 \n\n orbital energies: \n -0.2001309E+00 ( -5.446eV) \n -0.2001309E+00 ( -5.446eV) \n -0.3294434E+00 ( -8.965eV) -0.2991148E+00 ( -8.139eV) \n -0.3294435E+00 ( -8.965eV) -0.2991151E+00 ( -8.139eV) \n -0.3582269E+00 ( -9.748eV) -0.3352434E+00 ( -9.123eV) \n -0.5632339E+00 ( -15.326eV) -0.5246249E+00 ( -14.276eV) \n -0.7642738E+00 ( -20.797eV) -0.7413909E+00 ( -20.174eV) \n\n Total PSPW energy : -0.2041363137E+02 \n ...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#structural-optimization-of-s2-dimer-with-lda-approximation","title":"Structural optimization of S2 dimer with LDA approximation","text":"(input:Media:s2-example2.nw, output:Media:s2-example2.nwout)
In this example, the structure of the S2 dimer using results generated from prior energy calculation is calculated. Since most of the parameters are already stored in the run-time database the input is very simple.
echo \n title \"optimization of s2-dimer LDA/30Ry with PSPW method\" \n scratch_dir ./scratch \n permanent_dir ./perm \n restart s2-pspw-energy \n driver \n maxiter 20 \n xyz s2 \n end \n task pspw optimize\n
As the optimization process consists of series of total energy evaluations the contents of the output file are very much similar to that in Example I. At each step the total energy and force information will be outputed as follows
Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n @ 1 -20.41364254 -7.1D-05 0.00004 0.00004 0.00605 0.01048 7.8\n
The best way to keep track of the optimization calculation is to run the following grep command on the output file.
grep @ outputfile \n\n @ Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n @ ---- ---------------- -------- -------- -------- -------- -------- -------- \n @ 0 -20.41357202 0.0D+00 0.00672 0.00672 0.00000 0.00000 1.5 \n @ 1 -20.41364254 -7.1D-05 0.00004 0.00004 0.00605 0.01048 7.8 \n @ 2 -20.41364256 -2.3D-08 0.00020 0.00020 0.00003 0.00005 9.7 \n @ 2 -20.41364256 -2.3D-08 0.00020 0.00020 0.00003 0.00005 9.7\n
The optimized energy and geometry will be
... \n ---------------------- \n Optimization converged \n ---------------------- \n\n\n Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n @ 2 -20.41364256 -2.3D-08 0.00020 0.00020 0.00003 0.00005 9.7 \n ok ok ok ok \n\n\n\n Z-matrix (autoz) \n -------- \n\n Units are Angstrom for bonds and degrees for angles \n\n Type Name I J K L M Value Gradient \n ----------- -------- ----- ----- ----- ----- ----- ---------- ---------- \n 1 Stretch 1 2 1.89115 0.00020 \n\n\n\n Geometry \"geometry\" -> \"geometry\" \n --------------------------------- \n\n Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.) \n\n No. Tag Charge X Y Z \n ---- ---------------- ---------- -------------- -------------- -------------- \n 1 S 16.0000 0.00000000 0.00000000 -0.94557591 \n 2 S 16.0000 0.00000000 0.00000000 0.94557591 \n\n ...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#frequency-calculation-of-s2-dimer-with-lda-approximation","title":"Frequency calculation of S2 dimer with LDA approximation","text":"(input:Media:s2-example3.nw, output:Media:s2-example3.nwout)
In this example, the vibrational frequency of the S2 dimer using results generated from prior geometry optimization is calculated. Since most of the parameters are already stored in the run-time database the input is very simple.
echo \n title \"frequency calculation of s2-dimer LDA/30Ry with PSPW method\" \n scratch_dir ./scratch \n permanent_dir ./perm \n restart s2-pspw-energy \n freq \n animate \n end \n task pspw freq\n
The frequency and thermodynamic analysis generated
... \n Temperature = 298.15K \n frequency scaling parameter = 1.0000 \n\n\n Linear Molecule \n\n Zero-Point correction to Energy = 1.034 kcal/mol ( 0.001647 au) \n Thermal correction to Energy = 2.579 kcal/mol ( 0.004110 au) \n Thermal correction to Enthalpy = 3.171 kcal/mol ( 0.005054 au) \n\n Total Entropy = 52.277 cal/mol-K \n - Translational = 38.368 cal/mol-K (mol. weight = 63.9441) \n - Rotational = 13.630 cal/mol-K (symmetry # = 2) \n - Vibrational = 0.279 cal/mol-K \n\n Cv (constant volume heat capacity) = 5.750 cal/mol-K \n - Translational = 2.979 cal/mol-K \n - Rotational = 1.986 cal/mol-K \n - Vibrational = 0.785 cal/mol-K \n ... \n ---------------------------------------------------------------------------- \n Normal Eigenvalue || Projected Infra Red Intensities \n Mode [cm**-1] || [atomic units] [(debye/angs)**2] [(KM/mol)] [arbitrary] \n ------ ---------- || -------------- ----------------- ---------- ----------- \n 1 0.000 || 0.000030 0.001 0.029 0.000 \n 2 0.000 || 2.466908 56.914 2404.864 15.000 \n 3 0.000 || 2.466908 56.914 2404.864 15.000 \n 4 0.000 || 2.466908 56.914 2404.864 15.000 \n 5 0.000 || 2.466908 56.914 2404.864 15.000 \n 6 723.419 || 0.000000 0.000 0.000 0.000 \n ---------------------------------------------------------------------------- \n ...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ab-initio-molecular-dynamics-simulation-car-parrinello-of-s2-dimer-using-the-lda-approximation","title":"Ab initio molecular dynamics simulation (Car-Parrinello) of S2 dimer using the LDA approximation","text":"(input:Media:s2-example4.nw, output:Media:s2-example4.nwout Media:s2-md.xyz Media:s2-md.emotion.dat )
In this example, a constant energy Car-Parrinello simulation of S2 dimer using LDA approximation is calculated. A brief introduction to the Car-Parrinello method can be found in cpmd-lecture.pdf
echo \n title \"AIMD simulation of s2-dimer\" \n scratch_dir ./scratch \n permanent_dir ./perm \n start s2-md \n geometry \n S 0.0 0.0 0.0 \n S 0.0 0.0 1.95 \n end \n nwpw \n simulation_cell \n SC 20.0 \n end \n cutoff 15.0 \n mult 3 \n xc lda \n lmbfgs \n car-parrinello \n time_step 5.0 \n fake_mass 600.0 \n loop 1 1000 \n xyz_filename s2-md.xyz \n end \n end \n task pspw energy \n task pspw car-parrinello\n
A plotting program (e.g. gnuplot, xmgrace) can be used to look at the total, potential, kinetic energies, contained in the s2-md.emotion file (see section EMOTION motion file for datafile format) i.e.,
seattle-1604% gnuplot \n\n G N U P L O T \n Version 4.0 patchlevel 0 \n last modified Thu Apr 15 14:44:22 CEST 2004 \n System: Linux 2.6.18-194.8.1.el5 \n\n Copyright (C) 1986 - 1993, 1998, 2004 \n Thomas Williams, Colin Kelley and many others \n\n This is gnuplot version 4.0. Please refer to the documentation \n for command syntax changes. The old syntax will be accepted \n throughout the 4.0 series, but all save files use the new syntax. \n\n Type help to access the on-line reference manual. \n The gnuplot FAQ is available from \n <http://www.gnuplot.info/faq/> \n\n Send comments and requests for help to \n <gnuplot-info@lists.sourceforge.net> \n Send bugs, suggestions and mods to \n <gnuplot-bugs@lists.sourceforge.net> \n\n\n Terminal type set to 'x11' \n gnuplot> plot \"s2-md.emotion\",\"s2-md.emotion\" using 1:3 \n gnuplot> \n
The following plot shows the Car-Parrinello S energy surface generated from the simulation.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#ab-initio-molecular-dynamics-simulation-born-oppenheimer-of-ssub2-dimer-using-the-lda-approximation","title":"Ab initio molecular dynamics simulation (Born-Oppenheimer) of S<sub2 dimer using the LDA approximation","text":"
(input:Media:s2-example5.nw, output:Media:s2-example5.nwout Media:s2-bomd.xyz Media:s2-bomd.emotion.dat ) In this example, a constant energy Born-Oppenheimer simulation of S2 dimer using LDA approximation is calculated.
title \"AIMD simulation of s2-dimer\" \necho\n\nscratch_dir ./scratch\npermanent_dir ./perm\n\nstart s2-bomd \n\ngeometry\nS 0.0 0.0 0.0\nS 0.0 0.0 1.95\nend\n\nnwpw \n simulation_cell\n SC 20.0 \n end\n cutoff 15.0 \n mult 3 \n xc lda \n lmbfgs \nend\ntask pspw energy \n\nnwpw \n bo_steps 1 500 \n bo_time_step 10.0 \nend \ntask pspw born-oppenheimer\n
The following plot shows the energy surface generated from the simulation.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-2-using-pspw-car-parrinello-simulated-annealing-simulations-to-optimize-structures","title":"NWPW Tutorial 2: Using PSPW Car-Parrinello Simulated Annealing Simulations to Optimize Structures","text":"
In principle quantum mechanical calculations can be used to determine the structure of any chemical system. One chooses a structure, calculates the total energy of the system, and repeats the calculation for all possible geometries. Of course the major limitation of this approach is that the number of local minima structures increases dramatically with system size and the cost of quantum mechanical calculations also increases dramatically with system size. Not surprisingly most quantum mechanical calculations limit the number of structures to be calculated by using experimental results or chemical intuition. One could speed up the calculations by using simplified inter-atomic force fields instead of quantum mechanical calculations. However, inter-atomic forces fields have many simplifying assumptions that can severely limit their predictability. Another approach is to use ab initio molecular dynamics methods combined with simulated annealing. These methods are quite robust and allow strongly interacting many body systems to be studied by direct dynamics simulation without the introduction of empirical interactions. In these methods, the atomic forces are calculated from ab initio calculations that are performed \u201con-the-fly\u201d as the molecular dynamics trajectory is generated.
The following examples demonstrate how to use the ab initio molecular dynamics methods and simulated annealing strategies of NWChem to determine the lowest energy structures of the B12 cluster. This example is based on a study performed by Kiran Boggavarapu et al.. One might expect from chemical intuition that lowest energy structure of B12 will be an icosahedron, since B12 icosahedra are a common structural unit found in many boron rich materials. Despite this prevalence, ab initio calculations performed by several researchers have suggested that B12, as well as B12+ and B12-, will have a more open geometry.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#simulated-annealing-using-constant-energy-simulation","title":"Simulated Annealing Using Constant Energy Simulation","text":"
(input:Media:b12-example2a.nw, output:Media:b12-example2a.nwout Media:b12.00.xyz Media:b12.00.emotion.dat Media:b12.01.xyz Media:b12.01.emotion.dat)
This example uses a series of constant energy Car-Parrinello simulations with velocity scaling to do simulated annealing. The initial four Car-Parrinello simulations are used to heat up the system to several thousand Kelvin. Then the system is cooled down thru a series of constant energy simulations in which the electronic and ionic velocities are scaled by 0.99 at the start of each Car-Parrinello simulation. Energy minimization calculations are used periodically in this simulation to bring the system back down to Born-Oppenheimer surface. This is necessary because of electronic heating.
The Car-Parrinello keyword \u201cscaling\u201d scales the wavefunction and ionic velocities at the start of the simulation. The following input is used to increase the ionic velocities by a factor of two at the start of the Car-Parrinello simulation.
Key Input
...\nCar-Parrinello \nfake_mass 500.0\ntime_step 5.0 \nloop 10 100 \n** scaling 1.0 2.0** \nemotion_filename b12.00.emotion\nxyz_filename b12.00.xyz\nend \n...\n
Output
... \n wavefnc cutoff= 10.000 fft= 42x 42x 42( 6027 waves 1004 per task) \n\ntechnical parameters: \n translation contrained \n time step= 5.00 ficticious mass= 500.0 \n **cooling/heatting rates: 0.10000E+01 (psi)\n0.20000E+01\n(ion)** \n maximum iterations = 1000 ( 10 inner 100 outer ) \n initial kinetic energy: 0.99360E-05 (psi) 0.27956E-03 (ion) \n 0.20205E-28 (c.o.m.) \n **after scaling: 0.99360E-05 (psi) 0.11182E-02\n(ion)** \n **increased energy: 0.00000E+00 (psi)\n0.83868E-03 (ion)** \n\nConstant Energy Simulation \n...\n
The program checks to see if the initial input ionic velocities have a non-zero center of mass velocity. If there is a non-zero center of mass velocity in the system then by default the program removes it. To turn off this feature set the following
nwpw \n translation on \n end\n
or
set nwpw:com_shift .false.\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#simulated-annealing-using-constant-temperature-simulation","title":"Simulated Annealing Using Constant Temperature Simulation","text":"(input:Media:b12-example2b.nw, output:Media:b12-example2b.nwout Media:b12.10.xyz Media:b12.10.emotion.dat Media:b12.11.xyz.gz Media:b12.11.emotion.dat)
(mpeg movie of simulation: Media:boron.mpg)
The simulated annealing calculation in this example uses a constant temperature Car-Parrinello simulation with an exponential cooling schedule,
where T0 and \u03c4 are an initial temperature and a time scale of cooling, respectively. In the present calculations T0=3500K and \u03c4=4.134e+4 au (1.0 ps) were used and the thermostat masses were kept fixed to the initial values determined by T=Te=3500K and (2\u03c0/\u03c9)=250 a.u. (6 fs). Annealing proceeded for 50000 steps, until a temperature of 10K was reached. After which, the metastable structure is optimized using the driver optimizer. The keyword SA_decay is used to enter the decay rates, \u03c4electron and \u03c4ion, used in the simulated annealing algorithm in the constant temperature car-parrinello simulation. The decay rates are in units of au (conversion 1 au = 2.41889e-17 seconds).
Key Input
\u2026.\n Car-Parrinello \n SA_decay 4.134d4 4.134d4 #decay rate in units of au (1au=2.41889e-17seconds) \n \u2026.\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-3-using-isodesmic-reaction-energies-to-estimate-gas-phase-thermodynamics","title":"NWPW Tutorial 3: using isodesmic reaction energies to estimate gas-phase thermodynamics","text":"(isodesmic.pdf isodesmic.tgz)
The development of a computational scheme that can accurately predict reaction energies requires some care. As shown in Table 1 energy errors associated with ab initio calculations can be quite high. Even though ab initio electronic structure methods are constantly being developed and improved upon, these methods are rarely able to give heat of formations of a broad class of molecules with error limits of less than a few kcal/mol. Only when very large basis sets such as the correlation-consistent basis sets, high level treatments of correlation energy such as coupled cluster methods (CCSD(T)), and small correction factors such as core-valence correlation energies and relativistic effects, are included will the heat of formation from ab initio electronic structure methods be accurate to within one kcal/mol. Although one can now accurately calculate the heats of formation of molecules with up to 6 first row atoms, such high-level calculations are extremely demanding and scale computationally as for basis functions.
Examples of these types of large errors are shown in the following Table, where the enthalpies of formation of CClSH are calculated by using atomization energies from different levels of ab initio theory.
MP2/cc-pVDZ LDA/DZVP2 BP91/DZVP2 B3LYP/DZVP2 G2 Theory \u0394H +4.9 -80.0 -2.6 +26.5 -13.0Table 1: Standard enthalpy of formation (\u0394H(298K) for CClSH in kcal/mol from atomization energies with various electronic structure methods. Results taken from reference [2].
Differences of up to 106.5 kcal/mol are found between different levels of theory. This example demonstrates that care must be taken in choosing the appropriate method for calculating the heats of formation from total atomization energies.
The difficulties associated with calculating absolute heats of formation from atomization energies can be avoided by using a set of isodesmic reactions[1]. The defining property of an isodesmic reaction - that there are an equal number of like bonds on the left-hand and right-hand sides of the reaction - helps to minimize the error in the reaction energy. These reactions are designed to separate out the interactions between molecular subsistents and non-bonding electrons from the direct bonding interactions by having the direct bonding interactions largely canceling one another. This separation is quite attractive. Most ab initio methods give substantial errors when estimating direct bonding interactions due to the computational difficulties associated with electron pair correlation, whereas ab initio methods are expected to be more accurate for estimating neighboring interactions and long-range through-bond effects.
The following isodesmic reaction can be used determine the enthalpy of formation for CClSH that is significantly more accurate than the estimates based on atomization energies.
CClSH + CH CHSH + CClH, \u0394H(calc).
The first step is to calculate the reaction enthalpy of this reaction from electronic, thermal and vibrational energy differences at 298.15K at a consistent level of theory. The defining property of an isodesmic reaction that there are an equal number of like bonds on the left-hand and right-hand sides of the reaction helps to minimize the error in the calculation of the reaction energy. The enthalpy of formation of CClSH can then be calculated by using Hess\u2019s law with the calculated enthalpy change and the experimentally known heats of formation of the other 3 species (see Table 3).
\u0394H(CClSH) = \u0394H(CHSH)(exp) + \u0394H(CClH)(exp) - \u0394H(CH)(exp)- \u0394H(calc).
In this example, try to design and run NWPW simulations that can be used to estimate the enthalpy of formation for CClSH using its atomization energy and using the reaction enthalpy of the isodesmic reaction and compare your results to Table 2. Be careful to make sure that you use the same cutoff energy for all the simulations (.e.g. cutoff 35.0). You might also try to estimate enthalpies of formation for CHClSH and CHClSH. Also try designing simulations that use the SCF, DFT, MP2, and TCE modules.
CClSH + CH CHSH + CClH
Un-optimized geometries for CClSH, CHSH, CClH and CH which are needed to design your simulations are contained in the file Media:thermodynamics.xyz. You will also need to calculate the energies for the H, C, S, and Cl atoms to calculate the atomization energies. The multiplicities for these atoms are 2, 3, 3 and 2 respectively. You will also need to calculate the enthalpy of a molecule. The enthalpy of a molecule at 298.15K is sum of the total energy and a thermal correction to the enthalpy. A good estimate for the thermal correction to the enthalpy can be obtained from a frequency calculation, i.e.
H = E + H
Thermodynamic output from a frequency calculation:
Temperature = 298.15K \nfrequency scaling parameter = 1.0000 \n\nZero-Point correction to Energy = 27.528 kcal/mol ( 0.043869 au) \nThermal correction to Energy = 29.329 kcal/mol ( 0.046739 au)\n
The following line contains the value for H
Thermal correction to Enthalpy = 29.922 kcal/mol ( 0.047683 au)\n\nTotal Entropy = 44.401 cal/mol-K \n - Translational = 34.246 cal/mol-K (mol. weight = 16.0313) \n - Rotational = 10.060 cal/mol-K (symmetry # = 12) \n - Vibrational = 0.095 cal/mol-K \n\nCv (constant volume heat capacity) = 6.503 cal/mol-K \n - Translational = 2.979 cal/mol-K \n - Rotational = 2.979 cal/mol-K \n - Vibrational = 0.544 cal/mol-K\n
Compounds MP2/cc-pVDZ LDA/DZVP2 BP91/DZVP2 B3LYP/DZVP2 G2 Experiment (isodesmic) (isodesmic) (isodesmic) (isodesmic) (atomization) CCl$_3SH -13.40 -11.86 -8.68 -7.64 -12.95 CHClSH -11.48 -11.07 -8.66 -7.92 -11.52 CHClSH -7.01 -6.66 -5.44 -5.20 -6.98 CHSH -4.76 -5.34 Table 2: Gas-phase standard enthalpies of formation ( \u0394H(298K)) in kcal/mol from isodesmic reactions and G2 Theory calculations taken from [3].
Compounds \u0394H(298K) H 52.095 C 171.291 S 66.636 Cl 29.082 CCl -24.59 CClH -24.65 CClH -22.10 CClH -19.32 CH -17.88 CHSH -5.34Table 3: Miscellaneous experimental gas-phase enthalpies of formation (kcal/mol) taken from [3].
(input:Media:ccl4-64water.nw, output:Media:ccl4-64water.nwout)
In this section we show how use the PSPW module to perform a Car-Parrinello AIMD/MM simulation for a CCl molecule in a box of 64 HO. Before running a PSPW Car-Parrinello simulation the system should be on the Born-Oppenheimer surface, i.e. the one-electron orbitals should be minimized with respect to the total energy (i.e. task pspw energy). In this example, default pseudopotentials from the pseudopotential library are used for C, Cl, O^ and H^, exchange correlation functional is PBE96, The boundary condition is periodic, and with a side length of 23.577 Bohrs and has a cutoff energy is 50 Ry). The time step and fake mass for the Car-Parrinello run are specified to be 5.0 au and 600.0 au, respectively.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-5-optimizing-the-unit-cell-and-geometry-of-diamond","title":"NWPW Tutorial 5: Optimizing the Unit Cell and Geometry of Diamond","text":"The PSPW and BAND codes can be used to determine structures and energies for a wide range of crystalline systems. It can also be used to generate band structure and density of state plots.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#optimizing-the-unit-cell-and-geometry-for-an-8-atom-supercell-of-diamond-with-pspw","title":"Optimizing the Unit Cell and Geometry for an 8 Atom Supercell of Diamond with PSPW","text":"(input:Media:diamond-pspw.nw, output:Media:diamond-pspw.nwout, Media:diamond.opt.cif)
(input:Media:catom-pspw.nw, output:Media:catom-pspw.nwout)
The following example uses the PSPW module to optimize the unit cell and geometry for a diamond crystal. The fractional coordinates and the unit cell are defined in the geometry block. The simulation_cell block is not needed since NWPW automatically uses the unit cell defined in the geometry block.
title \"Diamond 8 atom cubic cell - geometry and unit cell optimization\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond \n\nmemory 950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 3.56d0 \n lat_b 3.56d0 \n lat_c 3.56d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \n end \n C -0.50000d0 -0.50000d0 -0.50000d0 \n C 0.00000d0 0.00000d0 -0.50000d0 \n C 0.00000d0 -0.50000d0 0.00000d0 \n C -0.50000d0 0.00000d0 0.00000d0 \n C -0.25000d0 -0.25000d0 -0.25000d0 \n C 0.25000d0 0.25000d0 -0.25000d0 \n C 0.25000d0 -0.25000d0 0.25000d0 \n C -0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased for small cells \n lmbfgs \n xc pbe96 \nend \n\ndriver \n clear \n maxiter 40 \nend \n\nset nwpw:cif_filename diamond.opt # create a CIF file containing optimization history \nset includestress .true. # this option tells driver to optimize the unit cell \ntask pspw optimize ignore\n
The optimized energy and geometry will be
... \n ---------------------- \n Optimization converged \n ---------------------- \n\n Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 6 -45.07688304 -1.1D-07 0.00037 0.00021 0.00002 0.00003 174.5 \n ok ok ok ok \n\n\n\n Geometry \"geometry\" -> \"geometry\" \n --------------------------------- \n\nOutput coordinates in angstroms (scale by 1.889725989 to convert to a.u.) \n\n No. Tag Charge X Y Z \n---- ---------------- ---------- -------------- -------------- -------------- \n 1 C 6.0000 1.82723789 1.82729813 1.82705440 \n 2 C 6.0000 0.00000857 -0.00006053 1.82730027 \n 3 C 6.0000 -0.00000584 1.82706061 0.00002852 \n 4 C 6.0000 1.82712018 0.00006354 -0.00002544 \n 5 C 6.0000 2.74074195 2.74072805 2.74088522 \n 6 C 6.0000 0.91366407 0.91370055 2.74064976 \n 7 C 6.0000 0.91351181 2.74080771 0.91352917 \n 8 C 6.0000 2.74078843 0.91348115 0.91365446 \n\n Lattice Parameters \n ------------------ \n\n lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.) \n\n a1=< 3.654 0.000 0.000 > \n a2=< 0.000 3.654 0.000 > \n a3=< 0.000 0.000 3.654 > \n a= 3.654 b= 3.654 c= 3.654 \n alpha= 90.000 beta= 90.000 gamma= 90.000 \n omega= 48.8 \n\n reciprocal lattice vectors in a.u. \n\n b1=< 0.910 0.000 0.000 > \n b2=< 0.000 0.910 0.000 > \n b3=< 0.000 0.000 0.910 > \n\n Atomic Mass \n ----------- \n\n C 12.000000 \n\n\n============================================================================== \n internuclear distances \n------------------------------------------------------------------------------ \n center one | center two | atomic units | angstroms \n------------------------------------------------------------------------------ \n 5 C | 1 C | 2.99027 | 1.58238 \n 6 C | 1 C | 2.99027 | 1.58238 \n 6 C | 2 C | 2.99027 | 1.58238 \n 7 C | 1 C | 2.99026 | 1.58238 \n 7 C | 3 C | 2.99027 | 1.58238 \n 8 C | 1 C | 2.99027 | 1.58238 \n 8 C | 4 C | 2.99027 | 1.58238 \n------------------------------------------------------------------------------ \n number of included internuclear distances: 7 \n============================================================================== \n\n============================================================================== \n internuclear angles \n------------------------------------------------------------------------------ \n center 1 | center 2 | center 3 | degrees \n------------------------------------------------------------------------------ \n 5 C | 1 C | 6 C | 109.46 \n 5 C | 1 C | 7 C | 109.48 \n 5 C | 1 C | 8 C | 109.48 \n 6 C | 1 C | 7 C | 109.47 \n 6 C | 1 C | 8 C | 109.46 \n 7 C | 1 C | 8 C | 109.48 \n 1 C | 6 C | 2 C | 109.48 \n 1 C | 7 C | 3 C | 109.47 \n 1 C | 8 C | 4 C | 109.47 \n------------------------------------------------------------------------------ \n number of included internuclear angles: 9 \n============================================================================== ...\n
The C-C bond distance after the geometry optimization is 1.58 Angs. and agrees very well with the experimental value of 1.54 Angs.. Another quantity that can be calculated from this simulation is the cohesive energy.The cohesive energy of a crystal is the energy needed to separate the atoms of the solid into isolated atoms, i.e.
where is the energy of the solid and are the energies of the isolated atoms. In order to calculate the cohesive energy the energy of an isolated carbon atom at the same level of theory and cutoff energy will need to be calculated. The following input can be used to the energy of an isolated carbon atom.
(input:file:catom-pspw.nw, output:file:catom-pspw.nwout)
title \"triplet carbon atom at pbe96 level using a large unit cell\" \nstart c1-pspw \nmemory 1400 mb \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\ngeometry \nC 0 0 0 \nend \n\nnwpw \n simulation_cell \n FCC 38.0 #large unit cell \n boundary_conditions periodic # periodic boundary conditions are used by default. \n #boundary_conditions aperiodic # free-space (or aperiodic) boundary conditions could also be used. \n end \n xc pbe96 \n mult 3 \n lmbfgs \nend \ntask pspw energy\n
The total energy from the simulation will be
Total PSPW energy : -0.5421213534E+01
Using this energy and energy of diamond the cohesive energy per atom is calculated to be
This value is substantially lower than the experimental value of ! It turns out this error is a result of the unit cell being too small for the diamond calculation (or too small of a Brillioun zone sampling). In the next section, we show how increasing the Brillouin zone sampling reduces the error in the calculated cohesive energy.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#optimizing-the-unit-cell-for-an-8-atom-supercell-of-diamond-with-band","title":"Optimizing the Unit Cell for an 8 Atom Supercell of Diamond with BAND","text":"(input:Media:diamond-band.nw, output:Media:diamond-band.nwout)
In this example the BAND module is used to optimize the unit cell and geometry for a diamond crystal at different Brillouin zone samplings.
title \"Diamond 8 atom cubic cell - geometry and unit cell optimization\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond-band \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 3.58d0 \n lat_b 3.58d0 \n lat_c 3.58d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \n end \n C -0.50000d0 -0.50000d0 -0.50000d0 \n C 0.00000d0 0.00000d0 -0.50000d0 \n C 0.00000d0 -0.50000d0 0.00000d0 \n C -0.50000d0 0.00000d0 0.00000d0 \n C -0.25000d0 -0.25000d0 -0.25000d0 \n C 0.25000d0 0.25000d0 -0.25000d0 \n C 0.25000d0 -0.25000d0 0.25000d0 \n C -0.25000d0 0.25000d0 0.25000d0 \nend \nset includestress .true. # option tells driver to optimize the unit cell \nset nwpw:zero_forces .true. # option zeros the forces on the atoms--> only lattice parameters optimized \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \nend \n\n#1x1x1 k-point mesh \nnwpw \n monkhorst-pack 1 1 1 \nend \nset nwpw:cif_filename diamond111.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#2x2x2 k-point mesh \nnwpw \n monkhorst-pack 2 2 2 \nend \nset nwpw:cif_filename diamond222.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#3x3x3 k-point mesh \nnwpw \n monkhorst-pack 3 3 3 \nend \nset nwpw:cif_filename diamond333.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#4x4x4 k-point mesh \nnwpw \n monkhorst-pack 4 4 4 \nend \nset nwpw:cif_filename diamond444.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#5x5x5 k-point mesh \nnwpw \n monkhorst-pack 5 5 5 \nend \nset nwpw:cif_filename diamond555.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n
The following figure shows a plot of the cohesive energy and C-C bond distance versus the Brillouin zone sampling. As can be seen in this figure the cohesive energy (w/o zero-point correction) and C-C bond distance agree very well with the experimental values of 7.37 eV (including zero-point correction) and 1.54 Angs.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#using-band-to-optimize-the-unit-cell-for-a-2-atom-primitive-cell-of-diamond","title":"Using BAND to Optimize the Unit Cell for a 2 Atom Primitive Cell of Diamond","text":"
(input:Media:diamond-fcc.nw, output:Media:diamond-fcc.nwout.gz)
In this example the BAND module is used to optimize a 2 atom unit cell for a diamond crystal at different Brillouin zone samplings. The optimized energy and geometry will be (Monkhorst-Pack sampling of 11x11x11)
---------------------- \n Optimization converged \n ---------------------- \n\n Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 1 -11.40586236 5.2D-07 0.00039 0.00018 0.00002 0.00003 662.0 \n ok ok ok ok \n\n\n\n Geometry \"geometry\" -> \"geometry\" \n --------------------------------- \n\n Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.) \n\n No. Tag Charge X Y Z \n ---- ---------------- ---------- -------------- -------------- -------------- \n 1 C 6.0000 0.00000000 0.00000000 0.00000000 \n 2 C 6.0000 0.72201500 1.25056532 0.51054180 \n\n Lattice Parameters \n ------------------ \n\n lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.) \n\n a1=< 2.165 1.251 0.001 > \n a2=< 0.001 2.500 0.001 > \n a3=< 0.722 1.251 2.041 > \n a= 2.500 b= 2.500 c= 2.500 \n alpha= 59.966 beta= 59.966 gamma= 59.966 \n omega= 11.0 \n\n reciprocal lattice vectors in a.u. \n\n b1=< 1.536 -0.768 0.000 > \n b2=< 0.000 1.330 0.000 > \n b3=< -0.543 -0.543 1.629 > \n\n Atomic Mass \n ----------- \n\n C 12.000000 \n\n\n ============================================================================== \n internuclear distances \n ------------------------------------------------------------------------------ \n center one | center two | atomic units | angstroms \n ------------------------------------------------------------------------------ \n 2 C | 1 C | 2.89435 | 1.53162 \n ------------------------------------------------------------------------------ \n number of included internuclear distances: 1 \n ==============================================================================\n
The following figure shows a plot of the cohesive energy and C-C bond distance versus the Brillouin zone sampling for the 8 atom SC unit cell and the 2 atom FCC unit cell.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#using-band-to-calculate-the-band-structures-of-diamond","title":"Using BAND to Calculate the Band Structures of Diamond","text":"
(input:Media:diamond-structure.nw, output:Media:diamond-structure.nwout, file:diamondfcc.restricted_band.dat)
The following example uses the BAND module to calculate the band structure for the FCC cell of the a diamond crystal. The fractional coordinates and the unit cell are defined in the geometry block. The simulation_cell block is not needed since NWPW automatically uses the unit cell defined in the geometry block.
title \"Diamond 2 atom fcc cell Brillouin sampling=9x9x9 M-P - Band structure plot\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamondfcc \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 2.500d0 \n lat_b 2.500d0 \n lat_c 2.500d0 \n alpha 60.0d0 \n beta 60.0d0 \n gamma 60.0d0 \n end \n C 0.00000d0 0.00000d0 0.00000d0 \n C 0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \n\n monkhorst-pack 9 9 9 \nend \n\n#need to run \"task band energy\" before \"task band structure\" can be run \ntask band energy \n\nnwpw \n virtual 16 \n brillouin_zone \n zone_name fccpath \n path fcc l gamma x w k gamma \n end \n zone_structure_name fccpath \nend \ntask band structure\n
This calculation outputs the file:diamondfcc.restricted_band.dat) data file in the permanent_directory. A plotting (e.g. gnuplot or xmgrace) can be used to display the band structure.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#using-band-to-calculate-the-density-of-states-of-diamond","title":"Using BAND to Calculate the Density of States of Diamond","text":"
(2 atom cell - input:diamond-dos.nw output:diamond-dos.nwout, diamond-dos.dos.dat (8 atom cell - input:diamond-dos8.nw output: diamond-dos8.nwout.gz, diamond-dos8.dos.dat
There are two possible ways to use the BAND module to calculate the density and projected density of states. The first approach just uses the eigenvalues generated from an energy calculation to generate a density of states. The following example uses this strategy to calculate the density of states and projected density of states of diamond.
title \"Diamond 2 atom fcc cell Brillouin sampling=9x9x9 M-P - density of states plot\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond-dos \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 2.500d0 \n lat_b 2.500d0 \n lat_c 2.500d0 \n alpha 60.0d0 \n beta 60.0d0 \n gamma 60.0d0 \n end \n C 0.00000d0 0.00000d0 0.00000d0 \n C 0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \n\n monkhorst-pack 9 9 9 \n dos # dos keyword tells the code to calculate dos at the end of an energy calculation\n mulliken # turn on projected density of states\n virtual 8 # include 8 virtual states\nend \n\ntask band energy \n
The other approach uses the band structure code to calculate the eigenvalues given a precomputed density. The approach is slower than the first approach, however, it can be used to substantially increase the number of k-points and virtual orbitals used to generate the density of states. The following example demonstrates this capability to calculate the density of states and projected density of states of the diamond crystal.
title \"Diamond 2 atom fcc cell Brillouin sampling=9x9x9 M-P - density of states plot\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond-dos \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 2.500d0 \n lat_b 2.500d0 \n lat_c 2.500d0 \n alpha 60.0d0 \n beta 60.0d0 \n gamma 60.0d0 \n end \n C 0.00000d0 0.00000d0 0.00000d0 \n C 0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \n\n monkhorst-pack 9 9 9 \nend \n\n#need to run \"task band energy\" before \"task band dos\" can be run \ntask band energy \n\nnwpw \n virtual 26 #26 virtual orbitals included in the DOS calculation \n dos 0.002 700 -1.00000 2.0000 #alpha npoints emin emax,....,change default energy range and gridding. note alpha not used in task band dos calculations\n dos-grid 11 11 11 \n mulliken # mulliken keyword used to turn on projected density of states\nend \ntask band dos\n
This calculation outputs the data file in the permanent_directory. A plotting (e.g. gnuplot or xmgrace) can be used to display the density of states.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#calculate-the-phonon-spectrum-of-diamond","title":"Calculate the Phonon Spectrum of Diamond","text":"
title \"Diamond 2 atom fcc cell Brillouin sampling=9x9x9 M-P - Phonon spectra\" \necho \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\nstart diamond-dos \n\nmemory 1950 mb \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 2.500d0 \n lat_b 2.500d0 \n lat_c 2.500d0 \n alpha 60.0d0 \n beta 60.0d0 \n gamma 60.0d0 \n end \n C 0.00000d0 0.00000d0 0.00000d0 \n C 0.25000d0 0.25000d0 0.25000d0 \nend \n\nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 #The default value of 1 needs to be increased \n lmbfgs \n xc pbe96 \n\n monkhorst-pack 9 9 9 \nend \n\ntask band energy \ntask band freq\n\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-6-optimizing-the-unit-cell-of-nickel-with-fractional-occupation","title":"NWPW Tutorial 6: optimizing the unit cell of nickel with fractional occupation","text":"(input:Media:Ni-band.nw output:Media:Ni-band.nwout) The following example demonstrates how to uses the BAND module to optimize the unit cell and geometry for FCC cell of Nickel metal
title \"Ni FCC metal, monkhorst-pack=3x3x3, 5x5x5, and 7x7x7, fermi smearing, xc=pbe96\" \necho \n\nstart Ni-band \n\nmemory 1900 mb \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\ngeometry units angstroms center noautosym noautoz print \n system crystal \n lat_a 3.5451d0 \n lat_b 3.5451d0 \n lat_c 3.5454d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \n end \n\nNi 0.000000 0.000000 0.000000 \nNi 0.000000 0.500000 0.500000 \nNi 0.500000 0.000000 0.500000 \nNi 0.500000 0.500000 0.000000 \nend \nset nwpw:cif_filename Ni-band \nset nwpw:zero_forces .true. \nset includestress .true. \n\n#turn on pseudopotential filtering \nset nwpw:kbpp_ray .true. \nset nwpw:kbpp_filter .true. \n\nnwpw \n #fractional occupation \n smear fermi \n\n #scf option used with smear \n scf anderson outer_iterations 0 kerker 2.0 \n\n ewald_ncut 8 \n ewald_rcut 3.0 \n xc pbe96 \n monkhorst-pack 3 3 3 \n np_dimensions -1 -1 4 \nend \n\n#generate initial wavefunctions w/ low cutoff energy \nnwpw \n loop 10 10 \n cutoff 10.0 \nend \ntask band energy \n\n#increase cutoff energy and number of iterations \nnwpw \n cutoff 50.0 \n loop 10 100 \nend\n\n#3x3x3 k-point mesh \nnwpw \n monkhorst-pack 3 3 3 \nend \nset nwpw:cif_filename nickel333.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#5x5x5 k-point mesh \nnwpw \n monkhorst-pack 5 5 5 \nend \nset nwpw:cif_filename nickel555.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n\n#7x7x7 k-point mesh \nnwpw \n monkhorst-pack 7 7 7 \nend \nset nwpw:cif_filename nickel777.opt \ndriver; clear; maxiter 40; end; task band optimize ignore\n
The following figure shows a plot of the cohesive energy and Ni-Ni bond distance versus the Brillouin zone sampling. As can be seen in this figure the cohesive energy (w/o zero-point correction) and Ni-Ni bond distance agree very well with the experimental values of 4.44 eV (including zero-point correction) and 2.49 Angs.
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-7-optimizing-the-unit-cells-with-symmetry-diamond-with-fd-3m-symmetry-and-brucite-with-p-3m1-symmetry","title":"NWPW Tutorial 7: Optimizing the unit cells with symmetry: Diamond with Fd-3m symmetry and Brucite with P-3m1 symmetry","text":"
(Diamond example, input:Media:diamond-symmetry.nw, output:Media:diamond-symmetry.nwout)
(Brucite example, input:Media:brucite-symmetry.nw, output:Media:brucite-symmetry.nwout)
The following example uses the BAND module to optimize the unit cell and geometry for a Diamond crystal with Fd-3m symmetry. The fractional coordinates, unit cell, and symmetry are defined in the geometry block.
title \"Diamond 8 atom cubic cell generated using Fd-3m symmetry - geometry and unit cell optimization\" \necho \n\nmemory 1500 mb\n\npermanent_dir ./perm\nscratch_dir ./scratch\n\nstart diamond-symmetry \n\n\ngeometry nocenter noautosym noautoz print \n system crystal \n lat_a 3.58 \n lat_b 3.58 \n lat_c 3.58 \n alpha 90.0 \n beta 90.0 \n gamma 90.0 \n end\nsymmetry Fd-3m\nC 0.0 0.0 0.0\nend \nset nwpw:cif_filename diamond-symmetry\n\n#turn on pseudopotential filtering \nset nwpw:kbpp_ray .true.\nset nwpw:kbpp_filter .true.\n\n#***** setup the nwpw Band code - 3x3x3 k-point mesh **** \nnwpw\n ewald_rcut 3.0\n ewald_ncut 8\n xc pbe96 \n lmbfgs\n monkhorst-pack 3 3 3\n np_dimensions -1 -1 4\nend \n\nset includestress .true. # tell driver to optimize unit cell\nset includelattice .true. # tell driver to optimize with a,b,c,alpha,beta,gamma\ntask band optimize ignore\n
The optimized geometry will also contain the information about the symmetry being used
.... \n ---------------------- \n Optimization converged \n ---------------------- \n\n\n Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 7 -45.62102901 -4.1D-07 0.00010 0.00003 0.00019 0.00060 287.1 \n ok ok ok ok \n\n\n\n Geometry \"geometry\" -> \"geometry\" \n --------------------------------- \n\nOutput coordinates in angstroms (scale by 1.889725989 to convert to a.u.) \n\n No. Tag Charge X Y Z \n---- ---------------- ---------- -------------- -------------- -------------- \n 1 C 6.0000 0.00000000 0.00000000 0.00000000 \n 2 C 6.0000 0.00000000 1.76715074 1.76715074 \n 3 C 6.0000 1.76715074 1.76715074 0.00000000 \n 4 C 6.0000 1.76715074 0.00000000 1.76715074 \n 5 C 6.0000 2.65072611 0.88357537 2.65072611 \n 6 C 6.0000 0.88357537 0.88357537 0.88357537 \n 7 C 6.0000 0.88357537 2.65072611 2.65072611 \n 8 C 6.0000 2.65072611 2.65072611 0.88357537 \n\n Lattice Parameters \n ------------------ \n\n lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.) \n\n a1=< 3.534 0.000 0.000 > \n a2=< 0.000 3.534 0.000 > \n a3=< 0.000 0.000 3.534 > \n a= 3.534 b= 3.534 c= 3.534 \n alpha= 90.000 beta= 90.000 gamma= 90.000 \n omega= 44.1 \n\n reciprocal lattice vectors in a.u. \n\n b1=< 0.941 0.000 0.000 > \n b2=< 0.000 0.941 0.000 > \n b3=< 0.000 0.000 0.941 > \n\n Atomic Mass \n ----------- \n\n C 12.000000 \n\n\n Symmetry information \n -------------------- \n\nGroup name Fd-3m \nGroup number 227 \nGroup order 192 \nNo. of unique centers 1 \nSetting number 1 \n\n Symmetry unique atoms \n\n 1 \n\n============================================================================== \n internuclear distances \n------------------------------------------------------------------------------ \n center one | center two | atomic units | angstroms \n------------------------------------------------------------------------------ \n 5 C | 4 C | 2.89203 | 1.53040 \n 6 C | 1 C | 2.89203 | 1.53040 \n 6 C | 2 C | 2.89203 | 1.53040 \n 6 C | 3 C | 2.89203 | 1.53040 \n 6 C | 4 C | 2.89203 | 1.53040 \n 7 C | 2 C | 2.89203 | 1.53040 \n 8 C | 3 C | 2.89203 | 1.53040 \n------------------------------------------------------------------------------ \n number of included internuclear distances: 7 \n============================================================================== \n\n\n\n============================================================================== \n internuclear angles \n------------------------------------------------------------------------------ \n center 1 | center 2 | center 3 | degrees \n------------------------------------------------------------------------------ \n 6 C | 2 C | 7 C | 109.47 \n 6 C | 3 C | 8 C | 109.47 \n 5 C | 4 C | 6 C | 109.47 \n 1 C | 6 C | 2 C | 109.47 \n 1 C | 6 C | 3 C | 109.47 \n 1 C | 6 C | 4 C | 109.47 \n 2 C | 6 C | 3 C | 109.47 \n 2 C | 6 C | 4 C | 109.47 \n 3 C | 6 C | 4 C | 109.47 \n------------------------------------------------------------------------------ \n number of included internuclear angles: 9 \n==============================================================================\n
The following example uses the BAND module to optimize the unit cell and geometry for a Brucite crystal (Mg(OH)2 with P-3m1 symmetry.
title \"brucite testing - using P-3m1 symmetry\" \necho \n\nmemory 1500 mb \n\npermanent_dir ./perm \nscratch_dir ./scratch \n\ngeometry nocenter noautosym noautoz print \n system crystal \n lat_a 3.14979 \n lat_b 3.14979 \n lat_c 4.7702 \n alpha 90.0 \n beta 90.0 \n gamma 120.0 \n end \nsymmetry P-3m1 \nMg 0.00000 0.00000 0.00000 \nO 0.33333 0.66667 0.22030 \nH 0.33333 0.66667 0.41300 \nend \nset nwpw:cif_filename brucite \n\n#turn on pseudopotential filtering \nset nwpw:kbpp_ray .true. \nset nwpw:kbpp_filter .true. \n\n#***** setup the nwpw gamma point code **** \nnwpw \n ewald_rcut 3.0 \n ewald_ncut 8 \n xc pbe96 \n lmbfgs \n monkhorst-pack 3 3 2 \n #np_dimensions -1 -1 4 \nend \n\ndriver \n clear \n maxiter 31 \nend \n\nset includestress .true. # tell driver to optimize unit cell \nset includelattice .true. \n\ntask band optimize ignore\n
Optimizing Brucite, which is a soft layered material (2.5-3 Mohs scale), is more difficult to optimize than a hard material such as Diamond. For these types of materials using symmetry can often result in a faster optimization. For example, with symmetry the optimization converges within 20 to 30 geometry optimization steps,
@ Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n@ ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 0 -34.39207476 0.0D+00 0.24673 0.10223 0.00000 0.00000 172.7 \n@ 1 -34.39340208 -1.3D-03 0.00872 0.00302 0.00198 0.00485 328.5 \n.... \n@ 20 -34.39042736 -1.2D-05 0.00195 0.00083 0.00440 0.01964 3019.2 \n@ 21 -34.39043463 -7.3D-06 0.00028 0.00011 0.00493 0.02042 3150.6 \n@ 22 -34.39043484 -2.1D-07 0.00043 0.00014 0.00002 0.00008 3278.5 \n@ 22 -34.39043484 -2.1D-07 0.00043 0.00014 0.00002 0.00008 3278.5\n
whereas, without symmetry the optimization may not be converged even at 100 geometry steps (input:Media:brucite-nosymmetry.nw, output:Media:brucite-nosymmetry.nwout).
@ Step Energy Delta E Gmax Grms Xrms Xmax Walltime \n@ ---- ---------------- -------- -------- -------- -------- -------- -------- \n@ 0 -34.39207476 0.0D+00 0.24673 0.10250 0.00000 0.00000 18.4 \n@ 1 -34.39340765 -1.3D-03 0.02963 0.00715 0.00202 0.00500 30.7 \n... \n@ 49 -34.39027641 -2.1D-06 0.01870 0.00646 0.00074 0.00202 595.7 \n@ 50 -34.39027503 1.4D-06 0.01962 0.00669 0.00069 0.00197 608.4 \n... \n@ 100 -34.39034236 -3.8D-07 0.00380 0.00150 0.00036 0.00132 1155.3 \n@ 101 -34.39034431 -1.9D-06 0.00305 0.00118 0.00012 0.00045 1166.8 \n@ 102 -34.39034449 -1.8D-07 0.00370 0.00144 0.00006 0.00020 1177.9 \n...\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-8-nvt-metropolis-monte-carlo-simulations","title":"NWPW Tutorial 8: NVT Metropolis Monte-Carlo Simulations","text":"In this example the PSPW module is used to run an NVT simulation for a diamond crystal using the a Metropolis Monte-Carlo algorithm.
title \"Metropolis NVT simulation of diamond - this input is used to put the system in equilibrium\" \necho \n\nstart diamond-nvt \n\n#permanent_dir ./perm \n#scratch_dir ./perm \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \nsystem crystal \n lat_a 3.56d0 \n lat_b 3.56d0 \n lat_c 3.56d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \nend \nC -0.50000d0 -0.50000d0 -0.50000d0 \nC 0.00000d0 0.00000d0 -0.50000d0 \nC 0.00000d0 -0.50000d0 0.00000d0 \nC -0.50000d0 0.00000d0 0.00000d0 \nC -0.25000d0 -0.25000d0 -0.25000d0 \nC 0.25000d0 0.25000d0 -0.25000d0 \nC 0.25000d0 -0.25000d0 0.25000d0 \nC -0.25000d0 0.25000d0 0.25000d0 \nend \nset nwpw:cif_filename diamond_nvt_234 \n\n###### setup the nwpw gamma point code ###### \nset nwpw:kbpp_ray .true. \nset nwpw:kbpp_filter .true. \nset nwpw:frozen_lattice:thresh 999.0 \nnwpw \n lmbfgs \n ewald_rcut 3.0 \n ewald_ncut 8 \n xc pbe \nend \ntask pspw energy \n\n##### optimize the unit cell ##### \nset includestress .true. #this option tells driver to optimize the unit cell \nset includelattice .true. #this option tells driver to optimize cell using a,b,c,alpha,beta,gamma \ndriver \n clear \n maxiter 51 \nend \ntask pspw optimize ignore \n\n#################################################################################### \n###### setup Metropolis NVT code - input will change in a forthcoming release ###### \n#################################################################################### \nset nwpw:mc_seed 234 # Seed for random number generator \nset nwpw:mc_algorithm 1 # 1-NVT; 2-NPT \nset nwpw:mc_aratio 0.234 # targeted acceptance ratio \nset nwpw:mc_ddx 0.1 # parameter used to adjust geometry dispacement to have sampling with targeted acceptance \nset nwpw:mc_temperature 300.0 # Temperature in K \nset nwpw:mc_step_size 0.250 # initial geometry displacement step size \n\nnwpw \n mc_steps 10 100 #total number of iterations = 10*100, number of iterations between step size adjustments = 10 \n cpmd_properties on \nend \ntask pspw Metropolis\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-9-npt-metropolis-monte-carlo-simulations","title":"NWPW Tutorial 9: NPT Metropolis Monte-Carlo Simulations","text":"In this example the PSPW module is used to run an NPT simulation for a diamond crystal using the a Metropolis Monte-Carlo algorithm.
(input:Media:diamond-metropolis.nw, output:Media:diamond-metropolis.nwout.gz, datafiles:Media:diamond-metropolis.emotion.gz, Media:diamond-metropolis.ion_motion.gz, Media:diamond-metropolis.xyz.gz, Media:diamond_metropolis_1234.cif.gz)
title \"Metropolis NPT simulation of diamond - this input is used to put the system in equilibrium\" \necho \n\nstart diamond-metropolis \n\n#permanent_dir ./perm \n#scratch_dir ./perm \n\n#**** Enter the geometry using fractional coordinates **** \ngeometry center noautosym noautoz print \n system crystal \n lat_a 3.56d0 \n lat_b 3.56d0 \n lat_c 3.56d0 \n alpha 90.0d0 \n beta 90.0d0 \n gamma 90.0d0 \n end \n C -0.50000d0 -0.50000d0 -0.50000d0 \n C 0.00000d0 0.00000d0 -0.50000d0 \n C 0.00000d0 -0.50000d0 0.00000d0 \n C -0.50000d0 0.00000d0 0.00000d0 \n C -0.25000d0 -0.25000d0 -0.25000d0 \n C 0.25000d0 0.25000d0 -0.25000d0 \n C 0.25000d0 -0.25000d0 0.25000d0 \n C -0.25000d0 0.25000d0 0.25000d0 \nend \nset nwpw:cif_filename pspw_metropolis \n\n###### setup the nwpw gamma point code ###### \nset nwpw:kbpp_ray .true. \nset nwpw:kbpp_filter .true. \nset nwpw:frozen_lattice:thresh 999.0 \nnwpw \n lmbfgs \n ewald_rcut 3.0 \n ewald_ncut 8 \n xc pbe \nend \ntask pspw energy \n\n\n#################################################################################### \n###### setup Metropolis NPT code - input will change in a forthcoming release ###### \n#################################################################################### \nset nwpw:mc_seed 1234 # Seed for random number generator \nset nwpw:mc_algorithm 2 # 1-NVT; 2-NPT \nset nwpw:mc_aratio 0.234 # targeted acceptance ratio \nset nwpw:mc_ddx 0.1 # parameter used to adjust geometry dispacement to have sampling with targeted acceptance \nset nwpw:mc_ddv 0.1 # parameter used to adjust volume change to have sampling with targeted acceptance \nset nwpw:mc_temperature 300.0 # Temperature in K \nset nwpw:mc_step_size 0.250 # geometry displacement step size \nset nwpw:mc_volume_step 0.130 # volume displacement step size \n\nnwpw \n bo_steps 10 100 #total number of iterations = 10*100, number of iterations between step size adjustments = 10 \nend \ntask pspw Metropolis\n
(inputs:Media:diamond-metropolis-sampling.nw.tgz)
(python analysis program:Media:makehistogram.gz)
[WE27972:~/Projects/NWChem/Metropolis] bylaska% makehistogram -t 300 -c 2 1235/diamond-metropolis-1235.emotion 1236/diamond-metropolis-1236.emotion \n1237/diamond-metropolis-1237.emotion 1238/diamond-metropolis-1238.emotion 1239/diamond-metropolis-1239.emotion 1240/diamond-metropolis-1240.emotion \n1241/diamond-metropolis-1241.emotion 1242/diamond-metropolis-1242.emotion 1243/diamond-metropolis-1243.emotion 1244/diamond-metropolis-1244.emotion \n1245/diamond-metropolis-1245.emotion 1246/diamond-metropolis-1246.emotion 1248/diamond-metropolis-1248.emotion 1249/diamond-metropolis-1249.emotion \nmakehistogram Program \nlen(args)= 14 \n\nunitconversion = 1.0 \ntemperature (K) = 300 \nRT (au) = 0.000949482834326 ( 0.5958 kcal/mol) \n\ndata columns -1 = [1] \ndata rows (n) = 52000 \n\ndelta (au) = 0.01 \nxmin-delta (au) = -45.08080365 \nxmax+delta (au) = -45.05079515 \n\ndata averaging: \n- xbar (au) = -45.0668093497 \n- S2_{n-1} (au) = 1.08378343101e-05 \n- <exp((x-xmin)/RT)> (au) = 5293374903.39 \n- <exp((x-xbar)/RT)> (au) = 2102.44405413 \n- Free energy = -45.0595449934 \n- Free energy1 = -45.0595449934 \n\nhistogram distribution parameters: \n- number of bins (Rice k) = 75 \n- bin width = 0.00040552027027 \n- norm = 1.0 \n- xbar (au) = -45.0668107987 (error= -1.44908364064e-06 ) \n- S2_{n-1} (au) = 1.0858459744e-05 (error= 2.06254339582e-08 ) \n- <exp((x-xmin)/RT)> (au) = 5184600342.01 (error= -108774561.378 ) \n- <exp((x-xbar)/RT)> (au) = 2062.38570923 (error= -40.0583449011 ) \n- Free energy = -45.0595647078 (error= -1.9714360235e-05 ) \n- Free energy1 = -45.0595647078 (error= -1.9714360235e-05 ) \n- histogram plot file = histogram.dat \n\nnormal distribution parameters: \n- average x (input xbar) = -45.0668093497 \n- unbiased sample variance (input S2_(n-1))= 1.08378343101e-05 \n- xbar-xmin = 0.0139943003357 \n- norm = 0.99998877936 \n- xbar (au) = -45.0663035243 (error= 0.000505825397738 ) \n- S2_{n-1} (au) = 1.1091077321e-05 (error= 2.53243010936e-07 ) \n- <exp((x-xmin)/RT)> (au) = 943482808.939 (error= -4349892094.45 ) \n- <exp((x-xbar)/RT)> (au) = 219.968603653 (error= -1882.47545048 ) \n- Free energy = -45.061182503 (error= -0.00163750957643 ) \n- Free energy1 = -45.061182503 (error= -0.00163750957643 ) \n- normal distribution plot file = normdist.dat \n- number data points = 1500 \n\ngamma distribution parameters: \n- alpha0= 18.0700715921 \n- beta0 = 1291.24508969 \n- xmin + alpha0/beta0 = -45.0668093497 \n- alpha = 18.5003178357 \n- beta = 1321.98948086 \n- xmin + alpha/beta = -45.0668093497 \n- norm = 0.999923464137 0.99993569948 \n- xbar (au) = -45.0633614482 -45.0639126423 (error= 0.00344790150088 0.00289670733491 ) \n- S2_{n-1} (au) = 2.27110055327e-05 1.89632753897e-05 (error= 1.18731712226e-05 8.12544107961e-06 ) \n- <exp((x-xmin)/RT)> (au) = 7932775654.26 7060892836.07 (error= 2639400750.87 1767517932.68 ) \n- <exp((x-xbar)/RT)> (au) = 83.43400035 132.707151194 (error= -2019.01005378 -1969.73690294 ) \n- Free energy = -45.059160883 -45.0592714327 (error= 0.000384110406969 0.000273560709338 ) \n- Free energy1 = -45.059160883 -45.0592714327 (error= 0.000384110406969 0.000273560709338 ) \n- gamma distribution plot file = gammadist.dat \n- number data points = 1500 \n\nHausdorff distribution parameters: \n- xmin = -45.08080365 \n- xmax = -45.05079515 \n- number moments = 15 \n -- < x^0 > = 1.000000000000000 \n -- < x^1 > = 0.466344546904007 \n -- < x^2 > = 0.229512222180349 \n -- < x^3 > = 0.119040323347820 \n -- < x^4 > = 0.064946164109284 \n -- < x^5 > = 0.037186896798964 \n -- < x^6 > = 0.022287980659815 \n -- < x^7 > = 0.013942929105868 \n -- < x^8 > = 0.009076370636747 \n -- < x^9 > = 0.006128509645342 \n -- < x^10 > = 0.004278147917961 \n -- < x^11 > = 0.003077410986590 \n -- < x^12 > = 0.002273768533280 \n -- < x^13 > = 0.001720304299285 \n -- < x^14 > = 0.001328990330385 \n- norm = 1.0000000003 \n- xbar (au) = -45.066809363 (error= -1.33426993898e-08 ) \n- S2_{n-1} (au) = 1.08376258908e-05 (error= -2.08419282206e-10 ) \n- <exp((x-xmin)/RT)> (au) = 5423305875.35 (error= 129930971.958 ) \n- <exp((x-xbar)/RT)> (au) = 2154.08083332 (error= 51.6367791881 ) \n- Free energy = -45.0595219689 (error= 2.30245307122e-05 ) \n- Free energy1 = -45.0595219689 (error= 2.30245307122e-05 ) \n- Hausdorff moment history file = moment_hist.dat \n- Hausdorff distribution plot file = hausdorff.dat \n- number data points = 1500\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-tutorial-9-free-energy-simulations","title":"NWPW Tutorial 9: Free Energy Simulations","text":"
A description of using the WHAM method for generating free energy of the gas-phase dissociation reaction CHCl CH+Cl can be found in the attached pdf (nwchem-new-pmf.pdf)
"},{"location":"Plane-Wave-Density-Functional-Theory.html#paw-tutorial","title":"PAW Tutorial","text":""},{"location":"Plane-Wave-Density-Functional-Theory.html#optimizing-a-water-molecule","title":"Optimizing a water molecule","text":"The following input deck performs for a water molecule a PSPW energy calculation followed by a PAW energy calculation and a PAW geometry optimization calculation. The default unit cell parameters are used (SC=20.0, ngrid 32 32 32). In this simulation, the first PAW run optimizes the wavefunction and the second PAW run optimizes the wavefunction and geometry in tandem.
title \"paw steepest descent test\" \nstart paw_test \ncharge 0 \ngeometry units au nocenter noautoz noautosym \nO 0.00000 0.00000 0.01390 \nH -1.49490 0.00000 -1.18710 \nH 1.49490 0.00000 -1.18710 \nend \nnwpw \n time_step 15.8 \n ewald_rcut 1.50 \n tolerances 1.0d-8 1.0d-8 \nend \nset nwpw:lcao_iterations 1 \nset nwpw:minimizer 2 \ntask pspw energy \ntask paw energy \nnwpw \n time_step 5.8 \n geometry_optimize \n ewald_rcut 1.50 \n tolerances 1.0d-7 1.0d-7 1.0d-4 \nend\ntask paw steepest_descent \ntask paw optimize\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#optimizing-a-unit-cell-and-geometry-for-silicon-carbide","title":"Optimizing a unit cell and geometry for Silicon-Carbide","text":"The following example demonstrates how to uses the PAW module to optimize the unit cell and geometry for a silicon-carbide crystal.
title \"SiC 8 atom cubic cell - geometry and unit cell optimization\" \nstart SiC\n#**** Enter the geometry using fractional coordinates **** \ngeometry units au center noautosym noautoz print\n system crystal\n lat_a 8.277d0\n lat_b 8.277d0 \n lat_c 8.277d0 \n alpha 90.0d0 \n beta 90.0d0\n gamma 90.0d0\n end \nSi -0.50000d0 -0.50000d0 -0.50000d0\nSi 0.00000d0 0.00000d0 -0.50000d0 \nSi 0.00000d0 -0.50000d0 0.00000d0 \nSi -0.50000d0 0.00000d0 0.00000d0\nC -0.25000d0 -0.25000d0 -0.25000d0\nC 0.25000d0 0.25000d0 -0.25000d0 \nC 0.25000d0 -0.25000d0 0.25000d0\nC -0.25000d0 0.25000d0 0.25000d0 \nend \n#***** setup the nwpw gamma point code **** \nnwpw\n simulation_cell \n ngrid 16 16 16\n end\n ewald_ncut 8 \nend \nset nwpw:minimizer 2\nset nwpw:psi_nolattice .true. # turns of unit cell checking for wavefunctions \ndriver\n clear \n maxiter 40 \nend\nset includestress .true. # this option tells driver to optimize the unit cell\nset nwpw:stress_numerical .true. #currently only numerical stresses implemented in paw\ntask paw optimize\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#running-a-car-parrinello-simulation","title":"Running a Car-Parrinello Simulation","text":"In this section we show how use the PAW module to perform a Car-Parrinello molecular dynamic simulation for a C2 molecule at the LDA level. Before running a PAW Car-Parrinello simulation the system should be on the Born-Oppenheimer surface, i.e. the one-electron orbitals should be minimized with respect to the total energy (i.e. task pspw energy). The input needed is basically the same as for optimizing the geometry of a C2 molecule at the LDA level,except that and additional Car-Parrinello sub-block is added.
In the following example we show the input needed to run a Car-Parrinello simulation for a C2 molecule at the LDA level. In this example, default pseudopotentials from the pseudopotential library are used for C, the boundary condition is free-space, the exchange correlation functional is LDA, The boundary condition is free-space, and the simulation cell cell is aperiodic and cubic with a side length of 10.0 Angstroms and has 40 grid points in each direction (cutoff energy is 44 Ry). The time step and fake mass for the Car-Parrinello run are specified to be 5.0 au and 600.0 au, respectively.
start c2_paw_lda_md \ntitle \"C2 restricted singlet dimer, LDA/44Ry - constant energy Car-Parrinello simulation\"\ngeometry \n C -0.62 0.0 0.0 \n C 0.62 0.0 0.0 \nend\npspw \n simulation_cell units angstroms \n boundary_conditions aperiodic \n lattice \n lat_a 10.00d0 \n lat_b 10.00d0\n lat_c 10.00d0\n end \n ngrid 40 40 40\n end \n Car-Parrinello \n fake_mass 600.0\n time_step 5.0 \n loop 10 10 \n end \nend \nset nwpw:minimizer 2\ntask paw energy\ntask paw Car-Parrinello\n
"},{"location":"Plane-Wave-Density-Functional-Theory.html#nwpw-capabilities-and-limitations","title":"NWPW Capabilities and Limitations","text":"Questions and encountered problems should be reported to the NWChem Community Forum or to Eric J. Bylaska, Eric.Bylaska@pnl.gov
"},{"location":"Pm-3.html","title":"Pm 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0200\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Pm-3m.html","title":"Pm 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0221\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Pm-3n.html","title":"Pm 3n","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0223\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm-3n\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Pm.html","title":"Pm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a06\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n+x,-y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a06\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Monoclinic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a02\n\n+x,+y,+z\n+x,+y,-z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0 \n
"},{"location":"Pma2.html","title":"Pma2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a028\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pma2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y,+z\n-x+1/2,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmc2_1.html","title":"Pmc2 1","text":"group number = 26\n\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Pmc2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmm2.html","title":"Pmm2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a025\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmm2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmma.html","title":"Pmma","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a051\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmma\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmmm.html","title":"Pmmm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a047\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmmm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x,-y,-z\n+x,+y,-z\n+x,-y,+z\n-x,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmmn.html","title":"Pmmn","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a059\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmmn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z\n+x+1/2,-y+1/2,-z\n-x+1/2,-y+1/2,-z\n+x+1/2,+y+1/2,-z\n+x,-y,+z\n-x,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a059\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmmn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x,+y+1/2,-z\n+x+1/2,-y,-z\n-x,-y,-z\n+x+1/2,+y+1/2,-z\n+x,-y+1/2,+z\n-x+1/2,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmn2_1.html","title":"Pmn2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a031\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Pmn2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pmna.html","title":"Pmna","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a053\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pmna\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x+1/2,+y,-z+1/2\n+x,-y,-z\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x+1/2,-y,+z+1/2\n-x,+y,+z\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0 \n
"},{"location":"Pn-3.html","title":"Pn 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0201\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pn-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a024\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Pn-3m.html","title":"Pn 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0224\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pn-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"Pn-3n.html","title":"Pn 3n","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0222\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pn-3n\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Cubic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a048\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a015\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a020\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a021\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a023\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a024\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a025\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a026\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a027\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a028\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a029\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a030\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a031\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a033\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a035\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a036\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a037\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a038\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a039\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a040\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a041\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a042\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a043\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a044\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a045\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a046\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a047\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a048\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"Pna2_1.html","title":"Pna2 1","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a033\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0Pna2_1\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z+1/2\n+x+1/2,-y+1/2,+z\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnc2.html","title":"Pnc2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a030\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnc2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnma.html","title":"Pnma","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a062\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnma\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z+1/2\n-x,+y+1/2,-z\n+x+1/2,-y+1/2,-z+1/2\n-x,-y,-z\n+x+1/2,+y,-z+1/2\n+x,-y+1/2,+z\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnn2.html","title":"Pnn2","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a034\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnn2\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a04\n\n+x,+y,+z\n-x,-y,+z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnna.html","title":"Pnna","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a052\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnna\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y,+z\n-x+1/2,+y+1/2,-z+1/2\n+x,-y+1/2,-z+1/2\n-x,-y,-z\n+x+1/2,+y,-z\n+x+1/2,-y+1/2,+z+1/2\n-x,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnnm.html","title":"Pnnm","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a058\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnnm\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,-z+1/2\n-x,-y,-z\n+x,+y,-z\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Pnnn.html","title":"Pnnn","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a048\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnnn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x,-y,+z\n-x,+y,-z\n+x,-y,-z\n-x+1/2,-y+1/2,-z+1/2\n+x+1/2,+y+1/2,-z+1/2\n+x+1/2,-y+1/2,+z+1/2\n-x+1/2,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a048\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Pnnn\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Orthorhombic\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a08\n\n+x,+y,+z\n-x+1/2,-y+1/2,+z\n-x+1/2,+y,-z+1/2\n+x,-y+1/2,-z+1/2\n-x,-y,-z\n+x+1/2,+y+1/2,-z\n+x+1/2,-y,+z+1/2\n-x,+y+1/2,+z+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a08\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5 \n
"},{"location":"Potential-Energy-Surface-Analysis.html","title":"Potential Energy Surface Analysis","text":""},{"location":"Potential-Energy-Surface-Analysis.html#constraints-for-optimization","title":"Constraints for Optimization","text":""},{"location":"Potential-Energy-Surface-Analysis.html#geometry-optimization-minimization-transition-state-search","title":"Geometry Optimization (Minimization & Transition State Search)","text":""},{"location":"Potential-Energy-Surface-Analysis.html#hessians-vibrational-frequencies","title":"Hessians & Vibrational Frequencies","text":""},{"location":"Potential-Energy-Surface-Analysis.html#nudged-elastic-band-neb-and-zero-temperature-string-methods","title":"Nudged Elastic Band (NEB) and Zero Temperature String Methods","text":""},{"location":"Prepare.html","title":"Prepare","text":"The prepare module is used to set up the necessary files for a molecular dynamics simulation with NWChem. User supplied coordinates can be used to generate topology and restart files. The topology file contains all static information about a molecular system, such as lists of atoms, bonded interactions and force field parameters. The restart file contains all dynamic information about a molecular system, such as coordinates, velocities and properties.
Without any input, the prepare module checks the existence of a topology and restart file for the molecular systems. If these files exist, the module returns to the main task level without action. The module will generate these files when they do not exist. Without any input to the module, the generated system will be for a non-solvated isolated solute system.
To update existing files, including solvation, the module requires input directives read from an input deck,
prepare\n ...\nend\n
The prepare module performs three sub-tasks:
Files involved in the preparation phase exist in the following hierarchy:
Data is taken from the database files searched in the above order. If data is specified more than once, the last found values are used. For example, if some standard segment is redefined in a temporary file, the latter one will be used. This allows the user to redefine standards or extensions without having to modify those database files, which may reside in a generally available, non-modifyable directory. If a filename is specified rather than a directory, the filename indicates the parameter file definition. All other files (frg and sgm files) will be take from the specified directory.
The most common problems with the prepare module are
The file $HOME/.nwchemrc may contain the following entries that determine which files are used by the prepare module.
ffield <string ffname>\n
This entry specifies the default force field. Database files supplied with NWChem currently support values for ffname of amber, referring to AMBER95, and charmm, referring to the academic CHARMM22 force field.
<string ffname>_(1-9) <string ffdir>[{<string parfile>}]\n
Entries of this type specify the directory ffdir in which force field database files can be found. Optionally the parameterfile in this directory may be specified as parfile. The prepare module will only use files in directories specified here. One exception is that files in the current work directory will be used if no directory with current files is specified. The directories are read in the order 1-9 with duplicate parameters taken from the last occurrence found. Note that multiple parameter files may be specified that will be read in the order in which they are specified.
<string solvnam> <string solvfil>\n
This entry may be used to identify a pure solvent restart file solvfil by a name solvnam
An example file $HOME/.nwchemrc is:
ffield amber\n\namber_1 /soft/nwchem/share/amber/amber_s/amber99.par,spce.par\n\namber_2 /soft/nwchem/share/amber/amber_x/\n\namber_3 /usr/people/username/data/amber/amber_u/\n\nspce /soft/nwchem/share/solvents/spce.rst\n\ncharmm_1 /soft/nwchem/share/charmm/charmm_s/\n\ncharmm_2 /soft/nwchem/share/charmm/charmm_x/\n
"},{"location":"Prepare.html#system-name-and-coordinate-source","title":"System name and coordinate source","text":"system <string sys_calc>\n
The system name can be explicitly specified for the prepare module. If not specified, the system name will be taken from a specification in a previous md input block, or derived from the run time database name.
source ( pdb | rtdb )\n
The source of the coordinates can be explicitly specified to be from a PDB formatted file sys.pdb, or from a geometry object in the run time database. If not specified, a pdb file will be used when it exists in the current directory or the rtdb geometry otherwise.
model <integer modpdb default 0>\n
If a PDB formatted source file contains different MODELs, the model keyword can be used to specify which MODEL will be used to generate the topology and restart file. If not specified, the first MODEL found on the PDB file will be read.
altloc <character locpdb default ' '>\n
The altloc keyword may be used to specify the use of alternate location coordinates on a PDB file.
chain <character chnpdb default ' '>\n
The chain keyword may be used to specify the chain identifier for coordinates on a PDB file.
histidine ( hid | hie | hip )\n
specifies the default protonation state of histidine.
sscyx\n
Keyword sscyx may be used to rename cysteine residues that form sulphur bridges to CYX.
hbuild\n
Keyword hbuild may be used to add hydrogen atoms to the unknown segments of the structure found on the pdb file. Placement of hydrogen atoms is based on geometric criteria, and the resulting fragment and segment files should be carefully examined for correctness.
The database directories are used as specified in the file .nwchemrc. Specific definitions for the force field used may be changed in the input file using
directory_(1-9) <string ffdir> [<string parfile>]\n
"},{"location":"Prepare.html#sequence-file-generation","title":"Sequence file generation","text":"If no existing sequence file is present in the current directory, or if the new_seq keyword was specified in the prepare input deck, a new sequence file is generated from information from the pdb file, and the following input directives.
maxscf <integer maxscf default 20>\n
Variable maxscf specifies the maximum number of atoms in a segment for which partial atomic charges will be determined from an SCF calculation followed by RESP charge fitting. For larger segments a crude partial charge guestimation will be done.
qscale <real qscale default 1.0>\n
Variable qscale specifies the factor with which SCF/RESP determined charges will be multiplied.
modify sequence { <integer sgmnum>:<string sgmnam> }\n
This command specifies that segment sgmnam should be used for segment with number sgmnum. This command can be used to specify a particular protonation state. For example, the following command specifies that residue 114 is a hystidine protonated at the N\u03b5 site and residue 202 is a hystidine protonated at the N\u03b4 site:
modify sequence 114:HIE 202:HID\n
Links between atoms can be enforced with
link <string atomname> <string atomname>\n
For example, to link atom SG in segment 20 with atom FE in segment 55, use:
link 20:_SG 55:FE\n
The format of the sequence file is given in this table. In addition to the list of segments this file also includes links between non-standard segments or other non-standard links. These links are generated based on distances found between atoms on the pdb file. When atoms are involved in such non-standard links that have not been identified in the fragment of segment files as a non-chain link atom, the prepare module will ignore these links and report them as skipped. If one or more of these links are required, the user has to include them with explicit link directives in the sequence file, making them forced links. Alternatively, these links can be made forced-links by changing link into LINK in the sequence file.
fraction { <integer imol> }\n
Directive fraction can be used to separate solute molecules into fractions for which energies will be separately reported during molecular dynamics simulations. The listed molecules will be the last molecule in a fraction. Up to 10 molecules may be specified in this directive.
counter <integer num> <string ion>\n
Directive counter adds num counter ions of type ion to the sequence file. Up to 10 counter directives may appear in the input block.
counter <real factor>\n
This directive scales the counter ion charge by the specified factor in the determination of counter ions positions.
"},{"location":"Prepare.html#topology-file-generation","title":"Topology file generation","text":"new_top [ new_seq ]\n
Keyword new_top is used to force the generation of a new topology file. An existing topology file for the system in the current directory will be overwritten. If keyword new_seq is also specified, an existing sequence file will also be overwritten with a newly generated file.
amber | charmm\n
The prepare module generates force field specific fragment, segment and topology files. The force field may be explicitly specified in the prepare input block by specifying its name. Currently AMBER and CHARMM are the supported force fields. A default force field may be specified in the file $HOME/.nwchemrc.
standard <string dir_s>[<string par_s>]\nextensions <string dir_x>[<string par_x>]\ncontributed <string dir_q>[<string par_q>]\nuser <string dir_u>[<string par_u>]\ntemporary <string dir_t>[<string par_t>]\ncurrent <string dir_c>[<string par_c>]\n
The user can explicitly specify the directories where force field specific databases can be found. These include force field standards, extensions, quality assurance tests, user preferences, temporary , and current database files. Defaults for the directories where database files reside may be specified in the file $HOME/.nwchemrc for each of the supported force fields. Fragment, segment and sequence files generated by the prepare module are written in the temporary directory. When not specified, the current directory will be used. Topology and restart files are always created in the current directory.
The following directives control the modifications of a topology file. These directives are executed in the order in which they appear in the prepare input deck. The topology modifying commands are not stored on the run-time database and are, therefor, not persistent.
modify atom <string atomname> [set <integer mset> | initial | final] \\\n ( type <string atomtyp> | charge <real atomcharge> | \\\n polar <real atompolar> | dummy | self | quantum | quantum_high )\n
These modify commands change the atom type, partial atomic charge, atomic polarizability, specify a dummy, self-interaction and quantum atom, respectively. If mset is specified, the modification will only apply to the specified set, which has to be 1, 2 or 3. If not specified, the modification will be applied to all three sets. The quantum region in QM/MM simulations is defined by specifying atoms with the quantum or quantum_high label. For atoms defined quantum_high basis sets labeled X_H will be used. The atomnam should be specified as :, where isgm is the segment number, and name is the atom name. A leading blank in an atom name should be substituted with an underscore. The modify commands may be combined. For example, the following directive changes for the specified atom the charge and atom type in set 2 and specifies the atom to be a dummy in set 3.
modify atom 12:_C1 set 2 charge 0.12 type CA set 3 dummy\n
With the following directives modifications can be made for entire segments.
modify segment <integer isgm> \\\n [protonation <integer iprot> | set <integer mset> | initial | final] \\\n ( dummy | self | uncharged | quantum | quantum_high )\n
where protonation specifies a modification of the default protonation state of the segment as specified in the segment file. This option only applies to Q-HOP simulations.
Modifications to bonded interaction parameters can be made with the following modify commands.
modify ( bond <string atomtyp> <string atomtyp> | \\\n angle <string atomtyp> <string atomtyp> <string atomtyp> | \\ \n torsion <string atomtyp> <string atomtyp> <string atomtyp> \\\n <string atomtyp> [ multiplicity <integer multip> ] | \\\n plane <string atomtyp> <string atomtyp> <string atomtyp> \\\n <string atomtyp> ) [set <integer mset>` | initial | final] \\\n <real value> <real forcon>\n
where atomtyp and mset are defined as above, multip is the torsion ultiplicity for which the modification is to be applied, value is the reference bond, angle, torsion angle of out-of-plane angle value respectively, and forcon is the force constant for bond, angle, torsion angle of out-of-plane angle. When multip or mset are not defined the modification will be applied to all multiplicities and sets, respectively, for the identified bonded interaction.
After modifying atoms to quantum atoms the bonded interactions in which only quantum atoms are involved are removed from the bonded lists using
update lists\n
Error messages resulting from parameters not being defined for bonded interaction in which only quantum atoms are involved are ignored using
ignore\n
To specify that a free energy calculation will be carried out using the topology file, the following keyword needs to be specified,
free\n
To specify that a Q-HOP simulation will be carried out using the topology file, the following keyword needs to be specified,
qhop\n
To specify that only the first set of parameters should be used, even if multiple sets have been defined in the fragment or segment files, the following keyword needs to be specified,
first\n
Note that keywords free, qhop and qhop are mutually exclusive.
"},{"location":"Prepare.html#appending-to-an-existing-topology-file","title":"Appending to an existing topology file","text":"noe <string atom1> <string atom3> \\\n\n <real dist1> <real dist2> <real dist3> <real forc1> <real forc2>\n
This directive specifies a distance restraint potential between atoms atom1 and atom2, with a harmonic function with force constant forc1 between dist1 and dist2, and a harmonic function with force constant forc2 between dist2 and dist3. For distances shorter than dist1 or larger than dist3, a constant force is applied such that force and energy are continuous at dist1 and dist3, respectively. Distances are given in nm, force constants in .
select <integer isel> { <string atoms> }\n
Directive select specifies a group of atoms used in the definition of potential of mean force potentials.
The selected atoms are specified by the string atoms which takes the form
[{isgm [ - jsgm ] [,]} [:] [{aname[,]}]\n
For example, all carbon and oxygen atoms in segments 3 and 6 through 12 are selected for group 1 by
3,6-12:_C????,_O????\npmf [all] [bias] zalign <integer isel> <real forcon1> <real forcon2>\npmf [combine] [bias] xyplane <integer isel> <real forcon1> <real forcon2>\npmf [constraint] [bias] (distance | zdistance) <integer isel> <integer jsel> \\\n <real dist1> <real dist2> <real forcon1> <real forcon2>\npmf [bias] angle <integer isel> <integer jsel> <integer ksel> \\\n <real angle1> <real angle2> <real forcon1> <real forcon2>\npmf [bias] torsion <integer isel> <integer jsel> <integer ksel> <integer lsel> \\\n <real angle1> <real angle2> <real forcon1> <real forcon2>\npmf [bias] basepair <integer isel> <integer jsel> \\\n <real dist1> <real dist2> <real forcon1> <real forcon2>\npmf [bias] (zaxis | zaxis-cog) <integer isel> <integer jsel> <integer ksel> \\\n <real dist1> <real dist2> <real forcon1> <real forcon2>\n
Directive pmf specifies a potential of mean force potential in terms of the specified atom selection. Option zalign specifies the atoms in the selection to be restrained to a line parallel to the z-axis. Option xyplane specifies the atoms in the selection to be restrained to a plane perpendicular to the z-axis. Options distance, angle and torsion, are defined in terms of the center of geometry of the specified atom selections. Keyword basepair is used to specify a harmonic potential between residues isel and jsel. Keywords zaxis and zaxis-cog can be used to pull atoms toward the z-axis. Option all may be specified to apply an equivalent pmf to each of the equivalent solute molecules in the system. Option combine may be specified to apply the specified pmf to the atoms in all of the equivalent solute molecules. Option constraint may be specified to a distance pmf to treat the distance as a constraint. Option bias may be specified to indicate that this function should be treated as a biasing potential. Appropriate corrections to free energy results will be evaluated.
"},{"location":"Prepare.html#generating-a-restart-file","title":"Generating a restart file","text":"new_rst\n
Keyword new_rst will cause an existing restart file to be overwritten with a new file.
The follwing directives control the manipulation of restart files, and are executed in the order in which they appear in the prepare input deck.
solvent name <string*3 slvnam default 'HOH'> \\ \n model <string slvmdl default 'spce'> \n
The solvent keyword can be used to specify the three letter solvent name as expected on the PDB formatted file, and the name of the solvent model for which solvent coordinates will be used.
solvate [ < real rshell default 1.2 > ] \\\n ( [ cube [ <real edge> ]] | \\\n [ box [ <real xedge> [ <real xedge> [ <real xedge> ]]]] | \\\n [ sphere <real radius> ] |\n [ troct <real edge> ])\n
Solvation can be specified to be in a cubic box with specified edge, rectangular box with specified edges, or in a sphere with specified radius. Solvation in a cube or rectangular box will automatically also set periodic boundary conditions. Solvation in a sphere will only allow simulations without periodic boundary conditions. The size of the cubic and rectangular boxes will be expanded by a length specified by the expand variable. If no shape is specified, solvation will be done for a cubic box with an edge that leaves rshell nm between any solute atom and a periodic image of any solute atom after the solute has been centered. An explicit write is not needed to write the restart file. The solvate will write out a file sys_calc.rst. If not specified, the dimension of the solvation cell will be as large as to have at least a distance of rshell nm between any solute atom and the edge of the cell. The experimental troct directive generates a truncated octrahedral box.
touch <real touch default 0.23>\n
The variable touch specifies the minimum distance between a solvent and solute atom for which a solvent molecule will be accepted for solvation.
envelope `<real xpndw default 0.0>\n
sets the expand vealues to be used in solvate operations.
expand <real xpndw default 0.1>\n
The variable xpndw specifies the size in nm with which the simulation volume will be increased after solvation.
read [rst | rst_old | pdb] <string filename>\nwrite [rst | [solute [<integer nsolvent>]] ( [large] pdb | xyz)] <string filename>\n
These directives read and write the file filename in the specified format. The solute option instructs to write out the coordinates for solute and all, or if specified the first nsolvent, crystal solvent molecules only. If no format is specified, it will be derived from the extension of the filename. Recognized extensions are rst, rst_old (read only), pdb, xyz (write only) and pov (write only). Reading and then writing the same restart file will cause the sub-block size information to be lost. If this information needs to be retained a shell copy command needs to be used. The large keyword allows PDB files to be written with more than 9999 residues. Since the PDB file will not conform to the PDB convention, this option should only be used if required. NWChem will be able to read the resulting PDB file, but other codes may not.
scale <real scale default -1.0>\n
This directive scales the volume and coordinates written to povray files. A negative value of scale (default) scales the coordinates to lie in [-1:1].
cpk [<real cpk default 1.0>]\n
This directive causes povray files to contain cpk model output. The optional value is used to scale the atomic radii. A neagtive value of cpk resets the rendering to stick.
center | centerx | centery | centerz\n
These directives center the solute center of geometry at the origin, in the y-z plane, in the x-z plane or in the x-y plane, respectively.
orient\n
This directive orients the solute principal axes.
translate [atom | segment | molecule] \\\n <integer itran> <integer itran> <real xtran(3)>\n
This directive translates solute atoms in the indicated range by xtran, without checking for bad contacts in the resulting structure.
rotate [atom | segment | molecule] \\\n\n <integer itran> <integer itran> <real angle> <real xrot(3)>\n
This directive rotates solute atoms in the indicated range by angle around the vector given by xrot,, without checking for bad contacts in the resulting structure.
remove solvent [inside | outside] [x <real xmin> <real xmax>] \\\n[y <real ymin> <real ymax>] [z <real zmin> <real zmax>]\n
This directive removes solvent molecules inside or outside the specified coordinate range.
periodic\n
This directive enables periodic boundary conditions.
vacuo\n
This directive disables periodic boundary conditions.
grid <integer mgrid default 24> <real rgrid default 0.2>\n
This directive specifies the grid size of trial counter-ion positions and minimum distance between an atom in the system and a counter-ion.
crop\n
prints minimum and maximum solute coordinates.
boxsize\n
specifies to redetermine the box size.
cube\n
specifies to redetermine the smallest cubic box size.
box <real xsize> <real ysize>` <real zsize>\n
The box directive resets the box size.
align <string atomi> <string atomj> <string atomk>\n
The align directive orients the system such that atomi and atomj are on the z-axis, and atomk in the x=y plane.
repeat [randomx | randomy | randomz] [chains | molecules | fractions ] \\\n <integer nx> <integer ny> <integer nz> [<real dist>] [<real zdist>]\n
The repeat directive causes a subsequent write pdb directive to write out multiple copies of the system, with nx copies in the x, ny copies in the y, and nz copies in the z-direction, with a minimum distance of dist between any pair of atoms from different copies. If nz is -2, an inverted copy is placed in the z direction, with a separation of zdist nm. If dist is negative, the box dimensions will be used. For systems with solvent, this directive should be used with a negative dist. Optional keywords chains, molecules and fractions specify to write each repeating solute unit as a chain, to repeat each solute molecule, or each solute fraction separately. Optional keywords randomx, randomy, and randomz can be used to apply random rotations for each repeat unit around a vector through the center of geometry of the solute in the x, y or z direction.
skip <integer ix> <integer iy> <integer iz>\n
The skip directive can be used to skip single repeat unit from the repeat directive. Up to 100 skip directives may be specified, and will only apply to the previously specified repeat directive.
(collapsexy | collapsez) [ <integer nmoves>]\n
specifies to move all solute molecules toward the z-axis or x=y-plane, respectively, to within a distance of touch nm between any pair of atoms from different solute molecules. Parameter nmoves specifies the number of collapse moves that will be made. Monatomic ions will move with the nearest multi-atom molecule.
collapse_group <integer imol> <integer jmol>\n
specifies that molecule jmol will move together with molecule imol in collapse operations.
merge <real xtran(3)> <string pdbfile>\n
specifies to merge the coordinates found on the specified pdb file into the current structure after translation by xtran(3).
"},{"location":"Print_Noprint.html","title":"Print Noprint","text":"The PRINT and NOPRINT directives allow the user to control how much output NWChem generates. These two directives are special in that the compound directives for all modules are supposed to recognize them. Each module can control both the overall print level (general verbosity) and the printing of individual items which are identified by name (see below). The standard form of the PRINT directive is as follows:
PRINT [(none || low || medium || high || debug) default medium] [<string list_of_names ... >]\nNOPRINT <string list_of_names ... >\n
The default print level is medium.
Every output that is printed by NWChem has a print threshold associated with it. If this threshold is equal to or lower than the print level requested by the user, then the output is generated. For example, the threshold for printing the SCF energy at convergence is low. This means that if the user-specified print level on the PRINT directive is low, medium, high, or debug, then the SCF energy will be printed at convergence.
The overall print level specified using the PRINT directive is a convenient tool for controlling the verbosity of NWChem. Setting the print level to high might be helpful in diagnosing convergence problems. The print level of debug might also be of use in evaluating problem cases, but the user should be aware that this can generate a huge amount of output. Setting the print level to low might be the preferable choice for geometry optimizations that will perform many steps which are in themselves of little interest to the user.
In addition, it is possible to enable the printing of specific items by naming them in the PRINT directive in the . Items identified in this way will be printed, regardless of the overall print level specified. Similarly, the NOPRINT directive can be used to suppress the printing of specific items by naming them in its . These items will not be printed, regardless of the overall print level, or the specific print level of the individual items.
The list of items that can be printed for each module is documented as part of the input instructions for that module. The items recognized by the top level of the code, and their thresholds, are:
Name Print Level Description \u201ctotal time\u201d medium Print cpu and wall time at job end \u201ctask time\u201d high Print cpu and wall time for each task \u201crtdb\u201d high Print names of RTDB entries \u201crtdbvalues\u201d high Print name and values of RTDB entries \u201cga summary\u201d medium Summarize GA allocations at job end \u201cga stats\u201d high Print GA usage statistics at job end \u201cma summary\u201d medium Summarize MA allocations at job end \u201cma stats\u201d high Print MA usage statistics at job end \u201cversion\u201d debug Print version number of all compiled routines \u201ctcgmsg\u201d never Print TCGMSG debug information"},{"location":"Print_Noprint.html#top-level-print-control-specifications","title":"Top Level Print Control Specifications","text":"The following example shows how a PRINT directive for the top level process can be used to limit printout to only essential information. The directive is
print none \"ma stats\" rtdb\n
This directive instructs the NWChem main program to print nothing, except for the memory usage statistics (ma stats) and the names of all items stored in the database at the end of the job.
The print level within a module is inherited from the calling layer. For instance, by specifying the print to be low within the MP2 module will cause the SCF, CPHF and gradient modules when invoked from the MP2 to default to low print. Explicit user input of print thresholds overrides the inherited value.
"},{"location":"Properties.html","title":"Properties","text":""},{"location":"Properties.html#overview","title":"Overview","text":"Properties can be calculated for both the Hartree-Fock and DFT wave functions. The properties that are available are:
The properties module is started when the task directive TASK property is defined in the user input file. The input format has the form:
PROPERTY \n [property keyword] \n [CENTER ((com || coc || origin || arb <real x y z>) default coc)] \n END\n
Most of the properties can be computed for Hartree-Fock (closed-shell RHF, open-shell ROHF, and open-shell UHF), and DFT (closed-shell and open-shell spin unrestricted) wavefunctions. The NMR hyperfine and indirect spin-spin coupling require a UHF or ODFT wave function.
"},{"location":"Properties.html#vectors-keyword","title":"Vectors keyword","text":" VECTORS [ (<string input_movecs >)]\n
The VECTORS directive allows the user to specify the input molecular orbital vectors for the property calculation
"},{"location":"Properties.html#property-keywords","title":"Property keywords","text":"Each property can be requested by defining one of the following keywords:
NBOFILE \n DIPOLE \n QUADRUPOLE \n OCTUPOLE \n MULLIKEN \n ESP \n EFIELD \n EFIELDGRAD \n EFIELDGRADZ4 \n GSHIFT \n ELECTRONDENSITY \n HYPERFINE [<integer> number_of_atoms <integer> atom_list] \n SHIELDING [<integer> number_of_atoms <integer> atom_list] \n SPINSPIN [<integer> number_of_pairs <integer> pair_list] \n RESPONSE [<integer> response_order <real> frequency] \n AIMFILE \n MOLDENFILE \n ALL\n
The ALL
keyword generates all currently available properties.
Both the NMR shielding and spin-spin coupling have additional optional parameters that can be defined in the input. For the shielding the user can define the number of atoms for which the shielding tensor should be calculated, followed by the list of specific atom centers. In the case of spin-spin coupling the number of atom pairs, followed by the atom pairs, can be defined (i.e., spinspin 1 1 2
will calculate the coupling for one pair, and the coupling will be between atoms 1 and 2).
For both the NMR spin-spin and hyperfine coupling the isotope that has the highest abundance and has spin, will be chosen for each atom under consideration.
"},{"location":"Properties.html#calculating-epr-and-paramagnetic-nmr-parameters","title":"Calculating EPR and paramagnetic NMR parameters","text":"The following tutorial illustrates how to combine the hyperfine, gshift and shielding to calculate the EPR and paramagnetic NMR parameters of an open-shell system. All calculations are compatible with the ZORA model potential approach.
For theoretical and computational details, please refer to references123.
"},{"location":"Properties.html#nmr-input-example","title":"NMR: Input Example","text":"geometry nocenter\n C 0.00000000 0.00000000 0.00000000\n O 1.18337200 0.00000000 0.00000000\n H -.63151821 0.94387462 0.00000000\nend\n\nbasis\n \"*\" library 6-311G**\nend\nproperty\n efieldgradz4 1 3\n shielding 2 1 2\n hyperfine 2 1 3\n gshift\nend\n\nrelativistic\n zora on\n zora:cutoff_NMR 1d-8\n zora:cutoff 1d-30\nend\n\ndft\nmult 2\nxc becke88 perdew86\nend\n\ntask dft property\n
"},{"location":"Properties.html#center-center-of-expansion-for-multipole-calculations","title":"CENTER: Center of expansion for multipole calculations","text":"The user also has the option to choose the center of expansion for the dipole, quadrupole, and octupole calculations.
[CENTER ((com || coc || origin || arb <real x y z>) default coc)]\n
com is the center of mass, coc is the center of charge, origin is (0.0, 0.0, 0.0) and arb is any arbitrary point which must be accompanied by the coordinated to be used. Currently the x, y, and z coordinates must be given in the same units as UNITS in GEOMETRY.
"},{"location":"Properties.html#response-calculations","title":"Response Calculations","text":"Response calculations can be calculated as follows:
property\n response 1 7.73178E-2 # response order and frequency in Hartree energy units \n velocity # use modified velocity gauge for electric dipole \n orbeta # calculate optical rotation 'beta' directly [^4] \n giao # GIAO optical rotation [^5][^6][^7], forces orbeta \n bdtensor # calculates B-tilde of Refs. [^5][^7] \n analysis # analyze response in terms of MOs [^7] \n damping 0.007 # complex response functions with damping, Ref [^8] \n convergence 1e-4 # set CPKS convergence criterion (default 1e-4) \nend\n
Response calculations are currently supported only for
The output consists of the electric polarizability and optical rotation tensors (alpha, beta for optical rotation) in atomic units. The response
keyword requires two arguments: response order and frequency in Hartree energy units (the aoresponse
keyword can be used with same effect as the response
keyword). If the velocity
or giao
keywords are absent, the dipole-length form will be used for the dipole integrals. This is a bit faster. The isotropic optical rotation is origin independent when using the velocity gauge (by means of velocity
keyword) or with GIAOs 5 (by means of the giao
keyword). With the keyword bdtensor
, a fully origin-invariant optical rotation tensor is calculated 57. Note that velocity
and orbeta
are incompatible. The input line
set prop:newaoresp 0\n
outside of the properties
block forces the use of an older version of the response code, which has fewer features (in particular, no working GIAO optical rotation) but which has been tested more thoroughly. In the default newer version you may encounter undocumented features (bugs). The keyword analysis
triggers an analysis of the response tensors in terms of molecular orbitals. If the property input block also contains the keyword pmlocalization
, then the analysis is performed in terms of Pipek-Mezey localized MOs, otherwise the canonical set is used (this feature may currently not work, please check the sum of the analysis carefully). See Ref. [6] for an example. Works with HF and density functionals for which linear response kernels are implemented in NWChem.
Please refer to papers546987 for further details:
"},{"location":"Properties.html#raman","title":"Raman","text":"Raman calculations can be performed by specifying the Raman block. These calculations are performed in conjunction with polarizability calculations. Detailed description of input parameters at https://pubs.acs.org/doi/10.1021/jp411039m#notes-1
RAMAN \n [ (NORMAL | | RESONANCE) default NORMAL ] \n [ (LORENTZIAN | | GAUSSIAN) default LORENTZIAN ] \n [ LOW <double low default 0.0> ] \n [ HIGH <double high default highest normal mode> ] \n [ FIRST <integer first default 7> ] \n [ LAST < integer last default number of normal modes > ] \n [ WIDTH <double width default 20.0> ] \n [ DQ <double dq default 0.01> ] \nEND \ntask dft raman\n
or
task dft raman numerical\n
Sample input block:
property\n response 1 8.8559E-2 \n damping 0.007 \nend \nraman \n normal \n lorentzian \nend\n
"},{"location":"Properties.html#raman-keywords","title":"Raman Keywords","text":"NORMAL
and RESONANCE
: Type of Raman plot to make.LORENTZIAN
and GAUSSIAN
: Generation of smoothed spectra (rather than sticks) using either a Lorentzian function or a Gaussian function. The default is LORENTZIAN
.LOW
and HIGH
: The default range in which to generate the Raman spectrum plot is (0.0, highest wavenumber normal mode) cm-1. The LOW
and HIGH
keywords modify the frequency range.FIRST
and LAST
: The default range of indices of normal modes used in the plot is (7, number of normal modes). The FIRST
and LAST
keywords modify the range of indices.WIDTH
: Controls the width in the smoothed peaks, using Lorentzians or Gaussians, in the plot. The default value for WIDTH
is 20.0.DQ
: Size of the steps along the normal modes. The default value for DQ
is 0.01. It is related to the step size dR used in numerical evaluation of polarizability derivativeRaman spectrum in stick format and smoothed using Lorentzians or Gaussians stored in a filename with format [fname].normal
. The number of points is 1000 by default. This value can be changed by adding the following SET directive to the input file
set raman:numpts <integer>\n
"},{"location":"Properties.html#raman-references","title":"Raman References","text":"Please refer to papers1011 for further details:
"},{"location":"Properties.html#polarizability-computed-with-the-sum-over-orbitals-method","title":"Polarizability computed with the Sum over Orbitals method","text":"As an alternative to the linear response method, the Sum over Orbitals (SOO) method is available to compute polarizabilities. Results of these method are much less accurate than linear response calculations, with values off by a factor of 2-4x. However, the qualitative nature of this results can be used to compute Raman frequencies when coupled with QMD, as described in references 1213.
Sample input computing polarizability both with the SOO method and the linear response method:
property\n polfromsos\nend\n\ntask dft property\n\nproperty\n response 1 0\nend\ntask dft property\n
"},{"location":"Properties.html#nbofile","title":"Nbofile","text":"The keyword NBOFILE
does not execute the Natural Bond Analysis code, but simply creates an input file to be used as input to the stand-alone NBO code. All other properties are calculated upon request.
Following the successful completion of an electronic structure calculation, a Natural Bond Orbital (NBO) analysis may be carried out by providing the keyword NBOFILE
in the PROPERTY
directive. NWChem will query the rtdb and construct an ASCII file, file_prefix.gen
, that may be used as input to the stand alone version of the NBO program, GenNBO. file_prefix is equal to string following the START
directive. The input deck may be edited to provide additional options to the NBO calculation, (see the NBO user\u2019s manual for details.)
Users that have their own NBO version can compile and link the code into the NWChem software. See the INSTALL file in the source for details.
"},{"location":"Properties.html#gaussian-cube-files","title":"Gaussian Cube Files","text":"Electrostatic potential (keyword esp
) and the magnitude of the electric field (keyword efield
) on the grid can be generated in the form of the Gaussian Cube File. This behavior is triggered by the inclusion of grid keyword as shown below
grid [pad dx [dy dz]] [rmax x y z] [rmin x y z] [ngrid nx [ny nz]] [output filename]\n
where
pad dx [dy dz]
- specifies amount of padding (in angstroms) in x,y, and z dimensions that will be applied in the automatic construction of the rectangular grid volume based on the geometry of the system. If only one number is provided then the same amount of padding will be applied in all dimensions. The default setting is 4 angstrom padding in all dimensions.
rmin x y z
- specifies the coordinates (in angstroms) of the minimum corner of the rectangular grid volume. This will override any padding in this direction.
rmax x y z
- specifies the coordinates (in angstroms) of the maximum corner of the rectangular grid volume. This will override any padding in this direction.
ngrid nx [ny nz]
- specifies number of grid points along each dimension. If only one number is provided then the same number of grid points are assumed all dimensions. In the absence of this directive the number of grid points would be computed such that grid spacing will be close to 0.2 angstrom, but not exceeding 50 grid points in either dimension.
output filename
- specifies name of the output cube file. The default behavior is to use prefix-elp.cube
or prefix-elf.cube
file names for electrostatic potential or electric field respectively. Here prefix denotes the system name as specified in start directive. Note that Gaussian cube files will be written in the run directory (where the input file resides).
Example input file
echo \n start nacl \n\n\n geometry nocenter noautoz noautosym \n Na -0.00000000 0.00000000 -0.70428494 \n Cl 0.00000000 -0.00000000 1.70428494 \n end \n\n\n basis \n * library 6-31g* \n end \n\n #electric field would be written out to nacl.elf.cube file \n #with \n #ngrid : 20 20 20 \n #rmax : 4.000 4.000 5.704 \n #rmin :-4.000 -4.000 -4.704 \n\n property \n efield \n grid pad 4.0 ngrid 20 \n end \n\n task dft property \n\n #electrostatic potential would be written to esp-pad.cube file \n # with the same parameters as above \n\n property \n esp \n grid pad 4.0 ngrid 20 output esp-pad.cube \n end \n\n task dft property \n\n #illustrating explicit specification of minumum box coordinates \n\n property \n esp \n grid pad 4.0 rmax 4.000 4.000 5.704 ngrid 20 \n end \n\n task dft property\n
"},{"location":"Properties.html#aimfile","title":"Aimfile","text":"This keyword generates AIM Wavefunction files. The resulting AIM wavefunction file (.wfn/.wfx) can be post-processed with a variety of codes, e.g.
WARNING: Since we have discovered issues in generating .WFN files with this module (e.g. systems with ECPs), the recommended method for generating .WFN file is to first generate a Molden file with the Moldenfile option, then convert the Molden file into a WFN file by using the Molden2AIM program.
"},{"location":"Properties.html#moldenfile","title":"Moldenfile","text":"MOLDENFILE\nMOLDEN_NORM (JANPA | | NWCHEM || NONE)\n
This keyword generates files using the Molden format. The resulting Molden file (.molden) should compatible with a variety of codes that can input Molden files, e.g.
MOLDEN_NORM JANPA
keyword)the MOLDEN_NORM
option allows the renormalization of the basis set coefficients. By default, the coefficient values from input are not modified. Using the JANPA
value coefficients are normalized following JANPA\u2018s convention (where basis coefficients are normalized to unity), while the NWCHEM
will produce coefficients normalized according to NWChem\u2019s convention. Using MOLDEN_NORM
equal NONE
will leave the input coefficients unmodified. It is strongly recommended to use spherical basis set when using the NWChem Molden output for JANPA analysis
Example input file for a scf calculation. The resulting Molden file will be named h2o.molden
start heat\n\n geometry; he 0. 0. 0.; end \n\n basis spherical; * library 6-31g ; end \n\n task scf \n\n property \n vectors heat.movecs \n moldenfile \n molden_norm janpa \n end\n\n task scf property\n
Then, the resulting h2o.molden
file can be post processed by Janpa with the following command
java -jar janpa.jar h2o.molden > h2o.janpa.txt\n
"},{"location":"Properties.html#localization","title":"Localization","text":"Localized molecular orbitals can be computed with the localization
keyword.
property localization (( pm || boys || ibo) default pm) end
The following methods are available:
pm
keyword (default) boys
keyword ibo
keyword Autschbach, J.; Patchkovskii, S.; Pritchard, B. Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory. Journal of Chemical Theory and Computation 2011, 7 (7), 2175\u20132188. https://doi.org/10.1021/ct200143w.\u00a0\u21a9
Aquino, F.; Pritchard, B.; Autschbach, J. Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts. Journal of Chemical Theory and Computation 2012, 8 (2), 598\u2013609. https://doi.org/10.1021/ct2008507.\u00a0\u21a9
Aquino, F.; Govind, N.; Autschbach, J. Scalar Relativistic Computations of Nuclear Magnetic Shielding and <i>g</i>-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals. Journal of Chemical Theory and Computation 2011, 7 (10), 3278\u20133292. https://doi.org/10.1021/ct200408j.\u00a0\u21a9
Autschbach. Computation of Optical Rotation Using Timedependent Density Functional Theory. Computing Letters 2007, 3 (2), 131\u2013150. https://doi.org/10.1163/157404007782913327.\u00a0\u21a9
Autschbach, J. Time-Dependent Density Functional Theory for Calculating Origin-Independent Optical Rotation and Rotatory Strength Tensors. ChemPhysChem 2011, 12 (17), 3224\u20133235. https://doi.org/10.1002/cphc.201100225.\u00a0\u21a9\u21a9\u21a9
Krykunov, M.; Autschbach, J. Calculation of Optical Rotation with Time-Periodic Magnetic-Field-Dependent Basis Functions in Approximate Time-Dependent Density-Functional Theory. The Journal of Chemical Physics 2005, 123 (11), 114103. https://doi.org/10.1063/1.2032428.\u00a0\u21a9
Moore, B.; Srebro, M.; Autschbach, J. Analysis of Optical Activity in Terms of Bonds and Lone-Pairs: The Exceptionally Large Optical Rotation of Norbornenone. Journal of Chemical Theory and Computation 2012, 8 (11), 4336\u20134346. https://doi.org/10.1021/ct300839y.\u00a0\u21a9\u21a9
Krykunov, M.; Kundrat, M. D.; Autschbach, J. Calculation of Circular Dichroism Spectra from Optical Rotatory Dispersion, and Vice Versa, as Complementary Tools for Theoretical Studies of Optical Activity Using Time-Dependent Density Functional Theory. The Journal of Chemical Physics 2006, 125 (19), 194110. https://doi.org/10.1063/1.2363372.\u00a0\u21a9
Hammond, J. R.; Govind, N.; Kowalski, K.; Autschbach, J.; Xantheas, S. S. Accurate Dipole Polarizabilities for Water Clusters n=212 at the Coupled-Cluster Level of Theory and Benchmarking of Various Density Functionals. The Journal of Chemical Physics 2009, 131 (21), 214103. https://doi.org/10.1063/1.3263604.\u00a0\u21a9
Mullin, J. M.; Autschbach, J.; Schatz, G. C. Time-Dependent Density Functional Methods for Surface Enhanced Raman Scattering (SERS) Studies. Computational and Theoretical Chemistry 2012, 987, 32\u201341. https://doi.org/10.1016/j.comptc.2011.08.027.\u00a0\u21a9
Aquino, F. W.; Schatz, G. C. Time-Dependent Density Functional Methods for Raman Spectra in Open-Shell Systems. The Journal of Physical Chemistry A 2014, 118 (2), 517\u2013525. https://doi.org/10.1021/jp411039m.\u00a0\u21a9
Fischer, S. A.; Ueltschi, T. W.; El-Khoury, P. Z.; Mifflin, A. L.; Hess, W. P.; Wang, H.-F.; Cramer, C. J.; Govind, N. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study. The Journal of Physical Chemistry B 2015, 120 (8), 1429\u20131436. https://doi.org/10.1021/acs.jpcb.5b03323.\u00a0\u21a9
Apr\u00e0, E.; Bhattarai, A.; Baxter, E.; Wang, S.; Johnson, G. E.; Govind, N.; El-Khoury, P. Z. Simplified Ab Initio Molecular Dynamics-Based Raman Spectral Simulations. Applied Spectroscopy 2020, 74 (11), 1350\u20131357. https://doi.org/10.1177/0003702820923392.\u00a0\u21a9
Pipek, J.; Mezey, P. G. A Fast Intrinsic Localization Procedure Applicable for Ab Initio and Semiempirical Linear Combination of Atomic Orbital Wave Functions. The Journal of Chemical Physics 1989, 90 (9), 4916\u20134926. https://doi.org/10.1063/1.456588.\u00a0\u21a9
Foster, J. M.; Boys, S. F. Canonical Configurational Interaction Procedure. Reviews of Modern Physics 1960, 32 (2), 300\u2013302. https://doi.org/10.1103/revmodphys.32.300.\u00a0\u21a9
Knizia, G. Intrinsic Atomic Orbitals: An Unbiased Bridge Between Quantum Theory and Chemical Concepts. Journal of Chemical Theory and Computation 2013, 9 (11), 4834\u20134843. https://doi.org/10.1021/ct400687b.\u00a0\u21a9
Knizia, G.; Klein, J. E. M. N. Electron Flow in Reaction Mechanisms-Revealed from First Principles. Angewandte Chemie International Edition 2015, 54 (18), 5518\u20135522. https://doi.org/10.1002/anie.201410637.\u00a0\u21a9
Python programs may be embedded into the NWChem input and used to control the execution of NWChem. Python is a very powerful and widely used scripting language that provides useful things such as variables, conditional branches and loops, and is also readily extended. Example applications include scanning potential energy surfaces, computing properties in a variety of basis sets, optimizing the energy w.r.t. parameters in the basis set, computing polarizabilities with finite field, and simple molecular dynamics.
Look in the NWChem contrib directory for useful scripts and examples. Visit the Python web-site https://www.python.org for a full manual and lots of useful code and resources.
"},{"location":"Python.html#how-to-input-and-run-a-python-program-inside-nwchem","title":"How to input and run a Python program inside NWChem","text":"A Python program is input into NWChem inside a Python compound directive.
python [print|noprint]\n ...\n end\n
The END directive must be flush against the left margin (see the Troubleshooting section for the reason why).
The program is by default printed to standard output when read, but this may be disabled with the noprint keyword. Python uses indentation to indicate scope (and the initial level of indentation must be zero), whereas NWChem uses optional indentation only to make the input more readable. For example, in Python, the contents of a loop, or conditionally-executed block of code must be indented further than the surrounding code. Also, Python attaches special meaning to several symbols also used by NWChem. For these reasons, the input inside a PYTHON compound directive is read verbatim except that if the first line of the Python program is indented, the same amount of indentation is removed from all subsequent lines. This is so that a program may be indented inside the PYTHON input block for improved readability of the NWChem input, while satisfying the constraint that when given to Python the first line has zero indentation.
E.g., the following two sets of input specify the same Python program.
python \n print (\"Hello\")\n print (\"Goodbye\")\nend\n\npython \nprint (\"Hello\")\nprint (\"Goodbye\")\nend\n
whereas this program is in error since the indentation of the second line is less than that of the first.
python \n print (\"Hello\")\nprint (\"Goodbye\")\nend\n
The Python program is not executed until the following directive is encountered
task python\n
which is to maintain consistency with the behavior of NWChem in general. The program is executed by all nodes. This enables the full functionality and speed of NWChem to be accessible from Python, but there are some gotchas
rtdb_put()
) it is the data from node zero that is written.Since we have little experience using Python, the NWChem-Python interface might change in a non-backwardly compatible fashion as we discover better ways of providing useful functionality. We would appreciate suggestions about useful things that can be added to the NWChem-Python interface. In principle, nearly any Fortran or C routine within NWChem can be extended to Python, but we are also interested in ideas that will enable users to build completely new things. For instance, how about being able to define your own energy functions that can be used with the existing optimizers or dynamics package?
Python has been extended with a module named \u201cnwchem\u201d which is automatically imported and contains the following NWChem-specific commands. They all handle NWChem-related errors by raising the exception \u201cNWChemError\u201d, which may be handled in the standard Python manner (see Section describing handling exception).
input_parse(string)
\u2013 invokes the standard NWChem input parser with the data in string as input. Note that the usual behavior of NWChem will apply \u2013 the parser only reads input up to either end of input or until a TASK
directive is encountered (the task directive is not executed by the parser).task_energy(theory)
\u2013 returns the energy as if computed with the NWChem directive TASK ENERGY <THEORY>
.task_gradient(theory)
\u2013 returns a tuple (energy,gradient) as if computed with the NWChem directive TASK GRADIENT <THEORY>
.task_optimize(theory)
\u2013 returns a tuple (energy,gradient) as if computed with the NWChem directive TASK OPTIMIZE <THEORY>
. The energy and gradient will be those at the last point in the optimization and consistent with the current geometry in the database.ga_nodeid()
\u2013 returns the number of the parallel process.rtdb_print(print_values)
\u2013 prints the contents of the RTDB. If print_values
is 0, only the keys are printed, if it is 1 then the values are also printed.rtdb_put(name, values)
or rtdb_put(name, values, type)
\u2013 puts the values into the database with the given name. In the first form, the type is inferred from the first value, and in the second form the type is specified using the last argument as one of INT, DBL, LOGICAL, or CHAR.rtdb_get(name)
\u2013 returns the data from the database associated with the given name.An example below explains, in lieu of a Python wrapper for the geometry object, how to obtain the Cartesian molecular coordinates directly from the database.
"},{"location":"Python.html#examples","title":"Examples","text":"Several examples will provide the best explanation of how the extensions are used, and how Python might prove useful.
"},{"location":"Python.html#hello-world","title":"Hello world","text":"python\n print ('Hello world from process %i' % ga_nodeid())\nend\n\ntask python\n
This input prints the traditional greeting from each parallel process.
"},{"location":"Python.html#scanning-a-basis-exponent","title":"Scanning a basis exponent","text":"geometry units au\n O 0 0 0; H 0 1.430 -1.107; H 0 -1.430 -1.107\nend\n\npython\nexponent = 0.1\nwhile (exponent <= 2.01):\n input_parse(''' \n basis noprint \n H library 3-21g; O library 3-21g; O d; %f 1.0 \n end \n ''' % (exponent))\n print (' exponent = %5.4f,' % exponent, ', energy = %16.10f' % task_energy('scf'))\n exponent = exponent + 0.1\nend\n\nprint none\n\ntask python\n
This program augments a 3-21g basis for water with a d-function on oxygen and varies the exponent from 0.1 to 2.0 in steps of 0.1, printing the exponent and energy at each step.
The geometry is input as usual, but the basis set input is embedded inside a call to input_parse()
in the Python program. The standard Python string substitution is used to put the current value of the exponent into the basis set (replacing the %f) before being parsed by NWChem. The energy is returned by task_energy('scf')
and printed out. The print none in the NWChem input switches off all NWChem output so all you will see is the output from your Python program.
Note that execution in parallel may produce unwanted output since all process execute the print statement inside the Python program.
Look in the NWChem contrib directory for a routine that makes the above task easier.
"},{"location":"Python.html#scanning-a-basis-exponent-revisited","title":"Scanning a basis exponent revisited","text":"geometry units au\nO 0 0 0; H 0 1.430 -1.107; H 0 -1.430 -1.107\nend\n\n\npython\n if (ga_nodeid() == 0): plotdata = open(\"plotdata\",'w')\n\n def energy_at_exponent(exponent):\n input_parse(''' \n basis noprint \n H library 3-21g; O library 3-21g; O d; %f 1.0 \n end \n ''' % (exponent))\n return task_energy('scf')\n\n exponent = 0.1\n while exponent <= 2.01:\n energy = energy_at_exponent(exponent)\n if (ga_nodeid() == 0):\n print (' exponent = %5.4f,' % exponent, ', energy = %16.10f' % energy)\n plotdata.write('%f %f\\n' % (exponent , energy))\n exponent = exponent + 0.1\n\n if (ga_nodeid() == 0): plotdata.close()\nend\n\nprint none\ntask python\n
This input performs exactly the same calculation as the previous one, but uses a slightly more sophisticated Python program, also writes the data out to a file for easy visualization with a package such as gnuplot, and protects write statements to prevent duplicate output in a parallel job. The only significant differences are in the Python program. A file called \u201cplotdata\u201d is opened, and then a procedure is defined which given an exponent returns the energy. Next comes the main loop that scans the exponent through the desired range and prints the results to standard output and to the file. When the loop is finished the additional output file is closed.
"},{"location":"Python.html#scanning-a-geometric-variable","title":"Scanning a geometric variable","text":"python\n geometry = '''\n geometry noprint; symmetry d2h\n C 0 0 %f; H 0 0.916 1.224\n end\n '''\n x = 0.6\n while (x < 0.721):\n input_parse(geometry % x)\n energy = task_energy('scf')\n print (' x = %5.2f energy = %10.6f' % (x, energy))\n x = x + 0.01\nend\n\nbasis; C library 6-31g*; H library 6-31g*; end\n\nprint none\n\ntask python\n
This scans the bond length in ethene from 1.2 to 1.44 in steps of 0.2 computing the energy at each geometry. Since it is using D2h symmetry the program actually uses a variable (x) that is half the bond length.
Look in the NWChem contrib directory for a routine that makes the above task easier.
"},{"location":"Python.html#scan-using-the-bsse-counterpoise-corrected-energy","title":"Scan using the BSSE counterpoise corrected energy","text":"basis spherical\n Ne library cc-pvdz; BqNe library Ne cc-pvdz\n He library cc-pvdz; BqHe library He cc-pvdz\nend\n\nmp2; tight; freeze core atomic; end\n\nprint none\n\npython\n supermolecule = 'geometry noprint; Ne 0 0 0; He 0 0 %f; end\\n'\n fragment1 = 'geometry noprint; Ne 0 0 0; BqHe 0 0 %f; end\\n'\n fragment2 = 'geometry noprint; BqNe 0 0 0; He 0 0 %f; end\\n'\n\n def energy(geometry):\n input_parse(geometry + 'scf; vectors atomic; end\\n')\n return task_energy('mp2')\n\n def bsse_energy(z):\n return energy(supermolecule % z) - \\\n energy(fragment1 % z) - \\\n energy(fragment2 % z)\n z = 3.3\n while (z < 4.301):\n e = bsse_energy(z)\n if (ga_nodeid() == 0): print (' z = %5.2f energy = %10.7f ' % (z, e))\n z = z + 0.1\nend\n\ntask python\n
This example scans the He\u2013Ne bond-length from 3.3 to 4.3 and prints out the BSSE counterpoise corrected MP2 energy.
The basis set is specified as usual, noting that we will need functions on ghost centers to do the counterpoise correction. The Python program commences by defining strings containing the geometry of the super-molecule and two fragments, each having one variable to be substituted. Next, a function is defined to compute the energy given a geometry, and then a function is defined to compute the counterpoise corrected energy at a given bond length. Finally, the bond length is scanned and the energy printed. When computing the energy, the atomic guess has to be forced in the SCF since by default it will attempt to use orbitals from the previous calculation which is not appropriate here.
Since the counterpoise corrected energy is a linear combination of other standard energies, it is possible to compute the analytic derivatives term by term. Thus, combining this example and the next could yield the foundation of a BSSE corrected geometry optimization package.
"},{"location":"Python.html#scan-the-geometry-and-compute-the-energy-and-gradient","title":"Scan the geometry and compute the energy and gradient","text":" basis noprint; H library sto-3g; O library sto-3g; end\n\n python\n print (' y z energy gradient')\n print (' ----- ----- ---------- ------------------------------------')\n y = 1.2\n while y <= 1.61:\n z = 1.0\n while z <= 1.21:\n input_parse('''\n geometry noprint units atomic\n O 0 0 0\n H 0 %f -%f\n H 0 -%f -%f\n end\n ''' % (y, z, y, z))\n\n (energy,gradient) = task_gradient('scf')\n\n print (' %5.2f %5.2f %9.6f' % (y, z, energy)),\n i = 0\n while (i < len(gradient)):\n print ('%5.2f' % gradient[i]),\n i = i + 1\n print ('')\n z = z + 0.1\n y = y + 0.1\nend\n\nprint none\n\ntask python\n
This program illustrates evaluating the energy and gradient by calling task_gradient(). A water molecule is scanned through several C2v geometries by varying the y and z coordinates of the two hydrogen atoms. At each geometry the coordinates, energy and gradient are printed.
The basis set (sto-3g) is input as usual. The two while loops vary the y and z coordinates. These are then substituted into a geometry which is parsed by NWChem using input_parse()
. The energy and gradient are then evaluated by calling task_gradient()
which returns a tuple containing the energy (a scalar) and the gradient (a vector or list). These are printed out exploiting the Python convention that a print statement ending in a comma does not print end-of-line.
mp2; freeze atomic; end\n\nprint none\n\npython\n energies = {}\n c2h4 = 'geometry noprint; symmetry d2h; \\\n C 0 0 0.672; H 0 0.935 1.238; end\\n'\n ch4 = 'geometry noprint; symmetry td; \\\n C 0 0 0; H 0.634 0.634 0.634; end\\n'\n h2 = 'geometry noprint; H 0 0 0.378; H 0 0 -0.378; end\\n'\n\n def energy(basis, geometry):\n input_parse('''\n basis spherical noprint\n c library %s ; h library %s \n end\n ''' % (basis, basis))\n input_parse(geometry)\n return task_energy('mp2')\n\n for basis in ('sto-3g', '6-31g', '6-31g*', 'cc-pvdz', 'cc-pvtz'):\n energies[basis] = 2*energy(basis, ch4) \\\n - 2*energy(basis, h2) - energy(basis, c2h4)\n if (ga_nodeid() == 0): print (basis, ' %8.6f' % energies[basis])\nend \n\ntask python\n
In this example the reaction energy for 2H2 + C2H4 \u2192 2CH4 is evaluated using MP2 in several basis sets. The geometries are fixed, but could be re-optimized in each basis. To illustrate the useful associative arrays in Python, the reaction energies are put into the associative array energies \u2013 note its declaration at the top of the program.
"},{"location":"Python.html#using-the-database","title":"Using the database","text":" python \n rtdb_put(\"test_int2\", 22) \n rtdb_put(\"test_int\", [22, 10, 3], INT) \n rtdb_put(\"test_dbl\", [22.9, 12.4, 23.908], DBL) \n rtdb_put(\"test_str\", \"hello\", CHAR) \n rtdb_put(\"test_logic\", [0,1,0,1,0,1], LOGICAL) \n rtdb_put(\"test_logic2\", 0, LOGICAL) \n\n rtdb_print(1) \n\n print \"test_str = \", rtdb_get(\"test_str\") \n print \"test_int = \", rtdb_get(\"test_int\") \n print \"test_in2 = \", rtdb_get(\"test_int2\") \n print \"test_dbl = \", rtdb_get(\"test_dbl\") \n print \"test_logic = \", rtdb_get(\"test_logic\") \n print \"test_logic2 = \", rtdb_get(\"test_logic2\") \n end \n\n task python\n
This example illustrates how to access the database from Python.
"},{"location":"Python.html#handling-exceptions-from-nwchem","title":"Handling exceptions from NWChem","text":" geometry; he 0 0 0; he 0 0 2; end \n basis; he library 3-21g; end \n scf; maxiter 1; end \n\n python \n try: \n task_energy('scf') \n except NWChemError, message: \n print 'Error from NWChem ... ', message \n end \n\n task python\n
The above test program shows how to handle exceptions generated by NWChem by forcing an SCF calculation on He2<\\sub> to fail due to insufficient iterations.
If an NWChem command fails it will raise the exception \u201cNWChemError\u201d (case sensitive) unless the error was fatal. If the exception is not caught, then it will cause the entire Python program to terminate with an error. This Python program catches the exception, prints out the message, and then continues as if all was well since the exception has been handled.
If your Python program detects an error, raise an unhandled exception. Do not call exit(1) since this may circumvent necessary clean-up of the NWChem execution environment.
"},{"location":"Python.html#accessing-geometry-information-a-temporary-hack","title":"Accessing geometry information: a temporary hack","text":"In an ideal world the geometry and basis set objects would have full Python wrappers, but until then a back-door solution will have to suffice. We\u2019ve already seen how to use input_parse()
to put geometry (and basis) data into NWChem, so it only remains to get the geometry data back after it has been updated by a geometry optimzation or some other operation.
The following Python procedure retrieves the coordinates in the same units as initially input for a geometry of a given name. Its full source is included in the NWChem contrib directory.
def geom_get_coords(name): \n try: \n actualname = rtdb_get(name) \n except NWChemError: \n actualname = name \n coords = rtdb_get('geometry:' + actualname + ':coords') \n units = rtdb_get('geometry:' + actualname + ':user units') \n if (units == 'a.u.'): \n factor = 1.0 \n elif (units == 'angstroms'): \n factor = rtdb_get('geometry:'+actualname+':angstrom_to_au') \n else: \n raise NWChemError,'unknown units' \n i = 0 \n while (i < len(coords)): \n coords[i] = coords[i] / factor \n i = i + 1 \n return coords\n
A geometry with name NAME has its coordinates (in atomic units) stored in the database entry geometry:NAME:coords
. A minor wrinkle here is that indirection is possible (and used by the optimizers) so that we must first check if NAME actually points to another name. In the program this is done in the first try\u2026except sequence. With the actual name of the geometry, we can get the coordinates. Any exceptions are passed up to the caller. The rest of the code is just to convert back into the initial input units \u2013 only atomic units or Angstr\u00f8ms are handled in this simple example. Returned is a list of the atomic coordinates in the same units as your initial input.
The routine is used as follows
coords = geom_get_coords('geometry')\n
or, if you want better error handling
try: \n coords = geom_get_coords('geometry') \n except NWChemError,message: \n print 'Coordinates for geometry not found ', message \n else: \n print coords\n
This is very dirty and definitely not supported from one release to another, but, browsing the output of rtdb_print()
at the end of a calculation is a good way to find stuff. To be on safer ground, look in the programmers manual since some of the high-level routines do pass data via the database in a well-defined and supported manner. Be warned \u2013 you must be very careful if you try to modify data in the database. The input parser does many important things that are not immediately apparent (e.g., ensure the geometry is consistent with the point group, mark the SCF as not converged if the SCF options are changed, \u2026). Where at all possible your Python program should generate standard NWChem input and pass it to input_parse()
rather than setting parameters directly in the database.
geometry units au \n O 0 0 0; H 0 1.430 -1.107; H 0 -1.430 -1.107 \n end \n\n print none \n\n python \n import Gnuplot, time, signal \n\n def energy_at_exponent(exponent): \n input_parse(''' \n basis noprint \n H library 3-21g; O library 3-21g; O d; %f 1.0 \n end \n ''' % (exponent)) \n return task_energy('scf') \n\n data = [] \n exponent = 0.5 \n while exponent <= 0.6: \n energy = energy_at_exponent(exponent) \n print ' exponent = ', exponent, ' energy = ', energy \n data = data + [exponent,energy](exponent,energy.md) \n exponent = exponent + 0.02 \n\n if (ga_nodeid() == 0): \n signal.signal(signal.SIGCHLD, signal.SIG_DFL) \n g = Gnuplot.Gnuplot() \n g('set data style linespoints') \n g.plot(data) \n time.sleep(30) # 30s to look at the plot \n\n end \n\n task python\n
This illustrates how to handle signals from terminating child processes and how to generate simple plots on UNIX systems. The scanning example is modified so that instead of writing the data to a file for subsequent visualization, it is saved for subsequent visualization with Gnuplot (you\u2019ll need both Gnuplot and the corresponding package for Python in your PYTHONPATH. Look at https://web.archive.org/web/20010717060625/http://monsoon.harvard.edu/~mhagger/download/).
The issue is that NWChem traps various signals from the O/S that usually indicate bad news in order to provide better error handling and reliable clean-up of shared, parallel resources. One of these signals is SIGCHLD which is generated whenever a child process terminates. If you want to create child processes within Python, then the NWChem handler for SIGCHLD must be replaced with the default handler. There seems to be no easy way to restore the NWChem handler after the child has completed, but this should have no serious side effect.
"},{"location":"Python.html#troubleshooting","title":"Troubleshooting","text":"Common problems with Python programs inside NWChem.
0:python_input: indentation must be >= that of first line: 4 \n
This indicates that NWChem thinks that a line is less indented than\nthe first line. If this is not the case then perhaps there is a tab\nin your input which NWChem treats as a single space character but\nappears to you as more spaces. Try running untabify in Emacs. The\nproblem could also be the END directive that terminates the PYTHON\ncompound directive -- since Python also has an end statement. To\navoid confusion the END directive for NWChem must be at the start of\nthe line.\n
Setting up QM/MM calculations for a new system for which classical force analog is not readily available would typically involve the following steps
It is often the case that the input structure for the system comes in the form of the xyz file. Let us take a concrete example of N3O3- molecule, which we would like to embed in classical solvent and perform QM/MM calculations. Here is the structure of just N3O3- in xyz format (generated in course of gas phase optimizations)
6 \n geometry \n N 1.31562667 0.93574165 -0.42424728 \n O 1.56161766 0.18015298 -1.36827899 \n N 2.36373381 1.02559495 0.48834956 \n O 3.47240000 0.42852552 0.42137570 \n N 1.95804013 1.90608355 1.48799418 \n O 2.81393172 2.06788134 2.36142683\n
We cannot use this file as is in the QM/MM simulations, and it has to be converted into PDB format. This is needed even if we plan to treat this molecule quantum mechanically. There is more than way to do it. For example, we could use Babel http://openbabel.org/wiki/Main_Page, which will generate the PDB file as
COMPND geometry \nAUTHOR GENERATED BY OPEN BABEL 2.3.0 \nHETATM 1 O LIG 1 1.562 0.180 -1.368 1.00 0.00 O \nHETATM 2 N LIG 1 1.316 0.936 -0.424 1.00 0.00 N \nHETATM 3 N LIG 1 2.364 1.026 0.488 1.00 0.00 N \nHETATM 4 O LIG 1 3.472 0.429 0.421 1.00 0.00 O \nHETATM 5 N LIG 1 1.958 1.906 1.488 1.00 0.00 N \nHETATM 6 O LIG 1 2.814 2.068 2.361 1.00 0.00 O \nCONECT 1 2 \nCONECT 2 1 3 \nCONECT 3 2 4 5 \nCONECT 4 3 \nCONECT 5 3 6 \nCONECT 6 5 \nMASTER 0 0 0 0 0 0 0 0 6 0 6 0 \nEND\n
which after stripping nonessential information becomes
HETATM 1 O LIG 1 1.562 0.180 -1.368 1.00 0.00 O \n HETATM 2 N LIG 1 1.316 0.936 -0.424 1.00 0.00 N \n HETATM 3 N LIG 1 2.364 1.026 0.488 1.00 0.00 N \n HETATM 4 O LIG 1 3.472 0.429 0.421 1.00 0.00 O \n HETATM 5 N LIG 1 1.958 1.906 1.488 1.00 0.00 N \n HETATM 6 O LIG 1 2.814 2.068 2.361 1.00 0.00 O \n END\n
This is not yet the format we want. So what we need to do is
I would typically use sed for this purpose
sed 's/HETATM/ATOM /' n3o3-bad.pdb > n3o3-step1.pdb\n
where n3o3-bad.pdb
is the original pdb file from Babel and n3o3-step1.pdb
is the converted one as shown below
ATOM 1 O LIG 1 1.562 0.180 -1.368 1.00 0.00 O \nATOM 2 N LIG 1 1.316 0.936 -0.424 1.00 0.00 N \nATOM 3 N LIG 1 2.364 1.026 0.488 1.00 0.00 N \nATOM 4 O LIG 1 3.472 0.429 0.421 1.00 0.00 O \nATOM 5 N LIG 1 1.958 1.906 1.488 1.00 0.00 N \nATOM 6 O LIG 1 2.814 2.068 2.361 1.00 0.00 O \nEND\n
In our case Babel did this for us and the entire system is defined as one residue with the name LIG (see columns 4 and 5). We can leave it as, but I will redefine residue name to NN3 (keep it to 3 characters !). Again running sed 's/LIG/NN3/' n3o3-step1.pdb > n3o3-step2.pdb
ATOM 1 O NN3 1 1.562 0.180 -1.368 1.00 0.00 O \nATOM 2 N NN3 1 1.316 0.936 -0.424 1.00 0.00 N \nATOM 3 N NN3 1 2.364 1.026 0.488 1.00 0.00 N \nATOM 4 O NN3 1 3.472 0.429 0.421 1.00 0.00 O \nATOM 5 N NN3 1 1.958 1.906 1.488 1.00 0.00 N \nATOM 6 O NN3 1 2.814 2.068 2.361 1.00 0.00 O \nEND\n
You could have also broken it up into several residues as
ATOM 1 O NN2 1 1.562 0.180 -1.368 1.00 0.00 O \nATOM 2 N NN2 1 1.316 0.936 -0.424 1.00 0.00 N \nATOM 3 N NN2 1 2.364 1.026 0.488 1.00 0.00 N \nATOM 4 O NN2 1 3.472 0.429 0.421 1.00 0.00 O \nATOM 5 N NN1 2 1.958 1.906 1.488 1.00 0.00 N \nATOM 6 O NN1 2 2.814 2.068 2.361 1.00 0.00 O \nEND\n
where I defined two residues NN2 and NN1 (note changes in columns 4 and 5). To keep things simple I will stay with one residue version for now
This has to do with the requirement that all atoms names have to be unique within a given residue. So if we take our one residue version it could be modified as (notice column 3)
ATOM 1 O1 NN3 1 1.562 0.180 -1.368 1.00 0.00 O \nATOM 2 N1 NN3 1 1.316 0.936 -0.424 1.00 0.00 N \nATOM 3 N2 NN3 1 2.364 1.026 0.488 1.00 0.00 N \nATOM 4 O2 NN3 1 3.472 0.429 0.421 1.00 0.00 O \nATOM 5 N3 NN3 2 1.958 1.906 1.488 1.00 0.00 N \nATOM 6 O3 NN3 2 2.814 2.068 2.361 1.00 0.00 O \nEND\n
Now we have a PDB file for our system in \u201cproper\u201d PDB format. Before we move to next step, I should mention that the last 3 columns are not necessary and could have been removed at any point leading to n3o3.pdb
ATOM 1 O1 NN3 1 1.562 0.180 -1.368 \nATOM 2 N1 NN3 1 1.316 0.936 -0.424 \nATOM 3 N2 NN3 1 2.364 1.026 0.488 \nATOM 4 O2 NN3 1 3.472 0.429 0.421 \nATOM 5 N3 NN3 2 1.958 1.906 1.488 \nATOM 6 O3 NN3 2 2.814 2.068 2.361 \nEND\n
"},{"location":"QMMM_Appendix.html#generation-of-new-fragment-files","title":"Generation of new fragment files","text":"While setting up QM/MM calculations is often necessary to generate new fragment files for the molecules that are not available as part of standard set. The IMPORTANT assumption here is that these new molecules/residues will be part of OQM region, and as a result only minimum information needs to be provided to include them in QM/MM calculations.
First we must ensure that we have a proper PDB format for our as discussed in the Generation of the proper PDB file section. As a concrete example we will start with N3O3 example that was discussed there as well
ATOM 1 O1 NN3 1 1.562 0.180 -1.368 \nATOM 2 N1 NN3 1 1.316 0.936 -0.424 \nATOM 3 N2 NN3 1 2.364 1.026 0.488 \nATOM 4 O2 NN3 1 3.472 0.429 0.421 \nATOM 5 N3 NN3 1 1.958 1.906 1.488 \nATOM 6 O3 NN3 1 2.814 2.068 2.361 \nEND\n
We have residue named NN3 and therefore looking to construct fragment file NN3.frg
. The best way to do it is to run a simple prepare job
start n3o3 \n\nprepare \nsource n3o3.pdb \nnew_top new_seq \nnew_rst \nmodify segment 1 quantum \nupdate lists \nignore \nwrite n3o3_ref.pdb \nwrite n3o3_ref.rst \nend \n\ntask prepare\n
This prepare job will necessarily fail because NN3.frg is not yet available:
Created fragment ./NN3.frg_TMP \n\nUnresolved atom types in fragment NN3 \n\n\n ********** \n * 0: pre_mkfrg failed 9999 \n **********\n
As part of this process skeleton fragment file (NN3.frg_TMP
) will be generated that can be modified into the final correct form. Let us take a look at NN3.frg_TMP
# This is an automatically generated fragment file \n# Atom types and connectivity were derived from coordinates \n# Atomic partial charges are crude estimates \n# 00/00/00 00:00:00 \n# \n$NN3 \n 6 1 1 0 \nNN3 \n 1 O1 0 0 0 1 1 0.000000 0.000000 \n 2 N1 0 0 0 1 1 0.000000 0.000000 \n 3 N2 0 0 0 1 1 0.000000 0.000000 \n 4 O2 0 0 0 1 1 0.000000 0.000000 \n 5 N3 0 0 0 1 1 0.000000 0.000000 \n 6 O3 0 0 0 1 1 0.000000 0.000000 \n 1 2 \n 2 3 \n 3 4 \n 3 5 \n 5 6\n
The main problem with this fragment file is that there are no atom types to be found in column 12. What atom type does is to identify what classical parameters should be assigned to it. Since, as mentioned in the beginning, we are planing to treat this residue/molecule as part of QM region, the only classical information needed is VDW parameters. We will assume that all nitrogens atoms in our molecule can use the same set of parameters, and the same for oxygens. Therefore we will define two atom types NX and OX
$NN3 \n 6 1 1 0 \nNN3 \n 1 O1 OX 0 0 0 1 1 0.000000 0.000000 \n 2 N1 NX 0 0 0 1 1 0.000000 0.000000 \n 3 N2 NX 0 0 0 1 1 0.000000 0.000000 \n 4 O2 OX 0 0 0 1 1 0.000000 0.000000 \n 5 N3 NX 0 0 0 1 1 0.000000 0.000000 \n 6 O3 OX 0 0 0 1 1 0.000000 0.000000 \n 1 2 \n 2 3 \n 3 4 \n 3 5 \n 5 6\n
and rename resulting file as NN3.frg. Please note that the overall format of the fragment file was preserved and atom types were entered starting at column 12. Rerunning the same prepare job moves as a bit further this time
modify segment 1 set 0 quantum \n Parameter file /Users/marat/opt/codes/nwchem-new/src/data/amber_s/amber.par \n Parameter file /Users/marat/opt/codes/nwchem-new/src/data/amber_q/amber.par \n Parameter file /Users/marat/opt/codes/nwchem-new/src/data/amber_x/amber.par \n Parameter file /Users/marat/opt/codes/nwchem-new/src/data/amber_u/amber.par\n\n Undetermined force field parameters\n\n Parameters could not be found for atom type OX Q \n Parameters could not be found for atom type NX Q\n\n ********** \n * 0: pre_check failed 9999 \n **********\n
complaining now that atom types OX and NX are not defined. This brings us to the next step of defining new parameter file for our calculation.
"},{"location":"QMMM_Appendix.html#generation-of-new-parameter-files","title":"Generation of new parameter files","text":"Continuing with our fragment construction in Generation of new fragment files section, we now need to define VDW parameters for our new atom types NX and OX. The best way to do it is to create amber.par
file in the directory where you plan to rerun final prepare
Electrostatic 1-4 scaling factor 0.833333 \nRelative dielectric constant 1.000000 \nParameters epsilon R* \n# \nAtoms \nNX 14.01000 7.11280E-01 1.82400E-01 1 1111111111 \n Q 7 3.55640E-01 1.82400E-01 \nOX 16.00000 6.35968E-01 1.76830E-01 1 1111111111 \n Q 8 3.17984E-01 1.76830E-01 \nEnd\n
The format of this file is documented in Format of NWChem parameter file. How to actually choose the appropriate values for VDW parameters is a whole new subject, which I do not think anybody yet fully addressed. The practical strategy is to copy from known atom types, which are chemically similar to the ones in your system. In the case above I copied parameters from standard AMBER atom types N and OW.
"},{"location":"QMMM_Appendix.html#format-of-nwchem-parameter-file","title":"Format of NWChem parameter file","text":"The format of NWChem parameter is illustrated on the figure below and also available as pdf file.
"},{"location":"QMMM_Appendix.html#conversion-of-standard-amber-program-parameter-files","title":"Conversion of standard AMBER program parameter files","text":"Fortran code that performs conversion from AMBER program parameter file format to NWChem can be found here. It works by parsing out free format AMBER style parameter file contained in amber.in
MASS \nC 12.01 \nCA 12.01 \nBOND \n#this is a comment \nC -CA 469.0 1.409 this is also a comment \nC - CB 447.0 1.419 \nANGLE \nC -CA-CA 63.0 120.00 another comment \nC -CB-NB 70.0 130.00 \nDIHEDRAL \nX -C -CA-X 4 14.50 180.0 2. intrpol.bsd.on C6H6 \n X - C - CB -X 4 12.00 180.0 2. intrpol.bsd.on C6H6 \nIMPROPER \nX -CT-N -CT 1.0 180. 2. JCC,7,(1986),230 \nCT -O - C -OH 10.5 180. 2. \nNONBOND \n CA 1.9080 0.0860 \nC 1.9080 0.0860\n
to fixed format NWChem style amber.par file
#Generated amber.par file \nElectrostatic 1-4 scaling factor 0.833333 \nRelative dielectric constant 1.000000 \nParameters epsilon R* \n# \nAtoms \nCA 12.01000 3.59824E-01 1.90800E-01 1 1111111111 \n 6 1.79912E-01 1.90800E-01 \nC 12.01000 3.59824E-01 1.90800E-01 1 1111111111 \n 6 1.79912E-01 1.90800E-01 \nBonds \nC -CA 0.14090 3.92459E+05 \nC -CB 0.14190 3.74050E+05 \nAngles \nC -CA -CA 2.09440 5.27184E+02 \nC -CB -NB 2.26893 5.85760E+02 \nProper dihedrals \n -C -CA - 3.14159 1.51670E+01 2 \n -C -CB - 3.14159 1.25520E+01 2 \nImproper dihedrals \n -CT -N -CT 3.14159 4.18400E+00 2 \nCT -O -C -OH 3.14159 4.39320E+01 2 \nEnd\n
"},{"location":"QMMM_Dynamics.html","title":"QMMM Dynamics","text":"Dynamical simulations within QM/MM framework can be initiated using
task\u00a0qmmm\u00a0 <qmtheory> \u00a0dynamics \n
directive. User has to specify the region for which simulation will performed. If dynamics is performed only for the classical parts of the system (QM region is fixed) then ESP point charge representation (density espfit) is recommended to speed up simulations. If this option is utilized then wavefunction file (.movecs) has to be available and present in the permanent directory (this can be most easily achieved by running energy calculation prior to dynamics)."},{"location":"QMMM_ESP.html","title":"QMMM ESP Charge Analysis","text":"
The example below illustrates dipole property QM/MM DFT/B3LYP calculation for quantum water molecule embedded into 20 angstrom box of classical SPCE/E water molecules.
The preparation stage that involves definition of the QM region and solvation is performed as part of the calculation. Note that water fragment file wtr.frg is required in this calculation. Prepare run will generate restart file (wtr_ref.rst) and topology file (wtr.top)
In the QM/MM interface block the use of bq_zone value of 3.0 Angstrom is specified.
start wtr\n\n permanent_dir ./perm \n scratch_dir ./data\n\n prepare \n source wtr0.pdb \n new_top new_seq \n new_rst \n modify segment 1 quantum \n center \n orient \n solvate box 3.0 \n update lists \n ignore \n write wtr_ref.rst \n write wtr_ref.pdb \n end\n\n task prepare\n\n md \n system wtr_ref \n end\n\n basis \n * library \"6-31G\" \n end\n\n dft \n xc b3lyp \n end\n\n qmmm \n bq_zone 3.0 \n end\n\n property \n dipole \n end\n\n task qmmm dft property\n
"},{"location":"QMMM_Excited_States.html","title":"QMMM Excited State Energy","text":"The excited state QM/MM energy calculations can be performed with TCE
task\u00a0qmmm\u00a0tce\u00a0energy
or TDDFT
task\u00a0qmmm\u00a0tddft\u00a0energy
levels of theory. The excited state QM/MM gradient energy calculations can be performed only numerically.
"},{"location":"QMMM_FEP_Example.html","title":"Example of QM/MM solvation free energy calculation input file","text":"A total of two sampling cycles will be performed with 1000 samples per each cycle
memory total 2000 Mb\n\n start clfoh\n\n permanent_dir ./perm\n scratch_dir /scratch\n\n\n md\n #this will require topology [clfoh.top](clfoh.top) and restart [clfoh_neb.rst](clfoh_neb.rst) files \n system clfoh_neb\n cutoff 1.5 qmmm 1.5\n noshake solute\n isotherm\n end\n\n qmmm\n print low\n nsamples 1000\n ncycles 2\n end\n\n set qmmm:fep_geom [clfoh_neb-s.xyzi](clfoh_neb-s.xyzi) [clfoh_neb-e.xyzi](clfoh_neb-e.xyzi)\n set qmmm:fep_esp [clfoh_neb-s.esp](clfoh_neb-s.esp.md) [clfoh_neb-e.esp](clfoh_neb-e.esp.md)\n set qmmm:fep_lambda 0.0 0.1\n set qmmm:fep_deriv .true.\n\n task qmmm fep\n
"},{"location":"QMMM_Free_Energy.html","title":"QMMM Free Energy","text":""},{"location":"QMMM_Free_Energy.html#overview","title":"Overview","text":"Free energy capabilities of QM/MM module are at this point restricted to calculations of free energy differences between two fixed configurations of the QM region.
Users must be warned that this the least automated QM/MM functionality containing several calculation stages. Solid understanding of free energy calculations is required to achieve a meaningful calculation.
Description of the implemented methodology can be found in the following paper. In this approach the free energy difference between the two configurations of the QM region (e.g. A and B):
is approximated as a sum of internal QM contribution and solvation:
It is presumed that structures of A and B configurations are available as restart files sharing common topology file.
"},{"location":"QMMM_Free_Energy.html#internal-contribution","title":"Internal contribution","text":"The internal QM contribution is given by the differences in the internal QM energies evaluated at the optimized MM environment:
The internal QM energy is nothing more but a gas phase expression total energy but evaluated with the wavefunction obtained in the presence of the environment. To calculate internal QM contribution to free energy difference one has to
Note that internal QM energy can be found in the QM/MM output file under \u201cquantum energy internal\u201d name.
"},{"location":"QMMM_Free_Energy.html#solvation-contribution","title":"Solvation contribution","text":"The solvation contribution is evaluated by averaging energy difference between A and B configurations of the QM system represented by a set of ESP charges.
where is the total energy of the system where QM region is replaced by a set of fixed point ESP charges.
In majority of cases the A and B configuration are \u201ctoo far apart\u201d and one step free energy calculation as shown above will not lead to meaningful results. One solution is to introduce intermediate points that bridge A and B configurations by linear interpolation
where
The solvation free energy difference can be then written as sum of differences for the subintervals :
To expedite the calculation it is convenient to use a double wide sampling strategy where the free energy differences for the intervals and are calculated simultaneously by sampling around point. In the simplest case where we use two subintervals (n=2)
or
The following items are necessary:
Both .esp and .xyzi files would be typically obtained during the calculation of internal free energy (see above). ESP charges would be generated in the perm directory during optimization of the MM region. The xyzi is basically xyz structure file with an extra column that allows to map coordinates of QM atoms to the overall system. The xyzi file can also be obtained as part of calculation of internal free energy by inserting
set qmmm:region_print .true.\n
anywhere in the input file during energy calculation. Both xyzi and esp files should be placed into the perm directory!!!
In the input file the restart file is specified in the MD block following the standard notation
md\n system < name of rst file without extension>\n ...\nend\n
while coordinates of QM region (xyzi files) and ESP charges (esp files) are set using the following directives (at the top level outside of any input blocks)
set qmmm:fep_geom xxx_A.xyzi xxx_B.xyzi\nset qmmm:fep_esp xxx_A.esp xxx_B.esp\n
The current interpolation interval for which free energy difference is calculated is defined as
set qmmm:fep_lambda lambda_i lambda_i+1\n
To enable double wide sampling use the following directive
set qmmm:fep_deriv .true.\n
If set, the above directive will perform both and calculations, where
The calculation proceeds in cycles, each cycle consisting of two phases. First phase is generation of classical MD trajectory around point. Second phase is processing of the generated trajectory to calculate averages of relevant energy differences. The number of MD steps in the first phase is controlled by the QM/MM directive
This is a required directive for QM/MM free energy calculations.
Number of overall cycles is defined by the QM/MM directive
In most cases explicit definition of QM/MM density and region should not be required. The QM/MM density will automatically default to espfit and region to mm.
Prior to data collection for free energy calculations user may want to prequilibrate the system, which can be achieved by equil keyword in the MD block:
md\n ... \n equil <number of equilibration steps>\n end\n
Other parameters (e.g. temperature and pressure can be also set in the MD block.
The actual QM/MM solvation free energy calculation is invoked through the following task directive
task qmmm fep\n
The current value of solvation free energy differences may be tracked though
grep free <name of the output file>\n
The first number is a forward () free energy difference and second number is backward () free energy difference, both in kcal/mol. The same numbers can also be found in the 4th and 6th columns of .thm file but this time in atomic units.
The same .thm file can also be used to continue from the prior calculation. This will require the presence of
set qmmm:extend .true.\n
directive, the .thm file, and the appropriate rst file.
Here is an example of the input file for QM/MM solvation free energy calculation.
"},{"location":"QMMM_Input_File.html","title":"QM/MM Input file","text":"The input file for QM/MM calculations contains definition of molecular mechanics parameters, quantum mechanical parameters, and QM/MM interface parameters.
The molecular mechanics parameters are given in the form of standard MD input block as used by the MD module. At the basic level the molecular mechanics input block specifies the restart and topology file that were generated during QM/MM preparation stage. It also contains information relevant to the calculation of the classical region (e.g. cutoff distances, constraints, optimization and dynamics parameters, etc) in the system. In this input block one can also set fixed atom constraints on classical atoms. Continuing with our prepare example for ethanol molecule here is a simple input block that may be used for this system.
\u00a0md \n#\u00a0this\u00a0specifies\u00a0that\u00a0etl_md.rst\u00a0will\u00a0be\u00a0used\u00a0as\u00a0a\u00a0restart\u00a0file \n#\u00a0\u00a0and\u00a0etl.top\u00a0will\u00a0be\u00a0a\u00a0topology\u00a0file \n\u00a0\u00a0system\u00a0etl_md \n#\u00a0if\u00a0we\u00a0ever\u00a0wanted\u00a0to\u00a0fix\u00a0C1\u00a0atom\u00a0 \n\u00a0\u00a0fix\u00a0solute\u00a01\u00a0_C1 \n\u00a0\u00a0noshake\u00a0solute \n\u00a0end\n
The noshake solute, shown in the above example is a recommended directive for QM/MM simulations that involve optimizations. Otherwise user has to ensure that the optimization method for classical solute atoms is a steepest descent
"},{"location":"QMMM_Parameters.html","title":"QMMM Parameters","text":"The QM/MM interface parameters define the interaction between classical and quantum regions.
qmmm \n [ [eref] <double precision default 0.0d0>] \n [ [bqzone] <double precision default 9.0d0>] \n [ [mm_charges] [exclude <(none||all||linkbond||linkbond_H) default none>] \n [ expand <none||all||solute||solvent> default none] \n [ update <integer default 0>] \n [ [link_atoms] <(hydrogen||halogen) default hydrogen>] \n [ [link_ecp] <(auto||user) default auto>] \n [ [region] < [region1] [region2] [region3] > ] \n [ [method] [method1] [method2] [method3] ] \n [ [maxiter] [maxiter1] [maxiter2] [maxiter3] ] \n [ [ncycles] < [number] default 1 > ] \n [ [density] [espfit] [static] [dynamical] ] \n [ [xyz] ] \n [ [convergence] <double precision default 1.0d-4>] ] \n [ [rename] ] <filename> \n [ [nsamples] ] \n end\n
Detailed explanation of the subdirectives in the QM/MM input block is given below:
"},{"location":"QMMM_Parameters.html#qmmm-eref","title":"QM/MM eref","text":"eref\u00a0<double\u00a0precision\u00a0default\u00a00.0d0>\n
This directive sets the relative zero of energy for the QM component of the system. The need for this directive arises from different definitions of zero energy for QM and MM methods. In QM methods the zero of energy for the system is typically vacuum. The zero of energy for the MM system is by definition of most parameterized force fields the separated atom energy. Therefore in many cases the energetics of the QM system will likely overshadow the MM component of the system. This imbalance can be corrected by suitably chosen value of eref
. In most cases IT IS OK to leave eref
at its default value of zero.
bqzone <double precision default 9.0d0>\n
This directive defines the radius of the zone (in angstroms) around the quantum region where classical residues/segments will be allowed to interact with quantum region both electrostatically and through Van der Waals interactions. It should be noted that classical atoms interacting with quantum region via bonded interactions are always included (this is true even if bqzone is set to 0). In addition, even if one atom of a given charged group is in the bqzone (residues are typically treated as one charged group) then the whole group will be included.
"},{"location":"QMMM_Parameters.html#qmmm-mm_charges","title":"QM/MM mm_charges","text":"mm_charges [exclude <(none||all||linkbond||linkbond_H) default none>]\n [expand <none||all||solute||solvent> default none]\n [update <integer default 0>]\n
This directive controls treatment of classical point (MM) charges that are interacting with QM region. For most QM/MM applications the use of directive will be not be necessary. Its absence would be simply mean that all MM charges within the cuttof distance ( as specified by cutoff ) as well those belonging to the charges groups directly bonded to QM region will be allowed to interact with QM region.
Keyword exclude
specifies the subset MM charges that will be specifically excluded from interacting with QM region.
none
default value reverts to the original set of MM charges as described above.all
excludes all MM charges from interacting with QM region (\u201cgas phase\u201d calculation).linkbond
excludes MM charges that are connected to a quantum region by at most two bonds,linkbond_H
similar to linkbond
but excludes only hydrogen atoms.Keyword expand
expands the set MM charges interacting with QM region beyond the limits imposed by cutoff value.
none
default value reverts to the original set of MM chargessolute
expands electrostatic interaction to all solute MM chargessolvent
expands electrostatic interaction to all solvent MM chargesall
expands electrostatic interaction to all MM chargesKeyword update
specifies how often list of MM charges will be updated in the course of the calculation. Default behavior is not to update.
link_atoms <(hydrogen||halogen) default halogen>\n
This directive controls the treatment of bonds crossing the boundary between quantum and classical regions. The use of hydrogen keyword will trigger truncation of such bonds with hydrogen link atoms. The position of the hydrogen atom will be calculated from the coordinates of the quantum and classical atom of the truncated bond using the following expression
where g is the scale factor set at 0.709
Setting link_atoms
to halogen
will result in the modification of the quantum atom of the truncated bond to the fluoride atom. This fluoride atom will typically carry an effective core potential (ECP) basis set as specified in link_ecp
directive.
link_ecp <(auto||user)default auto> \n
This directive specifies ECP basis set on fluoride link atoms. If set to auto
the ECP basis set given by Zhang, Lee, Yang1 for 6-31G basis will be used. Strictly speaking, this implies the use of 6-31G spherical basis as the main basis set. If other choices are desired then keyword user should be used and ECP basis set should be entered separatelly following the format given in section dealing with ECPs . The name tag for fluoride link atoms is F_L
.
region\u00a0\u00a0<\u00a0[region1]\u00a0\u00a0[region2]\u00a0\u00a0[region3]\u00a0>\n
This directive specifies active region(s) for optimization, dynamics, frequency, and free energy calculations. Up to three regions can be specified, those are limited to
qm
- all quantum atoms qmlink
- quantum and link atoms mm_solute
- all classical solute atoms excluding link atomssolute
- all solute atoms including quantumsolvent
all solvent atomsmm
all classical solute and solvent atoms, excluding link atomsall
all atomsOnly the first region will be used in dynamics, frequency, and free energy calculations. In the geometry optimizations, all three regions will be optimized using the following optimization methods
\u00a0\u00a0\u00a0\u00a0if\u00a0(region.eq.\"qm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"qmlink\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm_solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"lbfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solvent\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"all\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0end\u00a0if\n
where \u201cbfgs\u201d stands for Broyden\u2013Fletcher\u2013Goldfarb\u2013Shanno (BFGS) optimization method, \u201clbfgs\u201d limited memory version of quasi-newton, and \u201csd\u201d simple steepest descent algorithm. These assignments can be potentially altered using method directive.
"},{"location":"QMMM_Parameters.html#qmmm-method","title":"QM/MM method","text":" method [method1] [method2] [method3]\n
This directive controls which optimization algorithm will be used for the regions as defined by [[qmmm_region|Qmmm_region]] directive. The allowed values are bfgs
aka DRIVER, lbfgs
limited memory version of quasi-newton, and sd
simple steepest descent algorithm. The use of this directive is not recommended in all but special cases. In particular, bfgs
should be used for QM region if there are any constraints, sd
method should always be used for classical solute and solvent atoms with shake constraints.
maxiter [maxiter1] [maxiter2] [maxiter3]\n
This directive controls maximum number of iterations for the optimizations of regions as defined by by regions directive. User is strongly encouraged to set this directive explicitly as the default value shown below may not be appropriate in all the cases:
if(region.eq.\"qm\") then\n maxiter = 20\n else if (region.eq.\"qmlink\") then\n maxiter = 20\n else if (region.eq.\"mm\") then\n maxiter = 100\n else if (region.eq.\"solvent\") then\n maxiter = 100\n else\n maxiter = 50\n end if\n
"},{"location":"QMMM_Parameters.html#qmmm-ncycles","title":"QM/MM ncycles","text":" ncycles < [number] default 1 >\n
This directive controls the number of optimization cycles where the defined regions will be optimized in succession, or number of sampling cycles in free energy calculations.
"},{"location":"QMMM_Parameters.html#qmmm-density","title":"QM/MM density","text":"density\u00a0\u00a0[espfit]\u00a0[static]\u00a0[dynamical]\u00a0default\u00a0dynamical\n
This directive controls the electrostatic representation of fixed QM region during optimization/dynamics of classical regions. It has no effect when position of QM atoms are changing.
dynamical is an option where QM region is treated the standard way, through the recalculation of the wavefunction calculated and the resulting electron density is used to compute electrostatic interactions with classical atoms. This option is the most expensive one and becomes impractical for large scale optimizations.
static option will not recalculate QM wavefunction but will still use full electron density in the computations of electrostatic interactions.
espfit option will not recalculate QM wavefunction nor it will use full electron density. Instead, a set of ESP charges for QM region will be calculated and used to compute electrostatic interactions with the MM regions. This option is the most efficient and is strongly recommended for large systems.
Note that both \u201cstatic\u201d and \u201cespfit\u201d options do require the presence of the movecs file. It is typically available as part as part of calculation process. Otherwise it can be generated by running qmmm energy calculation.
In most calculations default value for density would dynamical, with the exception of free energy calculations where default setting espfit will be used.
"},{"location":"QMMM_Parameters.html#qmmm-rename","title":"QM/MM rename","text":"This directive is allows to rename atoms in the QM region, based on the external file which specifies desired name( (1st column) and its PDB index (2nd column). The file is assumed to be located in the current run directory.
For example, if we need to rename atoms CB and OG that are part of our QM region
... \n ATOM 13 N SER 2 0.211 0.284 -1.377 0.00 N \n ATOM 14 H SER 2 0.886 1.158 -1.257 0.00 H \n ATOM 15 CA SER 2 -0.320 -0.351 -0.166 0.00 C \n ATOM 16 HA SER 2 -1.405 -0.183 -0.132 0.00 H \n ATOM 17 CB SER 2 -0.001 -1.879 -0.106 0.00 C \n ATOM 18 2HB SER 2 1.092 -2.012 -0.038 0.00 H \n ATOM 19 3HB SER 2 -0.469 -2.317 0.784 0.00 H \n ATOM 20 OG SER 2 -0.452 -2.678 -1.192 0.00 O \n ATOM 21 HG SER 2 -1.351 -2.421 -1.392 0.00 H \n ATOM 22 C SER 2 0.252 0.338 1.076 0.00 C \n ...\n
the following qmmm block can be used
... \n qmmm \n ... \n rename name.dat \n ... \n end \n\n task qmmm dft energy\n
where name.dat file
C1 17\nOX 20\n
Here atoms are identified by the corresponding PDB atom index and renamed from default element based naming to C1 and OX.
"},{"location":"QMMM_Parameters.html#qmmm-convergence","title":"QM/MM convergence","text":"convergence\u00a0\u00a0<\u00a0double\u00a0precision\u00a0etol\u00a0default\u00a01.0d-4>\n
This directive controls convergence of geometry optimization. The optimization is deemed converged if absolute difference in total energies between consecutive optimization cycles becomes less than etol.
"},{"location":"QMMM_Parameters.html#qmmm-nsamples","title":"QM/MM nsamples","text":"nsamples\n
This directive is required for free energy calculations and defines number of samples for averaging during single cycle.
"},{"location":"QMMM_Parameters.html#references","title":"References","text":"Zhang, Y.; Lee, T.-S.; Yang, W. A Pseudobond Approach to Combining Quantum Mechanical and Molecular Mechanical Methods. The Journal of Chemical Physics 1999, 110 (1), 46\u201354. https://doi.org/10.1063/1.478083.\u00a0\u21a9
The necessary prerequisites for the preparation of topology and restart files for QM/MM simulations are: * Properly formatted PDB file for the system. * Fragment Files (extension .frg) * Parameter Files (extension .par)
A number of fragment files as well as standard Amber type force parameter files are provided with the NWChem distribution. However, user should be prepared to generate additional fragment and parameter files for nonstandard cases
"},{"location":"QMMM_QMMM_Parameters.html","title":"QM/MM parameters","text":"The QM/MM interface parameters define the interaction between classical and quantum regions.
qmmm \n [ [eref] <double precision default 0.0d0>] \n [ [bqzone] <double precision default 9.0d0>] \n [ [mm_charges] [exclude <(none||all||linkbond||linkbond_H) default none>] \n [ expand <none||all||solute||solvent> default none] \n [ update <integer default 0>] \n [ [link_atoms] <(hydrogen||halogen) default hydrogen>] \n [ [link_ecp] <(auto||user) default auto>] \n [ [region] < [region1] [region2] [region3] > ] \n [ [method] [method1] [method2] [method3] ] \n [ [maxiter] [maxiter1] [maxiter2] [maxiter3] ] \n [ [ncycles] < [number] default 1 > ] \n [ [density] [espfit] [static] [dynamical] ] \n [ [xyz] ] \n [ [convergence] <double precision default 1.0d-4>] ] \n [ [load] ] \n [ [nsamples] ] \n end\n
Detailed explanation of the subdirectives in the QM/MM input block is given below:
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-eref","title":"QM/MM eref","text":"eref\u00a0<double\u00a0precision\u00a0default\u00a00.0d0>\n
This directive sets the relative zero of energy for the QM component of the system. The need for this directive arises from different definitions of zero energy for QM and MM methods. In QM methods the zero of energy for the system is typically vacuum. The zero of energy for the MM system is by definition of most parameterized force fields the separated atom energy. Therefore in many cases the energetics of the QM system will likely overshadow the MM component of the system. This imbalance can be corrected by suitably chosen value of eref
. In most cases IT IS OK to leave eref
at its default value of zero.
bqzone <double precision default 9.0d0>\n
This directive defines the radius of the zone (in angstroms) around the quantum region where classical residues/segments will be allowed to interact with quantum region both electrostatically and through Van der Waals interactions. It should be noted that classical atoms interacting with quantum region via bonded interactions are always included (this is true even if bqzone is set to 0). In addition, even if one atom of a given charged group is in the bqzone (residues are typically treated as one charged group) then the whole group will be included.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-mm_charges","title":"QM/MM mm_charges","text":"mm_charges [exclude <(none||all||linkbond||linkbond_H) default none>]\n [expand <none||all||solute||solvent> default none]\n [update <integer default 0>]\n
This directive controls treatment of classical point (MM) charges that are interacting with QM region. For most QM/MM applications the use of directive will be not be necessary. Its absence would be simply mean that all MM charges within the cuttof distance ( as specified by cutoff ) as well those belonging to the charges groups directly bonded to QM region will be allowed to interact with QM region.
Keyword exclude
specifies the subset MM charges that will be specifically excluded from interacting with QM region.
none
default value reverts to the original set of MM charges as described above.all
excludes all MM charges from interacting with QM region (\u201cgas phase\u201d calculation).linkbond
excludes MM charges that are connected to a quantum region by at most two bonds,linkbond_H
similar to linkbond
but excludes only hydrogen atoms.Keyword expand
expands the set MM charges interacting with QM region beyond the limits imposed by cutoff value.
none
default value reverts to the original set of MM chargessolute
expands electrostatic interaction to all solute MM chargessolvent
expands electrostatic interaction to all solvent MM chargesall
expands electrostatic interaction to all MM chargesKeyword update
specifies how often list of MM charges will be updated in the course of the calculation. Default behavior is not to update.
link_atoms <(hydrogen||halogen) default halogen>\n
This directive controls the treatment of bonds crossing the boundary between quantum and classical regions. The use of hydrogen keyword will trigger truncation of such bonds with hydrogen link atoms. The position of the hydrogen atom will be calculated from the coordinates of the quantum and classical atom of the truncated bond using the following expression
where g is the scale factor set at 0.709
Setting link_atoms
to halogen
will result in the modification of the quantum atom of the truncated bond to the fluoride atom. This fluoride atom will typically carry an effective core potential (ECP) basis set as specified in link_ecp
directive.
link_ecp <(auto||user)default auto> \n
This directive specifies ECP basis set on fluoride link atoms. If set to auto
the ECP basis set given by Zhang, Lee, Yang1 for 6-31G basis will be used. Strictly speaking, this implies the use of 6-31G spherical basis as the main basis set. If other choices are desired then keyword user should be used and ECP basis set should be entered separatelly following the format given in section dealing with ECPs . The name tag for fluoride link atoms is F_L
.
region\u00a0\u00a0<\u00a0[region1]\u00a0\u00a0[region2]\u00a0\u00a0[region3]\u00a0>\n
This directive specifies active region(s) for optimization, dynamics, frequency, and free energy calculations. Up to three regions can be specified, those are limited to
qm
- all quantum atoms qmlink
- quantum and link atoms mm_solute
- all classical solute atoms excluding link atomssolute
- all solute atoms including quantumsolvent
all solvent atomsmm
all classical solute and solvent atoms, excluding link atomsall
all atomsOnly the first region will be used in dynamics, frequency, and free energy calculations. In the geometry optimizations, all three regions will be optimized using the following optimization methods
\u00a0\u00a0\u00a0\u00a0if\u00a0(region.eq.\"qm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"qmlink\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm_solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"lbfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solvent\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"all\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0end\u00a0if\n
where \u201cbfgs\u201d stands for Broyden\u2013Fletcher\u2013Goldfarb\u2013Shanno (BFGS) optimization method, \u201clbfgs\u201d limited memory version of quasi-newton, and \u201csd\u201d simple steepest descent algorithm. These assignments can be potentially altered using method directive.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-method","title":"QM/MM method","text":" method [method1] [method2] [method3]\n
This directive controls which optimization algorithm will be used for the regions as defined by [[qmmm_region|Qmmm_region]] directive. The allowed values are bfgs
aka DRIVER, lbfgs
limited memory version of quasi-newton, and sd
simple steepest descent algorithm. The use of this directive is not recommended in all but special cases. In particular, bfgs
should be used for QM region if there are any constraints, sd
method should always be used for classical solute and solvent atoms with shake constraints.
maxiter [maxiter1] [maxiter2] [maxiter3]\n
This directive controls maximum number of iterations for the optimizations of regions as defined by by regions directive. User is strongly encouraged to set this directive explicitly as the default value shown below may not be appropriate in all the cases:
if(region.eq.\"qm\") then\n maxiter = 20\n else if (region.eq.\"qmlink\") then\n maxiter = 20\n else if (region.eq.\"mm\") then\n maxiter = 100\n else if (region.eq.\"solvent\") then\n maxiter = 100\n else\n maxiter = 50\n end if\n
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-ncycles","title":"QM/MM ncycles","text":" ncycles < [number] default 1 >\n
This directive controls the number of optimization cycles where the defined regions will be optimized in succession, or number of sampling cycles in free energy calculations.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-density","title":"QM/MM density","text":"density\u00a0\u00a0[espfit]\u00a0[static]\u00a0[dynamical]\u00a0default\u00a0dynamical\n
This directive controls the electrostatic representation of fixed QM region during optimization/dynamics of classical regions. It has no effect when position of QM atoms are changing.
dynamical is an option where QM region is treated the standard way, through the recalculation of the wavefunction calculated and the resulting electron density is used to compute electrostatic interactions with classical atoms. This option is the most expensive one and becomes impractical for large scale optimizations.
static option will not recalculate QM wavefunction but will still use full electron density in the computations of electrostatic interactions.
espfit option will not recalculate QM wavefunction nor it will use full electron density. Instead, a set of ESP charges for QM region will be calculated and used to compute electrostatic interactions with the MM regions. This option is the most efficient and is strongly recommended for large systems.
Note that both \u201cstatic\u201d and \u201cespfit\u201d options do require the presence of the movecs file. It is typically available as part as part of calculation process. Otherwise it can be generated by running qmmm energy calculation.
In most calculations default value for density would dynamical, with the exception of free energy calculations where default setting espfit will be used.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-load","title":"QM/MM load","text":"load < esp > [<filename>]\n
This directive instructs to load external file (located in permanent directory) containing esp charges for QM region. If filename is not provided it will be constructed from the name of the restart file by replacing \u201c.rst\u201d suffix with \u201c.esp\u201d. Note that file containing esp charges is always generated whenever esp charge calculation is performed
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-convergence","title":"QM/MM convergence","text":"convergence\u00a0\u00a0<\u00a0double\u00a0precision\u00a0etol\u00a0default\u00a01.0d-4>\n
This directive controls convergence of geometry optimization. The optimization is deemed converged if absolute difference in total energies between consecutive optimization cycles becomes less than etol.
"},{"location":"QMMM_QMMM_Parameters.html#qmmm-nsamples","title":"QM/MM nsamples","text":"nsamples\n
This directive is required for free energy calculations and defines number of samples for averaging during single cycle.
"},{"location":"QMMM_QMMM_Parameters.html#references","title":"References","text":"Zhang, Y.; Lee, T.-S.; Yang, W. A Pseudobond Approach to Combining Quantum Mechanical and Molecular Mechanical Methods. The Journal of Chemical Physics 1999, 110 (1), 46\u201354. https://doi.org/10.1063/1.478083.\u00a0\u21a9
The parameters defining calculation of the QM region (including basis sets) must be present in the traditional NWChem input format except for the geometry block.
The geometrical information will be constructed automatically using information contained in the restart file.
"},{"location":"QMMM_References.html","title":"QMMM References","text":""},{"location":"QMMM_References.html#qmmm-references","title":"QM/MM References","text":"It is worth citing some papers dealing with the QM/MM method 123, its implementation in NWChem4567 and some more recent discussions of the QM/MM parameters89
"},{"location":"QMMM_References.html#references","title":"References","text":"Warshel, A.; Levitt, M. Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. Journal of Molecular Biology 1976, 103 (2), 227\u2013249. https://doi.org/10.1016/0022-2836(76)90311-9.\u00a0\u21a9
Zhang, Y.; Lee, T.-S.; Yang, W. A Pseudobond Approach to Combining Quantum Mechanical and Molecular Mechanical Methods. The Journal of Chemical Physics 1999, 110 (1), 46\u201354. https://doi.org/10.1063/1.478083.\u00a0\u21a9
Lin, H.; Truhlar, D. G. Redistributed Charge and Dipole Schemes for Combined Quantum Mechanical and Molecular Mechanical Calculations. The Journal of Physical Chemistry A 2005, 109 (17), 3991\u20134004. https://doi.org/10.1021/jp0446332.\u00a0\u21a9
Valiev, M.; Kowalski, K. Hybrid Coupled Cluster and Molecular Dynamics Approach: Application to the Excitation Spectrum of Cytosine in the Native DNA Environment. The Journal of Chemical Physics 2006, 125 (21), 211101. https://doi.org/10.1063/1.2403847.\u00a0\u21a9
Valiev, M.; Garrett, B. C.; Tsai, M.-K.; Kowalski, K.; Kathmann, S. M.; Schenter, G. K.; Dupuis, M. Hybrid Approach for Free Energy Calculations with High-Level Methods: Application to the SN2 Reaction of CHCl3 and OH\u2212 in Water. The Journal of Chemical Physics 2007, 127 (5), 051102. https://doi.org/10.1063/1.2768343.\u00a0\u21a9
Fan, P.-D.; Valiev, M.; Kowalski, K. Large-Scale Parallel Calculations with Combined Coupled Cluster and Molecular Mechanics Formalism: Excitation Energies of Zinc\u2013Porphyrin in Aqueous Solution. Chemical Physics Letters 2008, 458 (1), 205\u2013209. https://doi.org/10.1016/j.cplett.2008.04.071.\u00a0\u21a9
Valiev, M.; Bylaska, E. J.; Dupuis, M.; Tratnyek, P. G. Combined Quantum Mechanical and Molecular Mechanics Studies of the Electron-Transfer Reactions Involving Carbon Tetrachloride in Solution. The Journal of Physical Chemistry A 2008, 112 (12), 2713\u20132720. https://doi.org/10.1021/jp7104709.\u00a0\u21a9
Giudetti, G.; Polyakov, I.; Grigorenko, B. L.; Faraji, S.; Nemukhin, A. V.; Krylov, A. I. How Reproducible Are QM/MM Simulations? Lessons from Computational Studies of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur. Journal of Chemical Theory and Computation 2022, 18 (8), 5056\u20135067. https://doi.org/10.1021/acs.jctc.2c00286.\u00a0\u21a9
Zlobin, A.; Belyaeva, J.; Golovin, A. Challenges in Protein QM/MM Simulations with Intra-Backbone Link Atoms. Journal of Chemical Information and Modeling 2023, 63. https://doi.org/10.1021/acs.jcim.2c01071.\u00a0\u21a9
The structure of the system in QM/MM calculations is provided by the restart file (extension .rst) and not by the geometry block as it would be for pure QM calculations. The parameters of classical interaction are given by the topology file (extension .top). These two files are REQUIRED for QM/MM calculations and can be generated by the prepare module. In a typical setting this \u201cpreparation stage\u201d is performed separately from the main QM/MM simulation.
- [Prerequisites](QMMM_Preparation_Prerequisites.md)\n - [QM region definition](Qmmm_preparation_basic.md)\n - [Solvation](Qmmm_preparation_solvation.md)\n - [Permanent Constraints](Qmmm_preparation_constraints.md)\n
"},{"location":"QMMM_Transition_States.html","title":"QMMM Transition States","text":"QM/MM transition states calculations for qm or qmlink regions can be performed using
task\u00a0qmmm
saddle
The overall algorithm is very similar to QM/MM optimization calculations, but instead of optimization, transition state search will be performed for qm or qmlink region for specified number of steps ( as defined by maxiter keyword). The remaining classical regions (if any) will be optimized following the standard optimization protocol, which may involve, if specified, ESP charge representation of the QM atoms (a recommended option).
The success transition state calculations is strongly dependent on the initial guess. User may consider generation of the latter using QM/MM reaction pathway calculation. Another useful strategy involves precalculation of the Hessian. Following the example presented above one could have precalculated numerical Hessian for the qm region
...
qmmm
region\u00a0qm
end
freq
animate
end
task\u00a0qmmm\u00a0dft\u00a0freq
and then used this information in the TS calculation
...
driver
clear
inhess\u00a02\u00a0\u00a0#read\u00a0in\u00a0hessian\u00a0from\u00a0perm\u00a0directory
moddir\u00a01\u00a0\u00a0#follow\u00a01st\u00a0mode
end
qmmm
bqzone\u00a015.0
region\u00a0\u00a0qm\u00a0solvent
xyz\u00a0\u00a0ts
maxiter\u00a010\u00a01000
ncycles\u00a02
density\u00a0espfit
end
task\u00a0qmmm\u00a0dft\u00a0saddle
The parameters defining calculation of the QM region (including basis sets) must be present in the traditional NWChem input format except for the geometry block.
The geometrical information will be constructed automatically using information contained in the restart file.
"},{"location":"Qmmm_NEB_Calculations.html","title":"QMMM Reaction Pathway Calculations with NEB","text":"Experimental implementation of Nudged Elastic Band (NEB) method is available for reaction pathway calculations with QM/MM. The actual pathway/beads construction involves (by default) only the region containing QM and link atoms (referred to as qmlink). The rest of the system plays a passive role and is quenched/optimized each time a gradient on a bead is calculated.
The initial guess for NEB pathway can be generated using geometries of the starting and ending point provided by the .rst files. These are set in the input using the following directive
set\u00a0qmmm:neb_path_limits\u00a0xxx_start.rst\u00a0xxx_end.rst\n
where xxx_start.rst xxx_end.rst refers to starting and ending point of the NEB pathway. Both rst files have to be present at the top level directory. It should be noted that only coordinates of qmlink region will be used from these two files. The initial coordinates for the rest of the system come from reference rst file provided in the MD block
md\n\u00a0\u00a0system\u00a0xxx_ref\n\u00a0\u00a0...\nend\n
Typically this reference restart file ( xxx_ref.rst ) would be a copy of a restart file for starting or ending point.
The number of beads in the NEB pathway, initial optimization step size, and number of optimization steps are set using the following directives
set\u00a0neb:nbeads\u00a010\nset\u00a0neb:stepsize\u00a010\nset\u00a0neb:steps\u00a020\n
The calculation starts by constructing initial guess for the pathway (consisting of a sequence of numbered rst files) by combining linearly interpolated coordinates of the qmlink regions from starting and ending rst files and classical coordinates from the reference file. Next phase involves calculation of the gradients on qmlink region atoms for each of the beads. This involves two steps. First classical region around the qmlink region is relaxed following standard QM/MM optimization protocol. Aside the fact that optimization region cannot be qmlink, all other optimization directives apply and should be set in the QM/MM block following standard convention, e.g.
qmmm\n\u00a0region\u00a0\u00a0solvent\n\u00a0maxiter\u00a01000\n\u00a0ncycles\u00a01\n\u00a0density\u00a0espfit\nend\n
or
qmmm\n\u00a0region\u00a0\u00a0mm_solute\u00a0solvent\n\u00a0maxiter\u00a0300\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01000\n\u00a0ncycles\u00a03\n\u00a0density\u00a0espfit\nend\n
In both examples presented above we utilized espfit option for density to speed up calculations. Note that optimization region cannot be qmlink!
After the optimization has been performed the gradient on qmlink region is calculated. The procedure is repeated for all the beads. After that the bead coordinates will be advanced following NEB protocol and the entire cycle will be repeated again.
In addition to interpolated initial guess, one can also specify custom initial path represented by numbered sequence of restart files stored in the perm directory. This behavior will be triggered automatically in the absence of qmmm:neb_path_limits directive. The default naming of the custom initial path is of the form XXX.rst, where is the prefix of reference restart file as defined in MD block and XXX is the 3-digit integer counter with zero blanks (001,002, \u2026, 010, 011, ..). If needed the prefix for the custom initial path can be adjusted using
set\u00a0qmmm:neb_path
The progress of NEB calculation can be monitored by
grep\u00a0gnorm\u00a0<output file>\n
Experience shows that the value of gnorm less or around O(10^-2) indicates converged pathway. The current pathway in the XYZ format can be found in the output file (look for XYZ FILE string) and viewed as animation in some of the molecular viewers (e.g. JMOL)
"},{"location":"Qmmm_convergence.html","title":"Qmmm convergence","text":"convergence\u00a0\u00a0<\u00a0double\u00a0precision\u00a0etol\u00a0default\u00a01.0d-4>\n
This directive controls convergence of geometry optimization. The optimization is deemed converged if absolute difference in total energies between consecutive optimization cycles becomes less than etol.
"},{"location":"Qmmm_density.html","title":"Qmmm density","text":"density\u00a0\u00a0[espfit]\u00a0[static]\u00a0[dynamical]\u00a0default\u00a0dynamical\n
This directive controls the electrostatic representation of fixed QM region during optimization/dynamics of classical regions. It has no effect when position of QM atoms are changing.
dynamical is an option where QM region is treated the standard way, through the recalculation of the wavefunction calculated and the resulting electron density is used to compute electrostatic interactions with classical atoms. This option is the most expensive one and becomes impractical for large scale optimizations.
static option will not recalculate QM wavefunction but will still use full electron density in the computations of electrostatic interactions.
espfit option will not recalculate QM wavefunction nor it will use full electron density. Instead, a set of ESP charges for QM region will be calculated and used to compute electrostatic interactions with the MM regions. This option is the most efficient and is strongly recommended for large systems.
Note that both \u201cstatic\u201d and \u201cespfit\u201d options do require the presence of the movecs file. It is typically available as part as part of calculation process. Otherwise it can be generated by running qmmm energy calculation.
In most calculations default value for density would dynamical, with the exception of free energy calculations where default setting espfit will be used.
"},{"location":"Qmmm_freq.html","title":"QM/MM hessian and frequency calculations","text":""},{"location":"Qmmm_freq.html#setup","title":"Setup","text":"QM/MM hessian and frequency calculations are invoked though the following task directives
task qmmm `<qmtheory>` hessian\n
or
task qmmm `<qmtheory>` freq\n
Only numerical implementation are supported at this point and will be used even in the absence of \u201cnumerical\u201d keyword. Other than standard QM/MM directives no additional QM/MM input is required for default hessian/frequency for all the QM atoms. Using region keyword(first region only), hessian/frequency calculations can also be performed for classical solute atoms. If only classical atoms are involved density keyword can be utilized to enable frozen density or ESP charge representation for fixed QM region. Hessian/frequency calculations for solvent are not possible.
"},{"location":"Qmmm_freq.html#examples","title":"Examples","text":""},{"location":"Qmmm_freq.html#example-of-qmmm-frequency-calculation-for-classical-region","title":"Example of QM/MM frequency calculation for classical region","text":"This example illustrates QM/MM frequency calculation for Ala-Ser-Ala system. In this case instead of default QM region (see prepare block), the calculation is performed on classical solute part of the system as defined by region directive in QM/MM block. The electrostatic field from fixed QM region is represented by point ESP charges (see density directive). These ESP charges are calculated from wavefunction generated as a result of energy calculation.
memory total 800 Mb \n\n start asa \n\n permanent_dir ./perm \n scratch_dir ./data \n\n #this will generate topology file ([asa.top](asa.top)), restart ([asa_ref.rst](asa_ref.rst)), and pdb ([asa_ref.pdb](asa_ref.pdb)) files. \n prepare \n source [asa.pdb](asa.pdb) \n new_top new_seq \n new_rst \n modify atom 2:_CB quantum \n modify atom 2:2HB quantum \n modify atom 2:3HB quantum \n modify atom 2:_OG quantum \n modify atom 2:_HG quantum \n center \n orient \n solvate \n update lists \n ignore \n write [asa_ref.rst](asa_ref.rst) \n write [asa_ref.pdb](asa_ref.pdb) # Write out PDB file to check structure \n end \n task prepare\n\n md \n system asa_ref \n end \n\n basis \"ao basis\" \n * library \"6-31G*\" \n end \n\n dft \n print low \n iterations 500 \n end \n\n qmmm \n region mm_solute \n density espfit \n end \n\n # run energy calculation to generate wavefunction file for subsequent ESP charge generation \n task qmmm dft energy \n task qmmm dft freq\n
"},{"location":"Qmmm_maxiter.html","title":"Qmmm maxiter","text":" maxiter [maxiter1] [maxiter2] [maxiter3]\n
This directive controls maximum number of iterations for the optimizations of regions as defined by by regions directive. User is strongly encouraged to set this directive explicitly as the default value shown below may not be appropriate in all the cases:
if(region.eq.\"qm\") then\n maxiter = 20\n else if (region.eq.\"qmlink\") then\n maxiter = 20\n else if (region.eq.\"mm\") then\n maxiter = 100\n else if (region.eq.\"solvent\") then\n maxiter = 100\n else\n maxiter = 50\n end if\n
"},{"location":"Qmmm_ncycles.html","title":"Qmmm ncycles","text":" ncycles < [number] default 1 >\n
This directive controls the number of optimization cycles where the defined regions will be optimized in succession, or number of sampling cycles in free energy calculations.
"},{"location":"Qmmm_nsamples.html","title":"Qmmm nsamples","text":"nsamples\n
This directive is required for free energy calculations and defines number of samples for averaging during single cycle.
"},{"location":"Qmmm_optimization.html","title":"QMMM Optimization","text":"QM/MM optimization is based on multi-region optimization methodology and is invoked by
task\u00a0qmmm\u00a0<qmtheory>\u00a0optimize\n
The overall algorithm involves alternating optimizations of QM and MM regions until convergence is achieved. This type of approach offers substantial savings compared to direct optimization of the entire system as a whole. In the simplest case of two regions (QM and MM) the algorithm is comprised of the following steps:
The optimization process is controlled by the following keywords:
Here is an example QM/MM block that provides practical illustration of all these keywords for a generic optimization case where QM molecule(s) are embedded in the solvent
qmmm\n\u00a0\u00a0[region]\u00a0qm\u00a0\u00a0\u00a0solvent\n\u00a0\u00a0[maxiter]\u00a010\u00a0\u00a0\u00a03000\n\u00a0\u00a0[ncycles]\u00a05\n\u00a0\u00a0[density]\u00a0espfit\n\u00a0\u00a0[xyz]\u00a0foo\nend\n
We have two regions in the system \u201cqm\u201d and \u201csolvent\u201d and we would like to optimize them both, thus the line
\u00a0[region]\u00a0qm\u00a0\u00a0\u00a0solvent\n
Our QM region is presumably small and the maximum number of iterations (within a single optimization pass) is set to 10. The solvent region is typically much larger (thousands of atoms) and the maximum number of iterations is set to a much large number 3000:
[maxiter]\u00a010\u00a0\u00a0\u00a03000\n
We would like to perform a total of 5 optimization passes, giving us a total of 5*10=50 optimization steps for QM region and 5*3000=15000 optimization steps for solvent region:
\u00a0[ncycles]\u00a05\n
We are requesting QM region to be represented by point ESP charges during the solvent optimization:
[density]\u00a0espfit\n
Finally we are requesting that the coordinates of the first region to be saved in the form of numbered xyz files:
[xyz]\u00a0foo\n
"},{"location":"Qmmm_preparation_basic.html","title":"Qmmm preparation basic","text":"One of major required pieces of information that has to be provided in the prepare block for QM/MM simulations is the definition of the QM region. This can be accomplished using modify directive used either per atom
modify atom <integer isgm>:<string atomname> quantum\n
or per segment/residue basis
modify segment <integer isgm> quantum\n
Here isgm and atomname refer to the residue number and atom name record as given in the PDB file. It is important to note that that the leading blanks in atom name record should be indicated with underscores. Per PDB format guidelines the atom name record starts at column 13. If, for example, the atom name record \u201cOW\u201d starts in the 14th column in PDB file, it will appear as \u201c_OW\u201d in the modify atom directive in the prepare block.
In the current implementation only solute atoms can be declared as quantum. If part of the solvent has to be treated quantum mechanically then it has to redeclared to be solute. The definition of QM region should be accompanied by update lists and ignore directives. Here is an example input file that will generate QM/MM restart and topology files for the ethanol molecule:
title \"Prepare QM/MM calculation of ethanol\" \nstart etl \n\n[prepare](Prepare) \n#--*name of the pdbfile* \n source [etl0.pdb](etl0.pdb) \n#--*generate new topology and sequence file* \n new_top new_seq \n#--*generate new restart file* \n new_rst \n#--*define quantum region (note the use of underscore)* \n modify atom 1:_C1 quantum \n modify atom 1:2H1 quantum \n modify atom 1:3H1 quantum \n modify atom 1:4H1 quantum \n update lists \n ignore \n#--*save restart file* \n write etl_ref.rst \n#--*generate pdb file* \n write [etl_ref.pdb](etl_ref.pdb) \nend \ntask prepare\n
Running the input shown above will produce (among other things) the topology file (etl.top), the restart file (etl_ref.rst), and the pdb file etl_ref.pdb. The prefix for the topology file follows after the rtdb name specified in the start directive in the input (i.e. \u201cstart etl\u201d), while the names for the restart and pdb files were specified explicitly in the input file. In the absence of the explicit write statement for the restart file, it would be generated under the name \u201cetl_md.rst\u201d. The pdb file would only be written in the presence of the explicit write statement.
Tip: It is strongly recommended to check the correctness of the generated pdb file versus the original \u201csource\u201d pdb file to catch possible errors in the formatting of the pdb and fragment files.
"},{"location":"Qmmm_preparation_constraints.html","title":"Qmmm preparation constraints","text":"Fixing atoms outside a certain distance from the QM region can also be accomplished using prepare module. These constraints will then be permanently embedded in the resulting restart file, which may be advantageous for certain types of QM/MM simulations. The actual format for the constraint directive to fix whole residues is
fix segments beyond <real radius> <integer residue number>:<string atom name>\n
or to fix on atom basis
fix atoms beyond <real radius> <integer residue number>:<string atom name>\n
This example illustrates the use of permanent fix directives during preparation stage
start etl\nprepare\nsource etl0.pdb\nnew_top new_seq\nnew_rst\ncenter\norient\n#solvation in 40 A cubic box\nsolvate cube 4.0\nmodify segment 1 quantum\n#fix residues more than 20 A away from ethanol oxygen atom\nfix segments beyond 2.0 1:_O\nupdate lists\nignore\nwrite etl_ref.rst\nwrite etl_ref.pdb\nend\ntask prepare\n
"},{"location":"Qmmm_preparation_solvation.html","title":"Qmmm preparation solvation","text":"During the preparation stage of QM/MM calculations the system may also be solvated using solvate directive of the prepare module. It is recommended that solvation is performed in conjunction with center and orient directives.
Here is an example where the ethanol molecule is declared quantum and solvated in a box of spce waters:
title \"Prepare QM/MM calculation of solvated ethanol\"\nstart etl\nprepare\nsource etl0.pdb\nnew_top new_seq\nnew_rst\n#center and orient prior to solvation\ncenter\norient\n#solvation in 1 nm by 2 nm by 3 nm box\nsolvate box 1.0 2.0 3.0\n#the whole ethanol is declared quantum now\nmodify segment 1 quantum\nupdate lists\nignore\nwrite etl_ref.rst\nwrite etl_ref.pdb\nend\ntask prepare\n
"},{"location":"Qmmm_region.html","title":"Qmmm region","text":"region\u00a0\u00a0<\u00a0[region1]\u00a0\u00a0[region2]\u00a0\u00a0[region3]\u00a0>\n
This directive specifies active region(s) for optimization, dynamics, frequency, and free energy calculations. Up to three regions can be specified, those are limited to
Only the first region will be used in dynamics, frequency, and free energy calculations. In the geometry optimizations, all three regions will be optimized using the following optimization methods
\u00a0\u00a0\u00a0\u00a0if\u00a0(region.eq.\"qm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"qmlink\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"bfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm_solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"lbfgs\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"mm\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solute\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"solvent\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0else\u00a0if\u00a0(region.eq.\"all\")\u00a0then \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0method\u00a0=\u00a0\"sd\" \n\u00a0\u00a0\u00a0\u00a0\u00a0end\u00a0if\n
where \u201cbfgs\u201d stands for Broyden\u2013Fletcher\u2013Goldfarb\u2013Shanno (BFGS) optimization method, \u201clbfgs\u201d limited memory version of quasi-newton, and \u201csd\u201d simple steepest descent algorithm. These assignments can be potentially altered using method directive.
"},{"location":"Qmmm_rename.html","title":"Qmmm rename","text":"This directive is allows to rename atoms in the QM region, based on the external file which specifies desired name( (1st column) and its PDB index (2nd column). The file is assumed to be located in the current run directory.
For example, if we need to rename atoms CB and OG that are part of our QM region
... \n ATOM 13 N SER 2 0.211 0.284 -1.377 0.00 N \n ATOM 14 H SER 2 0.886 1.158 -1.257 0.00 H \n ATOM 15 CA SER 2 -0.320 -0.351 -0.166 0.00 C \n ATOM 16 HA SER 2 -1.405 -0.183 -0.132 0.00 H \n ATOM 17 CB SER 2 -0.001 -1.879 -0.106 0.00 C \n ATOM 18 2HB SER 2 1.092 -2.012 -0.038 0.00 H \n ATOM 19 3HB SER 2 -0.469 -2.317 0.784 0.00 H \n ATOM 20 OG SER 2 -0.452 -2.678 -1.192 0.00 O \n ATOM 21 HG SER 2 -1.351 -2.421 -1.392 0.00 H \n ATOM 22 C SER 2 0.252 0.338 1.076 0.00 C \n ...\n
the following qmmm block can be used
... \n qmmm \n ... \n rename name.dat \n ... \n end \n\n task qmmm dft energy\n
where name.dat file
C1 17\nOX 20\n
Here atoms are identified by the corresponding PDB atom index and renamed from default element based naming to C1 and OX.
"},{"location":"Qmmm_xyz.html","title":"Qmmm xyz","text":"xyz\u00a0\u00a0\u00a0[filename1]\u00a0\u00a0[filename2]\u00a0\u00a0[filename3]\n
This directive triggers generation for numbered xyz files during QM/MM optimization. Files are saved into the permanent directory in the following form
system_nnn_kkk.xyz\n
where nnn is a optimization cycle number and kkk is the iteration counter. No xyz output will be performed for solvent region.
"},{"location":"Quantum-Mechanical-Methods.html","title":"Quantum Mechanical Methods","text":""},{"location":"Quantum-Mechanical-Methods.html#hartree-fock-hf-theory","title":"Hartree-Fock (HF) Theory","text":""},{"location":"Quantum-Mechanical-Methods.html#density-functional-theory-dft","title":"Density Functional Theory (DFT)","text":""},{"location":"Quantum-Mechanical-Methods.html#excited-state-calculations-cis-tdhf-tddft","title":"Excited-State Calculations (CIS, TDHF, TDDFT)","text":""},{"location":"Quantum-Mechanical-Methods.html#real-time-tddft","title":"Real-time TDDFT","text":""},{"location":"Quantum-Mechanical-Methods.html#plane-wave-density-functional-theory-plane-wave-dft","title":"Plane-Wave Density Functional Theory (plane-wave DFT)","text":""},{"location":"Quantum-Mechanical-Methods.html#tensor-contraction-engine-ci-mbpt-and-cc","title":"Tensor Contraction Engine: CI, MBPT, and CC","text":""},{"location":"Quantum-Mechanical-Methods.html#mp2","title":"MP2","text":""},{"location":"Quantum-Mechanical-Methods.html#coupled-cluster-calculations","title":"Coupled Cluster Calculations","text":""},{"location":"Quantum-Mechanical-Methods.html#multiconfiguration-scf","title":"Multiconfiguration SCF","text":""},{"location":"Quantum-Mechanical-Methods.html#gw-calculations","title":"GW calculations","text":""},{"location":"Quantum-Molecular-Dynamics.html","title":"Quantum Molecular Dynamics","text":""},{"location":"Quantum-Molecular-Dynamics.html#plane-wave-basis","title":"Plane-Wave Basis","text":""},{"location":"Quantum-Molecular-Dynamics.html#gaussian-basis-aimd","title":"Gaussian Basis AIMD","text":""},{"location":"Quantum.html","title":"Quantum","text":"The quantum features are routines for printing out one- and two-electron integrals that can be utilized in quantum algorithms. The outputs can be interpreted and formatted in YAML files that include the integrals and basic information including initial wavefunction guesses for quantum algorithms. There are currently two options for integrals:
"},{"location":"Quantum.html#bare-hamiltonian","title":"Bare Hamiltonian","text":"To print the bare Hamiltonian, you must set up a CCSD calculation with the following parameters: The symmetry must be declared as \u2018C1\u2019 In the TCE block, you must include the following:
2eorb\n 2emet 13\n nroots ### (Optional, but will include leading excitations for excited-state quantum calculations)\n
You must set the printing parameters at the end of the input file:
set tce:print_integrals T\n set tce:qorb ### (Total number of orbitals you wish to be printed)\n set tce:qela ### (Number of alpha electrons)\n set tce:qelb ### (number of beta electrons)\n
Notes:
The double unitary coupled-cluster (DUCC) Hamiltonian is a way of incorporating correlation effects (mainly dynamical) into a reduced dimensionality Hamiltonian based on a defined active space. The procedure currently only reduces the virtual space and all occupied orbitals are considered active. Only the ground-state implementation is available in the current NWChem release.
To print the DUCC Hamiltonian, you must set up a CCSD calculation with the following parameters:
2eorb\n 2emet 13\n
You must set the printing parameters at the end of the input file:
set tce:qducc T\n set tce:nactv ### (The number of active virtual orbitals. \n Remember that all occupied orbitals are active as well)\n set tce:nonhf F/T (If a non-RHF reference is used, set to T. Otherwise, keep as F.)\n set tce:ducc_model ### (Determines how the similarity transformed Hamiltonian is truncated. See note below.)\n
Notes:
(IJ|KL) = (JI|LK) = (KL|IJ) = (LK|JI) \n Separately, (IJ|LK) = (JI|KL) = (KL|JI) = (LK|IJ) \n But (IJ|KL) /= (IJ|LK) \n
Once the calculation is completed, the integrals and basic information including initial wavefunction guesses for quantum algorithms can be extracted into a YAML file. To generate the YAML file, executed the following command:
python $NWCHEM_TOP/contrib/quasar/export_chem_library_yaml.py < {NWChem output file} > {YAML file name}\n
Note: * the \u2018fci_energy\u2019 in the YAML file is taken to be the energy of the correlated method, which, in either case, is the CCSD energy.
"},{"location":"Quantum.html#example-input-file-for-bare-hamiltonian","title":"Example input file for Bare Hamiltonian","text":"echo\n\nstart Lih\n\ngeometry units angstroms\nsymmetry C1\n Li 0 0 0.000\n H 0 0 1.600\nend\n\nbasis spherical\n * library sto-3g\nend\n\nscf\n singlet\n rhf\n thresh 1e-10\nend\n\ntce\n 2eorb\n 2emet 13\n ccsd\n thresh 1.0d-8\n maxiter 150\n nroots 2\nend\n\nset tce:print_integrals T\nset tce:qorb 6\nset tce:qela 2\nset tce:qelb 2\n\ntask tce energy\n
"},{"location":"Quantum.html#example-input-file-for-ducc","title":"Example input file for DUCC","text":"echo\n\nstart Lih\n\ngeometry units angstroms\nsymmetry C1\n Li 0 0 0.000\n H 0 0 1.600\nend\n\nbasis spherical\n * library sto-3g\nend\n\nscf\n singlet\n rhf\n thresh 1e-10\nend\n\ntce\n 2eorb\n 2emet 13\n ccsd\n thresh 1.0d-8\n maxiter 150\nend\n\nset tce:qducc T\nset tce:nactv 4\nset tce:nonhf F\nset tce:ducc_model 3\n\ntask tce energy\n
"},{"location":"R-3.html","title":"R 3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0148\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a018\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n-x+2/3,-y+1/3,-z+1/3\n+y+2/3,-x+y+1/3,-z+1/3\n+x-y+2/3,+x+1/3,-z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n-x+1/3,-y+2/3,-z+2/3\n+y+1/3,-x+y+2/3,-z+2/3\n+x-y+1/3,+x+2/3,-z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a016\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a017\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a018\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0148\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n-x,-y,-z\n-z,-x,-y\n-y,-z,-x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"R-3c.html","title":"R 3c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0167\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a036\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z+1/2\n+x-y,-y,-z+1/2\n-x,-x+y,-z+1/2\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n+y+2/3,+x+1/3,-z+5/6\n+x-y+2/3,-y+1/3,-z+5/6\n-x+2/3,-x+y+1/3,-z+5/6\n-x+2/3,-y+1/3,-z+1/3\n+y+2/3,-x+y+1/3,-z+1/3\n+x-y+2/3,+x+1/3,-z+1/3\n-y+2/3,-x+1/3,+z+5/6\n-x+y+2/3,+y+1/3,+z+5/6\n+x+2/3,+x-y+1/3,+z+5/6\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n+y+1/3,+x+2/3,-z+7/6\n+x-y+1/3,-y+2/3,-z+7/6\n-x+1/3,-x+y+2/3,-z+7/6\n-x+1/3,-y+2/3,-z+2/3\n+y+1/3,-x+y+2/3,-z+2/3\n+x-y+1/3,+x+2/3,-z+2/3\n-y+1/3,-x+2/3,+z+7/6\n-x+y+1/3,+y+2/3,+z+7/6\n+x+1/3,+x-y+2/3,+z+7/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.833333333333\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a021\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a023\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a024\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a026\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a028\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.16666666667\n\n=\u00a0operator\u00a029\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.16666666667\n\n=\u00a0operator\u00a030\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a01.16666666667\n\n=\u00a0operator\u00a031\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a033\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\n=\u00a0operator\u00a035\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\n=\u00a0operator\u00a036\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0167\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n-y+1/2,-x+1/2,-z+1/2\n-x+1/2,-z+1/2,-y+1/2\n-z+1/2,-y+1/2,-x+1/2\n-x,-y,-z\n-z,-x,-y\n-y,-z,-x\n+y+1/2,+x+1/2,+z+1/2\n+x+1/2,+z+1/2,+y+1/2\n+z+1/2,+y+1/2,+x+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.5\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.5\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"R-3m.html","title":"R 3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0166\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a036\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n-x,-y,-z\n+y,-x+y,-z\n+x-y,+x,-z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n+y+2/3,+x+1/3,-z+1/3\n+x-y+2/3,-y+1/3,-z+1/3\n-x+2/3,-x+y+1/3,-z+1/3\n-x+2/3,-y+1/3,-z+1/3\n+y+2/3,-x+y+1/3,-z+1/3\n+x-y+2/3,+x+1/3,-z+1/3\n-y+2/3,-x+1/3,+z+1/3\n-x+y+2/3,+y+1/3,+z+1/3\n+x+2/3,+x-y+1/3,+z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n+y+1/3,+x+2/3,-z+2/3\n+x-y+1/3,-y+2/3,-z+2/3\n-x+1/3,-x+y+2/3,-z+2/3\n-x+1/3,-y+2/3,-z+2/3\n+y+1/3,-x+y+2/3,-z+2/3\n+x-y+1/3,+x+2/3,-z+2/3\n-y+1/3,-x+2/3,+z+2/3\n-x+y+1/3,+y+2/3,+z+2/3\n+x+1/3,+x-y+2/3,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a019\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a020\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a021\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a022\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a023\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a024\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a025\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a026\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a027\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a028\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a029\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a030\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a031\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a032\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a033\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a034\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a035\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a036\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0166\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R-3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a012\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n-y,-x,-z\n-x,-z,-y\n-z,-y,-x\n-x,-y,-z\n-z,-x,-y\n-y,-z,-x\n+y,+x,+z\n+x,+z,+y\n+z,+y,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a09\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a012\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"R3.html","title":"R3","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0146\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a09\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a05\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0146\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a03\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"R32.html","title":"R32","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0155\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R32\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a018\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n+y,+x,-z\n+x-y,-y,-z\n-x,-x+y,-z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n+y+2/3,+x+1/3,-z+1/3\n+x-y+2/3,-y+1/3,-z+1/3\n-x+2/3,-x+y+1/3,-z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n+y+1/3,+x+2/3,-z+2/3\n+x-y+1/3,-y+2/3,-z+2/3\n-x+1/3,-x+y+2/3,-z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a012\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.333333333333\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a017\u00a0=\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\n=\u00a0operator\u00a018\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0155\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R32\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n-y,-x,-z\n-x,-z,-y\n-z,-y,-x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a0-1.0\u00a00.0\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"R3c.html","title":"R3c","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0161\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a018\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,+z+1/2\n-x+y,+y,+z+1/2\n+x,+x-y,+z+1/2\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n-y+2/3,-x+1/3,+z+5/6\n-x+y+2/3,+y+1/3,+z+5/6\n+x+2/3,+x-y+1/3,+z+5/6\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n-y+1/3,-x+2/3,+z+7/6\n-x+y+1/3,+y+2/3,+z+7/6\n+x+1/3,+x-y+2/3,+z+7/6\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.833333333333\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\n=\u00a0operator\u00a017\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\n=\u00a0operator\u00a018\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a01.16666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0161\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3c\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n+y+1/2,+x+1/2,+z+1/2\n+x+1/2,+z+1/2,+y+1/2\n+z+1/2,+y+1/2,+x+1/2\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.5\n\u00a00.0\u00a01.0\u00a00.0\u00a00.5\n\u00a01.0\u00a00.0\u00a00.0\u00a00.5 \n
"},{"location":"R3m.html","title":"R3m","text":"group\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0160\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a01\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a018\n\n+x,+y,+z\n-y,+x-y,+z\n-x+y,-x,+z\n-y,-x,+z\n-x+y,+y,+z\n+x,+x-y,+z\n+x+2/3,+y+1/3,+z+1/3\n-y+2/3,+x-y+1/3,+z+1/3\n-x+y+2/3,-x+1/3,+z+1/3\n-y+2/3,-x+1/3,+z+1/3\n-x+y+2/3,+y+1/3,+z+1/3\n+x+2/3,+x-y+1/3,+z+1/3\n+x+1/3,+y+2/3,+z+2/3\n-y+1/3,+x-y+2/3,+z+2/3\n-x+y+1/3,-x+2/3,+z+2/3\n-y+1/3,-x+2/3,+z+2/3\n-x+y+1/3,+y+2/3,+z+2/3\n+x+1/3,+x-y+2/3,+z+2/3\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a07\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a08\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a09\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a010\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a011\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a012\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a00.0\u00a01.0\u00a00.333333333333\n\n=\u00a0operator\u00a013\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a014\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a015\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a016\u00a0=\n\u00a00.0\u00a0-1.0\u00a00.0\u00a00.333333333333\n\u00a0-1.0\u00a00.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a017\u00a0=\n\u00a0-1.0\u00a01.0\u00a00.0\u00a00.333333333333\n\u00a00.0\u00a01.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\n=\u00a0operator\u00a018\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.333333333333\n\u00a01.0\u00a0-1.0\u00a00.0\u00a00.666666666667\n\u00a00.0\u00a00.0\u00a01.0\u00a00.666666666667\n\ngroup\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0160\ngroup\u00a0name\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0R3m\ncrystal\u00a0system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a0Trigonal\nsetting\u00a0number\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0=\u00a02\nnumber\u00a0of\u00a0symmetry\u00a0operators\u00a0=\u00a06\n\n+x,+y,+z\n+z,+x,+y\n+y,+z,+x\n+y,+x,+z\n+x,+z,+y\n+z,+y,+x\n\n=\u00a0operator\u00a01\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a02\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a03\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a04\u00a0=\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\n=\u00a0operator\u00a05\u00a0=\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\n=\u00a0operator\u00a06\u00a0=\n\u00a00.0\u00a00.0\u00a01.0\u00a00.0\n\u00a00.0\u00a01.0\u00a00.0\u00a00.0\n\u00a01.0\u00a00.0\u00a00.0\u00a00.0 \n
"},{"location":"RT-TDDFT.html","title":"Real-time TDDFT","text":""},{"location":"RT-TDDFT.html#overview","title":"Overview","text":"Real-time time-dependent density functional theory (RT-TDDFT) is a DFT-based approach to electronic excited states based on integrating the time-dependent Kohn-Sham (TDKS) equations in time. The theoretical underpinnings, strengths, and limitations are similar to traditional linear-response (LR) TDDFT methods, but instead of a frequency domain solution to the TDKS equations, RT-TDDFT yields a full time-resolved, potentially non-linear solution. Real-time simulations can be used to compute not only spectroscopic properties (e.g., absorption spectra, polarizabilites, etc), but also the time and space-resolved electronic response to arbitrary external stimuli (e.g., electron charge dynamics after laser excitation). For theoretical and computational details, please refer to the following paper:
This functionality is built on the Gaussian basis set DFT module, and will work for closed-shell (spin-restricted) and open-shell (spin unrestricted) calculations with essentially any combination of basis set and exchange-correlation functional in NWChem. The current implementation assumes frozen nuclei (Born-Oppenheimer approximation).
In a nutshell, running a RT-TDDFT calculation takes the following form:
Unless specified otherwise, all inputs and outputs are in atomic units. Some useful conversions are:
Quantity Conversion Time 1 au = 0.02419 fs Length 1 au = 0.5292 A Energy 1 au = 27.2114 eV Electric field 1 au = 514.2 V/nm Dipole moment 1 au = 2.542 D"},{"location":"RT-TDDFT.html#syntax","title":"Syntax","text":"The charge, geometry, basis set, and DFT options are all specified as normal, using their respective syntax. Real-time TDDFT parameters are supplied in the RT_TDDFT
block (note, nothing is case-sensitive), with all possible options summarized below, and each discussed in detail afterwards.
RT_TDDFT \n [TMAX <double default 1000>] \n [DT <double default 0.1>] \n [TAG <string default \"<rt_tddft>: \"] \n [LOAD (scf || vectors <string>)] \n [NCHECKS <integer default 10>] \n [NPRINTS (* || <integer>)] \n [NRESTARTS (* || <integer>)] \n [TOLERANCES (zero <double default 1e-8> || series <double default 1e-10> || interpol <double default 1e-7>)] \n [PROPAGATOR (euler || rk4 || magnus) default magnus] \n [EXP (diag || pseries)] \n [PROF] \n [NOPROP] \n [STATIC] \n [PRINT (*, dipole, quadrupole, field, moocc, field, energy, cputime, charge, convergence, s2)] \n [EXCITE <string geomname>` with <string fieldname>] \n [FIELD] \n ... \n [END] \n [VISUALIZATION] \n ... \n [END] \n [LOAD RESTART]\nEND\n
"},{"location":"RT-TDDFT.html#tmax-simulation-time","title":"TMAX: Simulation time","text":"This option specifies the maximum time (in au) to run the simulation before stopping, which must be a positive real number. In practice, you can just stop the simulation early, so in most cases it is simplest to just set this to a large value to ensure you capture all the important dynamics (see the example of resonant ultraviolet excitation of water). For most valence excitations, for example, 1000 au is overkill so you might want to automatically stop at 500 au:
rt_tddft\n ... \n tmax 500.0 \n ... \nend\n
"},{"location":"RT-TDDFT.html#dt-time-step","title":"DT: Time step","text":"This specifies the electronic time step for time integration. A larger time step results in a faster simulation, but there are two issues which limit the size of the time step. First, the integration algorithm can become unstable and/or inaccurate for larger time steps, which depends on the integrator used. Very roughly speaking, the second order Magnus integrator should be reliable for time steps up to 0.2 au. Second, you must choose a time step small enough to capture the oscillations of interest, i.e., to resolve an excitation of energy \u03c9, your time step needs to be smaller than \u03c0/\u03c9, and typically a tenth of that for accuracy. For example, to capture high energy oscillations such as core-level excitations (e.g., \u03c9 = 50au) you might want a relative small time step:
rt_tddft\n ...\n dt 0.01\n ...\nend\n
It is always good practice to check that your results are independent of time step.
"},{"location":"RT-TDDFT.html#tag-output-label","title":"TAG: Output label","text":"This option sets a label for the output for convenient parsing (e.g., with \u201cgrep\u201d). Every output line with time-dependent data will begin with this string (set to <rt_tddft>:
by default). For example setting:
rt_tddft\n ...\n tag \"nameofrun\"\n ...\nend\n
will result in outputs that look like:
...\nnameofrun 2.20000 -7.589146713114E+001 # Etot\n...\n
"},{"location":"RT-TDDFT.html#nchecks-number-of-run-time-check-points","title":"NCHECKS: Number of run-time check points","text":"This option takes an integer number (default 10), or *
which means every step, which sets the total of number of run-time checkpoints, where various sanity checks are made such as symmetries, idempotency, traces, etc. These checks are not terribly efficient (e.g., involve re-building the TD Fock matrix) so excessive checking will slow down execution.
rt_tddft\n ...\n nchecks 10\n ...\nend\n
"},{"location":"RT-TDDFT.html#nprints-number-of-print-points","title":"NPRINTS: Number of print points","text":"This sets the number of print points, i.e., the total number of time-dependent observables (e.g., dipole, charge, energy) that are computed and printed. It either takes an integer number or *
which means every time step (this is the default). Since there is no appreciable cost to computing and printing these quantities, there is usually no need to change this from *
.
rt_tddft\n ...\n nprints *\n ...\nend\n
"},{"location":"RT-TDDFT.html#nrestarts-number-of-restart-checkpoints","title":"NRESTARTS: Number of restart checkpoints","text":"This sets the number of run-time check points where the time-dependent complex density matrix is saved to file, allowing the simulation to be restarted) from that point. By default this is set to 0. There is no significant computational cost to restart checkpointing, but of course there is some disk I/O cost (which may become somewhat significant for larger systems). For example, in the following example there will be 100 restart points, which corresponds to 1 backup every 100 time steps.
rt_tddft\n ...\n tmax 1000.0\n dt 0.1\n nrestarts 100\n ...\nend\n
"},{"location":"RT-TDDFT.html#tolerances-controlling-numerical-tolerances","title":"TOLERANCES: Controlling numerical tolerances","text":"This option controls various numerical tolerances:
zero
: threshold for checks that quantities are zero, e.g., in symmetry checks (default 1e-8)series
: numerical convergence for series, e.g., matrix exponentiation (default 1e-10)interpol
: numerical convergence for interpolation, e.g., in Magnus propagator (default 1e-7)Occasionally it is useful to loosen the interpolation tolerances if the Magnus interpolator requires an excessive amount of steps; usually this will not impact accuracy. For example, this sets the tolerances to their defaults with a looser interpolation tolerance:
rt_tddft\n ...\n tolerances zero 1d-8 series 1d-10 interpol 1e-5\nend\n
"},{"location":"RT-TDDFT.html#propagator-selecting-the-integrator-method","title":"PROPAGATOR: Selecting the integrator method","text":"This selects the propagator (i.e., time integrator) method. Possible choices include euler
for Euler integration (terrible, you should never use this), rk4
for 4th order Runge-Kutta, and magnus
for 2nd order Magnus with self-consistent interpolation. In virtually all cases Magnus is superior in terms of stability. Euler or rk4 are perhaps only useful for debugging or simplicity (e.g., for code development).
rt_tddft\n ...\n propagator magnus\n ...\nend\n
"},{"location":"RT-TDDFT.html#exp-selecting-the-matrix-exponentiation-method","title":"EXP: Selecting the matrix exponentiation method","text":"This selects the method for exponentiation matrices. For now this can either be pseries
for a contractive power series or diag
for diagonalization. In general the power series (default) is faster.
rt_tddft\n ...\n exp diag\n ...\nend\n
"},{"location":"RT-TDDFT.html#prof-run-time-profiling","title":"PROF: Run-time profiling","text":"This turns on run-time profiling, which will display time spent in each component of the code (e.g., building components of the TD Fock matrix, properites, etc). This slows code down slightly and results in very verbose output.
rt_tddft\n ...\n prof\n ...\nend\n
"},{"location":"RT-TDDFT.html#noprop-skipping-propagation","title":"NOPROP: Skipping propagation","text":"This options causes the RT-TDDFT module skip propagation, i.e., to initialize and finalize. For now this is largely useful for skipping to visualization post-processing without having to re-run a simulation.
rt_tddft\n ...\n noprop\n ...\nend\n
"},{"location":"RT-TDDFT.html#static-force-static-fock-matrix","title":"STATIC: Force static Fock matrix","text":"This option sets the static Fock matrix flag, meaning the time-dependent Fock matrix will not be recalculated at each time, but instead use the t=0 value. This will drastically increase the simulation speed since the bulk of the work is spent rebuilding the TD Fock matrix, but will give non-physical results. For example, using static
to compute an absorption spectrum will result in excitations corresponding to the raw eigenvalue differences without electron-hole relaxation. This option has few uses besides dry-runs and debugging.
rt_tddft\n ...\n static\n ...\nend\n
"},{"location":"RT-TDDFT.html#print-selecting-time-dependent-quantities-to-be-printed","title":"PRINT: Selecting time-dependent quantities to be printed","text":"This sets the various time-dependent properties that are to be computed and printed at each print point. Note that for many of these options, the values are computed and printed for each geometry specified in the input deck, not only the active one (i.e., the one set using set geometry ...
in the input deck). Possible choices are:
dipole
: Dipole momentquadrupole
: Quadrupole momentfield
: External (applied) electric fieldmoocc
: Molecular orbital occupationsenergy
: Components of system energy (e.g., core, XC, total, etc)cputime
: CPU time taken in simulation so far (useful for checking scaling)charge
: Electronic charge (computed from density matrix, not from the XC grid)convergence
: Convergence information (e.g., from Magnus)s2
: value (openshell only) *
: Print all quantitiesThe defaults correspond to:
rt_tddft\n ...\n print dipole field energy convergence\n ...\nend\n
"},{"location":"RT-TDDFT.html#field-sub-block-for-specifying-external-electric-fields","title":"FIELD: Sub-block for specifying external electric fields","text":"This sub-block is used to specify external electric fields, each of which must be given a unique name. Numerous fields can be specified, but each will applied to the system only if an appropriate excitation rule is set. There are a few preset field types; others would have to be manually coded. Note the names are arbitrary, but chosen here to be descriptive:
field \"kick\"\n type delta # E(t=0) = max; E(t>0) = 0\n polarization x # = x, y, z\n max 0.0001 # maximum value of electric field\n spin total # = alpha, beta, total (only valid for open-shell)\nend\n
field \"gpulse\"\n type gaussian # Gaussian enveloped quasi-monochromatic pulse: E(t) = max * exp( -(t-t0)^2 / 2s^2) * sin(w0*t + phi0)\n polarization x # = x, y, z\n frequency 0.12 # frequency of laser pulse in au (e.g., 0.12 au = 3.27 eV)\n phase 0.0 # phase shift of laser pulse (in rad)\n center 200.0 # center of Gaussian envelope (in au time)\n width 50.0 # width of Gaussian pulse (in au time)\n max 0.0001 # maximum value of electric field\n spin total # = alpha, beta, total (only valid for open-shell)\nend\n
field \"hpulse\"\n type hann # sin^2 (Hann) enveloped quasi-monochromatic pulse\n polarization x # = x, y, z\n frequency 0.12 # frequency of laser pulse in au (e.g., 0.12 au = 3.27 eV)\n center 200.0 # center of Hann envelope (in au time)\n width 50.0 # width of Hann pulse (in au time)\n max 0.0001 # maximum value of electric field\n spin total # = alpha, beta, total (only valid for open-shell)\nend\n
field \"resonant\"\n type cw # monochromatic continuous wave\n frequency 0.12 # frequency of laser pulse in au (e.g., 0.12 au = 3.27 eV)\n polarization x # = x, y, z\n max 0.0001 # maximum value of electric field\n spin total # = alpha, beta, total (only valid for open-shell)\nend\n
"},{"location":"RT-TDDFT.html#excite-excitation-rules","title":"EXCITE: Excitation rules","text":"This sets the rules for applying external fields to the system. It takes the form excite <geom> with <field>
, where <geom>
is the name of a geometry fragment (defaults to \u201cgeometry\u201d which is the default geometry name), and <field>
is the name of a field structure. Assuming, for example, you have defined a field name kick
this option takes the form (note that quotes are optional and shown for clarity):
rt_tddft\n ...\n excite \"geometry\" with \"kick\"\n ...\nend\n
"},{"location":"RT-TDDFT.html#visualization-sub-block-for-controlling-3d-visualization","title":"VISUALIZATION: Sub-block for controlling 3D visualization","text":"This block is used to control visualization of the electronic charge density, which is typically used during a resonant excitation. This is a two stage process. During the propagation, a series of density matrices will be dumped to file (see options below). After propagation, if the dplot
option is set, the code will read in options from a separate DPLOT
block and convert the density matrix snapshots to a corresponding series of real-space charge density cube
files.
visualization\n tstart 0.0 # start visualization at this time\n tend 100.0 # stop visualization at this time\n treference 0.0 # subtract density matrix at this time (useful for difference densities)\n dplot # post-process density matrices into cube files after propagation\nend\n
"},{"location":"RT-TDDFT.html#load-restart","title":"LOAD RESTART","text":"This keyword needs to be added to restart a calculation. In the following example, the calculation will restart from the previous calculation and extend the run to the new tmax
rt_tddft\n ...\n tmax 10.0 # new end time\n load restart\nend\n
"},{"location":"RT-TDDFT.html#mocap-sub-block-for-molecular-orbital-complex-absorbing-potential","title":"MOCAP: Sub-block for molecular orbital complex absorbing potential","text":"The K. Lopata and N. Govind, \u201cNear and Above Ionization Electronic Excitations with Non-Hermitian Real-Time Time-Dependent Density Functional Theory\u201d, Journal of Chemical Theory and Computation 9 (11), 4939-4946 (2013) DOI:10.1021/ct400569s
mocap\n maxval 100.0 # clamp CAP at this value (in Ha)\n emin 0.5 # any MO with eigenvalue >= 0.5 Ha will have CAP applied to it\n prefac 1.0 # prefactor for exponential\n expconst 1.0 # exponential constant for CAP\n on # turn on/off CAP\n nochecks # disable checks for speed\n noprint # don't print CAP value\n end\n
"},{"location":"RT-TDDFT.html#maxval-exponential-maximum-value","title":"MAXVAL: Exponential Maximum Value","text":""},{"location":"RT-TDDFT.html#emin-vacuum-energy-level","title":"EMIN: Vacuum Energy Level","text":""},{"location":"RT-TDDFT.html#onoff-turn-onoff-cap","title":"ON/OFF: Turn on/off CAP","text":"The default value is off
, i.e. no complex absorbing potential is applied.
Here, we compute the 6-31G/TD-PBE0 absorption spectrum of gas-phase water using RT-TDDFT. In the weak-field limit, these results are essentially identical to those obtained via traditional linear-response TDDFT. Although it involves significantly more work do use RT-TDDFT in this case, for very large systems with many roots a real-time approach becomes advantageous computationally and also does not suffer from algorithm stability issues.
To compute the absorption, we find the ground state of the system and then subject it to three delta-function excitations (x,y,z), which simultaneously excites all electronic modes of that polarization. The three resulting dipole moments are then Fourier transformed to give the frequency-dependent linear polarizability, and thus the absorption spectrum. The full input deck is RT_TDDFT_h2o_abs.nw and the corresponding output is RT_TDDFT_h2o_abs.nwo.gz.
title \"Water TD-PBE0 absorption spectrum\"\necho\n\n\nstart water\n\n## \n## aug-cc-pvtz / pbe0 optimized \n## \n## Note: you are required to explicitly name the geometry \n## \ngeometry \"system\" units angstroms nocenter noautoz noautosym\n O 0.00000000 -0.00001441 -0.34824012\n H -0.00000000 0.76001092 -0.93285191\n H 0.00000000 -0.75999650 -0.93290797\nend\n\n## Note: We need to explicitly set the \"active\" geometry even though there is only one geom. \nset geometry \"system\"\n\n## All DFT and basis parameters are inherited by the RT-TDDFT code \nbasis\n * library 6-31G\nend\n\ndft\n xc pbe0\nend\n\n## Compute ground state of the system \ntask dft energy\n\n## \n## Now, we compute an x, y, and z kick simulation, which we give separate \"tags\" for post-processing. \n## \n\nunset rt_tddft:*\nrt_tddft\n tmax 200.0\n dt 0.2\n\n tag \"kick_x\"\n\n field \"kick\"\n type delta\n polarization x\n max 0.0001\n end\n\n excite \"system\" with \"kick\"\n end\ntask dft rt_tddft\n\nunset rt_tddft:*\nrt_tddft\n tmax 200.0\n dt 0.2\n\n tag \"kick_y\"\n\n field \"kick\"\n type delta\n polarization y\n max 0.0001\n end\n\n excite \"system\" with \"kick\"\n end\ntask dft rt_tddft\n\nunset rt_tddft:*\nrt_tddft\n tmax 200.0\n dt 0.2\n\n tag \"kick_z\"\n\n field \"kick\"\n type delta\n polarization z\n max 0.0001\n end\n\n excite \"system\" with \"kick\"\n end\ntask dft rt_tddft\n
After running the simulation, we extract the x-dipole moment for the x-kick and similarly for the y and z-kicks (see \u201ccontrib/parsers\u201d directory for this script or download here: RT_TDDFT_scripts.tgz ).
nw_rtparse.py -xdipole -px -tkick_x h2o_abs.nwo > x.dat\nnw_rtparse.py -xdipole -py -tkick_y h2o_abs.nwo > y.dat\nnw_rtparse.py -xdipole -pz -tkick_z h2o_abs.nwo > z.dat\n
Note, the syntax for extracting the x polarization for the x-kick, etc. Alternatively, we could grep and cut, or whatnot. This will give use the resulting time-dependent dipole moments:
Now, we need to take the Fourier transforms of these dipole moments to yield the the x,x element of the 3x3 linear polarizability tensor, and similarly for the y,y and z,z elements. Here I am using an FFT utility, although any discrete Fourier transform will do. To accelerate convergence of the FFT, I have damped the time signals by exp(-t /\u03c4) which results in Lorentzians with FWHM of 2 / \u03c4 and have also \u201czero padded\u201d the data with 50000 points. This is not critical for extracting frequencies, but creates \u201ccleaner\u201d spectra, although care must be taken to damp sufficiently if padding to avoid artifacts (see small ripples around 23 eV in plot below). After Fourier transform, I \u201cpaste\u201d the three files together to easily plot the absorption, which is constructed from the trace of the polarizability matrix, i.e., the sum of the imaginary parts of the FFTs of the dipole moments.
S (\u03c9) = (4\u03c0\u03c9)/(3c\u03ba)Tr[Im \u03b1(\u03c9)]
where c is the speed of light (137 in atomic units), \u03ba is the kick electric field strength, and \u03b1(\u03c9) is the linear polarizabilty tensor computed from the Fourier transforms of the time-dependent dipole moments. For example,
fft1d -d50 -z -p50000 < x.dat | rotate_fft > xw.dat\nfft1d -d50 -z -p50000 < y.dat | rotate_fft > yw.dat\nfft1d -d50 -z -p50000 < z.dat | rotate_fft > zw.dat\npaste xw.dat yw.dat zw.day > s.dat\n
Here, you can just use your favorite Fourier transform utility or analysis software, but for convenience there is also a simple GNU Octave fft1d.m utility in the \u201ccontrib/parsers\u201d directory of the trunk or download here: RT_TDDFT_scripts.tgz Note, options are hardcoded at the moment, so the switches above are not correct instead edit the file and run (also it reads file rather than redirect from stdin). Assuming the FFT output takes the form (w, Re, Im, Abs), to plot using gnuplot we would do:
gnuplot> plot \"s.dat\" u ($1*27.2114):($1*($3+$7+$11))\n
where we have scaled by 27.2114 to output in eV instead of atomic units, and we have not properly scaled to get the absolute oscillator strengths (thus our magnitudes are in \u201carbitrary units\u201d). The real-time spectrum is shown below, along with the corresponding linear-response TDDFT excitations are shown in orange for comparison. Since we are in the weak field regime, the two are identical. Note the oscillator strengths are arbitrary and scaled, if not scaled the area under each RT-TDDFT curve should integrate to the linear response oscillator strength.
"},{"location":"RT-TDDFT.html#resonant-ultraviolet-excitation-of-water","title":"Resonant ultraviolet excitation of water","text":"
In this example we compute the time-dependent electron response to a quasi-monochromatic laser pulse tuned to a particular transition. We will use the results of the previous example (6-31G/PBE0 gas-phase water). First, we consider the absorption spectrum (computed previously) but plotted for the three polarizations (x,y,z) rather then as a sum. Say we are interested in the excitation near 10 eV. We can clearly see this is a z-polarized transition (green on curve). To selectively excite this we could use a continuous wave E-field, which has a delta-function, i.e., single frequency, bandwidth but since we are doing finite simulations we need a suitable envelope. The broader the envelope in time the narrower the excitation in frequency domain, but of course long simulations become costly so we need to put some thought into the choice of our envelope. In this case the peak of interest is spectrally isolated from other z-polarized peaks, so this is quite straightforward. The procedure is outlined below, and the corresponding frequency extent of the pulse is shown on the absorption figure in orange. Note that it only covers one excitation, i.e., the field selectively excites one mode. The full input deck is RT_TDDFT_h2o_resonant.nw and the output is RT_TDDFT_h2o_resonant.nwo.gz.
title \"Water TD-PBE0 resonant excitation\" \necho\nscratch_dir ./scratch\npermanent_dir ./perm\n\nstart water\n\n##\n## aug-cc-pvtz / pbe0 optimized\n##\n## Note: you are required to explicitly name the geometry\n##\ngeometry \"system\" units angstroms nocenter noautoz noautosym\n O 0.00000000 -0.00001441 -0.34824012\n H -0.00000000 0.76001092 -0.93285191\n H 0.00000000 -0.75999650 -0.93290797\nend\n\n## Note: We need to explicitly set the \"active\" geometry even though there is only one geom.\nset geometry \"system\" \n\n## All DFT and basis parameters are inherited by the RT-TDDFT code\nbasis\n * library 6-31G\nend\n\ndft\n xc pbe0\nend\n\n## Compute ground state of the system\ntask dft energy\n\n##\n## We excite the system with a quasi-monochromatic\n## (Gaussian-enveloped) z-polarized E-field tuned to a transition at\n## 10.25 eV. The envelope takes the form:\n##\n## G(t) = exp(-(t-t0)^2 / 2s^2)\n##\n## The target excitation has an energy (frequency) of w = 0.3768 au\n## and thus an oscillation period of T = 2 pi / w = 16.68 au\n##\n## Since we are doing a Gaussian envelope in time, we will get a\n## Gaussian envelope in frequency (Gaussians are eigenfunctions of a\n## Fourier transform), with width equal to the inverse of the width in\n## time. Say, we want a Gaussian in frequency with FWHM = 1 eV\n## (recall FWHM = 2 sqrt (2ln2) s_freq) we want an s_freq = 0.42 eV =\n## 0.0154 au, thus in time we need s_time = 1 / s_time = 64.8 au.\n##\n## Now we want the envelope to be effectively zero at t=0, say 1e-8\n## (otherwise we get \"windowing\" effects). Reordering G(t):\n##\n## t0 = t - sqrt(-2 s^2 ln G(t))\n##\n## That means our Gaussian needs to be centered at t0 = 393.3 au.\n##\n## The total simulation time will be 1000 au to leave lots of time to\n## see oscillations after the field has passed.\n##\nrt_tddft\n tmax 1000.0\n dt 0.2\n\n field \"driver\"\n type gaussian\n polarization z\n frequency 0.3768 # = 10.25 eV\n center 393.3\n width 64.8\n max 0.0001\n end\n\n excite \"system\" with \"driver\"\n end\ntask dft rt_tddft\n
From the time-dependent dipole moment you can see the field driving the system into a superposition of the ground state and the one excited state, which manifests as monochromatic oscillations. After the field has passed the dipole oscillations continue forever as there is no damping in the system.
"},{"location":"RT-TDDFT.html#charge-transfer-between-a-tcne-dimer","title":"Charge transfer between a TCNE dimer","text":"Here we compute the time-dependent charge oscillations between a TCNE (tetracyanoethylene) dimer separated by 3 Angstroms, where the top molecule starts neutral and the bottom one starts with a -1 charge. This somewhat non-physical starting point will lead to far-from-equilibrium dynamics as the charge violently sloshes between the two molecules, with the oscillation period a function of the molecular separation. The trick here is to use fragments by have multiple geometries in the input deck, where each fragment is converged separately, then assembled together without SCF to use as a starting point. We use a small but diffuse basis and a range-separated functional (CAM-B3LYP). The input deck is RT_TDDFT_tcne_dimer.nw and the full output is RT_TDDFT_tcne_dimer.nwo.gz.
title \"Tetracyanoethylene dimer charge transfer\"\n\necho\nscratch_dir ./scratch\npermanent_dir ./perm\n\nstart tcne\necho\n\n##\n## Each fragment optimized with cc-pvdz/B3LYP\n##\ngeometry \"bottom\" units angstroms noautosym nocenter noautoz\n C -1.77576486 0.66496556 0.00004199\n N -2.94676621 0.71379797 0.00004388\n C -0.36046718 0.62491168 0.00003506\n C 0.36049301 -0.62492429 -0.00004895\n C 1.77579907 -0.66504145 -0.00006082\n N 2.94680364 -0.71382258 -0.00006592\n C -0.31262746 -1.87038951 -0.00011201\n N -0.85519492 -2.90926164 -0.00016331\n C 0.31276207 1.87031662 0.00010870\n N 0.85498782 2.90938919 0.00016857\nend\n\ngeometry \"top\" units angstroms noautosym nocenter noautoz\n C -1.77576486 0.66496556 3.00004199\n N -2.94676621 0.71379797 3.00004388\n C -0.36046718 0.62491168 3.00003506\n C 0.36049301 -0.62492429 2.99995105\n C 1.77579907 -0.66504145 2.99993918\n N 2.94680364 -0.71382258 2.99993408\n C -0.31262746 -1.87038951 2.99988799\n N -0.85519492 -2.90926164 2.99983669\n C 0.31276207 1.87031662 3.00010870\n N 0.85498782 2.90938919 3.00016857\nend\n\n\n## dimer geometry is the union of bottom and top geometry\ngeometry \"dimer\" units angstroms noautosym nocenter noautoz\n C -1.77576486 0.66496556 0.00004199\n N -2.94676621 0.71379797 0.00004388\n C -0.36046718 0.62491168 0.00003506\n C 0.36049301 -0.62492429 -0.00004895\n C 1.77579907 -0.66504145 -0.00006082\n N 2.94680364 -0.71382258 -0.00006592\n C -0.31262746 -1.87038951 -0.00011201\n N -0.85519492 -2.90926164 -0.00016331\n C 0.31276207 1.87031662 0.00010870\n N 0.85498782 2.90938919 0.00016857\n#---\n C -1.77576486 0.66496556 3.00004199\n N -2.94676621 0.71379797 3.00004388\n C -0.36046718 0.62491168 3.00003506\n C 0.36049301 -0.62492429 2.99995105\n C 1.77579907 -0.66504145 2.99993918\n N 2.94680364 -0.71382258 2.99993408\n C -0.31262746 -1.87038951 2.99988799\n N -0.85519492 -2.90926164 2.99983669\n C 0.31276207 1.87031662 3.00010870\n N 0.85498782 2.90938919 3.00016857\nend\n\n\n##\n## C, N: 3-21++G\n##\nbasis spherical\nC S\n 172.2560000 0.0617669 \n 25.9109000 0.3587940 \n 5.5333500 0.7007130 \nC SP\n 3.6649800 -0.3958970 0.2364600 \n 0.7705450 1.2158400 0.8606190 \nC SP\n 0.1958570 1.0000000 1.0000000 \nC SP\n 0.0438000 1.0000000 1.0000000 \nN S\n 242.7660000 0.0598657 \n 36.4851000 0.3529550 \n 7.8144900 0.7065130 \nN SP\n 5.4252200 -0.4133010 0.2379720 \n 1.1491500 1.2244200 0.8589530 \nN SP\n 0.2832050 1.0000000 1.0000000 \nN SP\n 0.0639000 1.0000000 1.0000000 \nend\n\n\n##\n## Charge density fitting basis.\n##\nbasis \"cd basis\"\nC S\n 5.91553927E+02 0.31582020\n 1.72117940E+02 0.87503863\n 5.47992590E+01 2.30760524\nC S\n 1.89590940E+01 1.0000000\nC S\n 7.05993000E+00 1.0000000\nC S\n 2.79484900E+00 1.0000000\nC S\n 1.15863400E+00 1.0000000\nC S\n 4.94324000E-01 1.0000000\nC S\n 2.12969000E-01 1.0000000\nC P\n 3.27847358E-01 1.0000000\nC P\n 7.86833659E-01 1.0000000\nC P\n 1.97101832E+00 1.0000000\nC D\n 4.01330100E+00 1.0000000\nC D\n 1.24750500E+00 1.0000000\nC D\n 4.08148000E-01 1.0000000\nC F\n 9.00000000E-01 1.0000000\nN S\n 7.91076935E+02 0.41567506\n 2.29450184E+02 1.14750694\n 7.28869600E+01 3.01935767\nN S\n 2.51815960E+01 1.0000000\nN S\n 9.37169700E+00 1.0000000\nN S\n 3.71065500E+00 1.0000000\nN S\n 1.53946300E+00 1.0000000\nN S\n 6.57553000E-01 1.0000000\nN S\n 2.83654000E-01 1.0000000\nN P\n 4.70739194E-01 1.0000000\nN P\n 1.12977407E+00 1.0000000\nN P\n 2.83008403E+00 1.0000000\nN D\n 5.83298650E+00 1.0000000\nN D\n 1.73268650E+00 1.0000000\nN D\n 5.45242500E-01 1.0000000\nN F\n 1.82648000E+00 1.0000000\nend\n\n\n##\n## Universal DFT parameters. Note, we are doing open-shell even for\n## the neutral fragment so the movecs have the correct size. \n##\n## We are using the CAM-B3LYP functional (no need to use \"direct\"\n## since we are doing CD fitting).\n##\ndft\n xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00\n cam 0.33 cam_alpha 0.19 cam_beta 0.46\n odft\n convergence density 1d-9\n grid fine\n maxiter 1000\nend\n\n\n##\n## Converge bottom fragment with extra electron and top fragment as\n## neutral.\n##\ncharge -1\nset geometry \"bottom\"\ndft\n mult 2\n vectors input atomic output \"bottom.movecs\"\nend\ntask dft energy\n\ncharge 0\nset geometry \"top\"\ndft\n mult 1\n vectors input atomic output \"top.movecs\"\nend\ntask dft energy\n\n\n##\n## Assemble the two fragments but don't do SCF--this keeps the system\n## in a far-from-equilibrium state from which we will watch the\n## dynamics.\n##\ncharge -1\nset geometry \"dimer\"\ndft\n mult 2\n vectors input fragment \"bottom.movecs\" \"top.movecs\" output \"dimer.movecs\"\n noscf\nend\ntask dft energy\n\n\n##\n## Now do RT-TDDFT from this crazy state without any electric fields.\n##\nrt_tddft\n tmax 500.0\n dt 0.2\n load vectors \"dimer.movecs\"\n\n print dipole field energy s2 charge\nend\ntask dft rt_tddft\n
The time-dependent charge shows that the excess electron starts on the \u201cbottom\u201d molecule (i.e., a total electronic charge of -65), then swings to completely occupy the \u201ctop\u201d molecule then oscillates back and forth. The frequency of this oscillation is dependent on the separation, with larger separations leading to lower frequencies. It is important to note, however, this starting point is highly non-physical, specifically converging the two fragments together and \u201cgluing\u201d them together introduces an indeterminate amount of energy to the system, but this simulation shows how charge dynamics simulations can be done.
"},{"location":"RT-TDDFT.html#mo-cap-example","title":"MO CAP example","text":"## aug-cc-pvtz/PBE0 optimized\ngeometry \"system\" units angstroms noautosym noautoz nocenter\n O 0.00000043 0.11188833 0.00000000\n H 0.76000350 -0.47275229 0.00000000\n H -0.76000393 -0.47275063 0.00000000\nend\n\nset geometry \"system\"\n\nbasis spherical\n * library 6-31G*\nend\n\ndft\n xc pbe0\n convergence density 1d-9\nend\ntask dft\n\nrt_tddft\n dt 0.2\n tmax 250.0\n\n print dipole field energy charge\n\n mocap\n expconst 1.0 # exponential constant for CAP\n emin 0.5 # any MO with eigenvalue >= 0.5 Ha will have CAP applied to it\n prefac 1.0 # prefactor for exponential\n maxval 100.0 # clamp CAP at this value (in Ha)\n on # turn on CAP\n nochecks # disable checks for speed\n noprint # don't print CAP value\n end\n\n field \"kick\"\n type delta\n max 0.0001\n polarization z\n end\n\n excite \"system\" with \"kick\"\nend\ntask dft rt_tddft\n
After running the parser script on the output files from the input above using either with the on
or off
keywords, the following plot can be produced from the data file obtained with the command nw_rtparse.py -xdipole -pz -t\"<rt_tddft>\"
All methods which include treatment of relativistic effects are ultimately based on the Dirac equation, which has a four component wave function. The solutions to the Dirac equation describe both positrons (the \u201cnegative energy\u201d states) and electrons (the \u201cpositive energy\u201d states), as well as both spin orientations, hence the four components. The wave function may be broken down into two-component functions traditionally known as the large and small components; these may further be broken down into the spin components.
The implementation of approximate all-electron relativistic methods in quantum chemical codes requires the removal of the negative energy states and the factoring out of the spin-free terms. Both of these may be achieved using a transformation of the Dirac Hamiltonian known in general as a Foldy-Wouthuysen (FW) transformation. Unfortunately this transformation cannot be represented in closed form for a general potential, and must be approximated. One popular approach is that originally formulated by Douglas and Kroll1 and developed by Hess23. This approach decouples the positive and negative energy parts to second order in the external potential (and also fourth order in the fine structure constant, \u03b1). Other approaches include the Zeroth Order Regular Approximation (ZORA)4567 and modification of the Dirac equation by Dyall8, and involves an exact FW transformation on the atomic basis set level910.
Since these approximations only modify the integrals, they can in principle be used at all levels of theory. At present the Douglas-Kroll and ZORA implementations can be used at all levels of theory whereas Dyall\u2019s approach is currently available at the Hartree-Fock level. The derivatives have been implemented, allowing both methods to be used in geometry optimizations and frequency calculations.
"},{"location":"Relativistic-All-electron-Approximations.html#relativistic-directive","title":"RELATIVISTIC directive","text":"The RELATIVISTIC
directive provides input for the implemented relativistic approximations and is a compound directive that encloses additional directives specific to the approximations:
RELATIVISTIC\n [DOUGLAS-KROLL [<string (ON||OFF) default ON> \\ \n <string (FPP||DKH||DKFULL||DK3||DK3FULL) default DKH>] || \n ZORA [ (ON || OFF) default ON ] || \n DYALL-MOD-DIRAC [ (ON || OFF) default ON ] ||\n [ (NESC1E || NESC2E) default NESC1E ] ] ||\n X2C [ (ON || OFF) default ON ]\n [CLIGHT <real clight default 137.0359895>] \n END\n
Only one of the methods may be chosen at a time. If both methods are found to be on in the input block, NWChem will stop and print an error message. There is one general option for both methods, the definition of the speed of light in atomic units:
CLIGHT <real clight default 137.0359895>\n
The following sections describe the optional sub-directives that can be specified within the RELATIVISTIC
block.
The spin-free and spin-orbit one-electron Douglas-Kroll approximation have been implemented. The use of relativistic effects from this Douglas-Kroll approximation can be invoked by specifying:
DOUGLAS-KROLL [<string (ON||OFF) default ON> \\ \n <string (FPP||DKH||DKFULL|DK3|DK3FULL) default DKH>]\n
The ON|OFF string is used to turn on or off the Douglas-Kroll approximation. By default, if the DOUGLAS-KROLL
keyword is found, the approximation will be used in the calculation. If the user wishes to calculate a non-relativistic quantity after turning on Douglas-Kroll, the user will need to define a new RELATIVISTIC
block and turn the approximation OFF
. The user could also simply put a blank RELATIVISTIC
block in the input file and all options will be turned off.
The FPP
is the approximation based on free-particle projection operators11 whereas the DKH
and DKFULL
approximations are based on external-field projection operators12. The latter two are considerably better approximations than the former. DKH
is the Douglas-Kroll-Hess approach and is the approach that is generally implemented in quantum chemistry codes. DKFULL
includes certain cross-product integral terms ignored in the DKH
approach (see for example H\u00e4berlen and R\u00f6sch13). The third-order Douglas-Kroll approximation has been implemented by T. Nakajima and K. Hirao1415. This approximation can be called using DK3
(DK3 without cross-product integral terms) or DK3FULL
(DK3 with cross-product integral terms).
The contracted basis sets used in the calculations should reflect the relativistic effects, i.e. one should use contracted basis sets which were generated using the Douglas-Kroll Hamiltonian. Basis sets that were contracted using the non-relativistic (Sch\u00f6dinger) Hamiltonian WILL PRODUCE ERRONEOUS RESULTS for elements beyond the first row. See appendix A for available basis sets and their naming convention.
NOTE: we suggest that spherical basis sets are used in the calculation. The use of high quality cartesian basis sets can lead to numerical inaccuracies.
In order to compute the integrals needed for the Douglas-Kroll approximation the implementation makes use of a fitting basis set (see literature given above for details). The current code will create this fitting basis set based on the given ao basis
by simply uncontracting that basis. This again is what is commonly implemented in quantum chemistry codes that include the Douglas-Kroll method. Additional flexibility is available to the user by explicitly specifying a Douglas-Kroll fitting basis set. This basis set must be named D-K basis
(see Basis Sets).
The spin-free and spin-orbit one-electron zeroth-order regular approximation (ZORA) have been implemented. ZORA can be accessed only via the DFT and SO-DFT modules. The use of relativistic effects with ZORA can be invoked by specifying:
ZORA [<string (ON||OFF) >\n
The ON
|OFF
string is used to turn on or off ZORA. No default is present, therefore ZORA
keyword need to be followed by ON
in order for the approximation to be used in the calculation. If the user wishes to calculate a non-relativistic quantity after turning on ZORA, the user will need to define a new RELATIVISTIC
block and turn the approximation OFF. The user can also simply put a blank RELATIVISTIC
block in the input file and all options will be turned off.
To increase the accuracy of ZORA calculations, the following settings may be used in the relativistic block
relativistic\n zora on\n zora:cutoff 1d-30\n end\n
To invoke the relativistic ZORA model potential approach due to van Wullen (references 16 and 17).
For model potentials constructed from 4-component densities:
relativistic\n zora on\n zora:cutoff 1d-30\n modelpotential 1\n end\n
For model potentials constructed from 2-component densities:
relativistic\n zora on\n zora:cutoff 1d-30\n modelpotential 2\n end\n
Both approaches are comparable in accuracy and depends on the system.
"},{"location":"Relativistic-All-electron-Approximations.html#dyalls-modified-dirac-hamitonian-approximation","title":"Dyall\u2019s Modified Dirac Hamitonian approximation","text":"The approximate methods described in this section are all based on Dyall\u2019s modified Dirac Hamiltonian. This Hamiltonian is entirely equivalent to the original Dirac Hamiltonian, and its solutions have the same properties. The modification is achieved by a transformation on the small component, extracting out \u03c3\u22c5p/2mc. This gives the modified small component the same symmetry as the large component, and in fact it differs from the large component only at order \u03b12. The advantage of the modification is that the operators now resemble the operators of the Breit-Pauli Hamiltonian, and can be classified in a similar fashion into spin-free, spin-orbit and spin-spin terms. It is the spin-free terms which have been implemented in NWChem, with a number of further approximations.
The first is that the negative energy states are removed by a normalized elimination of the small component (NESC), which is equivalent to an exact Foldy-Wouthuysen (EFW) transformation. The number of components in the wave function is thereby effectively reduced from 4 to 2. NESC on its own does not provide any advantages, and in fact complicates things because the transformation is energy-dependent. The second approximation therefore performs the elimination on an atom-by-atom basis, which is equivalent to neglecting blocks which couple different atoms in the EFW transformation. The advantage of this approximation is that all the energy dependence can be included in the contraction coefficients of the basis set. The tests which have been done show that this approximation gives results well within chemical accuracy. The third approximation neglects the commutator of the EFW transformation with the two-electron Coulomb interaction, so that the only corrections that need to be made are in the one-electron integrals. This is the equivalent of the Douglas-Kroll(-Hess) approximation as it is usually applied.
The use of these approximations can be invoked with the use of the DYALL-MOD-DIRAC
directive in the RELATIVISTIC
directive block. The syntax is as follows.
DYALL-MOD-DIRAC [ (ON || OFF) default ON ] \n [ (NESC1E || NESC2E) default NESC1E ]\n
The ON
|OFF
string is used to turn on or off the Dyall\u2019s modified Dirac approximation. By default, if the DYALL-MOD-DIRAC
keyword is found, the approximation will be used in the calculation. If the user wishes to calculate a non-relativistic quantity after turning on Dyall\u2019s modified Dirac, the user will need to define a new RELATIVISTIC
block and turn the approximation OFF
. The user could also simply put a blank RELATIVISTIC
block in the input file and all options will be turned off.
Both one- and two-electron approximations are available NESC1E
|| NESC2E
, and both have analytic gradients. The one-electron approximation is the default. The two-electron approximation specified by NESC2E
has some sub options which are placed on the same logical line as the DYALL-MOD-DIRAC
directive, with the following syntax:
NESC2E [ (SS1CENT [ (ON || OFF) default ON ] || SSALL) default SSALL ]\n [ (SSSS [ (ON || OFF) default ON ] || NOSSSS) default SSSS ]\n
The first sub-option gives the capability to limit the two-electron corrections to those in which the small components in any density must be on the same center. This reduces the (LL|SS) contributions to at most three-center integrals and the (SS|SS) contributions to two centers. For a case with only one relativistic atom this option is redundant. The second controls the inclusion of the (SS|SS) integrals which are of order \u03b14. For light atoms they may safely be neglected, but for heavy atoms they should be included.
In addition to the selection of this keyword in the RELATIVISTIC
directive block, it is necessary to supply basis sets in addition to the ao basis
. For the one-electron approximation, three basis sets are needed: the atomic FW basis set, the large component basis set and the small component basis set. The atomic FW basis set should be included in the ao basis
. The large and small components should similarly be incorporated in basis sets named large component
and small component
, respectively. For the two-electron approximation, only two basis sets are needed. These are the large component and the small component. The large component should be included in the ao basis
and the small component is specified separately as small component
, as for the one-electron approximation. This means that the two approximations can not be run correctly without changing the ao basis
, and it is up to the user to ensure that the basis sets are correctly specified.
There is one further requirement in the specification of the basis sets. In the ao basis, it is necessary to add the rel
keyword either to the basis directive or the library tag line (See below for examples). The former marks the basis functions specified by the tag as relativistic, the latter marks the whole basis as relativistic. The marking is actually done at the unique shell level, so that it is possible not only to have relativistic and nonrelativistic atoms, it is also possible to have relativistic and nonrelativistic shells on a given atom. This would be useful, for example, for diffuse functions or for high angular momentum correlating functions, where the influence of relativity was small. The marking of shells as relativistic is necessary to set up a mapping between the ao basis and the large and/or small component basis sets. For the one-electron approximation the large and small component basis sets MUST be of the same size and construction, i.e. differing only in the contraction coefficients.
It should also be noted that the relativistic code will NOT work with basis sets that contain sp shells, nor will it work with ECPs. Both of these are tested and flagged as an error.
"},{"location":"Relativistic-All-electron-Approximations.html#examples-for-dyall-mod-dirac","title":"Examples for DYALL-MOD-DIRAC","text":"Some examples follow. The first example sets up the data for relativistic calculations on water with the one-electron approximation and the two-electron approximation, using the library basis sets.
start h2o-dmd\n geometry units bohr\n symmetry c2v\n O 0.000000000 0.000000000 -0.009000000\n H 1.515260000 0.000000000 -1.058900000\n H -1.515260000 0.000000000 -1.058900000\n end\n basis \"fw\" rel\n oxygen library cc-pvdz_pt_sf_fw\n hydrogen library cc-pvdz_pt_sf_fw\n end\n basis \"large\"\n oxygen library cc-pvdz_pt_sf_lc\n hydrogen library cc-pvdz_pt_sf_lc\n end\n basis \"large2\" rel\n oxygen library cc-pvdz_pt_sf_lc\n hydrogen library cc-pvdz_pt_sf_lc\n end\n basis \"small\"\n oxygen library cc-pvdz_pt_sf_sc\n hydrogen library cc-pvdz_pt_sf_sc\n end\n set \"ao basis\" fw\n set \"large component\" large\n set \"small component\" small\n relativistic\n dyall-mod-dirac\n end\n task scf\n set \"ao basis\" large2\n unset \"large component\"\n set \"small component\" small\n relativistic\n dyall-mod-dirac nesc2e\n end\n task scf\n
The second example has oxygen as a relativistic atom and hydrogen nonrelativistic.
start h2o-dmd2\n geometry units bohr\n symmetry c2v\n O 0.000000000 0.000000000 -0.009000000\n H 1.515260000 0.000000000 -1.058900000\n H -1.515260000 0.000000000 -1.058900000\n end\n basis \"ao basis\"\n oxygen library cc-pvdz_pt_sf_fw rel\n hydrogen library cc-pvdz\n end\n basis \"large component\"\n oxygen library cc-pvdz_pt_sf_lc\n end\n basis \"small component\"\n oxygen library cc-pvdz_pt_sf_sc\n end\n relativistic\n dyall-mod-dirac\n end\n task scf\n
"},{"location":"Relativistic-All-electron-Approximations.html#x2c-exact-two-component-relativistic-hamiltonian","title":"X2C: exact two-component relativistic Hamiltonian","text":"The exact two-component Hamiltonian1819 has been implemented in NWChem202122.
X2C [<string (ON||OFF) default ON>\n
The ON
|OFF
string is used to turn on or off X2C. By default, if the X2C
keyword is found, the approximation will be used in the calculation. If the user wishes to calculate a non-relativistic quantity after turning on X2C, the user will need to define a new RELATIVISTIC
block and turn the approximation OFF. The user can also simply put a blank RELATIVISTIC
block in the input file and all options will be turned off.
To increase the accuracy of X2C calculations, the following settings may be used in the relativistic block
relativistic\n x2c on\n x2c:cutoff 1d-15\n end\n
"},{"location":"Relativistic-All-electron-Approximations.html#references","title":"References","text":"Douglas, M.; Kroll, N.M. (1974). \u201cQuantum electrodynamical corrections to the fine structure of helium\u201d. Annals of Physics 82: 89-155. DOI:10.1016/0003-4916(74)90333-9.\u00a0\u21a9
Hess, B.A. (1985). \u201cApplicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations\u201d. Physical Review A 32: 756-763. DOI:10.1103/PhysRevA.32.756.\u00a0\u21a9
Hess, B.A. (1986). \u201cRelativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators\u201d. Physical Review A 33: 3742-3748. DOI:10.1103/PhysRevA.33.3742.\u00a0\u21a9
Chang, C; Pelissier, M; Durand, M (1986). \u201cRegular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory\u201d. Physica Scripta 34: 394. DOI:10.1088/0031-8949/34/5/007.\u00a0\u21a9
van Lenthe, E (1996). \u201cThe ZORA Equation\u201d (in English).\u00a0\u21a9
Faas, S.; Snijders, J.G.; van Lenthe, J.H.; van Lenthe, E.; Baerends, E.J. (1995). \u201cThe ZORA formalism applied to the Dirac-Fock equation\u201d. Chemical Physics Letters 246: 632-640. DOI:10.1016/0009-2614(95)01156-0.\u00a0\u21a9
Nichols, P.; Govind, N.; Bylaska, E.J.; de Jong, W.A. (2009). \u201cGaussian Basis Set and Planewave Relativistic Spin-Orbit Methods in NWChem\u201d. Journal of Chemical Theory and Computation 5: 491-499. DOI:10.1021/ct8002892.\u00a0\u21a9
Dyall, K.G. (1994). \u201cAn exact separation of the spin-free and spin-dependent terms of the Dirac\u2013Coulomb\u2013Breit Hamiltonian\u201d. The Journal of Chemical Physics 100: 2118-2127. DOI:10.1063/1.466508.\u00a0\u21a9
Dyall, K.G. (1997). \u201cInterfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation\u201d. The Journal of Chemical Physics 106: 9618-9626. DOI:10.1063/1.473860.\u00a0\u21a9
Dyall, K.G.; Enevoldsen, T. (1999). \u201cInterfacing relativistic and nonrelativistic methods. III. Atomic 4-spinor expansions and integral approximations\u201d. The Journal of Chemical Physics 111: 10000-10007. DOI:10.1063/1.480353.\u00a0\u21a9
Hess, B.A. (1985). \u201cApplicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations\u201d. Physical Review A 32: 756-763. DOI:10.1103/PhysRevA.32.756.\u00a0\u21a9
Hess, B.A. (1986). \u201cRelativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators\u201d. Physical Review A 33: 3742-3748. DOI:10.1103/PhysRevA.33.3742.\u00a0\u21a9
Haeberlen, O.D.; Roesch, N. (1992). \u201cA scalar-relativistic extension of the linear combination of Gaussian-type orbitals local density functional method: application to AuH, AuCl and Au2\u201d. Chemical Physics Letters 199: 491-496. DOI:10.1016/0009-2614(92)87033-L.\u00a0\u21a9
Nakajima, T.; Hirao, K. (2000). \u201cNumerical illustration of third-order Douglas-Kroll method: atomic and molecular properties of superheavy element 112\u201d. Chemical Physics Letters 329: 511-516. DOI:10.1016/S0009-2614(00)01035-6.\u00a0\u21a9
Nakajima, T.; Hirao, K. (2000). \u201cThe higher-order Douglas\u2013Kroll transformation\u201d. The Journal of Chemical Physics 113: 7786-7789. DOI:10.1063/1.1316037.\u00a0\u21a9
van Wullen, C. (1998). \u201cMolecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations\u201d. The Journal of Chemical Physics 109: 392-399 DOI:10.1063/1.476576 \u21a9
van Wullen, C.; Michauk, C. (2005). \u201cAccurate and efficient treatment of two-electron contributions in quasirelativistic high-order Douglas-Kroll density-functional calculations\u201d. The Journal of Chemical Physics 123, 204113 DOI:10.1063/1.2133731 \u21a9
Liu, W.; Peng, D. (2009). J. Chem. Phys. 2009, 131, 031104 DOI:10.1063/1.3159445 \u21a9
Saue, T. (2011). \u201cRelativistic Hamiltonians for Chemistry: A Primer\u201d. ChemPhysChem, 12, 3077\u20133094 DOI:10.1002/cphc.201100682 \u21a9
Autschbach, J.; Peng, D; Reiher, M. (2012). J. Chem. Theory Comput. 2012, 8, 4239\u20134248 DOI:10.1021/ct300623j \u21a9
Peng, D.; Reiher, M. (2012). Theor. Chem. Acc. 131, 1081 DOI:10.1007/s00214-011-1081-y \u21a9
Autschbach, J. (2021). Quantum Theory for Chemical Applications:From Basic Concepts to Advanced Topics, Oxford, University Press, Chapter 24 DOI:10.1093/oso/9780190920807.001.0001 \u21a9
The command required to invoke NWChem is machine dependent, whereas most of the NWChem input is machine independent.
"},{"location":"Running.html#sequential-execution","title":"Sequential execution","text":"To run NWChem sequentially on nearly all UNIX-based platforms simply use the command nwchem and provide the name of the input file as an argument. This does assume that either nwchem is in your path or you have set an alias of nwchem to point to the appropriate executable.
Output is to standard output, standard error and Fortran unit 6 (usually the same as standard output). Files are created by default in the current directory, though this may be overridden in the input.
Generally, one will run a job with the following command:
nwchem input.nw >& input.out &\n
"},{"location":"Running.html#parallel-execution-on-unix-based-parallel-machines-including-workstation-clusters-using-mpi","title":"Parallel execution on UNIX-based parallel machines including workstation clusters using MPI","text":"To run with MPI, parallel should not be used. The way we usually run nwchem under MPI are the following
mpirun -np 8 $NWCHEM_TOP/bin/$NWCHEM_TARGET/nwchem input.nw
were $NWCHEM_TARGET
values are described in the Compiling section.
The selected CI module is integrated into NWChem but as yet no input module has been written [1]. The input thus consists of setting the appropriate variables in the database.
It is assumed that an initial SCF/MCSCF calculation has completed, and that MO vectors are available. These will be used to perform a four-index transformation, if this has not already been performed.
"},{"location":"SELCI.html#background","title":"Background","text":"This is a general spin-adapted, configuration-driven CI program which can perform arbitrary CI calculations, the only restriction being that all spin functions are present for each orbital occupation. CI wavefunctions may be specified using a simple configuration generation program, but the prime usage is intended to be in combination with perturbation correction and selection of new configurations. The second-order correction (Epstein-Nesbet) to the CI energy may be computed, and at the same time configurations that interact greater than a certain threshold with the current CI wavefunction may be chosen for inclusion in subsequent calculations. By repeating this process (typically twice is adequate) with the same threshold until no new configurations are added, the CI expansion may be made consistent with the selection threshold, enabling tentative extrapolation to the full-CI limit.
A typical sequence of calculations is as follows:
To illustrate this, below is some abbreviated output from a calculation on water in an augmented cc-PVDZ basis set with one frozen core orbital. The SCF was converged to high precision in C2v symmetry with the following input
\u00a0start h2o \n geometry; symmetry c2v \n O 0 0 0; H 0 1.43042809 -1.10715266 \n end \n basis \n H library aug-cc-pvdz; O library aug-cc-pvdz \n end \n task scf \n scf; thresh 1d-8; end\n
The following input restarts from the SCF to perform a sequence of selected CI calculations with the specified tolerances, starting with the SCF reference.
restart h2o \n set fourindex:occ_frozen 1 \n set selci:mode select \n set \"selci:selection thresholds\" \\ \n 0.001 0.001 0.0001 0.0001 0.00001 0.00001 0.000001 \n task selci\n
The table below summarizes the output from each of the major computational steps that were performed.
CI Step Description dimension Energy 1 Four-index, one frozen-core 2 Config. generator, SCF default 1 3+4 CI diagonalization 1 ECI = -76.041983 5 PT selection T=0.001 1 ECI+PT = -76.304797 6+7 CI diagonalization 75 ECI = -76.110894 8 PT selection T=0.001 75 ECI+PT = -76.277912 9+10 CI diagonalization 75 ECI(T=0.001) = -76.110894 11 PT selection T=0.0001 75 ECI+PT(T=0.001) = -76.277912 12+13 CI diagonalization 823 ECI = -76.228419 14 PT selection T=0.0001 823 ECI+PT = -76.273751 15+16 CI diagonalization 841 ECI(T=0.0001) = -76.2300544 17 PT selection T=0.00001 841 ECI+PT(T=0.0001) = -76.274073 18+19 CI diagonalization 2180 ECI = -76.259285 20 PT selection T=0.00001 2180 ECI+PT = -76.276418 21+22 CI diagonalization 2235 ECI(T=0.00001) = -76.259818 23 PT selection T=0.000001 2235 ECI+PT(T=0.00001) = -76.276478 24 CI diagonalization 11489Summary of steps performed in a selected CI calculation on water.
"},{"location":"SELCI.html#files","title":"Files","text":"Currently, no direct control is provided over filenames. All files are prefixed with the standard file-prefix, and any files generated by all nodes are also postfixed with the processor number. Thus, for example the molecular integrals file, used only by process zero, might be called h2o.moints whereas the off-diagonal Hamiltonian matrix element file used by process number eight would be called h2o.hamil.8.
If no configuration is explicitly specified then the previous SCF/MCSCF wavefunction is used, adjusting for any orbitals frozen in the four-index transformation. The four-index transformation must have completed successfully before this can execute. Orbital configurations for use as reference functions may also be explicitly specified.
Once the default/user-input reference configurations have been determined additional reference functions may be generated by applying multiple sets of creation-annihilation operators, permitting for instance, the ready specification of complete or restricted active spaces.
Finally, a uniform level of excitation from the current set of configurations into all orbitals may be applied, enabling, for instance, the simple creation of single or single+double excitation spaces from an MCSCF reference.
"},{"location":"SELCI.html#specifying-the-reference-occupation","title":"Specifying the reference occupation","text":"A single orbital configuration or occupation is specified by
ns (socc(i),i=1,ns) (docc(i),i=1,nd)\n
where ns specifies the number of singly occupied orbitals, socc() is the list of singly occupied orbitals, and docc() is the list of doubly occupied orbitals (the number of doubly occupied orbitals, nd, is inferred from ns and the total number of electrons). All occupations may be strung together and inserted into the database as a single integer array with name \u201cselci:conf\u201d. For example, the input
set \"selci:conf\" \\ \n 0 1 2 3 4 \\ \n 0 1 2 3 27 \\ \n 0 1 3 4 19 \\ \n 2 11 19 1 3 4 \\ \n 2 8 27 1 2 3 \\ \n 0 1 2 4 25 \\ \n 4 3 4 25 27 1 2 \\ \n 4 2 3 19 20 1 4 \\ \n 4 2 4 20 23 1 3\n
specifies the following nine orbital configurations
1(2) 2(2) 3(2) 4(2) \n 1(2) 2(2) 3(2) 27(2) \n 1(2) 3(2) 4(2) 19(2) \n 1(2) 3(2) 4(2) 11(1) 19(1) \n 1(2) 2(2) 3(2) 8(1) 27(1) \n 1(2) 2(2) 4(2) 25(2) \n 1(2) 2(2) 3(1) 4(1) 25(1) 27(1) \n 1(2) 2(1) 3(1) 4(2) 19(1) 20(1) \n 1(2) 2(1) 3(2) 4(1) 20(1) 23(1)\n
The optional formatting of the input is just to make this arcane notation easier to read. Relatively few configurations can be currently specified in this fashion because of the input line limit of 1024 characters.
"},{"location":"SELCI.html#applying-creation-annihilation-operators","title":"Applying creation-annihilation operators","text":"Up to 10 sets of creation-annihilation operator pairs may be specified, each set containing up to 255 pairs. This suffices to specify complete active spaces with up to ten electrons.
The number of sets is specified as follows,
set selci:ngen 4
which indicates that there will be four sets. Each set is then specified as a separate integer array
set \"selci:refgen 1\" 5 4 6 4 5 3 6 3 \n set \"selci:refgen 2\" 5 4 6 4 5 3 6 3 \n set \"selci:refgen 3\" 5 4 6 4 5 3 6 3 \n set \"selci:refgen 4\" 5 4 6 4 5 3 6 3\n
In the absence of friendly, input note that the names \u201cselci:refgen n\u201d must be formatted with n in I2 format. Each set specifies a list of creation-annihilation operator pairs (in that order). So for instance, in the above example each set is the same and causes the excitations
4->5 4->6 3->5 3->6\n
If orbitals 3 and 4 were initially doubly occupied, and orbitals 5 and 6 initially unoccupied, then the application of this set of operators four times in succession is sufficient to generate the four electron in four orbital complete active space.
The precise sequence in which operators are applied is
By default no excitation is applied to the reference configurations. If, for instance, you wanted to generate a single excitation CI space from the current configuration list, specify
set selci:exci 1\n
Any excitation level may be applied, but since the list of configurations is explicitly generated, as is the CI Hamiltonian matrix, you will run out of disk space if you attempt to use more than a few tens of thousands of configurations.
"},{"location":"SELCI.html#number-of-roots","title":"Number of roots","text":"By default, only one root is generated in the CI diagonalization or perturbation selection. The following requests that 2 roots be generated
set selci:nroot 2\n
There is no imposed upper limit. If many roots are required, then, to minimize root skipping problems, it helps to perform an initial approximate diagonalization with several more roots than required, and then resetting this parameter once satisfied that the desired states are obtained.
"},{"location":"SELCI.html#accuracy-of-diagonalization","title":"Accuracy of diagonalization","text":"By default, the CI wavefunctions are converged to a residual norm of 10-6 which provides similar accuracy in the perturbation corrections to the energy, and much higher accuracy in the CI eigenvalues. This may be adjusted with
set \"selci:diag tol\" 1d-3\n
the example setting much lower precision, appropriate for the approximate diagonalization discussed in the preceding section.
"},{"location":"SELCI.html#selection-thresholds","title":"Selection thresholds","text":"When running in the selected-CI mode the program will loop through a list of selection thresholds (T), performing the CI diagonalization, computing the perturbation correction, and augmenting the CI expansion with configurations that make an energy lowering to any root greater than T. The list of selection thresholds is specified as follows
set \"selci:selection thresholds\" \\ \n 0.001 0.001 0.0001 0.0001 0.00001 0.00001 0.000001\n
There is no default for this parameter.
"},{"location":"SELCI.html#mode","title":"Mode","text":"By default the program runs in \u201cci+davids\u201d mode and just determines the CI eigenvectors/values in the current configuration space. To perform a selected-CI with perturbation correction use the following
set selci:mode select\n
and remember to define the selection thresholds.
"},{"location":"SELCI.html#memory-requirements","title":"Memory requirements","text":"No global arrays are used inside the selected-CI, though the four-index transformation can be automatically invoked and it does use GAs. The selected CI replicates inside each process
These large data structures are allocated on the local stack. A fatal error will result if insufficient memory is available.
"},{"location":"SELCI.html#forcing-regeneration-of-the-mo-integrals","title":"Forcing regeneration of the MO integrals","text":"When scanning a potential energy surface or optimizing a geometry the MO integrals need to be regenerated each time. Specify
set selci:moints:force logical .true.\n
to accomplish this.
"},{"location":"SELCI.html#disabling-update-of-the-configuration-list","title":"Disabling update of the configuration list","text":"When computing CI+PT energy the reference configuration list is normally updated to reflect all configurations that interact more than the specified threshold. This is usually desirable. But when scanning a potential energy surface or optimizing a geometry the reference list must be kept fixed to keep the potential energy surface continuous and well defined. To do this specify
set selci:update logical .false.\n
"},{"location":"SELCI.html#orbital-locking-in-ci-geometry-optimization","title":"Orbital locking in CI geometry optimization","text":"The selected CI wavefunction is not invariant to orbital rotations or to swapping two or more orbitals. Orbitals could be swapped or rotated when the geometry is changed in a geometry optimization step. The keyword lock has to be set in the SCF/MCSCF (vectors) input block to keep the orbitals in the same order throughout the geometry optimization.
"},{"location":"SELCI.html#references","title":"References","text":"This top-level directive allows the user to enter data directly into the run-time database. The format of the directive is as follows:
SET <string name> [<string type default automatic>] <type data>\n
The entry for variable is the name of data to be entered into the database. This must be specified; there is no default. The variable , which is optional, allows the user to define a string specifying the type of data in the array . The data type can be explicitly specified as integer, real, double, logical, or string. If no entry for is specified on the directive, its value is inferred from the data type of the first datum. In such a case, floating-point data entered using this directive must include either an exponent or a decimal point, to ensure that the correct default type will be inferred. The correct default type will be inferred for logical values if logical-true values are specified as .true., true, or t, and logical-false values are specified as .false., false, or f. One exception to the automatic detection of the data type is that the data type must be explicitly stated to input integer ranges, unless the first element in the list is an integer that is not a range. For example,
set atomid 1 3:7 21\n
will be interpreted as a list of integers. However,
set atomid 3:7 21 \n
will not work since the first element will be interpreted as a string and not an integer. To work around this feature, use instead
set atomid integer 3:7 21\n
which says to write three through seven, as well as twenty-one.
The SET directive is useful for providing indirection by associating the name of a basis set or geometry with the standard object names (such as \u201cao basis\u201d or geometry) used by NWChem. The following input file shows an example using the SET directive to direct different tasks to different geometries. The required input lines are as follows:
title \"Ar dimer BSSE corrected MP2 interaction energy\" \ngeometry \"Ar+Ar\" \n Ar1 0 0 0 \n Ar2 0 0 2 \nend \ngeometry \"Ar+ghost\" \n Ar1 0 0 0 \n Bq2 0 0 2 \nend \nbasis \n Ar1 library aug-cc-pvdz \n Ar2 library aug-cc-pvdz \n Bq2 library Ar aug-cc-pvdz \nend \nset geometry \"Ar+Ar\" task mp2 \nscf; vectors atomic; end \nset geometry \"Ar+ghost\" task mp2 \n
This input tells the code to perform MP2 energy calculations on an argon dimer in the first task, and then on the argon atom in the presence of the \u201cghost\u201d basis of the other atom.
The SET directive can also be used as an indirect means of supplying input to a part of the code that does not have a separate input module (e.g., the atomic SCF). Additional examples of applications of this directive can be found in the sample input files, and its usage with basis sets and geometries. Also see database section for an example of how to store an array in the database.
"},{"location":"SMD-Model.html","title":"Solvation Models","text":""},{"location":"SMD-Model.html#overview","title":"Overview","text":"Two solvation models are available in NWChem: COSMO and SMD. Since some of the COSMO parameters are used for SMD, we suggest to read the COSMO section before the SMD one.
"},{"location":"SMD-Model.html#cosmo","title":"COSMO","text":""},{"location":"SMD-Model.html#overview_1","title":"Overview","text":"COSMO is the continuum solvation \u2018COnductor-like Screening MOdel\u2019 of A. Klamt and G. Sch\u00fc\u00fcrmann to describe dielectric screening effects in solvents1. This model has been enhanced by D.M. York and M. Karplus2 to create a smooth potential energy surface. The latter facilitates geometry optimization and dynamics and the implementation has been adapted to take advantage of those ideas.
The NWChem COSMO module implements algorithm for calculation of the energy for the following methods:
by determining the solvent reaction field self-consistently with the solute charge distribution from the respective methods. Note that COSMO for unrestricted Hartree-Fock (UHF) method can also be performed by invoking the DFT module with appropriate keywords.
Correlation energy of solvent molecules may also be evaluated at
levels of theory. It is cautioned, however, that these correlated COSMO calculations determine the solvent reaction field using the HF charge distribution of the solute rather than the charge distribution of the correlation theory and are not entirely self consistent in that respect. In other words, these calculations assume that the correlation effect and solvation effect are largely additive, and the combination effect thereof is neglected. COSMO for MCSCF has not been implemented yet.
In the current implementation the code calculates the gas-phase energy of the system followed by the solution-phase energy, and returns the electrostatic contribution to the solvation free energy. At the present gradients are calculated analytically, but frequencies are calculated by finite difference of the gradients. The non-electrostatic contributions can be calculated by turning on the SMD model. It should be noted that one must in general take into account the standard state correction besides the electrostatic and cavitation/dispersion contribution to the solvation free energy, when a comparison to experimental data is made.
"},{"location":"SMD-Model.html#cosmo-input-parameters","title":"COSMO Input Parameters","text":"Invoking the COSMO solvation model is done by specifying the input COSMO input block with the input options as:
cosmo \n [off] \n [dielec <real dielec default 78.4>] \n [parameters <filename>] \n [radius <real atom1> \n <real atom2> \n . . . \n <real atomN>] \n [iscren <integer iscren default 0>] \n [minbem <integer minbem default 2>] \n [ificos <integer ificos default 0>] \n [lineq <integer lineq default 1>] \n [zeta <real zeta default 0.98>] \n [gamma_s <real gammas default 1.0>] \n [sw_tol <real swtol default 1.0e-4>] \n [do_gasphase <logical do_gasphase default True>] \n [do_cosmo_ks]\n [do_cosmo_yk]\n [do_cosmo_smd]\nend\n
followed by the task directive specifying the wavefunction and type of calculation, e.g., task scf energy
, task mp2 energy
, task dft optimize
, etc.
off
can be used to turn off COSMO in a compound (multiple task) run. By default, once the COSMO solvation model has been defined it will be used in subsequent calculations. Add the keyword off
if COSMO is not needed in subsequent calculations.
dielec
is the value of the dielectric constant of the medium, with a default value of 78.4 (the dielectric constant for water).
parameters
specifies COSMO radii parameters file that stores custom setting for COSMO parameters. The format for such file consists of the atom or element name followed by the radii. The program will first attempt to match based on atom name and only then the element name. Otherwise radius will be set based on default parameters. The file has to present in one of the three location ( in the order of preference) - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, and run directory.
radius
is an array that specifies the radius of the spheres associated with each atom and that make up the molecule-shaped cavity. These values will override default radii setting including those specified in the COSMO parameter file (if any) Default values are Van der Waals radii. Values are in units of angstroms. The codes uses the following Van der Waals radii by default:
Default radii provided by Andreas Klamt (Cosmologic)
vdw radii: 1.17 (\u00b1 0.02) * Bondi radius3
optimal vdw radii for H, C, N, O, F, S, Cl, Br, I4
for heavy elements: 1.17*1.9
data (vander(i),i=1,102) \n 1 / 1.300,1.638,1.404,1.053,2.0475,2.00, \n 2 1.830,1.720,1.720,1.8018,1.755,1.638, \n 3 1.404,2.457,2.106,2.160,2.05,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.160,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 8 2.223,2.223,2.223,2.223,2.223,2.223, \n 9 2.223,2.223,2.223,2.223,2.320,2.223, \n 1 2.223,2.223,2.223,2.223,2.223,2.223, \n 2 2.223,2.223,2.223,2.223,2.223,2.223, \n 3 2.223,2.223,2.223,2.223,2.223,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223/\n
For examples see Stefanovich et al.5 and Barone et al.6
\u201cRsolv\u201d is no longer used.
"},{"location":"SMD-Model.html#cosmo-iscreen-keyword","title":"COSMO: ISCREEN keyword","text":"iscren
is a flag to define the dielectric charge scaling option. iscren 1
implies the original scaling from Klamt and Sch\u00fc\u00fcrmann, mainly \u201c(\u03b5-1)/(\u03b5+1/2)\u201d, where \u03b5 is the dielectric constant. iscren 0
implies the modified scaling suggested by Stefanovich and Truong5, mainly \u201c(\u03b5-1)/\u03b5\u201c. Default is to use the modified scaling. For high dielectric the difference between the scaling is not significant.
The next two parameters define the tesselation of the unit sphere. The approach still follows the original proposal by Klamt and Sch\u00fc\u00fcrmann to some degree. Basically a tesselation is generated from minbem
refining passes starting from either an octahedron or an icosahedron. Each level of refinement partitions the triangles of the current tesselation into four triangles. This procedure is repeated recursively until the desired granularity of the tesselation is reached. The induced point charges from the polarization of the medium are assigned to the centers of the tesselation. The default value is minbem 2
. The flag ificos
serves to select the original tesselation, ificos 0
for an octahedron (default) and ificos 1
for an icoshedron. Starting from an icosahedron yields a somewhat finer tesselation that converges somewhat faster. Solvation energies are not really sensitive to this choice for sufficiently fine tesselations. The old \u201cmaxbem\u201d directive is no longer used.
The lineq
parameter serves to select the numerical algorithm to solve the linear equations yielding the effective charges that represent the polarization of the medium. lineq 0
selects a dense matrix linear equation solver (default), lineq 1
selects an iterative method. For large molecules where the number of effective charges is large, the code selects the iterative method.
zeta
sets the width of the Gaussian charge distributions that were suggested by York and Karplus to avoid singularities when two surface charges coincide. The default value is zeta 0.98
this value was chosen to ensure that the results of the current implementation are as close as possible to those of the original Klamt and Sch\u00fc\u00fcrmann based implementation.
gamma_s
modifies the width of the smooth switching function that eliminates surface charges when their positions move into the sphere of a neighboring atom. gamma_s 0.0
leads to a heavyside or abrupt switching function, whereas gamma_s 1.0
maximizes the width of the switching function. The default value is gamma_s 1.0
.
sw_tol
specifies the cutoff of the switching function below which a surface charge at a particular point is eliminated. The values of the switching function lie in the domain from 0 to 1. This value should not be set too small as that leads to instabilities in the linear system solvers. The default value is sw_tol 1.0e-4
.
do_gasphase
is a flag to control whether the calculation of the solvation energy is preceded by a gas phase calculation. The default is to always perform a gas phase calculation first and then calculate the solvation starting from the converged gas phase electron density. However, in geometry optimizations this approach can double the cost. In such a case setting do_gasphase false
suppresses the gas phase calculations and only the solvated system calculations are performed. This option needs to be used with care as in some cases starting the COSMO solvation from an unconverged electron density can generate unphysical charges that lock the calculation into strange electron distributions.
do_cosmo_ks
is a flag to turn on the Klamt-Sch\u00fc\u00fcrmann model
do_cosmo_yk
is a flag to turn on the York-Karplus model (default)
do_cosmo_smd
is a flag to turn on the SMD model. More details can be found at the SMD Model documentation
The following example is for a water molecule in \u2018water\u2019, using the HF/6-31G** level of theory:
start \n\ngeometry \n o .0000000000 .0000000000 -.0486020332 \n h .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n o library 6-31g** \n h library 6-31g** \nend \ncosmo \n dielec 78.0 \n radius 1.40 \n 1.16 \n 1.16 \n lineq 0 \nend \ntask scf energy\n
Alternatively, instead of listing COSMO radii parameters in the input, the former can be loaded using an external file through the parameters
directive
start \n\ngeometry \n ow .0000000000 .0000000000 -.0486020332 \n hw .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n * library 6-31g** \nend\n\ncosmo \n dielec 78.0 \n lineq 0 \n parameters water.par \nend\n\ntask scf energy\n
where the water.par
file has the following form:
O 1.40\nH 1.16\n
This will set radii of all oxygen atoms to 1.4 and all hydrogen atoms to 1.16. More fine grained control may be achieved using specific atom names. For example, the following parameter file
O 1.40\nH 1.16\nHW 1.06\n
will set a different radii of 1.06 to hydrogen atoms named HW. Note that, as per general rule in NWChem, all names are case insensitive.
and placed in one of the these locations - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, or run directory.
SMD denotes \u201csolvation model based on density\u201d and it is described in detail in the 2009 paper by Marenich, Cramer and Truhlar7.
The SMD model is a universal continuum solvation model where \u201cuniversal\u201d denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known. The word \u201ccontinuum\u201d denotes that the solvent is not represented explicitly as a collection of discrete solvent molecules but rather as a dielectric medium with surface tensions at the solute-solvent interface.
SMD directly calculates the free energy of solvation of an ideal solvation process that occurs at fixed concentration (for example, from an ideal gas at a concentration of 1 mol/L to an ideal solution at a liquid-phase concentration of 1 mol/L) at 298 K, but this may converted by standard thermodynamic formulas to a standard-state free energy of solvation, which is defined as the transfer of molecules from an ideal gas at 1 bar to an ideal 1 molar solution.
The SMD model separates the fixed-concentration free energy of solvation into two components. The first component is the bulk-electrostatic contribution arising from a self-consistent reaction field (SCRF) treatment. The SCRF treatment involves an integration of the nonhomogeneous-dielectric Poisson equation for bulk electrostatics in terms of the COSMO model of Klamt and Sch\u00fc\u00fcrmann with the modified COSMO scaling factor suggested by Stefanovich and Truong and by using the SMD intrinsic atomic Coulomb radii. These radii have been optimized for H, C, N, O, F, Si, P, S, Cl, and Br. For any other atom the current implementation of the SMD model uses scaled values of the van der Waals radii of Mantina et al8.
The scaling factor equals 1.52 for group 17 elements heavier than Br (i.e., for I and At) and 1.18 for all other elements for which there are no optimized SMD radii.
The second contribution to the fixed-concentration free energy of solvation is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is called the cavity\u2013dispersion\u2013solvent-structure (CDS) term, and it is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas (SASAs) of the individual atoms of the solute.
"},{"location":"SMD-Model.html#smd-input-parameters","title":"SMD Input Parameters","text":"The SMD model requires additional parameters in the COSMO input block
cosmo \n [do_cosmo_smd <logical>]\n [solvent (keyword)]\n [icds <integer>]\n [sola <real>]\n [solb <real>]\n [solc <real>]\n [solg <real>]\n [solh <real>]\n [soln <real>]\nend \n
At the moment the SMD model is available in NWChem only with the DFT block
The SMD input options are as follows:
do_cosmo_smd <logical>\n
The do_cosmo_smd
keyword instructs NWChem to perform a ground-state SMD calculation when set to a true
value.
solvent (keyword)\n
a solvent
keyword from the short name entry in the list of available SMD solvent names.
When a solvent is specified by name, the descriptors for the solvent are based on the Minnesota Solvent Descriptor Database9.
The user can specify a solvent (by using a string using up to eight characters) that is not on the list by using a new solvent keyword and introducing user-provided values for the following solvent descriptors:
"},{"location":"SMD-Model.html#smd-dielec-keyword","title":"SMD: DIELEC keyword","text":"dielec (real input)\n
dielectric constant at 298 K
"},{"location":"SMD-Model.html#smd-sola-keyword","title":"SMD: SOLA keyword","text":"sola (real input) \n
Abraham\u2019s hydrogen bond acidity
"},{"location":"SMD-Model.html#smd-solb-keyword","title":"SMD: SOLB keyword","text":"solb (real input) \n
Abraham\u2019s hydrogen bond basicity
"},{"location":"SMD-Model.html#smd-solc-keyword","title":"SMD: SOLC keyword","text":"solc (real input)\n
aromaticity as a fraction of non-hydrogenic solvent atoms that are aromatic carbon atoms
"},{"location":"SMD-Model.html#smd-solg-keyword","title":"SMD: SOLG keyword","text":"solg (real input)\n
macroscopic surface tension of the solvent at an air/solvent interface at 298 K in units of cal mol\u20131 \u00c5\u20132 (note that 1 dyne/cm = 1.43932 cal mol\u20131 \u00c5\u20132)
"},{"location":"SMD-Model.html#smd-solh-keyword","title":"SMD: SOLH keyword","text":"solh (real input)\n
electronegative halogenicity as the fraction of non-hydrogenic solvent atoms that are F, Cl, or Br
"},{"location":"SMD-Model.html#smd-soln-keyword","title":"SMD: SOLN keyword","text":"soln (real input)\n
index of refraction at optical frequencies at 293 K
"},{"location":"SMD-Model.html#smd-icds-keyword","title":"SMD: ICDS keyword","text":"icds (integer input)\n
icds
should have a value of 1 for water. icds
should have a value of 2 for any nonaqueous solvent. If icds
is set equal to 2, then you need to provide the following solvent descriptors (see the MN solvent descriptor database ):
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in water\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent water\nend\ntask dft energy\n
"},{"location":"SMD-Model.html#smd-example-new-solvent","title":"SMD Example: new solvent","text":"Example using a user defined solvent, not present in the SMD list of solvents
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in my solvent\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent mysolv \n dielec 11.4\n sola 1.887\n solb 0.0\n soln 0.98\n icds 2\nend\ntask dft energy\n
"},{"location":"SMD-Model.html#solvents-list-solvent-keyword","title":"Solvents List - Solvent keyword","text":"The short name for the solvent from the table can be used with the solvent
keyword to define the solvent. Example with acetonitrile.
cosmo\n solvent acetntrl\nend\n
Long name short name dielec acetic acid acetacid 6.2528 acetone acetone 20.493 acetonitrile acetntrl 35.688 acetophenone acetphen 17.440 aniline aniline 6.8882 anisole anisole 4.2247 benzaldehyde benzaldh 18.220 benzene benzene 2.2706 benzonitrile benzntrl 25.592 benzyl chloride benzylcl 6.7175 1-bromo-2-methylpropane brisobut 7.7792 bromobenzene brbenzen 5.3954 bromoethane brethane 9.01 bromoform bromform 4.2488 1-bromooctane broctane 5.0244 1-bromopentane brpentan 6.269 2-bromopropane brpropa2 9.3610 1-bromopropane brpropan 8.0496 butanal butanal 13.450 butanoic acid butacid 2.9931 1-butanol butanol 17.332 2-butanol butanol2 15.944 butanone butanone 18.246 butanonitrile butantrl 24.291 butyl acetate butile 4.9941 butylamine nba 4.6178 n-butylbenzene nbutbenz 2.360 sec-butylbenzene sbutbenz 2.3446 tert-butylbenzene tbutbenz 2.3447 carbon disulfide cs2 2.6105 carbon tetrachloride carbntet 2.2280 chlorobenzene clbenzen 5.6968 sec-butyl chloride secbutcl 8.3930 chloroform chcl3 4.7113 1-chlorohexane clhexane 5.9491 1-chloropentane clpentan 6.5022 1-chloropropane clpropan 8.3548 o-chlorotoluene ocltolue 4.6331 m-cresol m-cresol 12.440 o-cresol o-cresol 6.760 cyclohexane cychexan 2.0165 cyclohexanone cychexon 15.619 cyclopentane cycpentn 1.9608 cyclopentanol cycpntol 16.989 cyclopentanone cycpnton 13.58 cis-decalin declncis 2.2139 trans-decalin declntra 2.1781 decalin (cis/trans mixture) declnmix 2.196 n-decane decane 1.9846 1-decanol decanol 7.5305 1,2-dibromoethane edb12 4.9313 dibromomethane dibrmetn 7.2273 dibutyl ether butyleth 3.0473 o-dichlorobenzene odiclbnz 9.9949 1,2-dichloroethane edc12 10.125 cis-dichloroethylene c12dce 9.200 trans-dichloroethylene t12dce 2.140 dichloromethane dcm 8.930 diethyl ether ether 4.2400 diethyl sulfide et2s 5.723 diethylamine dietamin 3.5766 diiodomethane mi 5.320 diisopropyl ether dipe 3.380 dimethyl disulfide dmds 9.600 dimethylsulfoxide dmso 46.826 N,N-dimethylacetamide dma 37.781 cis-1,2-dimethylcyclohexane cisdmchx 2.060 N,N-dimethylformamide dmf 37.219 2,4-dimethylpentane dmepen24 1.8939 2,4-dimethylpyridine dmepyr24 9.4176 2,6-dimethylpyridine dmepyr26 7.1735 1,4-dioxane dioxane 2.2099 diphenyl ether phoph 3.730 dipropylamine dproamin 2.9112 n-dodecane dodecan 2.0060 1,2-ethanediol meg 40.245 ethanethiol etsh 6.667 ethanol ethanol 24.852 ethyl acetate etoac 5.9867 ethyl formate etome 8.3310 ethylbenzene eb 2.4339 ethylphenyl ether phenetol 4.1797 fluorobenzene c6h5f 5.420 1-fluorooctane foctane 3.890 formamide formamid 108.94 formic acid formacid 51.100 n-heptane heptane 1.9113 1-heptanol heptanol 11.321 2-heptanone heptnon2 11.658 4-heptanone heptnon4 12.257 n-hexadecane hexadecn 2.0402 n-hexane hexane 1.8819 hexanoic acid hexnacid 2.600 1-hexanol hexanol 12.51 2-hexanone hexanon2 14.136 1-hexene hexene 2.0717 1-hexyne hexyne 2.615 iodobenzene c6h5i 4.5470 1-iodobutane iobutane 6.173 iodoethane c2h5i 7.6177 1-iodohexadecane iohexdec 3.5338 iodomethane ch3i 6.8650 1-iodopentane iopentan 5.6973 1-iodopropane iopropan 6.9626 isopropylbenzene cumene 2.3712 p-isopropyltoluene p-cymene 2.2322 mesitylene mesityln 2.2650 methanol methanol 32.613 2-methoxyethanol egme 17.200 methyl acetate meacetat 6.8615 methyl benzoate mebnzate 6.7367 methyl butanoate mebutate 5.5607 methyl formate meformat 8.8377 4-methyl-2-pentanone mibk 12.887 methyl propanoate mepropyl 6.0777 2-methyl-1-propanol isobutol 16.777 2-methyl-2-propanol terbutol 12.470 N-methylaniline nmeaniln 5.9600 methylcyclohexane mecychex 2.024 N-methylformamide (E/Z mixture) nmfmixtr 181.56 2-methylpentane isohexan 1.890 2-methylpyridine mepyrid2 9.9533 3-methylpyridine mepyrid3 11.645 4-methylpyridine mepyrid4 11.957 nitrobenzene c6h5no2 34.809 nitroethane c2h5no2 28.290 nitromethane ch3no2 36.562 1-nitropropane ntrprop1 23.730 2-nitropropane ntrprop2 25.654 o-nitrotoluene ontrtolu 25.669 n-nonane nonane 1.9605 1-nonanol nonanol 8.5991 5-nonanone nonanone 10.600 n-octane octane 1.9406 1-octanol octanol 9.8629 2-octanone octanon2 9.4678 n-pentadecane pentdecn 2.0333 pentanal pentanal 10.000 n-pentane npentane 1.8371 pentanoic acid pentacid 2.6924 1-pentanol pentanol 15.130 2-pentanone pentnon2 15.200 3-pentanone pentnon3 16.780 1-pentene pentene 1.9905 E-2-pentene e2penten 2.051 pentyl acetate pentacet 4.7297 pentylamine pentamin 4.2010 perfluorobenzene pfb 2.029 phenylmethanol benzalcl 12.457 propanal propanal 18.500 propanoic acid propacid 3.440 1-propanol propanol 20.524 2-propanol propnol2 19.264 propanonitrile propntrl 29.324 2-propen-1-ol propenol 19.011 propyl acetate propacet 5.5205 propylamine propamin 4.9912 pyridine pyridine 12.978 tetrachloroethene c2cl4 2.268 tetrahydrofuran thf 7.4257 tetrahydrothiophene-S,S-dioxide sulfolan 43.962 tetralin tetralin 2.771 thiophene thiophen 2.7270 thiophenol phsh 4.2728 toluene toluene 2.3741 tributyl phosphate tbp 8.1781 1,1,1-trichloroethane tca111 7.0826 1,1,2-trichloroethane tca112 7.1937 trichloroethene tce 3.422 triethylamine et3n 2.3832 2,2,2-trifluoroethanol tfe222 26.726 1,2,4-trimethylbenzene tmben124 2.3653 2,2,4-trimethylpentane isoctane 1.9358 n-undecane undecane 1.9910 m-xylene m-xylene 2.3478 o-xylene o-xylene 2.5454 p-xylene p-xylene 2.2705 xylene (mixture) xylenemx 2.3879 water h2o 78.400"},{"location":"SMD-Model.html#usage-tips","title":"Usage Tips","text":"Authors of paper 7 report that \u201d \u2026 the SMD/COSMO/NWChem calculations we employed finer grids (options minbem=3, maxbem=4, ificos=1) because the default NWChem tessellation parameters (options: minbem=2, maxbem=3, ificos=0) produced very large errors in solvation free energies.\u201d Since the maxbem
keyword is no longer in use, this paper\u2019s recommended input translate into
cosmo\n minbem 3\n ificos 1\nend\n
"},{"location":"SMD-Model.html#references","title":"References","text":"Klamt, A.; Sch\u00fc\u00fcrmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, No. 5, 799\u2013805. https://doi.org/10.1039/p29930000799.\u00a0\u21a9
York, D. M.; Karplus, M. A Smooth Solvation Potential Based on the Conductor-Like Screening Model. The Journal of Physical Chemistry A 1999, 103 (50), 11060\u201311079. https://doi.org/10.1021/jp992097l.\u00a0\u21a9
Bondi, A. Van Der Waals Volumes and Radii. The Journal of Physical Chemistry 1964, 68 (3), 441\u2013451. https://doi.org/10.1021/j100785a001.\u00a0\u21a9
Klamt, A.; Jonas, V.; B\u00fcrger, T.; Lohrenz, J. C. W. Refinement and Parametrization of COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 5074\u20135085. https://doi.org/10.1021/jp980017s.\u00a0\u21a9
Stefanovich, E. V.; Truong, T. N. Optimized Atomic Radii for Quantum Dielectric Continuum Solvation Models. Chemical Physics Letters 1995, 244 (1-2), 65\u201374. https://doi.org/10.1016/0009-2614(95)00898-e.\u00a0\u21a9\u21a9
Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. The Journal of Chemical Physics 1997, 107 (8), 3210\u20133221. https://doi.org/10.1063/1.474671.\u00a0\u21a9
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378\u20136396. https://doi.org/10.1021/jp810292n.\u00a0\u21a9\u21a9
Haynes, W. M. CRC Handbook of Chemistry and Physics; Mantina, M., Valero, R., Cramer, C. J., Truhlar, D. G., Eds.; Taylor & Francis Group, 2013; pp 9\u201349.\u00a0\u21a9
Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. Minneapolis, MN: Department of Chemistry and Supercomputer Institute 1999.\u00a0\u21a9
Terminate processing.
This top-level directive provides a convenient way of verifying an input file without actually running the calculation. It consists of the single line,
STOP
As soon as this directive is encountered, all processing ceases and the calculation terminates with an error condition.
"},{"location":"SYMMETRY----Symmetry-Group-Input.html","title":"SYMMETRY Symmetry Group Input","text":""},{"location":"SYMMETRY----Symmetry-Group-Input.html#symmetry-symmetry-group-input","title":"SYMMETRY: Symmetry Group Input","text":"The SYMMETRY directive is used (optionally) within the compound GEOMETRY directive to specify the point group for the molecular geometry or space group for the crystal structure. The general form of the directive, as described above within the general form of the GEOMETRY directive, is as follows:
[SYMMETRY [group] <string group_name>|<integer group number> \\\n [setting <integer setting>] [print] \\ \n [tol <real tol default 1d-2>]]\n
The keyword group is optional, and can be omitted without affecting how the input for this directive is processed. However, if the SYMMETRY directive is used, a group name must be specified by supplying an entry for the string variable <group_name>
or <group number>
. The latter is useful for the space groups discussed in the section below. The group name should be specified as the standard Sch\u00f6flies symbol. Examples of expected input for the variable group_name include such entries as:
The SYMMETRY directive is optional. The default is no symmetry (i.e., C1 point group). Automatic detection of point group symmetry is available through the use of autosym in the GEOMETRY directive main line (discussed in Keywords on the GEOMETRY directive). Note: if the SYMMETRY directive is present the autosym keyword is ignored.
If only symmetry-unique atoms are specified, the others will be generated through the action of the point group operators, but the user if free to specify all atoms. The user must know the symmetry of the molecule being modeled, and be able to specify the coordinates of the atoms in a suitable orientation relative to the rotation axes and planes of symmetry. The section Geometry Examples lists a number of examples of the GEOMETRY
directive input for specific molecules having symmetry patterns recognized by NWChem. The exact point group symmetry will be forced upon the molecule, and atoms within 10\u22123 A.U. of a symmetry element (e.g., a mirror plane or rotation axis) will be forced onto that element. Thus, it is not necessary to specify to a high precision those coordinates that are determined solely by symmetry.
The keyword print gives information concerning the point group generation, including the group generators, a character table, the mapping of centers, and the group operations.
The keyword tol relates to the accuracy with which the symmetry-unique atoms should be specified. When the atoms are generated, those that are within the tolerance, tol, are considered the same.
"},{"location":"SYSTEM----Lattice-parameters-for-periodic-systems.html","title":"SYSTEM Lattice parameters for periodic systems","text":""},{"location":"SYSTEM----Lattice-parameters-for-periodic-systems.html#system-lattice-parameters-for-periodic-systems","title":"SYSTEM \u2013 Lattice parameters for periodic systems","text":"This keyword is needed only for for 1-, 2-, and 3-dimensional periodic systems.
The system keyword can assume the following values
When the system possess translational symmetry, fractional coordinates are used in the directions where translational symmetry exists. This means that for crystals x, y and z are fractional, for surfaces x and y are fractional, whereas for polymers only z is fractional. For example, in the following H2O layer input (a 2-d periodic system), x and y coordinates are fractional, whereas z is expressed in Angstroms.
geometry units angstrom\n\n O 0.353553 0.353553 2.100000000 \n H 0.263094 0.353553 2.663590000 \n H 0.444007 0.353553 2.663590000\n
Since no space group symmetry is available yet other than P1, input of cell parameters is relative to the primitive cell. For example, this is the input required for the cubic face-centered type structure of bulk MgO.
system crystal \n lat_a 2.97692 \n lat_b 2.97692 \n lat_c 2.97692 \n alpha 60.00 \n beta 60.00 \n gamma 60.00 \n end\n
"},{"location":"Sample.html","title":"Sample input files","text":""},{"location":"Sample.html#water-scf-calculation-and-geometry-optimization-in-a-6-31g-basis","title":"Water SCF calculation and geometry optimization in a 6-31g basis","text":"The Getting Started input file performs a geometry optimization in a single task. A single point SCF energy calculation is performed and then restarted to perform the optimization (both could of course be performed in a single task).
"},{"location":"Sample.html#job-1-single-point-scf-energy","title":"Job 1. Single point SCF energy","text":"\u00a0start\u00a0h2o \n\u00a0title\u00a0\"Water\u00a0in\u00a06-31g\u00a0basis\u00a0set\" \n\n\u00a0geometry\u00a0units\u00a0au \n\u00a0\u00a0\u00a0O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.00000000\u00a0\u00a0\u00a0\u00a00.00000000\u00a0\u00a0\u00a0\u00a00.00000000 \n\u00a0\u00a0\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.00000000\u00a0\u00a0\u00a0\u00a01.43042809\u00a0\u00a0\u00a0-1.10715266 \n\u00a0\u00a0\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.00000000\u00a0\u00a0\u00a0-1.43042809\u00a0\u00a0\u00a0-1.10715266 \n\u00a0end \n\u00a0basis \n\u00a0\u00a0\u00a0H\u00a0library\u00a06-31g \n\u00a0\u00a0\u00a0O\u00a0library\u00a06-31g \n\u00a0end\n\u00a0task\u00a0scf\n
The final energy should be -75.983998.
"},{"location":"Sample.html#job-2-restarting-and-perform-a-geometry-optimization","title":"Job 2. Restarting and perform a geometry optimization","text":"\u00a0restart\u00a0h2o\n\u00a0title\u00a0\"Water\u00a0geometry\u00a0optimization\"\n\u00a0\n\u00a0task\u00a0scf\u00a0optimize\n
There is no need to specify anything that has not changed from the previous input deck, though it will do no harm to repeat it.
"},{"location":"Sample.html#compute-the-polarizability-of-ne-using-finite-field","title":"Compute the polarizability of Ne using finite field","text":""},{"location":"Sample.html#job-1-compute-the-atomic-energy","title":"Job 1. Compute the atomic energy","text":"\u00a0start\u00a0ne\n\u00a0title\u00a0\"Neon\"\n\u00a0geometry;\u00a0ne\u00a00\u00a00\u00a00;\u00a0end\n\u00a0basis\u00a0spherical\u00a0\n\u00a0\u00a0\u00a0ne\u00a0library\u00a0aug-cc-pvdz\n\u00a0end\n\u00a0scf;\u00a0thresh\u00a01e-10;\u00a0end\n\u00a0task\u00a0scf\n
The final energy should be -128.496350.
"},{"location":"Sample.html#job-2-compute-the-energy-with-applied-field","title":"Job 2. Compute the energy with applied field","text":"An external field may be simulated with point charges. The charges here apply a field of magnitude 0.01 atomic units to the atom at the origin. Since the basis functions have not been reordered by the additional centers we can also restart from the previous vectors, which is the default for a restart job.
\u00a0restart\u00a0ne \n\u00a0title\u00a0\"Neon\u00a0in\u00a0electric\u00a0field\" \n\u00a0geometry\u00a0units\u00a0atomic \n\u00a0\u00a0\u00a0bq1\u00a00\u00a00\u00a0100\u00a0charge\u00a050 \n\u00a0\u00a0\u00a0ne\u00a0\u00a00\u00a00\u00a00 \n\u00a0\u00a0\u00a0bq2\u00a00\u00a00\u00a0-100\u00a0charge\u00a0-50 \n\u00a0end \n\u00a0task\u00a0scf\n
The final energy should be -128.496441, which together with the previous field-free result yields an estimate for the polarizability of 1.83 atomic units. Note that by default NWChem does not include the interaction between the two point charges in the total energy.
"},{"location":"Sample.html#scf-energy-of-h2co-using-ecps-for-c-and-o","title":"SCF energy of H2CO using ECPs for C and O","text":"The following will compute the SCF energy for formaldehyde with ECPs on the Carbon and Oxygen centers.
title\u00a0\"formaldehyde\u00a0ECP\u00a0deck\" \n\nstart\u00a0ecpchho \n\ngeometry\u00a0units\u00a0au \n\u00a0\u00a0C\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.000000\u00a0\u00a00.000000\u00a0-1.025176 \n\u00a0\u00a0O\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.000000\u00a0\u00a00.000000\u00a0\u00a01.280289 \n\u00a0\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.000000\u00a0\u00a01.767475\u00a0-2.045628 \n\u00a0\u00a0H\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.000000\u00a0-1.767475\u00a0-2.045628 \nend \n\nbasis\u00a0 \n\u00a0\u00a0C\u00a0\u00a0SP \n\u00a0\u00a0\u00a00.1675097360D+02\u00a0-0.7812840500D-01\u00a0\u00a00.3088908800D-01 \n\u00a0\u00a0\u00a00.2888377460D+01\u00a0-0.3741108860D+00\u00a0\u00a00.2645728130D+00 \n\u00a0\u00a0\u00a00.6904575040D+00\u00a0\u00a00.1229059640D+01\u00a0\u00a00.8225024920D+00 \n\u00a0\u00a0C\u00a0\u00a0SP \n\u00a0\u00a0\u00a00.1813976910D+00\u00a0\u00a00.1000000000D+01\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0C\u00a0\u00a0D \n\u00a0\u00a0\u00a00.8000000000D+00\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0C\u00a0\u00a0F \n\u00a0\u00a0\u00a00.1000000000D+01\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0O\u00a0\u00a0SP \n\u00a0\u00a0\u00a00.1842936330D+02\u00a0-0.1218775590D+00\u00a0\u00a00.5975796600D-01 \n\u00a0\u00a0\u00a00.4047420810D+01\u00a0-0.1962142380D+00\u00a0\u00a00.3267825930D+00 \n\u00a0\u00a0\u00a00.1093836980D+01\u00a0\u00a00.1156987900D+01\u00a0\u00a00.7484058930D+00 \n\u00a0\u00a0O\u00a0\u00a0SP \n\u00a0\u00a0\u00a00.2906290230D+00\u00a0\u00a00.1000000000D+01\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0O\u00a0\u00a0D \n\u00a0\u00a0\u00a00.8000000000D+00\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0O\u00a0\u00a0F \n\u00a0\u00a0\u00a00.1100000000D+01\u00a0\u00a00.1000000000D+01 \n\u00a0\u00a0H\u00a0\u00a0S \n\u00a0\u00a0\u00a00.1873113696D+02\u00a0\u00a00.3349460434D-01 \n\u00a0\u00a0\u00a00.2825394365D+01\u00a0\u00a00.2347269535D+00 \n\u00a0\u00a0\u00a00.6401216923D+00\u00a0\u00a00.8137573262D+00 \n\u00a0\u00a0H\u00a0\u00a0S\u00a0\u00a0\u00a0 \n\u00a0\u00a0\u00a00.1612777588D+00\u00a0\u00a00.1000000000D+01 \nend \n\necp \n\u00a0\u00a0C\u00a0nelec\u00a02 \n\u00a0\u00a0C\u00a0ul \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a080.0000000\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.60000000 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a030.0000000\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.40000000 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.5498205\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.03990210 \n\u00a0\u00a0C\u00a0s \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.7374760\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.63810832 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0135.2354832\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a011.00916230 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a08.5605569\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a020.13797020 \n\u00a0\u00a0C\u00a0p \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a010.6863587\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-3.24684280 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a023.4979897\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.78505765 \n\u00a0\u00a0O\u00a0nelec\u00a02 \n\u00a0\u00a0O\u00a0ul \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a080.0000000\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-1.60000000 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a030.0000000\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.40000000 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a01.0953760\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-0.06623814 \n\u00a0\u00a0O\u00a0s \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.9212952\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00.39552179 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a00\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a028.6481971\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02.51654843 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a09.3033500\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a017.04478500 \n\u00a0\u00a0O\u00a0p \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a052.3427019\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a027.97790770 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a02\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a030.7220233\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0-16.49630500 \nend \n\nscf \n\u00a0\u00a0vectors\u00a0input\u00a0hcore \n\u00a0\u00a0maxiter\u00a020 \nend \n\ntask\u00a0scf\n
This should produce the following output:
\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Final\u00a0RHF\u00a0\u00a0results\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0------------------\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0 \n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Total\u00a0SCF\u00a0energy\u00a0=\u00a0\u00a0\u00a0\u00a0-22.507927218024 \n\u00a0\u00a0\u00a0\u00a0\u00a0One\u00a0electron\u00a0energy\u00a0=\u00a0\u00a0\u00a0\u00a0-71.508730162974 \n\u00a0\u00a0\u00a0\u00a0\u00a0Two\u00a0electron\u00a0energy\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a031.201960019808 \nNuclear\u00a0repulsion\u00a0energy\u00a0=\u00a0\u00a0\u00a0\u00a0\u00a017.798842925142\n
"},{"location":"Sample.html#mp2-optimization-and-ccsdt-on-nitrogen","title":"MP2 optimization and CCSD(T) on nitrogen","text":"The following performs an MP2 geometry optimization followed by a CCSD(T) energy evaluation at the converged geometry. A Dunning correlation-consistent triple-zeta basis is used. The default of Cartesian basis functions must be overridden using the keyword spherical on the BASIS directive. The 1s core orbitals are frozen in both the MP2 and coupled-cluster calculations (note that these must separately specified). The final MP2 energy is -109.383276, and the CCSD(T) energy is -109.399662.
start\u00a0n2\u00a0 \n\ngeometry \n\u00a0\u00a0symmetry\u00a0d2h \n\u00a0\u00a0n\u00a00\u00a00\u00a00.542 \nend \n\nbasis\u00a0spherical \n\u00a0\u00a0n\u00a0library\u00a0cc-pvtz \nend \n\nmp2 \n\u00a0\u00a0freeze\u00a0core \nend \n\ntask\u00a0mp2\u00a0optimize \n\nccsd \n\u00a0\u00a0freeze\u00a0core \nend \n\ntask\u00a0ccsd(t)\n
"},{"location":"Scratch_Dir.html","title":"Scratch Dir","text":""},{"location":"Scratch_Dir.html#scratch_dir","title":"SCRATCH_DIR","text":"This start-up directive allows the user to specify the directory location of scratch files created by NWChem. NWChem distinguishes between permanent (or persistent) files and scratch (or temporary) files, and allows the user the option of putting them in different locations. In most installations, however, permanent and scratch files are all written to the current directory by default. What constitutes \u201clocal\u201d disk space may also differ from machine to machine.
The conventions for file storage are at the discretion of the specific installation, and are quite likely to be different on different machines. When assigning locations for permanent and scratch files, the user must be cognizant of the characteristics of the installation on a particular platform. To consider just a few examples, on clusters, machine-specific or process-specific names must be supplied for both local and shared file systems, while on SMPs it is useful to specify scratch file directories with automated striping across processors with round-robin allocation. On SMP clusters (a.k.a. constellations), both of these specifications are required.
The SCRATCH_DIR enables the user to specify a single directory for all processes or different directories for different processes. The general form of the directive is as follows:
(SCRATCH_DIR)\u00a0[(<string\u00a0host>||<integer process>):]\u00a0\u00a0<string directory>\u00a0\u00a0[...]\n
Directories are extracted from the user input by executing the following steps, in sequence:
If directory allocation directive(s) are not specified in the input file, or if no match is found to the directory names specified by input using these directives, then the steps above are executed using the installation-specific defaults. If the code cannot find a valid directory name based on the input specified in either the directive(s) or the system defaults, files are automatically written to the current working directory (\u201c.\u201d).
The following is a list of examples of specific allocations of scratch directory locations:
scratch_dir\u00a0/localscratch
scratch_dir\u00a0/scratch\u00a00:/piofs/rjh
scratch_dir\u00a0/scr1\u00a0/scr2\u00a0/scr3\u00a0/scr4\u00a0/scr5
scratch_dir\u00a0coho:/xfs1/rjh\u00a0coho:/xfs2/rjh\u00a0coho:/xfs3/rjh\u00a0\u00a0bohr:/disk01/rjh\u00a0bohr:/disk02/rjh\u00a0bohr:/disk13/rjh
While we have done our best to compile an exhaustive list of software using NWChem, we might have missed packages and/or incorrectly described some software features. Please use the Github Issue feature to provide feedback on this page content.
"},{"location":"Software-supporting-NWChem.html#user-interface-software","title":"User interface software","text":"The following programs can display cube files from charge density and ESP and/or use Molden files
NWChem can generate AIM3 wavefunction files (.wfn/.wfx) can be post-processed with a variety of codes, e.g.
No longer been actively developed at PNNL. New development effort at https://github.com/FriendsofECCE/ECCE/releases \u21a9
The WebMo interface might not be compatible with NWChem 6.0 and later versions\u00a0\u21a9
WARNING: Since we have discovered issues in generating .WFN files with this module (e.g. systems with ECPs), the recommended method for generating .WFN file is to first generate a Molden file with the Moldenfile option, then convert the Molden file into a WFN file by using the Molden2AIM program.\u00a0\u21a9
Two solvation models are available in NWChem: COSMO and SMD. Since some of the COSMO parameters are used for SMD, we suggest to read the COSMO section before the SMD one.
"},{"location":"Solvation-Models.html#cosmo","title":"COSMO","text":""},{"location":"Solvation-Models.html#overview_1","title":"Overview","text":"COSMO is the continuum solvation \u2018COnductor-like Screening MOdel\u2019 of A. Klamt and G. Sch\u00fc\u00fcrmann to describe dielectric screening effects in solvents1. This model has been enhanced by D.M. York and M. Karplus2 to create a smooth potential energy surface. The latter facilitates geometry optimization and dynamics and the implementation has been adapted to take advantage of those ideas.
The NWChem COSMO module implements algorithm for calculation of the energy for the following methods:
by determining the solvent reaction field self-consistently with the solute charge distribution from the respective methods. Note that COSMO for unrestricted Hartree-Fock (UHF) method can also be performed by invoking the DFT module with appropriate keywords.
Correlation energy of solvent molecules may also be evaluated at
levels of theory. It is cautioned, however, that these correlated COSMO calculations determine the solvent reaction field using the HF charge distribution of the solute rather than the charge distribution of the correlation theory and are not entirely self consistent in that respect. In other words, these calculations assume that the correlation effect and solvation effect are largely additive, and the combination effect thereof is neglected. COSMO for MCSCF has not been implemented yet.
In the current implementation the code calculates the gas-phase energy of the system followed by the solution-phase energy, and returns the electrostatic contribution to the solvation free energy. At the present gradients are calculated analytically, but frequencies are calculated by finite difference of the gradients. The non-electrostatic contributions can be calculated by turning on the SMD model. It should be noted that one must in general take into account the standard state correction besides the electrostatic and cavitation/dispersion contribution to the solvation free energy, when a comparison to experimental data is made.
"},{"location":"Solvation-Models.html#cosmo-input-parameters","title":"COSMO Input Parameters","text":"Invoking the COSMO solvation model is done by specifying the input COSMO input block with the input options as:
cosmo \n [off] \n [dielec <real dielec default 78.4>] \n [parameters <filename>] \n [radius <real atom1> \n <real atom2> \n . . . \n <real atomN>] \n [iscren <integer iscren default 0>] \n [minbem <integer minbem default 2>] \n [ificos <integer ificos default 0>] \n [lineq <integer lineq default 1>] \n [zeta <real zeta default 0.98>] \n [gamma_s <real gammas default 1.0>] \n [sw_tol <real swtol default 1.0e-4>] \n [do_gasphase <logical do_gasphase default True>] \n [do_cosmo_ks]\n [do_cosmo_yk]\n [do_cosmo_smd]\nend\n
followed by the task directive specifying the wavefunction and type of calculation, e.g., task scf energy
, task mp2 energy
, task dft optimize
, etc.
off
can be used to turn off COSMO in a compound (multiple task) run. By default, once the COSMO solvation model has been defined it will be used in subsequent calculations. Add the keyword off
if COSMO is not needed in subsequent calculations.
dielec
is the value of the dielectric constant of the medium, with a default value of 78.4 (the dielectric constant for water).
parameters
specifies COSMO radii parameters file that stores custom setting for COSMO parameters. The format for such file consists of the atom or element name followed by the radii. The program will first attempt to match based on atom name and only then the element name. Otherwise radius will be set based on default parameters. The file has to present in one of the three location ( in the order of preference) - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, and run directory.
radius
is an array that specifies the radius of the spheres associated with each atom and that make up the molecule-shaped cavity. These values will override default radii setting including those specified in the COSMO parameter file (if any) Default values are Van der Waals radii. Values are in units of angstroms. The codes uses the following Van der Waals radii by default:
Default radii provided by Andreas Klamt (Cosmologic)
vdw radii: 1.17 (\u00b1 0.02) * Bondi radius3
optimal vdw radii for H, C, N, O, F, S, Cl, Br, I4
for heavy elements: 1.17*1.9
data (vander(i),i=1,102) \n 1 / 1.300,1.638,1.404,1.053,2.0475,2.00, \n 2 1.830,1.720,1.720,1.8018,1.755,1.638, \n 3 1.404,2.457,2.106,2.160,2.05,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.160,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 8 2.223,2.223,2.223,2.223,2.223,2.223, \n 9 2.223,2.223,2.223,2.223,2.320,2.223, \n 1 2.223,2.223,2.223,2.223,2.223,2.223, \n 2 2.223,2.223,2.223,2.223,2.223,2.223, \n 3 2.223,2.223,2.223,2.223,2.223,2.223, \n 4 2.223,2.223,2.223,2.223,2.223,2.223, \n 5 2.223,2.223,2.223,2.223,2.223,2.223, \n 6 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223, \n 7 2.223,2.223,2.223,2.223,2.223,2.223/\n
For examples see Stefanovich et al.5 and Barone et al.6
\u201cRsolv\u201d is no longer used.
"},{"location":"Solvation-Models.html#cosmo-iscreen-keyword","title":"COSMO: ISCREEN keyword","text":"iscren
is a flag to define the dielectric charge scaling option. iscren 1
implies the original scaling from Klamt and Sch\u00fc\u00fcrmann, mainly \u201c(\u03b5-1)/(\u03b5+1/2)\u201d, where \u03b5 is the dielectric constant. iscren 0
implies the modified scaling suggested by Stefanovich and Truong5, mainly \u201c(\u03b5-1)/\u03b5\u201c. Default is to use the modified scaling. For high dielectric the difference between the scaling is not significant.
The next two parameters define the tesselation of the unit sphere. The approach still follows the original proposal by Klamt and Sch\u00fc\u00fcrmann to some degree. Basically a tesselation is generated from minbem
refining passes starting from either an octahedron or an icosahedron. Each level of refinement partitions the triangles of the current tesselation into four triangles. This procedure is repeated recursively until the desired granularity of the tesselation is reached. The induced point charges from the polarization of the medium are assigned to the centers of the tesselation. The default value is minbem 2
. The flag ificos
serves to select the original tesselation, ificos 0
for an octahedron (default) and ificos 1
for an icoshedron. Starting from an icosahedron yields a somewhat finer tesselation that converges somewhat faster. Solvation energies are not really sensitive to this choice for sufficiently fine tesselations. The old \u201cmaxbem\u201d directive is no longer used.
The lineq
parameter serves to select the numerical algorithm to solve the linear equations yielding the effective charges that represent the polarization of the medium. lineq 0
selects a dense matrix linear equation solver (default), lineq 1
selects an iterative method. For large molecules where the number of effective charges is large, the code selects the iterative method.
zeta
sets the width of the Gaussian charge distributions that were suggested by York and Karplus to avoid singularities when two surface charges coincide. The default value is zeta 0.98
this value was chosen to ensure that the results of the current implementation are as close as possible to those of the original Klamt and Sch\u00fc\u00fcrmann based implementation.
gamma_s
modifies the width of the smooth switching function that eliminates surface charges when their positions move into the sphere of a neighboring atom. gamma_s 0.0
leads to a heavyside or abrupt switching function, whereas gamma_s 1.0
maximizes the width of the switching function. The default value is gamma_s 1.0
.
sw_tol
specifies the cutoff of the switching function below which a surface charge at a particular point is eliminated. The values of the switching function lie in the domain from 0 to 1. This value should not be set too small as that leads to instabilities in the linear system solvers. The default value is sw_tol 1.0e-4
.
do_gasphase
is a flag to control whether the calculation of the solvation energy is preceded by a gas phase calculation. The default is to always perform a gas phase calculation first and then calculate the solvation starting from the converged gas phase electron density. However, in geometry optimizations this approach can double the cost. In such a case setting do_gasphase false
suppresses the gas phase calculations and only the solvated system calculations are performed. This option needs to be used with care as in some cases starting the COSMO solvation from an unconverged electron density can generate unphysical charges that lock the calculation into strange electron distributions.
do_cosmo_ks
is a flag to turn on the Klamt-Sch\u00fc\u00fcrmann model
do_cosmo_yk
is a flag to turn on the York-Karplus model (default)
do_cosmo_smd
is a flag to turn on the SMD model. More details can be found at the SMD Model documentation
The following example is for a water molecule in \u2018water\u2019, using the HF/6-31G** level of theory:
start \n\ngeometry \n o .0000000000 .0000000000 -.0486020332 \n h .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n o library 6-31g** \n h library 6-31g** \nend \ncosmo \n dielec 78.0 \n radius 1.40 \n 1.16 \n 1.16 \n lineq 0 \nend \ntask scf energy\n
Alternatively, instead of listing COSMO radii parameters in the input, the former can be loaded using an external file through the parameters
directive
start \n\ngeometry \n ow .0000000000 .0000000000 -.0486020332 \n hw .7545655371 .0000000000 .5243010666 \n h -.7545655371 .0000000000 .5243010666 \nend \nbasis\n * library 6-31g** \nend\n\ncosmo \n dielec 78.0 \n lineq 0 \n parameters water.par \nend\n\ntask scf energy\n
where the water.par
file has the following form:
O 1.40\nH 1.16\n
This will set radii of all oxygen atoms to 1.4 and all hydrogen atoms to 1.16. More fine grained control may be achieved using specific atom names. For example, the following parameter file
O 1.40\nH 1.16\nHW 1.06\n
will set a different radii of 1.06 to hydrogen atoms named HW. Note that, as per general rule in NWChem, all names are case insensitive.
and placed in one of the these locations - directory specified by the environmental variable NWCHEM_COSMO_LIBRARY
, permanent directory, or run directory.
SMD denotes \u201csolvation model based on density\u201d and it is described in detail in the 2009 paper by Marenich, Cramer and Truhlar7.
The SMD model is a universal continuum solvation model where \u201cuniversal\u201d denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known. The word \u201ccontinuum\u201d denotes that the solvent is not represented explicitly as a collection of discrete solvent molecules but rather as a dielectric medium with surface tensions at the solute-solvent interface.
SMD directly calculates the free energy of solvation of an ideal solvation process that occurs at fixed concentration (for example, from an ideal gas at a concentration of 1 mol/L to an ideal solution at a liquid-phase concentration of 1 mol/L) at 298 K, but this may converted by standard thermodynamic formulas to a standard-state free energy of solvation, which is defined as the transfer of molecules from an ideal gas at 1 bar to an ideal 1 molar solution.
The SMD model separates the fixed-concentration free energy of solvation into two components. The first component is the bulk-electrostatic contribution arising from a self-consistent reaction field (SCRF) treatment. The SCRF treatment involves an integration of the nonhomogeneous-dielectric Poisson equation for bulk electrostatics in terms of the COSMO model of Klamt and Sch\u00fc\u00fcrmann with the modified COSMO scaling factor suggested by Stefanovich and Truong and by using the SMD intrinsic atomic Coulomb radii. These radii have been optimized for H, C, N, O, F, Si, P, S, Cl, and Br. For any other atom the current implementation of the SMD model uses scaled values of the van der Waals radii of Mantina et al8.
The scaling factor equals 1.52 for group 17 elements heavier than Br (i.e., for I and At) and 1.18 for all other elements for which there are no optimized SMD radii.
The second contribution to the fixed-concentration free energy of solvation is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is called the cavity\u2013dispersion\u2013solvent-structure (CDS) term, and it is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas (SASAs) of the individual atoms of the solute.
"},{"location":"Solvation-Models.html#smd-input-parameters","title":"SMD Input Parameters","text":"The SMD model requires additional parameters in the COSMO input block
cosmo \n [do_cosmo_smd <logical>]\n [solvent (keyword)]\n [icds <integer>]\n [sola <real>]\n [solb <real>]\n [solc <real>]\n [solg <real>]\n [solh <real>]\n [soln <real>]\nend \n
At the moment the SMD model is available in NWChem only with the DFT block
The SMD input options are as follows:
do_cosmo_smd <logical>\n
The do_cosmo_smd
keyword instructs NWChem to perform a ground-state SMD calculation when set to a true
value.
solvent (keyword)\n
a solvent
keyword from the short name entry in the list of available SMD solvent names.
When a solvent is specified by name, the descriptors for the solvent are based on the Minnesota Solvent Descriptor Database9.
The user can specify a solvent (by using a string using up to eight characters) that is not on the list by using a new solvent keyword and introducing user-provided values for the following solvent descriptors:
"},{"location":"Solvation-Models.html#smd-dielec-keyword","title":"SMD: DIELEC keyword","text":"dielec (real input)\n
dielectric constant at 298 K
"},{"location":"Solvation-Models.html#smd-sola-keyword","title":"SMD: SOLA keyword","text":"sola (real input) \n
Abraham\u2019s hydrogen bond acidity
"},{"location":"Solvation-Models.html#smd-solb-keyword","title":"SMD: SOLB keyword","text":"solb (real input) \n
Abraham\u2019s hydrogen bond basicity
"},{"location":"Solvation-Models.html#smd-solc-keyword","title":"SMD: SOLC keyword","text":"solc (real input)\n
aromaticity as a fraction of non-hydrogenic solvent atoms that are aromatic carbon atoms
"},{"location":"Solvation-Models.html#smd-solg-keyword","title":"SMD: SOLG keyword","text":"solg (real input)\n
macroscopic surface tension of the solvent at an air/solvent interface at 298 K in units of cal mol\u20131 \u00c5\u20132 (note that 1 dyne/cm = 1.43932 cal mol\u20131 \u00c5\u20132)
"},{"location":"Solvation-Models.html#smd-solh-keyword","title":"SMD: SOLH keyword","text":"solh (real input)\n
electronegative halogenicity as the fraction of non-hydrogenic solvent atoms that are F, Cl, or Br
"},{"location":"Solvation-Models.html#smd-soln-keyword","title":"SMD: SOLN keyword","text":"soln (real input)\n
index of refraction at optical frequencies at 293 K
"},{"location":"Solvation-Models.html#smd-icds-keyword","title":"SMD: ICDS keyword","text":"icds (integer input)\n
icds
should have a value of 1 for water. icds
should have a value of 2 for any nonaqueous solvent. If icds
is set equal to 2, then you need to provide the following solvent descriptors (see the MN solvent descriptor database ):
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in water\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent water\nend\ntask dft energy\n
"},{"location":"Solvation-Models.html#smd-example-new-solvent","title":"SMD Example: new solvent","text":"Example using a user defined solvent, not present in the SMD list of solvents
echo \ntitle \"SMD/M06-2X/6-31G(d) solvation free energy for CF3COO- in my solvent\"\nstart\ncharge -1\ngeometry nocenter\nC 0.512211 0.000000 -0.012117\nC -1.061796 0.000000 -0.036672\nO -1.547400 1.150225 -0.006609\nO -1.547182 -1.150320 -0.006608\nF 1.061911 1.087605 -0.610341\nF 1.061963 -1.086426 -0.612313\nF 0.993255 -0.001122 1.266928\nsymmetry c1\nend\nbasis\n* library 6-31G*\nend\ndft\n XC m06-2x\nend\ncosmo\n do_cosmo_smd true\n solvent mysolv \n dielec 11.4\n sola 1.887\n solb 0.0\n soln 0.98\n icds 2\nend\ntask dft energy\n
"},{"location":"Solvation-Models.html#solvents-list-solvent-keyword","title":"Solvents List - Solvent keyword","text":"The short name for the solvent from the table can be used with the solvent
keyword to define the solvent. Example with acetonitrile.
cosmo\n solvent acetntrl\nend\n
Long name short name dielec acetic acid acetacid 6.2528 acetone acetone 20.493 acetonitrile acetntrl 35.688 acetophenone acetphen 17.440 aniline aniline 6.8882 anisole anisole 4.2247 benzaldehyde benzaldh 18.220 benzene benzene 2.2706 benzonitrile benzntrl 25.592 benzyl chloride benzylcl 6.7175 1-bromo-2-methylpropane brisobut 7.7792 bromobenzene brbenzen 5.3954 bromoethane brethane 9.01 bromoform bromform 4.2488 1-bromooctane broctane 5.0244 1-bromopentane brpentan 6.269 2-bromopropane brpropa2 9.3610 1-bromopropane brpropan 8.0496 butanal butanal 13.450 butanoic acid butacid 2.9931 1-butanol butanol 17.332 2-butanol butanol2 15.944 butanone butanone 18.246 butanonitrile butantrl 24.291 butyl acetate butile 4.9941 butylamine nba 4.6178 n-butylbenzene nbutbenz 2.360 sec-butylbenzene sbutbenz 2.3446 tert-butylbenzene tbutbenz 2.3447 carbon disulfide cs2 2.6105 carbon tetrachloride carbntet 2.2280 chlorobenzene clbenzen 5.6968 sec-butyl chloride secbutcl 8.3930 chloroform chcl3 4.7113 1-chlorohexane clhexane 5.9491 1-chloropentane clpentan 6.5022 1-chloropropane clpropan 8.3548 o-chlorotoluene ocltolue 4.6331 m-cresol m-cresol 12.440 o-cresol o-cresol 6.760 cyclohexane cychexan 2.0165 cyclohexanone cychexon 15.619 cyclopentane cycpentn 1.9608 cyclopentanol cycpntol 16.989 cyclopentanone cycpnton 13.58 cis-decalin declncis 2.2139 trans-decalin declntra 2.1781 decalin (cis/trans mixture) declnmix 2.196 n-decane decane 1.9846 1-decanol decanol 7.5305 1,2-dibromoethane edb12 4.9313 dibromomethane dibrmetn 7.2273 dibutyl ether butyleth 3.0473 o-dichlorobenzene odiclbnz 9.9949 1,2-dichloroethane edc12 10.125 cis-dichloroethylene c12dce 9.200 trans-dichloroethylene t12dce 2.140 dichloromethane dcm 8.930 diethyl ether ether 4.2400 diethyl sulfide et2s 5.723 diethylamine dietamin 3.5766 diiodomethane mi 5.320 diisopropyl ether dipe 3.380 dimethyl disulfide dmds 9.600 dimethylsulfoxide dmso 46.826 N,N-dimethylacetamide dma 37.781 cis-1,2-dimethylcyclohexane cisdmchx 2.060 N,N-dimethylformamide dmf 37.219 2,4-dimethylpentane dmepen24 1.8939 2,4-dimethylpyridine dmepyr24 9.4176 2,6-dimethylpyridine dmepyr26 7.1735 1,4-dioxane dioxane 2.2099 diphenyl ether phoph 3.730 dipropylamine dproamin 2.9112 n-dodecane dodecan 2.0060 1,2-ethanediol meg 40.245 ethanethiol etsh 6.667 ethanol ethanol 24.852 ethyl acetate etoac 5.9867 ethyl formate etome 8.3310 ethylbenzene eb 2.4339 ethylphenyl ether phenetol 4.1797 fluorobenzene c6h5f 5.420 1-fluorooctane foctane 3.890 formamide formamid 108.94 formic acid formacid 51.100 n-heptane heptane 1.9113 1-heptanol heptanol 11.321 2-heptanone heptnon2 11.658 4-heptanone heptnon4 12.257 n-hexadecane hexadecn 2.0402 n-hexane hexane 1.8819 hexanoic acid hexnacid 2.600 1-hexanol hexanol 12.51 2-hexanone hexanon2 14.136 1-hexene hexene 2.0717 1-hexyne hexyne 2.615 iodobenzene c6h5i 4.5470 1-iodobutane iobutane 6.173 iodoethane c2h5i 7.6177 1-iodohexadecane iohexdec 3.5338 iodomethane ch3i 6.8650 1-iodopentane iopentan 5.6973 1-iodopropane iopropan 6.9626 isopropylbenzene cumene 2.3712 p-isopropyltoluene p-cymene 2.2322 mesitylene mesityln 2.2650 methanol methanol 32.613 2-methoxyethanol egme 17.200 methyl acetate meacetat 6.8615 methyl benzoate mebnzate 6.7367 methyl butanoate mebutate 5.5607 methyl formate meformat 8.8377 4-methyl-2-pentanone mibk 12.887 methyl propanoate mepropyl 6.0777 2-methyl-1-propanol isobutol 16.777 2-methyl-2-propanol terbutol 12.470 N-methylaniline nmeaniln 5.9600 methylcyclohexane mecychex 2.024 N-methylformamide (E/Z mixture) nmfmixtr 181.56 2-methylpentane isohexan 1.890 2-methylpyridine mepyrid2 9.9533 3-methylpyridine mepyrid3 11.645 4-methylpyridine mepyrid4 11.957 nitrobenzene c6h5no2 34.809 nitroethane c2h5no2 28.290 nitromethane ch3no2 36.562 1-nitropropane ntrprop1 23.730 2-nitropropane ntrprop2 25.654 o-nitrotoluene ontrtolu 25.669 n-nonane nonane 1.9605 1-nonanol nonanol 8.5991 5-nonanone nonanone 10.600 n-octane octane 1.9406 1-octanol octanol 9.8629 2-octanone octanon2 9.4678 n-pentadecane pentdecn 2.0333 pentanal pentanal 10.000 n-pentane npentane 1.8371 pentanoic acid pentacid 2.6924 1-pentanol pentanol 15.130 2-pentanone pentnon2 15.200 3-pentanone pentnon3 16.780 1-pentene pentene 1.9905 E-2-pentene e2penten 2.051 pentyl acetate pentacet 4.7297 pentylamine pentamin 4.2010 perfluorobenzene pfb 2.029 phenylmethanol benzalcl 12.457 propanal propanal 18.500 propanoic acid propacid 3.440 1-propanol propanol 20.524 2-propanol propnol2 19.264 propanonitrile propntrl 29.324 2-propen-1-ol propenol 19.011 propyl acetate propacet 5.5205 propylamine propamin 4.9912 pyridine pyridine 12.978 tetrachloroethene c2cl4 2.268 tetrahydrofuran thf 7.4257 tetrahydrothiophene-S,S-dioxide sulfolan 43.962 tetralin tetralin 2.771 thiophene thiophen 2.7270 thiophenol phsh 4.2728 toluene toluene 2.3741 tributyl phosphate tbp 8.1781 1,1,1-trichloroethane tca111 7.0826 1,1,2-trichloroethane tca112 7.1937 trichloroethene tce 3.422 triethylamine et3n 2.3832 2,2,2-trifluoroethanol tfe222 26.726 1,2,4-trimethylbenzene tmben124 2.3653 2,2,4-trimethylpentane isoctane 1.9358 n-undecane undecane 1.9910 m-xylene m-xylene 2.3478 o-xylene o-xylene 2.5454 p-xylene p-xylene 2.2705 xylene (mixture) xylenemx 2.3879 water h2o 78.400"},{"location":"Solvation-Models.html#usage-tips","title":"Usage Tips","text":"Authors of paper 7 report that \u201d \u2026 the SMD/COSMO/NWChem calculations we employed finer grids (options minbem=3, maxbem=4, ificos=1) because the default NWChem tessellation parameters (options: minbem=2, maxbem=3, ificos=0) produced very large errors in solvation free energies.\u201d Since the maxbem
keyword is no longer in use, this paper\u2019s recommended input translate into
cosmo\n minbem 3\n ificos 1\nend\n
"},{"location":"Solvation-Models.html#references","title":"References","text":"Klamt, A.; Sch\u00fc\u00fcrmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, No. 5, 799\u2013805. https://doi.org/10.1039/p29930000799.\u00a0\u21a9
York, D. M.; Karplus, M. A Smooth Solvation Potential Based on the Conductor-Like Screening Model. The Journal of Physical Chemistry A 1999, 103 (50), 11060\u201311079. https://doi.org/10.1021/jp992097l.\u00a0\u21a9
Bondi, A. Van Der Waals Volumes and Radii. The Journal of Physical Chemistry 1964, 68 (3), 441\u2013451. https://doi.org/10.1021/j100785a001.\u00a0\u21a9
Klamt, A.; Jonas, V.; B\u00fcrger, T.; Lohrenz, J. C. W. Refinement and Parametrization of COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 5074\u20135085. https://doi.org/10.1021/jp980017s.\u00a0\u21a9
Stefanovich, E. V.; Truong, T. N. Optimized Atomic Radii for Quantum Dielectric Continuum Solvation Models. Chemical Physics Letters 1995, 244 (1-2), 65\u201374. https://doi.org/10.1016/0009-2614(95)00898-e.\u00a0\u21a9\u21a9
Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. The Journal of Chemical Physics 1997, 107 (8), 3210\u20133221. https://doi.org/10.1063/1.474671.\u00a0\u21a9
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378\u20136396. https://doi.org/10.1021/jp810292n.\u00a0\u21a9\u21a9
Haynes, W. M. CRC Handbook of Chemistry and Physics; Mantina, M., Valero, R., Cramer, C. J., Truhlar, D. G., Eds.; Taylor & Francis Group, 2013; pp 9\u201349.\u00a0\u21a9
Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. Minneapolis, MN: Department of Chemistry and Supercomputer Institute 1999.\u00a0\u21a9
The START or RESTART directive define the start-up mode and are optional keywords. If one of these two directives is not specified explicitly, the code will infer one, based upon the name of the input file and the availability of the database. When allowing NWChem to infer the start-up directive, the user must be quite certain that the contents of the database will result in the desired action. It is usually more prudent to specify the directive explicitly, using the following format:
(RESTART || START) [<string file_prefix default input_file_prefix>] \\ \n [rtdb <string rtdb_file_name default file_prefix.db>]\n
The START directive indicates that the calculation is one in which a new database is to be created. Any relevant information that already exists in a previous database of the same name is destroyed. The string variable file_prefix
will be used as the prefix to name any files created in the course of the calculation.
E.g., to start a new calculation on water, one might specify
start water\n
which will make all files begin with \u201cwater.\u201d.
If the user does not specify an entry for file_prefix
on the START directive (or omits the START directive altogether), the code uses the base-name of the input file as the file prefix. That is, the variable file_prefix
is assigned the name of the input file (not its full pathname), but without the last \u201cdot-suffix\u201d. For example, the input file name /home/dave/job.2.nw yields job.2 as the file prefix, if a name is not assigned explicitly using the START
directive.
The user also has the option of specifying a unique name for the database, using the keyword rtdb. When this keyword is entered, the string entered for rtdb_file_name
is used as the database name. If the keyword rtdb is omitted, the name of the database defaults to file_prefix.db
in the directory for permanent files.
If a calculation is to start from a previous calculation and go on using the existing database, the RESTART directive must be used. In such a case, the previous database must already exist. The name specified for file_prefix
usually should not be changed when restarting a calculation. If it is changed, NWChem will not be able to find needed files when going on with the calculation.
In the most common situation, the previous calculation was completed (with or without an error condition), and it is desired to perform a new task or restart the previous one, perhaps with some input changes. In these instances, the RESTART directive should be used. This re-uses the previous database and associated files, and reads the input file for new input and task information.
The RESTART directive looks immediately for new input and task information, deleting information about previous incomplete tasks. For example, when doing a RESTART there is no need to specify geometry or basis set declaration because the program will detect this information since it is stored in the run-time database.
If a calculation runs out of time, for example because it is on a queuing system, this is another instance where doing a RESTART
is advisable. Simply include nothing after the RESTART
directive except those tasks that are unfinished.
To summarize the default options for this start-up directive, if the input file does not contain a START or a RESTART directive, then
file_prefix
is assigned the name of the input file for the job, without the suffix (which is usually .nw)rtdb_file_name
is assigned the default name, file_prefix.db
If the database with name file_prefix.db does not already exist, the calculation is carried out as if a START
directive had been encountered. If the database with name file_prefix.db does exist, then the calculation is performed as if a RESTART
directive had been encountered.
For example, NWChem can be run using an input file with the name water.nw by typing the UNIX command line,
nwchem water.nw\n
If the NWChem input file water.nw does not contain a START or RESTART directive, the code sets the variable file_prefix
to water. Files created by the job will have this prefix, and the database will be named water.db. If the database water.db does not exist already, the code behaves as if the input file contains the directive,
start water\n
If the database water.db does exist, the code behaves as if the input file contained the directive,
restart water\n
"},{"location":"Start_Restart.html#use-of-permanent_dir","title":"Use of permanent_dir","text":"We suggest the user to add the permanent directory line to the input file. This allows to store files in a specific directory for easy re-use between start and restart stages. The start file then becomes
start water\npermanent_dir /home/doe/nwchem_files\n
while the restart file becomes
restart water\npermanent_dir /home/doe/nwchem_files\n
"},{"location":"Supplementary-Information.html","title":"Supplementary Information","text":""},{"location":"Supplementary-Information.html#global-arrays","title":"Global Arrays","text":""},{"location":"Supplementary-Information.html#choosing-the-right-armci-library","title":"Choosing the right ARMCI library","text":""},{"location":"Supplementary-Information.html#software-supporting-nwchem","title":"Software supporting NWChem","text":""},{"location":"System-Description.html","title":"System Description","text":"The TASK directive is used to tell the code what to do. The input directives are parsed sequentially until a TASK directive is encountered, as described in Input File Structure. At that point, the calculation or operation specified in the TASK directive is performed. When that task is completed, the code looks for additional input to process until the next TASK directive is encountered, which is then executed. This process continues to the end of the input file. NWChem expects the last directive before the end-of-file to be a TASK directive. If it is not, a warning message is printed. Since the database is persistent, multiple tasks within one job behave exactly the same as multiple restart jobs with the same sequence of input.
There are four main forms of the the TASK directive. The most common form is used to tell the code at what level of theory to perform an electronic structure calculation, and which specific calculations to perform. The second form is used to specify tasks that do not involve electronic structure calculations or tasks that have not been fully implemented at all theory levels in NWChem, such as simple property evaluations. The third form is used to execute UNIX commands on machines having a Bourne shell. The fourth form is specific to combined quantum-mechanics and molecular-mechanics (QM/MM) calculations.
By default, the program terminates when a task does not complete successfully. The keyword ignore can be used to prevent this termination, and is recognized by all forms of the TASK directive. When a TASK directive includes the keyword ignore, a warning message is printed if the task fails, and code execution continues with the next task. An example of this feature is given in the sample input file.
The input options, keywords, and defaults for each of these four forms for the TASK directive are discussed in the following sections.
"},{"location":"TASK.html#task-directive-for-electronic-structure","title":"TASK Directive for Electronic Structure","text":"This is the most commonly used version of the TASK directive, and it has the following form:
TASK <string theory> [<string operation default energy>] [ignore]\n
The string specifies the level of theory to be used in the calculations for this task. NWChem currently supports ten different options. These are listed below, with the corresponding entry for the variable :
The string specifies the calculation that will be performed in the task. The default operation is a single point energy evaluation. The following list gives the selection of operations currently available in NWChem:
NOTE: See PSPW Tasks for the complete list of operations that accompany the NWPW module.
The user should be aware that some of these operations (gradient, optimize, dynamics, thermodynamics) require computation of derivatives of the energy with respect to the molecular coordinates. If analytical derivatives are not available (Capabilities), they must be computed numerically, which can be very computationally intensive.
Here are some examples of the TASK directive, to illustrate the input needed to specify particular calculations with the code. To perform a single point energy evaluation using any level of theory, the directive is very simple, since the energy evaluation is the default for the string operation. For an SCF energy calculation, the input line is simply
task scf\n
Equivalently, the operation can be specified explicitly, using the directive
task scf energy\n
Similarly, to perform a geometry optimization using density functional theory, the TASK directive is
task dft optimize\n
The optional keyword ignore can be used to allow execution to continue even if the task fails, as discussed above. An example with the keyword ignore can be found in the DFT example.
"},{"location":"TASK.html#task-directive-for-special-operations","title":"TASK Directive for Special Operations","text":"This form of the TASK directive is used in instances where the task to be performed does not fit the model of the previous version (such as execution of a Python program), or if the operation has not yet been implemented in a fashion that applies to a wide range of theories (e.g., property evaluation). Instead of requiring theory and operation as input, the directive needs only a string identifying the task. The form of the directive in such cases is as follows:
TASK <string task> [ignore]\n
The supported tasks that can be accessed with this form of the TASK directive are listed below, with the corresponding entries for the string variable <task>
This directive also recognizes the keyword ignore, which allows execution to continue after a task has failed.
"},{"location":"TASK.html#task-directive-for-bourne-shell","title":"TASK Directive for Bourne Shell","text":"This form of the TASK directive is supported only on machines with a fully UNIX-style operating system. This directive causes specified processes to be executed using the Bourne shell. This form of the task directive is:
TASK shell [(<integer-range process = 0>||all)] <string command>\n
The keyword shell is required for this directive. It specifies that the given command will be executed in the Bourne shell. The user can also specify which process(es) will execute this command by entering values for process on the directive. The default is for only process zero to execute the command. A range of processes may be specified, using Fortran triplet notation. Alternatively, all processes can be specified simply by entering the keyword all. The input entered for command must form a single string, and must consist of valid UNIX command(s). If the string includes white space, it must be enclosed in double quotes.
For example, the TASK directive to tell process zero to copy the molecular orbitals file to a backup location /piofs/save
can be input as follows:
task shell \"cp *.movecs /piofs/save\"\n
The TASK directive to tell all processes to list the contents of their /scratch directories is as follows:
task shell all \"ls -l /scratch\"\n
The TASK directive to tell processes 0 to 10 to remove the contents of the current directory is as follows:
task shell 0:10:1 \"/bin/rm -f *\"\n
Note that NWChem\u2019s ability to quote special input characters is very limited when compared with that of the Bourne shell. To execute all but the simplest UNIX commands, it is usually much easier to put the shell script in a file and execute the file from within NWChem.
"},{"location":"TASK.html#task-directive-for-qmmm-simulations","title":"TASK Directive for QM/MM simulations","text":"This is very similar to the most commonly used version of the TASK directive, and it has the following form:
TASK QMMM <string theory> [<string operation default energy>] [ignore]\n
The string specifies the QM theory to be used in the QM/MM simulation. If theory is \u201cmd\u201d this is not a QM/MM simulation and will result in an appropriate error. The level of theory may be any QM method that can compute gradients but those algorithms in NWChem that do not support analytic gradients should be avoided (see Capabilities).
The string is used to specify the calculation that will be performed in the QM/MM task. The default operation is a single point energy evaluation. The following list gives the selection of operations currently available in the NWChem QM/MM module;
Here are some examples of the TASK directive for QM/MM simulations. To perform a single point energy of a QM/MM system using any QM level of theory, the directive is very simple. As with the general task directive, the QM/MM energy evaluation is the default. For a DFT energy calculation the task directive input is,
task qmmm dft
or completely as
task qmmm dft energy
To do a molecular dynamics simulation of a QM/MM system using the SCF level of theory the task directive input would be
task qmmm scf dynamics
The optional keyword ignore can be used to allow execution to continue even if the task fails, as discussed above.
"},{"location":"TASK.html#task-directive-for-bsse-calculations","title":"TASK Directive for BSSE calculations","text":"NWChem computes the basis set superposition error (BSSE) when two or more fragments are interacting by using the counterpoise method. This directive is performed if the BSSE section is present. Single point energies, energy gradients, geometry optimizations, Hessians and frequencies, at the level of theory that allows these tasks, can be obtained with the BSSE correction. The input options for the BSSE section are:
BSSE \n MON <string monomer name> <integer natoms> \n [INPUT [<string input>]] \n [INPUT_WGHOST[<string input>]] \n [CHARGE [<real charge>]] \n [ MULT <integer mult>] \n [OFF] \n [ON] \nEND\n
MON
defines the monomer\u2019s name and its atoms; defines the name of the monomer, is the list of atoms corresponding to the monomer (where such a list is relative to the initial geometry). This information is needed for each monomer. With the tag INPUT
the user can modify any calculation attributes for each monomer without ghost. For example, the iterations number and the grid can be changed in a DFT calculation (see the example of the interaction between Zn2+ and water). INPUT_WGHOST
is the same as INPUT
but for the monomer with ghost. The input changes will be applied within this and for the following calculations, you should be cautious reverting the changes for the next monomers. CHARGE
assigns a charge to a monomer and it must be consistent with the total charge in the whole system (see Section Charge). The options OFF
and ON
turns off and on any BSSE calculation.
The energy evaluation involves 1 + 2N calculations, i.e. one for the supermolecule and two for the N monomers. [S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys., 105, 11024 (1996)] NWChem stores the vector files for each calculation (<string monomer name>.bsse.movecs
), and one hessian file (<string monomer name>.bsse.hess
). The code does not assign automatically the basis set for the ghost atoms, you must assign the corresponding bqX
for each element, instead.
The dimer (FH)2
title dimer \nstart dimer \ngeometry units angstrom \n symmetry c1 \n F 1.47189 2.47463 -0.00000 \n H 1.47206 3.29987 0.00000 \n F 1.46367 -0.45168 0.00000 \n H 1.45804 0.37497 -0.00000 \nend \nbasis \"ao basis\" \n F library 6-31G \n H library 6-31G \n bqF library F 6-31G \n bqH library H 6-31G \nend\ndft; xc slater 1.0 vwn_5 1.0; direct; end \nbsse \n mon first 1 2 \n mon second 3 4 \nend\ntask dft energy\n
Changing maxiter
for a specific monomer: (Zn2+(H2O))
title znwater \nstart znwater \necho \ngeometry noautoz units angstrom \n symmetry c1 \n Zn -1.89334 -0.72741 -0.00000 \n O -0.20798 0.25012 0.00000 \n H -0.14200 1.24982 -0.00000 \n H 0.69236 -0.18874 -0.00000 \nend \nbasis \"ao basis\" \n O library 6-31G \n Zn library 6-31G \n H library 6-31G \n bqO library O 6-31G \n bqZn library Zn 6-31G \n bqH library H 6-31G \nend \ncharge 2 \nscf; direct; end \nmp2; freeze atomic;end \nbsse \n mon metal 1 \n charge 2 \n input_wghost \"scf\\; maxiter 200\\; end\" \n mon water 2 3 4 \nend \ntask mp2 optimize\n
"},{"location":"TCE.html","title":"Tensor Contraction Engine Module: CI, MBPT, and CC","text":""},{"location":"TCE.html#overview","title":"Overview","text":"The Tensor Contraction Engine (TCE) Module of NWChem implements a variety of approximations that converge at the exact solutions of Schr\u00f6dinger equation. They include configuration interaction theory through singles, doubles, triples, and quadruples substitutions, coupled-cluster theory through connected singles, doubles, triples, and quadruples substitutions, and many-body perturbation theory through fourth order in its tensor formulation. Not only optimized parallel programs of some of these high-end correlation theories are new, but also the way in which they have been developed is unique. The working equations of all of these methods have been derived completely automatically by a symbolic manipulation program called a Tensor Contraction Engine (TCE), and the optimized parallel programs have also been computer-generated by the same program, which were interfaced to NWChem. The development of the TCE program and this portion of the NWChem program has been financially supported by the United States Department of Energy, Office of Science, Office of Basic Energy Science, through the SciDAC program.
The capabilities of the module include:
The distributed binary executables do not contain CCSDTQ and its derivative methods, owing to their large volume. The source code includes them, so a user can reinstate them by setenv CCSDTQ yes and recompile TCE module. The following optimizations have been used in the module:
For reviews or tutorials of these highly-accurate correlation methods, the user is referred to:
For background on development of the symbolic algebra tools which help create the code used in this model see:
For details of particular CC implementations, see:
The TCE thoroughly analyzes the working equation of many-electron theory models and automatically generates a program that takes full advantage of these symmetries at the same time. To do so, the TCE first recognizes the index permutation symmetries among the working equations, and perform strength reduction and factorization by carefully monitoring the index permutation symmetries of intermediate tensors. Accordingly, every input and output tensor (such as integrals, excitation amplitudes, residuals) has just two independent but strictly ordered index strings, and each intermediate tensor has just four independent but strictly ordered index strings. The operation cost and storage size of tensor contraction is minimized by using the index range restriction arising from these index permutation symmetries and also spin and spatial symmetry integration.
"},{"location":"TCE.html#runtime-orbital-range-tiling","title":"Runtime orbital range tiling","text":"To maintain the peak local memory usage at a manageable level, in the beginning of the calculation, the orbitals are rearranged into tiles (blocks) that contains orbitals with the same spin and spatial symmetries. So the tensor contractions in these methods are carried out at the tile level; the spin, spatial, and index permutation symmetry is employed to reduce the operation and storage cost at the tile level also. The so-called tile-structure of all tensors used in CC equations is also the key-factor determining the parallel structure of the TCE CC codes . The tiling scheme corresponds to partitioning of the spin-orbital domain into smaller subsets containing the spin-orbitals of the same spin and spatial symmetries (the so-called tiles). This partitioning of the spin-orbital domain entails the blocking of all tensors corresponding to one- and two-electron integrals, cluster amplitudes, and all recursive intermediates, into smaller blocks of the size defined by the size of the tile (or tilesize for short). Since the parallel scheme used in all TCE generated codes is deeply rooted in dynamic load balancing techniques, the tile-structure defines the granularity of the work to be distributed. The size of tiles (tilesize) defines also the local memory requirements in all TCE derived CC implementations. For CI/CC/EOMCC/LR-CC models based on the sinlges and doubles models (CISD,CCSD,EOMCCSD,LR-CCSD) the peak local memory requirement is proportional to the tilesize
4. In approaches accounting for triples, either in iterative or non-iterative fashion, the local memory usage is proportional to tilesize
6. This means that in the CCSD(T), CCSDt, CCSDT, CR-EOMCCSD(T), EOMCCSDt, EOMCCSDT, LR-CCSDT caluclations the tilesize cannot be defined too large.
In a parallel execution, dynamic load balancing of tile-level local tensor index sorting and local tensor contraction (matrix multiplication) will be invoked.
"},{"location":"TCE.html#parallel-io-schemes","title":"Parallel I/O schemes","text":"Each process is assigned a local tensor index sorting and tensor contraction dynamically. It must first retrieve the tiles of input tensors, and perform these local operations, and accumulate the output tensors to the storage. We have developed a uniform interface for these I/O operations to either (1) a global file on a global file system, (2) a global memory on a global or distributed memory system, and (3) semi-replicated files on a distributed file systems. Some of these operations depend on the ParSoft library.
"},{"location":"TCE.html#input-syntax","title":"Input syntax","text":"The keyword to invoke the many-electron theories in the module is TCE. To perform a single-point energy calculation, include
TASK TCE ENERGY\n
in the input file, which may be preceded by the TCE input block that details the calculations:
TCE\n [(DFT||HF||SCF) default HF=SCF]\n [FREEZE [[core] (atomic || <integer nfzc default 0>)] \\\n [virtual <integer nfzv default 0>]]\n [(LCCD||CCD||CCSD||CC2||LR-CCSD||LCCSD||CCSDT||CCSDTA||CCSDTQ|| \\\n CCSD(T)||CCSD[T]||CCSD(2)_T||CCSD(2)||CCSDT(2)_Q|| \\\n CR-CCSD[T]||CR-CCSD(T)|| \\\n LR-CCSD(T)||LR-CCSD(TQ)-1||CREOMSD(T)|| \\\n QCISD||CISD||CISDT||CISDTQ|| \\\n MBPT2||MBPT3||MBPT4||MP2||MP3||MP4) default CCSD]\n [THRESH <double thresh default 1e-6>]\n [MAXITER <integer maxiter default 100>]\n [PRINT (none||low||medium||high||debug)\n <string list_of_names ...>]\n [IO (fortran||eaf||ga||sf||replicated||dra||ga_eaf) default ga]\n [DIIS <integer diis default 5>]\n [LSHIFT <double lshift default is 0.0d0>]\n [NROOTS <integer nroots default 0>]\n [TARGET <integer target default 1>]\n [TARGETSYM <character targetsym default 'none'>]\n [SYMMETRY]\n [2EORB]\n [2EMET <integer fast2e default 1>]\n [T3A_LVL] \n [ACTIVE_OA]\n [ACTIVE_OB]\n [ACTIVE_VA]\n [ACTIVE_VB]\n [DIPOLE]\n [TILESIZE <no default (automatically adjusted)>]\n [(NO)FOCK <logical recompf default .true.>]\n [FRAGMENT <default -1 (off)>]\n END\n
Also supported are energy gradient calculation, geometry optimization, and vibrational frequency (or hessian) calculation, on the basis of numerical differentiation. To perform these calculations, use
TASK TCE GRADIENT\n
or
TASK TCE OPTIMIZE\n
or
TASK TCE FREQUENCIES\n
The user may also specify the parameters of reference wave function calculation in a separate block for either HF (SCF) or DFT, depending on the first keyword in the above syntax.
Since every keyword except the model has a default value, a minimal input file will be
GEOMETRY\n Be 0.0 0.0 0.0\n END\n BASIS\n Be library cc-pVDZ\n END\n TCE\n ccsd\n END\n TASK TCE ENERGY\n
which performs a CCSD/cc-pVDZ calculation of the Be atom in its singlet ground state with a spin-restricted HF reference.
New implementations of the iterative CCSD and EOMCCSD methods based on the improved task scheduling can be enable by the set tce:nts T
command as in the following example:
geometry/basis set specifications \ntce\nfreeze atomic\ncreomccsd(t)\ntilesize 20\n2eorb\n2emet 13\neomsol 2\nend \n\nset tce:nts T\n\ntask tce energy\n
New task scheduling should reduce time to solutions and provide better parallel performance especially in large CCSD/EOMCCSD runs.
"},{"location":"TCE.html#keywords-of-tce-input-block","title":"Keywords of TCE input block","text":""},{"location":"TCE.html#hf-scf-or-dft-the-reference-wave-function","title":"HF, SCF, or DFT: the reference wave function","text":"This keyword tells the module which of the HF (SCF) or DFT module is going to be used for the calculation of a reference wave function. The keyword HF and SCF are one and the same keyword internally, and are default. When these are used, the details of the HF (SCF) calculation can be specified in the SCF input block, whereas if DFT is chosen, DFT input block may be provided.
For instance, RHF-RCCSDT calculation (R standing for spin-restricted) can be performed with the following input blocks:
SCF\n SINGLET\n RHF\n END\n TCE\n SCF\n CCSDT\n END\n TASK TCE ENERGY\n
This calculation (and any correlation calculation in the TCE module using a RHF or RDFT reference for a closed-shell system) skips the storage and computation of all \u03b2 spin blocks of integrals and excitation amplitudes. ROHF-UCCSDT (U standing for spin-unrestricted) for an open-shell doublet system can be requested by
SCF\n DOUBLET\n ROHF\n END\n TCE\n SCF\n CCSDT\n END\n TASK TCE ENERGY\n
and likewise, UHF-UCCSDT for an open-shell doublet system can be specified with
SCF\n DOUBLET\n UHF\n END\n TCE\n SCF\n CCSDT\n END\n TASK TCE ENERGY\n
The operation and storage costs of the last two calculations are identical. To use the KS DFT reference wave function for a UCCSD calculation of an open-shell doublet system,
DFT\n ODFT\n MULT 2\n END\n TCE\n DFT\n CCSD\n END\n TASK TCE ENERGY\n
Note that the default model of the DFT module is LDA.
"},{"location":"TCE.html#ccsdccsdtccsdtqcisdcisdtcisdtq-mbpt2mbpt3mbpt4-etc-the-correlation-models","title":"CCSD,CCSDT,CCSDTQ,CISD,CISDT,CISDTQ, MBPT2,MBPT3,MBPT4, etc.: the correlation models","text":"These keywords stand for the following models:
ACTIVE_OB
) as well as active unoccupied \u03b1 and \u03b2 spinorbitals (ACTIVE_VA
and ACTIVE_VB
).All of these models are based on spin-orbital expressions of the amplitude and energy equations, and designed primarily for spin-unrestricted reference wave functions. However, for a restricted reference wave function of a closed-shell system, some further reduction of operation and storage cost will be made. Within the unrestricted framework, all these methods take full advantage of spin, spatial, and index permutation symmetries to save operation and storage costs at every stage of the calculation. Consequently, these computer-generated programs will perform significantly faster than, for instance, a hand-written spin-adapted CCSD program in NWChem, although the nominal operation cost for a spin-adapted CCSD is just one half of that for spin-unrestricted CCSD (in spin-unrestricted CCSD there are three independent sets of excitation amplitudes, whereas in spin-adapted CCSD there is only one set, so the nominal operation cost for the latter is one third of that of the former. For a restricted reference wave function of a closed-shell system, all \u03b2 spin block of the excitation amplitudes and integrals can be trivially mapped to the all \u03b1 spin block, reducing the ratio to one half).
While the MBPT (MP) models implemented in the TCE module give identical correlation energies as conventional implementation for a canonical HF reference of a closed-shell system, the former are intrinsically more general and theoretically robust for other less standard reference wave functions and open-shell systems. This is because the zeroth order of Hamiltonian is chosen to be the full Fock operator (not just the diagonal part), and no further approximation was invoked. So unlike the conventional implementation where the Fock matrix is assumed to be diagonal and a correlation energy is evaluated in a single analytical formula that involves orbital energies (or diagonal Fock matrix elements), the present tensor MBPT requires the iterative solution of amplitude equations and subsequent energy evaluation and is generally more expensive than the former. For example, the operation cost of many conventional implementation of MBPT(2) scales as the fourth power of the system size, but the cost of the present tensor MBPT(2) scales as the fifth power of the system size, as the latter permits non-canonical HF reference and the former does not (to reinstate the non-canonical HF reference in the former makes it also scale as the fifth power of the system size).
"},{"location":"TCE.html#state-specific-multireference-coupled-cluster-methods-mrcc","title":"State-Specific Multireference Coupled Cluster methods (MRCC)","text":"Several State-Specific MRCC methods have been implemented in 6.3 release of nwchem. These include:
The current implementation can be used in studies of systems composed of an even number of correlated electrons (this limitation will be removed in the next release). This includes typical examples of diradical, open-shell singlets, and bond-forming/breaking processes where the corresponding wavefunctions have strong quasidegenerate character.
To enable the compilation of the MRCC codes one has to set the following variable before the compilation of NWChem
export MRCC_METHODS=y\n
To run MRCC calculations the user has to define two groups in the input file. First, the TCE group and secondly the MRCCDATA group. In the TCE group the iterative level of theory is defined, e.g. BWCCSD or MKCCSD. This implementation was designed for complete model spaces (CMS) which means that the modelspace contains all Slater determinants of all possible (in the context of the spatial and spin symmetry, Ms) distributions of active electrons among active spin orbitals. The user can define the modelspace in two ways. As a first approach the model space can be defined by hand, as shown in the two examples below. The input of the model space starts with the NREF
keyword followed by the number of reference configurations that will be used, which should equal the number of strings for references below. In the input 2
refers to doubly occupied orbitals, a
to alpha electrons, b
to beta electrons and 0
identifies an unoccupied orbital. When the model space is defined by hand the occupation strings have to include the frozen orbitals as well. In the second way the CMS can be generated using the keyword CAS
followed by the number of active electrons and the number of active orbitals. When using the CAS
keyword we strongly recommend that users check the references that are generated.
As the model space typically includes multiple configurations it is possible to use the MRCC method to calculate excited states instead of the ground state. For this reason it is required to specify the root of interest. The ROOT
keyword followed by the root number specifies the state the code calculates. The lowest root, the ground state, is identified as root 1
. If one wants to calculate the third root the keyword ROOT 3
should be used. An example is given below.
echo\n start tce_mrcc_bwcc \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1.0e-10\n tol2e 1.0e-10\n end\n tce\n bwccsd\n thresh 1.0e-7\n targetsym a1\n io ga\n tilesize 18\n end\n mrccdata\n root 1\n nref 4\n 222220\n 222202\n 2222ab\n 2222ba\n end\n task tce energy\n
echo\n start tce_mrcc_mkcc \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1.0e-10\n tol2e 1.0e-10\n end\n tce\n mkccsd\n thresh 1.0e-5\n targetsym a1\n maxiter 100\n io ga\n tilesize 18\n end\n mrccdata\n root 1\n cas 2 2 # Please make sure the references generated are correct.\n end\n task tce energy\n
This version of MRCC works only with GA as specified by the IO GA
option. In addition this code works only with the spin-orbit 4-index transformation, however in all circumstances an RHF Hartree-Fock initial calculation has to be used. In this implementation the effective Hamiltonian operator contains only scalar, one- and two-body many body components. Finally, in our implementation the BWCCSD methods use the energy threshold for the convergence, whereas the MKCCSD method uses the norm of the residual.
In addition to the iterative single-double calculations the code can calculate non-iterative triples corrections. To request these triples corrections the keyword SE4T
should be added to the MRCCDATA block. The implementation details and the from of the triples correction are given in equation 20 [ J. Chem. Phys. 137, 094112 (2012)].
echo\n start tce_mrcc_bwcc \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1.0e-10\n tol2e 1.0e-10\n end\n tce\n bwccsd\n thresh 1.0e-7\n targetsym a1\n io ga\n tilesize 18\n end\n mrccdata\n se4t\n no_aposteriori\n root 1\n nref 4\n 222220\n 222202\n 2222ab\n 2222ba\n end\n task tce ener\n
echo\n start tce_mrcc_mkcc \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1.0e-10\n tol2e 1.0e-10\n end\n tce\n mkccsd\n thresh 1.0e-5\n targetsym a1\n io ga\n tilesize 18\n maxiter 100\n end\n mrccdata\n se4t\n root 1\n nref 4\n 222220\n 222202\n 2222ab\n 2222ba\n end\n task tce ener\n
"},{"location":"TCE.html#implementation-notes-for-reference-level-parallelism-in-mrcc","title":"Implementation notes for reference-level-parallelism in MRCC","text":"The current version of the MRCC codes contains also a pilot implementation of the reference-level-parallelism based on the use of processor groups for BWCCSD and BWCCSD(T) approaches. The main ideas of this approach have been described in
Two essential keywords have to be added to the mrccdata
block of the input:
subgroupsize n\nimprovetiling\n
and
diis 0\n
in tce block. The line subgroupsize n
defines the size of the subgroup and improvetiling
refers to the data representation in the MRCC subgroup algorithm. For example, if user has 4 references and total 32 cores/CPU then n should be defined as 32/4=8. If user has 10 references and 1200 cores/CPU available then the size of the subgroupsize (n) is 120.
echo\n start tce_mrcc_bwcc_subgroups \n memory stack 1000 mb heap 100 mb global 500 mb verify\n geometry units au\n H 0.00000000 -2.27289450 -1.58834700\n O 0.00000000 0.00000000 -0.01350000\n H 0.00000000 2.27289450 -1.58834700\n end\n basis spherical\n O library cc-pvdz\n H library cc-pvdz\n end\n charge 0\n scf\n rohf\n singlet\n thresh 1e-12\n tol2e 1e-12\n end\n tce\n bwccsd\n targetsym a1\n io ga\n diis 0\n thresh 1e-7\n tilesize 18\n end\n mrccdata\n subgroupsize 2 # Please read the documentation below.\n improvetiling\n root 1\n cas 2 2\n end\n task tce ener\n
CAUTION: Before using the subgroup-based algorithm the users should perform the GA subgroup test in $NWCHEM_TOP/src/tools/ga-5-6-3/global/testing/pgtest.x
and pg2test.x
in the same location. Additionally it is strongly encouraged to run the NWChem QA tests from the $NWCHEM_TOP/QA/tests/tce_mrcc_bwcc_subgroups directory with various combinations of subgroup size and total number of CPU.
The USS corrections can be enabled by using usspt
directive keyword in the mrccdata
tce\n mkccsd\n thresh 1.0e-10\n targetsym a1\n maxiter 600\n io ga\nend\n\nmrccdata\n usspt\n root 1\n cas 2 2\nend\n
In effect both diagonal and perturbative USS corrections will be calculated after the completion of iterative Mk-MRCCSD or BW-MRCCSD calculations.
"},{"location":"TCE.html#electron-affinity-ionization-potential-eomccsd-methods","title":"Electron affinity, ionization potential EOMCCSD methods","text":"The EA/IP-EOMCCSD methodologies are available in the 6.5 NWChem release. These implementation are available for the RHF type of the reference function. To enable the compilation of the EA/IP-EOMCCSD codes one has to set the following variable before the compilation of NWChem
export EACCSD=y\nexport IPCCSD=y\n
Two input examples for the EA/IP-EOMCCSD calculations are shown below.
start tce_eaccsd_ozone\ntitle \"tce_eaccsd_ozone\"\necho\n\nmemory stack 1000 mb heap 200 mb global 500 mb\n\ngeometry units bohr\nsymmetry c1 \nO 0.0000000000 0.0000000000 0.0000000000\nO 0.0000000000 -2.0473224350 -1.2595211660\nO 0.0000000000 2.0473224350 -1.2595211660\nend\n\nbasis spherical\n * library cc-pvdz\nend\n\nscf\nthresh 1.0e-10\ntol2e 1.0e-10\nsinglet\nrhf\nend\n\ntce\neaccsd\nnroots 2\nfreeze atomic\ntilesize 20\nthresh 1.0d-6\nend\n\ntask tce energy\n
start tce_ipccsd_f2\ntitle \"tce_ipccsd_f2\"\necho\n\nmemory stack 1000 mb heap 200 mb global 500 mb\n\ngeometry units angstroms\nsymmetry c1\n F 0.0000000000 0.0000000000 0.7059650\n F 0.0000000000 0.0000000000 -0.7059650\nend\n\nbasis spherical\n * library cc-pvdz\nend\n\nscf\nthresh 1.0e-10\ntol2e 1.0e-10\nsinglet\nrhf\nend\n\ntce\nipccsd\nnroots 1\nfreeze atomic\nthresh 1.0e-7\nend\n\ntask tce energy\n
As in the EOMCCSD input we can request any number of roots.
In analogy to the EOMCC calculations we can customize the number of initial guesses by using set tce:maxeorb
directive. For example for system with the symmetry with the orbital energy structure shown below ea ip one can use the energy window (in the sense of the absolute value of the HF orbital energies) to pinpoint the initial guesses. If one is interested in calculating one EA-EOMCCSD root of the a1 symmetry the
set tce:maxeorb 0.1\n
should be used. This means that the number of starting vectors will be equal to the number of the unoccupied a1 symmetry orbitals with the corresponding orbital energies less than 0.1 (in our example there will be only one such a vector corresponding to the unoccupied orbital energy 0.072). If one looks for two roots
set tce:maxeorb 0.16\n
option should be used(there are two a1 unoccupied orbitals with energies less than 0.16).
For the IP-EOMCCSD case the set tce:maxeorb
option works in a similar way. For example if one is looks for 1 IP-EOMCCSD root of a1 symmetry ,
set tce:maxeorb 0.24 \n
directive should be used (there is only one occupied orbital of a1 symmetry with the absolute value of orbital energy less than 0.24), etc.
"},{"location":"TCE.html#thresh-the-convergence-threshold-of-iterative-solutions-of-amplitude-equations","title":"THRESH: the convergence threshold of iterative solutions of amplitude equations","text":"This keyword specifies the convergence threshold of iterative solutions of amplitude equations, and applies to all of the CI, CC, and MBPT models. The threshold refers to the norm of residual, namely, the deviation from the amplitude equations. The default value is 1e-6.
"},{"location":"TCE.html#maxiter-the-maximum-number-of-iterations","title":"MAXITER: the maximum number of iterations","text":"It sets the maximum allowed number iterations for the iterative solutions of amplitude equations. The default value is 100.
"},{"location":"TCE.html#io-parallel-io-scheme","title":"IO: parallel I/O scheme","text":"There are five parallel I/O schemes implemented for all the models, which need to be wisely chosen for a particular problem and computer architecture.
The GA algorithm, which is default, stores all input (integrals and excitation amplitudes), output (residuals), and intermediate tensors in the shared memory area across all nodes by virtue of GA library. This fully incore algorithm replaces disk I/O by inter-process communications. This is a recommended algorithm whenever feasible. Note that the memory management through runtime orbital range tiling described above applies to local (unshared) memory of each node, which may be separately allocated from the shared memory space for GA. So when there is not enough shared memory space (either physically or due to software limitations, in particular, shmmax setting), the GA algorithm can crash due to an out-of-memory error. The replicated scheme is the currently the only disk-based algorithm for a genuinely distributed file system. This means that each node keeps an identical copy of input tensors and it holds non-identical overlapping segments of intermediate and output tensors in its local disk. Whenever data coherency is required, a file reconcilation process will take place to make the intermediate and output data identical throughout the nodes. This algorithm, while requiring redundant data space on local disk, performs reasonably efficiently in parallel. For sequential execution, this reduces to the EAF scheme. For a global file system, the SF scheme is recommended. This together with the Fortran77 direct access scheme does not usually exhibit scalability unless shared files on the global file system also share the same I/O buffer. For sequential executions, the SF, EAF, and replicated schemes are interchangeable, while the Fortran77 scheme is appreciably slower.
Two new I/O algorithms dra and ga_eaf combines GA and DRA or EAF based replicated algorithm. In the former, arrays that are not active (e.g., prior T amplitudes used in DIIS or EOM-CC trial vectors) in GA algorithm will be moved to DRA. In the latter, the intermediates that are formed by tensor contractions are initially stored in GA, thereby avoiding the need to accumulate the fragments of the intermediate scattered in EAFs in the original EAF algorithm. Once the intermediate is formed completely, then it will be replicated as EAFs.
The spin-free 4-index transformation algorithms are exclusively compatible with the GA I/O scheme, although out-of-core algorithms for the 4-index transformation are accessible using the 2emet options. See Alternative storage of two-electron integrals for details.
"},{"location":"TCE.html#diis-the-convergence-acceleration","title":"DIIS: the convergence acceleration","text":"It sets the number iterations in which a DIIS extrapolation is performed to accelerate the convergence of excitation amplitudes. The default value is 5, which means in every five iteration, one DIIS extrapolation is performed (and in the rest of the iterations, Jacobi rotation is used). When zero or negative value is specified, the DIIS is turned off. It is not recommended to perform DIIS every iteration, whereas setting a large value for this parameter necessitates a large memory (disk) space to keep the excitation amplitudes of previous iterations. Another tool for convergence acceleration is the level shift option (lshift
keyword) that allows to increase small orbital energy differences used in calculating the up-dates for cluster amplitudes. Typical values for lshift
oscillates between 0.3 and 0.5 for CC calculations for ground states of multi-configurational character. Otherwise, the value of lshift
is by default set equal to 0.
Some of the lowest-lying core orbitals and/or some of the highest-lying virtual orbitals may be excluded in the calculations by this keyword (this does not affect the ground state HF or DFT calculation). No orbitals are frozen by default. To exclude the atom-like core regions altogether, one may request
FREEZE atomic\n
To specify the number of lowest-lying occupied orbitals be excluded, one may use
FREEZE 10\n
which causes 10 lowest-lying occupied orbitals excluded. This is equivalent to writing
FREEZE core 10\n
To freeze the highest virtual orbitals, use the virtual keyword. For instance, to freeze the top 5 virtuals
FREEZE virtual 5\n
"},{"location":"TCE.html#nroots-the-number-of-excited-states","title":"NROOTS: the number of excited states","text":"One can specify the number of excited state roots to be determined. The default value is 1. It is advised that the users request several more roots than actually needed, since owing to the nature of the trial vector algorithm, some low-lying roots can be missed when they do not have sufficient overlap with the initial guess vectors.
"},{"location":"TCE.html#target-and-targetsym-the-target-root-and-its-symmetry","title":"TARGET and TARGETSYM: the target root and its symmetry","text":"At the moment, the first and second geometrical derivatives of excitation energies that are needed in force, geometry, and frequency calculations are obtained by numerical differentiation. These keywords may be used to specify which excited state root is being used for the geometrical derivative calculation. For instance, when TARGET 3
and TARGETSYM a1g
are included in the input block, the total energy (ground state energy plus excitation energy) of the third lowest excited state root (excluding the ground state) transforming as the irreducible representation a1g will be passed to the module which performs the derivative calculations. The default values of these keywords are 1 and none, respectively.
The keyword TARGETSYM
is essential in excited state geometry optimization, since it is very common that the order of excited states changes due to the geometry changes in the course of optimization. Without specifying the TARGETSYM
, the optimizer could (and would likely) be optimizing the geometry of an excited state that is different from the one the user had intended to optimize at the starting geometry. On the other hand, in the frequency calculations, TARGETSYM
must be none
, since the finite displacements given in the course of frequency calculations will lift the spatial symmetry of the equilibrium geometry. When these finite displacements can alter the order of excited states including the target state, the frequency calculation is not be feasible.
By adding this keyword to the input block, the user can request the module to seek just the roots of the specified irreducible representation as TARGETSYM
. By default, this option is not set. TARGETSYM
must be specified when SYMMETRY
is invoked.
The EOMSOL enables the user to switch between two algorithms for solving EOMCCSD eigenproblem. When EOMSOL is set equal to 1 (eomsol 1
directive in the tce group) the old solver is invoked. The advantage of this solver is a possibility of finding states of complicated configurational structure, for example doubly excited states. However, the dimension of the iterative space increases with each iteration and in effect this algorithm requires large memory allocations especially for large systems. In order to address this bottleneck, new algorithm (eomsol 2
directive in the tce group) was designed. In EOMSOL 2 algorithm all iterations are split into microcycles corresponding to diis microiterations (the use of diis
parameter is discussed earlier). This algorithm enables the user to precisely estimate the memory usage in the EOMCCSD calculations, which is equal to diis*nroots*(size_x1+size_x2), where diis is the length of the DIIS cycle, nroots is the number of sought roots, size_x1 corresponds to the size of GA storing singly excited EOMCC almplitudes, and size_x2 is the size of GA with doubly excited EOMCC amplitudes. Generally, larger values of diis parameter lead to a faster convergence, however, this happens at the expense of larger memory requirements. It is recommended not to use in the EOMCCSD calculations with eomsol 2
diis parameter smaller than 5, which is its default value. The EOMSOL 2 algorithm uses the CIS vectors as initial guesses, and for this reason is suited mainly to track singly excited states. By default, the EOMSOL 1 option is called in the EOMCCSD calculations. It should be also stressed that all iterative EOMCC methods with higher than double excitations use EOMSOL 1 approach.
In some situations it is convenient to use separate convergence threshold for the CCSD and EOMCCSD solvers. This can be achieved by setting proper environmetal variables. In the following example
geometry/basis set specifications\ntce \n thresh 1.0d-6\n ccsd\n nroots 2\nend\nset tce:thresheom 1.0d-4\ntask tce energy\n
the CCSD equations will be converged to the 1.0d-6 threshold while the EOMCCSD ones to 1.0d-4. This option shoul dbe used with the eomsol 2
option. In some situations finding several (n) roots to the EOMCCSD equations can be quite challenging. To by-pass this problem one can use the \u201cn+1\u201d model, i.e., we request another root to be converged. Usually, the presence the \u201cbuffer\u201d root can imporve the iterative process for n roots of interest. However, the buffer root does not have to be converged to the same accuracy as n roots of interest. The follwing example, shows how to handle this process (we chose n=2, n+1=3):
geometry/basis set specifications\ntce \n freeze core\n ccsd\n nroots 3\n thresh 1.0d-6\nend\nset tce:thresheom 1.0d-4\nset tce:threshl 1.0d-3\ntask tce energy\n
In this example the CCSD equations are solved with the 1.0d-6 threshold, the first n (2) EOMCCSD roots are determined with the 10d-4 accuracy, while the buffer root is determined with relax conv. criterion 1.0d-3.
"},{"location":"TCE.html#2eorb-alternative-storage-of-two-electron-integrals","title":"2EORB: alternative storage of two-electron integrals","text":"In the 5.0 version a new option has been added in order to provide more economical way of storing two-electron integrals used in CC calculations based on the RHF and ROHF references. The 2EORB
keyword can be used for all CC methods except for those using an active-space (CCSDt) up to NWChem version 6.3. After that, further optimization restricted the use of 2EORB
to CCSD-based methods. Note that the four-index transformation is usually an insignificant amount of the wall time for methods involving iterative triples anyway. With 2EORB, all two-electron integrals are transformed and subsequently stored in a way which is compatible with assumed tiling scheme. The transformation from orbital to spinorbital form of the two-electron integrals is performed on-the-fly during execution of the CC module. This option, although slower, allows to significantly reduce the memory requirements needed by the first half of 4-index transformation and final file with fully transformed two-electron integrals. Savings in the memory requirements on the order of magnitude (and more) have been observed for large-scale open-shell calculations.
Several new computation-intensive algorithms has been added with the purpose of improving scalability and overcoming local memory bottleneck of the 5.0 2EORB
4-index transformation. In order to give the user a full control over this part of the TCE code several keywords were designed to define the most vital parameters that determine the perfromance of 4-index transformation. All new keywords must be used with the 2EORB
keyword, and thus will not work beyond CCSD methods after NWChem 6.3 (see explanation for 2EORB
above). The 2emet keyword (default value 1 or 2emet 1
, refers to the older 4-index transformation), defines the algorithm to be used. By putting 2emet 2
the TCE code will execute the algoritm based on the two step procedure with two intermediate files. In some instances this algorithm is characterized by better timings compared to algorithms 3 and 4, although it is more memory demanding. In contrast to algorithms nr 1,3, and 4 this approach can make use of a disk to store intermediate files. For this purpose one should use the keyword idiskx
(idiskx 0
causes that all intermediate files are stored on global arrays, while idiskx 1
tells the code to use a disk to store intermediates; default value of idiskx
is equal 0). Algorithm nr 3 (2emet 3
) uses only one intermediate file whereas algorithm nr 4 (2emet 4
) is a version of algorithm 3 with the option of reducing the memory requirements. For example, by using the new keyword split 4
we will reduce the size of only intermediate file by factor of 4 (the split
keyword can be only used in the context of algorithm nr 4). All new algorithms (i.e. 2emet 2+) use the attilesize setting to define the size of the atomic tile. By default attilesize
is set equal 30. For larger systems the use of larger values of attilesize
is recommended (typically between 40-60).
Additional algorithms are numbered 5, 6 and 9. Other values of 2emet
are not supported and refer to methods which do not function properly. Algorithms 5 and 6 were written as out-of-core N5 methods (idiskx1
) and are the most efficient algorithms at the present time. The corresponding in-core variants (idiskx 0
) are available but require excessive memory with respect to the methods discussed above, although they may be faster if sufficient memory is available (to get enough memory often requires excessive nodes, which decreases performance in the later stages of the calculation). The difference between 5 and 6 is that 5 writes to a single file (SF or GA) while 6 uses multiple files. For smaller calculations, particularly single-node jobs, 5 is faster than 6, but for more than a handful of processors, algorithm 6 should be used. The perforance discrepancy depends on the hardware used but in algorithm eliminates simulataneous disk access on parallel file systems or memory mutexes for the in-core case. For NFS filesystems attached to parallel clusters, no performance differences have been observed, but for Lustre and PVFS they are signficant. Using algorithm 5 for large parallel file systems will make the file system inaccessible to other users, invoking the wrath of system administrators.
Algorithm 9 is an out-of-core solution to the memory bottleneck of the 2-e integrals. In this approach, the intermediates of the 4-index transformation as well as the MO integrals are stored in an SF file. As before, this requires a shared file system. Because algorithm 9 is based upon algorithm 5, described above, it is not expected to scale. The primary purpose of algorithm 9 is to make the performance of the NWChem coupled-cluster codes competive with fast serial codes on workstations. It succeeds in this purpose when corresponding functionality is compared. A more scalable version of this algorithm is possible, but the utility is limited since large parallel computers do not permit the wall times necessary to use an out-of-core method, which is necessarily slower than the in-core variant. An extensible solution to these issues using complex heterogeneous I/O is in development. Restarting with algorithm 9 is not supported and attempting to use this feature with the present version may produce meaningless results.
New is the inclusion of multiple 2emet
options for the spin-orbital transformations, which are the default when 2eorb is not set and are mandatory for UHF and KS references. The are currently three algorithms 1, 2 and 3 available. The numbering scheme does not correspond in any way to the numbering scheme for the 2eorb case, except that 2emet 1
corresponds to the default algorithm present in previous releases, which uses the user-defined I/O scheme. Algorithm 2 (2emet 2
) writes an SF file for the half-transformed integrals, which is at least an order-of-magnitude larger than the fully-transformed integrals, but stores the fully-transformed integrals in core. Thus, once the 4-index transformation is complete, this algorithm will perform exactly as when algorithm 1 is used. Unfortuntely, the spin-orbital 2-e fully-transformed integrals are still quite large and an algorithm corresponding to 2eorb/2emet=9 is available with 2emet 3
. Algorithm 3 is also limited in its scalability, but it permits relatively large UHF-based calculations using single workstations for patient users.
In cases where the user has access to both shared and local filesystems for parallel calculations, the permanent_dir
setting refers to the location of SF files. The file system for scratch_dir
will not be used for any of the 4-index transformation algorithms which are compatible with io=ga
.
Algorithms 13 and 14 are the N5 variants of algorithms 3 and 4. They are the most efficient in core GA-based algorithms for the RHF and ROHF reference functions. Again, two parameters are needed to define the perfromance of these algorithms: tilesize and attilesize. By default attilesize is set equal to 40. In all runs tilesize is required to be less than attilesize (tilesize < attilesize).
New 4-index transformation for RHF/ROHF references (2emet 15
) is available in NWChem 6.5. In contrast to algorithms 13 and 14 inter-processor communication is significantly reduced resulting in much better performance.
In the later part of this manual several examples illustrate the use of the newly introduced keywords.
An efficient loop-fused four-index transfromations for RHF and ROHF references can be enabled by the sequence 2eorb/2emet 16
.
In 6.5 version of NWChem we have enabled versions of the CCSD(T) and CR-EOMCCSD(T) codes, which by-pass the local memory limitation of previous implementations. For this purpose a sliced versions of the CCSD(T)/CR-EOMCCSD(T) codes have been developed (see K. Kowalski, S. Krishnamoorthy, R. Olson, V. Tipparaju, E. Apra, Supercomputing 2011, Seattle). In order to enable these versions it is enough to add
set tce:xmem 100\n
which defines maximum memory size (in MB) for the slice of 6-dimensional tensors (in the current example 100 MB; for more details see QA tests tce_ccsd_t_xmem and tce_cr_eomccsd_t_xmem).
"},{"location":"TCE.html#dipole-the-ground-and-excited-state-dipole-moments","title":"DIPOLE: the ground- and excited-state dipole moments","text":"When this is set, the ground-state CC calculation will enter another round of iterative step for the so-called \u039b equation to obtain the one-particle density matrix and dipole moments. Likewise, for excited-states (EOM-CC), the transition moments and dipole moments will be computed when (and only when) this option is set. In the latter case, EOM-CC left hand side solutions will be sought incurring approximately three times the computational cost of excitation energies alone (note that the EOM-CC effective Hamiltonian is not Hermitian and has distinct left and right eigenvectors).
"},{"location":"TCE.html#nofock-not-recompute-fock-matrix","title":"(NO)FOCK: (not) recompute Fock matrix","text":"The default is FOCK
meaning that the Fock matrix will be reconstructed (as opposed to using the orbital energies as the diagonal part of Fock). This is essential in getting correct correlation energies with ROHF or DFT reference wave functions. However, currently, this module cannot reconstruct the Fock matrix when one-component relativistic effects are operative. So when a user wishes to run TCE\u2019s correlation methods with DK or other relativistic reference, NOFOCK
must be set and orbital energies must be used for the Fock matrix.
Generate Density Matrix that can be used in the DPLOT module as described in the Example section.
"},{"location":"TCE.html#print-the-verbosity","title":"PRINT: the verbosity","text":"This keyword changes the level of output verbosity. One may also request some particular items in the table below.
Item Print Level Description \u201ctime\u201d vary CPU and wall times \u201ctile\u201d vary Orbital range tiling information \u201ct1\u201d debug T1 excitation amplitude dumping \u201ct2\u201d debug T2 excitation amplitude dumping \u201ct3\u201d debug T3 excitation amplitude dumping \u201ct4\u201d debug T4 excitation amplitude dumping \u201cgeneral information\u201d default General information \u201ccorrelation information\u201d default TCE information \u201cmbpt2\u201d debug Canonical HF MBPT2 test \u201cget_block\u201d debug I/O information \u201cput_block\u201d debug I/O information \u201cadd_block\u201d debug I/O information \u201cfiles\u201d debug File information \u201coffset\u201d debug File offset information \u201cao1e\u201d debug AO one-electron integral evaluation \u201cao2e\u201d debug AO two-electron integral evaluation \u201cmo1e\u201d debug One-electron integral transformation \u201cmo2e\u201d debug Two-electron integral transformation
Printable items in the TCE modules and their default print levels
"},{"location":"TCE.html#sample-input","title":"Sample input","text":"The following is a sample input for a ROHF-UCCSD energy calculation of a water radical cation.
START h2o\nTITLE \"ROHF-UCCSD/cc-pVTZ H2O\"\nCHARGE 1\nGEOMETRY\n O 0.00000000 0.00000000 0.12982363\n H 0.75933475 0.00000000 -0.46621158\n H -0.75933475 0.00000000 -0.46621158\nEND\nBASIS\n * library cc-pVTZ\nEND\nSCF\n ROHF\n DOUBLET\n THRESH 1.0e-10\n TOL2E 1.0e-10\nEND\nTCE\n CCSD\nEND\nTASK TCE ENERGY\n
The same result can be obtained by the following input:
START h2o\nTITLE \"ROHF-UCCSD/cc-pVTZ H2O\"\nCHARGE 1\nGEOMETRY\n O 0.00000000 0.00000000 0.12982363\n H 0.75933475 0.00000000 -0.46621158\n H -0.75933475 0.00000000 -0.46621158\nEND\nBASIS\n * library cc-pVTZ\nEND\nSCF\n ROHF\n DOUBLET\n THRESH 1.0e-10\n TOL2E 1.0e-10\nEND\nTASK UCCSD ENERGY\n
EOMCCSD calculations with EOMSOL 2 algorithm. In these claculations the diis value of 8 will be used both in the CCSD and EOMCCSD iterations.
TITLE \"tce_eomccsd_eomsol2\"\nECHO\nSTART tce_eomccsd_eomsol2\nGEOMETRY UNITS ANGSTROM\nN .034130 -.986909 .000000\nN -1.173397 .981920 .000000\nC -1.218805 -.408164 .000000\nC -.007302 1.702153 .000000\nC 1.196200 1.107045 .000000\nC 1.289085 -.345905 .000000\nO 2.310232 -.996874 .000000\nO -2.257041 -1.026495 .000000\nH .049329 -1.997961 .000000\nH -2.070598 1.437050 .000000\nH -.125651 2.776484 .000000\nH 2.111671 1.674079 .000000\nEND\nBASIS\n * library 6-31G\nEND\nSCF\n THRESH 1.0e-10\n TOL2E 1.0e-10\n SINGLET\n RHF\nEND\nTCE\n FREEZE ATOMIC\n CREOMSD(T)\n EOMSOL 2\n DIIS 8\n TILESIZE 15\n THRESH 1.0d-5\n 2EORB\n 2EMET 13\n NROOTS 1\nEND\nTASK TCE ENERGY\n
EOM-CCSDT calculation for excitation energies, excited-state dipole, and transition moments.
START tce_h2o_eomcc\nGEOMETRY UNITS BOHR\n H 1.474611052297904 0.000000000000000 0.863401706825835\n O 0.000000000000000 0.000000000000000 -0.215850436155089\n H -1.474611052297904 0.000000000000000 0.863401706825835\nEND\nBASIS\n * library sto-3g\nEND\nSCF\n SINGLET\n RHF\nEND\nTCE\n CCSDT\n DIPOLE\n FREEZE CORE ATOMIC\n NROOTS 1\nEND\nTASK TCE ENERGY\n
Active-space CCSDt/EOMCCSDt calculations (version I) of several excited states of the Be3 molecule. Three highest-lying occupied \u03b1 and \u03b2 orbitals (active_oa and active_ob) and nine lowest-lying unoccupied \u03b1 and \u03b2 orbitals (active_va and active_vb) define the active space.
START TCE_ACTIVE_CCSDT\nECHO\nGEOMETRY UNITS ANGSTROM\nSYMMETRY C2V\n BE 0.00 0.00 0.00\n BE 0.00 1.137090 -1.96949\nend\nBASIS spherical\n # --- DEFINE YOUR BASIS SET ---\nEND\nSCF\n THRESH 1.0e-10\n TOL2E 1.0e-10\n SINGLET\n RHF\nEND\nTCE\n FREEZE ATOMIC\n CCSDTA\n TILESIZE 15\n THRESH 1.0d-5\n ACTIVE_OA 3\n ACTIVE_OB 3\n ACTIVE_VA 9\n ACTIVE_VB 9\n T3A_LVL 1\n NROOTS 2\nEND \nTASK TCE ENERGY\n
Completely renormalized EOMCCSD(T) (CR-EOMCCSD(T)) calculations for the ozone molecule as described by the POL1 basis set. The CREOMSD(T) directive automatically initialize three-step procedure: (1) CCSD calculations; (2) EOMCCSD calculations; (3) non-iterative CR-EOMCCSD(T) corrections.
START TCE_CR_EOM_T_OZONE\nECHO\nGEOMETRY UNITS BOHR\nSYMMETRY C2V\n O 0.0000000000 0.0000000000 0.0000000000\n O 0.0000000000 -2.0473224350 -1.2595211660\n O 0.0000000000 2.0473224350 -1.2595211660\nEND\nBASIS SPHERICAL\nO S\n 10662.285000000 0.00079900\n 1599.709700000 0.00615300\n 364.725260000 0.03115700\n 103.651790000 0.11559600\n 33.905805000 0.30155200\nO S\n 12.287469000 0.44487000\n 4.756805000 0.24317200\nO S\n 1.004271000 1.00000000\nO S\n 0.300686000 1.00000000\nO S\n 0.090030000 1.00000000\nO P\n 34.856463000 0.01564800\n 7.843131000 0.09819700\n 2.306249000 0.30776800\n 0.723164000 0.49247000\nO P\n 0.214882000 1.00000000\nO P\n 0.063850000 1.00000000\nO D\n 2.306200000 0.20270000\n 0.723200000 0.57910000\nO D\n 0.214900000 0.78545000\n 0.063900000 0.53387000\nEND\nSCF\n THRESH 1.0e-10\n TOL2E 1.0e-10\n SINGLET\n RHF\nEND\nTCE\n FREEZE ATOMIC\n CREOMSD(T)\n TILESIZE 20\n THRESH 1.0d-6\n NROOTS 2\nEND\nTASK TCE ENERGY\n
The input for the active-space CR-EOMCCSD(T) calculations (the uracil molecule in the 6-31G* basis set). In this example, the model space is specified by defining the number of highest occupied orbitals (noact) and the number of lowest unoccupied orbitals (nuact) that will be considered as the active orbitals. In any type of the active-space CR-EOMCCSD(T) calculatoins based on the RHF and ROHF references more efficient versions of the orbital 4-index transformation can be invoked (i.e., 2emet 13
or 2emet 14
).
title \"uracil-6-31-Gs-act\"\necho\nstart uracil-6-31-Gs-act \nmemory stack 1000 mb heap 100 mb global 1000 mb noverify\ngeometry units angstrom\n N .034130 -.986909 .000000\n N -1.173397 .981920 .000000\n C -1.218805 -.408164 .000000\n C -.007302 1.702153 .000000\n C 1.196200 1.107045 .000000\n C 1.289085 -.345905 .000000\n O 2.310232 -.996874 .000000\n O -2.257041 -1.026495 .000000\n H .049329 -1.997961 .000000\n H -2.070598 1.437050 .000000\n H -.125651 2.776484 .000000\n H 2.111671 1.674079 .000000\nend\nbasis cartesian\n * library 6-31G*\nend\nscf\n thresh 1.0e-10\n tol2e 1.0e-10\n singlet\n rhf\nend\ntce\n freeze atomic\n creom(t)ac\n oact 21\n uact 99\n tilesize 15\n thresh 1.0d-5\n 2eorb\n 2emet 13\n nroots 1\n symmetry\n targetsym a'\nend\ntask tce energy\n
The active-space in the active-space CR-EOMCCSD(T) calculations can be alternatively specified by defining the energy window
[emin_act,emax_act]. All orbitals with orbital energies falling into this widnow will considered as active (the active space in the following example is different from the one used in the previous example).
title \"uracil-6-31-Gs-act\"\necho\nstart uracil-6-31-Gs-act \nmemory stack 1000 mb heap 100 mb global 1000 mb noverify\ngeometry units angstrom\n N .034130 -.986909 .000000\n N -1.173397 .981920 .000000\n C -1.218805 -.408164 .000000\n C -.007302 1.702153 .000000\n C 1.196200 1.107045 .000000\n C 1.289085 -.345905 .000000\n O 2.310232 -.996874 .000000\n O -2.257041 -1.026495 .000000\n H .049329 -1.997961 .000000\n H -2.070598 1.437050 .000000\n H -.125651 2.776484 .000000\n H 2.111671 1.674079 .000000\nend\nbasis cartesian\n * library 6-31G*\nend\nscf\n thresh 1.0e-10\n tol2e 1.0e-10\n singlet\n rhf\nend\ntce\n freeze atomic\n creom(t)ac\n emin_act -0.5\n emax_act 1.0\n tilesize 15\n thresh 1.0d-5\n 2eorbe\n 2emet 13\n nroots 1\n symmetry\n targetsym a'\nend\ntask tce energy \n
The LR-CCSD(T) calculations for the glycine molecule in the aug-cc-pVTZ basis set. Option 2EORB is used in order to minimize memory requirements associated with the storage of two-electron integrals.
START TCE_LR_CCSD_T\nECHO\nGEOMETRY UNITS BOHR\n O -2.8770919486 1.5073755650 0.3989960497\n C -0.9993929716 0.2223265108 -0.0939400216\n C 1.6330980507 1.1263991128 -0.7236778647\n O -1.3167079358 -2.3304840070 -0.1955378962\n N 3.5887721300 -0.1900460352 0.6355723246\n H 1.7384347574 3.1922914768 -0.2011420479\n H 1.8051078216 0.9725472539 -2.8503867814\n H 3.3674278149 -2.0653924379 0.5211399625\n H 5.2887327108 0.3011058554 -0.0285088728\n H -3.0501350657 -2.7557071585 0.2342441831\nEND\nBASIS\n * library aug-cc-pVTZ\nEND\nSCF\n THRESH 1.0e-10\n TOL2E 1.0e-10\n SINGLET\n RHF\nEND\nTCE\n FREEZE ATOMIC\n 2EORB\n TILESIZE 15\n LR-CCSD(T)\n THRESH 1.0d-7\nEND\nTASK TCE ENERGY\n
The CCSD calculations for the triplet state of the C20 molecule. New algorithms for 4-index tranformation are used.
title \"c20_cage\"\necho\nstart c20_cage\nmemory stack 2320 mb heap 180 mb global 2000 mb noverify\ngeometry print xyz units bohr\n symmetry c2\n C -0.761732 -1.112760 3.451966\n C 0.761732 1.112760 3.451966\n C 0.543308 -3.054565 2.168328\n C -0.543308 3.054565 2.168328\n C 3.190553 0.632819 2.242986\n C -3.190553 -0.632819 2.242986\n C 2.896910 -1.982251 1.260270\n C -2.896910 1.982251 1.260270\n C -0.951060 -3.770169 0.026589\n C 0.951060 3.770169 0.026589\n C 3.113776 2.128908 0.076756\n C -3.113776 -2.128908 0.076756\n C 3.012003 -2.087494 -1.347695\n C -3.012003 2.087494 -1.347695\n C 0.535910 -2.990532 -2.103427\n C -0.535910 2.990532 -2.103427\n C 3.334106 0.574125 -2.322563\n C -3.334106 -0.574125 -2.322563\n C -0.764522 -1.081362 -3.453211\n C 0.764522 1.081362 -3.453211\nend\nbasis spherical\n * library cc-pvtz\nend\nscf\n triplet\n rohf\n thresh 1.e-8\n maxiter 200\nend\ntce\n ccsd\n maxiter 60\n diis 5\n thresh 1.e-6\n 2eorb\n 2emet 3\n attilesize 40\n tilesize 30\n freeze atomic\nend\ntask tce energy\n
"},{"location":"TCE.html#tce-response-properties","title":"TCE Response Properties","text":""},{"location":"TCE.html#introduction","title":"Introduction","text":"Response properties can be calculated within the TCE. Ground-state dipole polarizabilities can be performed at the CCSD, CCSDT and CCSDTQ levels of theory. Neither CCSDT-LR nor CCSDTQ-LR are compiled by default. Like the rest of the TCE, properties can be calculated with RHF, UHF, ROHF and DFT reference wavefunctions.
Specific details for the implementation of CCSD-LR and CCSDT-LR can be found in the following papers:
An appropriate background on coupled-cluster linear response (CC-LR) can be found in the references of those papers.
"},{"location":"TCE.html#performance","title":"Performance","text":"The coupled-cluster response codes were generated in the same manner as the rest of the TCE, thus all previous comments on performance apply here as well. The improved offsets available in the CCSD and EOM-CCSD codes is now also available in the CCSD-\u039b and CCSD-LR codes. The bottleneck for CCSD-LR is the same as EOM-CCSD, likewise for CCSDT-LR and EOM-CCSDT. The CCSD-LR code has been tested on as many as 1024 processors for systems with more than 2000 spin-orbitals, while the CCSDT-LR code has been run on as many as 1024 processors. The CCSDTQ-LR code is not particularly useful due to the extreme memory requirements of quadruples amplitudes, limited scalability and poor convergence in the CCSDTQ equations in general.
"},{"location":"TCE.html#input","title":"Input","text":"The input commands for TCE response properties exclusively use set directives (see SET) instead of TCE input block keywords. There are currently only three commands available:
set tce:lineresp <logical lineresp default: F>\nset tce:afreq <double precision afreq(9) default: 0.0> \nset tce:respaxis <logical respaxis(3) default: T T T>\n
The boolean variable lineresp invokes the linear response equations for the corresponding coupled-cluster method (only CCSD and CCSDT possess this feature) and evaluates the dipole polarizability. When lineresp is true, the \u039b-equations will also be solved, so the dipole moment is also calculated. If no other options are set, the complete dipole polarizability tensor will be calculated at zero frequency (static). Up to nine real frequencies can be set; adding more should not crash the code but it will calculate meaningless quantities. If one desires to calculate more frequencies at one time, merely change the line double precision afreq(9)
in $NWCHEM_TOP/src/tce/include/tce.fh
appropriately and recompile.
The user can choose to calculate response amplitudes only for certain axis, either because of redundancy due to symmetry or because of memory limitations. The boolean vector of length three respaxis is used to determine whether or not a given set of response amplitudes are allocated, solved for, and used in the polarizability tensor evaluation. The logical variables represent the X, Y, Z axes, respectively. If respaxis is set to T F T, for example, the responses with respect to the X and Z dipoles will be calculated, and the four (three unique) tensor components will be evaluated. This feature is also useful for conserving memory. By calculating only one axis at a time, memory requirements can be reduced by 25% or more, depending on the number of DIIS vectors used. Reducing the number of DIIS vectors also reduces the memory requirements.
It is strongly advised that when calculating polarizabilities at high-frequencies, that user set the frequencies in increasing order, preferably starting with zero or other small value. This approach is computationally efficient (the initial guess for subsequent responses is the previously converged value) and mitigates starting from a zero vector for the response amplitudes.
"},{"location":"TCE.html#examples","title":"Examples","text":"This example runs in-core on a large workstation.
geometry units angstrom\n symmetry d2h\n C 0.000 1.390 0.000\n H 0.000 2.470 0.000\n C 1.204 0.695 0.000\n H 2.139 1.235 0.000\n C 0.000 -1.390 0.000\n H 0.000 -2.470 0.000\n C -1.204 -0.695 0.000\n H -2.139 -1.235 0.000\n C 1.204 -0.695 0.000\n H 2.139 -1.235 0.000\n C -1.204 0.695 0.000\n H -2.139 1.235 0.000\nend\nbasis spherical\n * library aug-cc-pvdz\nend\ntce\n freeze atomic\n ccsd\n io ga\n 2eorb\n tilesize 16\nend\nset tce:lineresp T\nset tce:afreq 0.000 0.072\nset tce:respaxis T T T\ntask tce energy\n
This is a relatively simple example for CCSDT-LR.
geometry units au\n symmetry c2v\n H 0 0 0\n F 0 0 1.7328795\nend\nbasis spherical\n * library aug-cc-pvdz\nend\ntce\n ccsdt\n io ga\n 2eorb\nend\nset tce:lineresp T\nset tce:afreq 0.0 0.1 0.2 0.3 0.4\nset tce:respaxis T F T\ntask tce energy\n
"},{"location":"TCE.html#tce-restart-capability","title":"TCE Restart Capability","text":""},{"location":"TCE.html#overview_1","title":"Overview","text":"Check-pointing and restart are critical for computational chemistry applications of any scale, but particularly those done on supercomputers, or run for an extended period on workstations and clusters. The TCE supports parallel check-pointing and restart using the Shared Files (SF) library in the Global Arrays Tools. The SF library requires that the file system be accessible by every node, so reading and writing restart files can only be performed on a shared file system. For workstations, this condition is trivially met. Restart files must be persistent to be useful, so volatile file systems or those which are periodicly erased should not be used for check-pointing.
Restart is possible for all ground-state amplitudes (T, \u039b and T(1) but not for excited-state amplitudes, as in an EOM-CC calculation. The latter functionality is under development.
Restart capability is useful in the following situations:
At the present time, restarting the amplitudes during a potential energy surface scan or numerical geometry optmization/frequency calculation is not advised due to the phase issue in the molecular orbital coefficients. If the phase changes, the amplitudes will no longer be a useful guess and may lead to nonsense results. Expert users may be able to use restart when the geometry varies using careful choices in the SCF input by using the rotate
and lock
options but this use of restart is not supported.
If SF encounters a failure during restart I/O, the job will fail. The capability to ignore a subset of failures, such as when saving the amplitudes prior to convergence, will be available in the future. This is useful on some large machines when the filesystem is being taxed by another job and may be appear unavailable at the moment a check-point write is attempted.
The performance of SF I/O for restart is excellent and the wall time for reading and writing integrals and amplitudes is negligible, even on a supercomputer (such systems have very fast parallel file systems in most cases). The only platform for which restart may cause I/O problems is BlueGene, due to ratio of compute to I/O nodes (64 on BlueGene/P).
"},{"location":"TCE.html#input_1","title":"Input","text":"set tce:read_integrals <logical read_integrals default: F F F F F>\nset tce:read_t <logical read_t default: F F F F>\nset tce:read_l <logical read_l default: F F F F>\nset tce:read_tr <logical read_tr default: F F F F>\nset tce:save_integrals <logical save_integrals default: F F F F F>\nset tce:save_t <logical save_t default: F F F F>\nset tce:save_l <logical save_l default: F F F F>\nset tce:save_tr <logical save_tr default: F F F F>\nset tce:save_interval <integer save_interval default: 100000>\n
The boolean variables read_integrals and save_integrals control which integrals are read/saved. The first location is the 1-e integrals, the second is for the 2-e integrals, and the third is for dipole integrals. The fourth and fifth positions are reserved for quadrupole and octupole integrals but this functionality is not available. The read_t
, read_l
, read_tr
, save_t
, save_l
and save_tr
variables control the reading/saving of the T, \u039b and T(1) (response) amplitudes. Restart control on the response amplitudes is implicitly controlled by the value of respaxis (see above). Requesting amplitudes that are beyond the scope of a given calculation, such as T3 in a CCSD calculation, does not produce an error as these commands will never be processed.
Attempting to restart with a set of amplitudes without the corresponding integrals is ill-advised, due to the phase issue discussed above. For the same reason, one cannot save a subset of the integrals, so if it is even remotely possible that the dipole moment or polarizabilities will be desired for a given molecule, the dipole integrals should be saved as well. It is possible to save the dipole integrals without setting dipole in the TCE input block; setting save_integrals(3) true is sufficient for this to occur.
The save_interval variable controls the frequency with which amplitudes are saved. By default, the amplitudes are saved only when the iterative process has converged, meaning that if the iterations do not converge in less than the maximum, one must start the calculation again from scratch. The solution is to set save_interval to a smaller value, such as the number of DIIS cycles being used.
The user shall not change the tilesize when reading in saved amplitudes. The results of this are catastrophic and under no circumstance will this lead to physically meaningful results. Restart does not work for 2eorb and 2emet 9
; no error will be produced but the results may be meaningless.
geometry units au\n symmetry c2v\n H 0 0 0\n F 0 0 1.7328795\nend\nbasis spherical\n * library aug-cc-pvdz\nend\ntce\n ccsdt\n io ga\nend\nset tce:lineresp T\nset tce:afreq 0.0 0.1 0.2 0.3 0.4\nset tce:respaxis T F T\ntask tce energy\n
"},{"location":"TCE.html#maximizing-performance","title":"Maximizing performance","text":"The following are recommended parameters for getting the best performance and efficiency for common methods on various hardware configurations. The optimal settings are far from extensible and it is extremely important that users take care in how they apply these recommendations. Testing a variety of settings on a simple example is recommended when optimal settings are desired. Nonetheless, a few guiding principles will improve the performance of TCE jobs markedly, including making otherwise impossible jobs possible.
"},{"location":"TCE.html#memory-considerations","title":"Memory considerations","text":"The default memory settings for NWChem are not optimal for TCE calculations. When 2 GB of memory is available per process, the following settings are close to optimal for CCSD jobs
memory stack 800 mb heap 100 mb global 1000 mb\n
for property jobs, which require more amplitudes to be stored, it is wise to favor the global allocation
memory stack 500 mb heap 100 mb global 1300 mb\n
If you get an error for ga_create during the iterative steps, reduce the number of DIIS vectors. If this error occurs during the four-index transformation (after d_v2 filesize appears) you need more GA space, a different 2emet, or more nodes.
The memory requirements for CCSD(T) are quite different because the triples are generated in local memory. The value of tilesize should not be larger than 30 in most cases and one should set something similar to the following
memory stack 1200 mb heap 100 mb global 600 mb\n
The local memory requires will be tilesizeN where N=4 for CCSD, N=6 for CCSD(T) and CCSDT, and N=8 for CCSDTQ. One should set tilesize to 16 or less for CCSDT and CCSDTQ, although symmetry will affect the local memory use significantly. The local memory usage of the CR-EOMCCSD(T) approach has recently been significantly reduced to the level of the CCSD(T) approach (2*tilesize6).
"},{"location":"TCE.html#using-openmp-in-tce","title":"Using OpenMP in TCE","text":"TCE compute kernels are both floating-point and bandwidth intensive, hence are amenable to multithreading. However, not all TCE kernels support OpenMP, and therefore performance may be limited by Amdahl\u2019s law. Furthermore, Global Arrays communication is not yet thread-safe and must be called outside of threaded regions, potentially limiting performance. However, even partial OpenMP is likely to improve performance relative to idle cores, in the case where memory limitations or other considerations (see below for the case of Xeon Phi coprocessors) force the user to run NWChem on a subset of the available CPU cores.
Currently, OpenMP threading is available in the following kernels:
The development version of NWChem (post-6.6) supports OpenMP more kernels, including:
In most cases, NWChem runs best on CPU-only systems without OpenMP threads. However, modest OpenMP has been found to improve performance of CCSD(T) jobs. We expect the benefits of OpenMP to be more visible with time, as NWChem achieves more complete coverage with OpenMP and as platforms evolve to have more and more cores per node.
"},{"location":"TCE.html#how-to-run-large-ccsdeomccsd-calculations","title":"How to run large CCSD/EOMCCSD calculations","text":"When running large CCSD or EOMCCSD calculations for large systems (number of orbitals larger than 400) and using large number of cores it is recommended to switch to workflow based implementation of CCSD/EOMCCSD methods.
The original CCSD/EOMCCSD TCE implementations are aggregates of a large number of subroutines, which calculate either recursive intermediates or contributions to residual vector. The dimensionalities of the tensors involved in a given subroutine greatly impact the memory, computation, and communication characteristics of each subroutine, which can lead to pronounced problems with load balancing. For example, for the most computationally intensive part of the CCSD/EOMCCSD approaches associated with the inclusion of 4-particle integrals, the corresponding task pool (the number of tasks in a subroutine) can easily be 2 orders of magnitude larger than the task pool for subroutines calculating one-body intermediates. To address this problem and improve the scalability of the CCSD/EOMCCSD implementations, we exploited the dependencies exposed between the task pools into classes (C) characterized by a collective task pool. This was done in such a way as to ensure sufficient parallelism in each class while minimizing the total number of such classes. This procedure enabled us to reduce the number of synchronization steps from nearly 80, in the EOMCCSD case, down to 4. Optimized versions of the CCSD/EOMCCSD codes are enabled once the
set tce:nts T\n
directive is used in the input file. Compared to the original CCSD/EOMCCSD implementations the new approaches requires more global memory. The new CCSD/EOMCCSD implementations provides significant improvements in the parallel performance and average time per iteration.
References:
H.S. Hu, K. Bhaskaran-Nair, E. Apra, N. Govind, K. Kowalski, J. Phys. Chem. A 118, 9087 (2014).
K. Kowalski, S. Krishnamoorthy, R.M. Olson, V. Tipparaju, E. Apra, K. Kowalski, High Performance Computing, Networking, Storage and Analysis (SC), 2011 International Conference 1 (2011).
"},{"location":"TCE.html#scf-options","title":"SCF options","text":"For parallel jobs on clusters with poor disk performance on the filesystem used for scratch_dir, it is a good idea to disable disk IO during the SCF stage of the calculation. This is done by adding semidirect memsize N filesize 0, where N is 80% of the stack memory divided by 8, as the value in this directive is the number of dwords, rather than bytes. With these settings, if the aggregate memory is sufficient to store the integrals, the SCF performance will be excellent, and it will be better than if direct is set in the SCF input block. If scratch_dir is set to a local disk, then one should use as much disk as is permissible, controlled by the value of filesize. On many high-performance computers, filling up the local scratch disk will crash the node, so one cannot be careless with these settings. In addition, on many such machines, the shared file system performance is better than that of the local disk (this is true for many NERSC systems).
"},{"location":"TCE.html#convergence-criteria","title":"Convergence criteria","text":"It makes no sense to converge a calculation to a precision not relevant to experiment. However, the relationship between convergence criteria and calculated quantities is not fully known for some properties. For example, the effect of the convergence criteria on the polarizability is significant in some cases. In the case of CN, convergence of 10-11 is necessary to resolve the polarizability tensor components to 10-2. However, for many systems 10-7 convergence is sufficient to get accurate results for all properties. It is important to calibrate the effect of convergence on property calculations, particularly for open-shell and post-CCSD methods, on a modest basis set before relaxing the convergence criteria too much.
"},{"location":"TCE.html#io-schemes-and-integral-transformation-algorithms","title":"IO schemes and integral transformation algorithms","text":"The effect on memory use of using the 2eorb keyword is huge. However, this option can only be used with IO=GA and an RHF/ROHF reference. There are a number of choices for the integral transformation algorithm when using spin-free integrals. The fastest algorithm is 2EMET=5, but significant disk IO is required for this algorithm. One must set permanent_dir to a fast, shared file system for this algorithm to work. If disk performance is not good, one should use either 2EMET=3 or 2EMET=4 depending on how much memory is available. If one sees a ga_create error with 2EMET=3, then switch to algorithm 4 and add split 8 to the TCE input block.
"},{"location":"TCE.html#using-coprocessor-architectures","title":"Using coprocessor architectures","text":""},{"location":"TCE.html#ccsdt-and-mrccsdt-implementations-for-intel-mic-architectures","title":"CCSD(T) and MRCCSD(T) implementations for Intel MIC architectures","text":"This option is no longer available from version 7.0.0
NWChem 6.5 and 6.6 offer the possibility of using Intel Xeon Phi hardware to perform the most computationally intensive part of the CCSD(T) and MRCCSD(T) (only in NWChem 6.6) calculations (non-iterative triples corrections). The form of input is the same as used in standard TCE CCSD(T) and MRCCSD(T) runs. To enable new implementations please follow compilation directives described below.
Required for compilation: Intel Composer XE version 14.0.3 (or later versions)
Environmental variables required for compilation:
% setenv USE_OPENMP 1\n\n % setenv USE_OFFLOAD 1\n
When using MKL and Intel Composer XE version 14 (or later versions), please use the following settings
% setenv BLASOPT \"-mkl -openmp -lpthread -lm\"\n % setenv SCALAPACK \"-mkl -openmp -lmkl_scalapack_ilp64 -lmkl_blacs_intelmpi_ilp64 -lpthread -lm\"\n
The command require for compilation is
make FC=ifort \n
From our experience using the CCSD(T) and MRCCSD(T) TCE modules, we have determined that the optimal configuration is to use a single Global Arrays ranks for offloading work to each Xeon Phi card.
On the EMSL cascade system, each node is equipped with two coprocessors, and NWChem can allocate one GA ranks per coprocessor. In the job scripts, we recommend spawning just 6 GA ranks for each node, instead of 16 (number that would match the number of physical cores). Therefore, 2 out 6 GA ranks assigned to a particular compute node will offload to the coprocessors, while the remaining 6 cores while be used for traditional CPU processing duties. Since during offload the host core is idle, we can double the number of OpenMP threads for the host (OMP_NUM_THREADS=4
) in order to fill the idle core with work from another GA rank (4 process with 4 threads each will total 16 threads on each node).
NWChem itself automatically detects the available coprocessors in the system and properly partitions them for optimal use, therefore no action is required other than specifying the number of processes on each node (using the appropriate mpirun/mpiexec options) and setting the value of OMP_NUM_THREADS
as in the example above.
Environmental variables useful at run-time:
OMP_NUM_THREADS
is needed for the thread-level parallelization on the Xeon CPU hosts
% setenv OMP_NUM_THREADS 4\n
MIC_USE_2MB_BUFFER greatly improve communication between host and Xeon Phi card
% setenv MIC_USE_2MB_BUFFER 16K\n
Very important: when running on clusters equipped with Xeon Phi and Infiniband network hardware (requiring ARMCI_NETWORK=OPENIB
), the following env. variable is required, even in the case when the Xeon Phi hardware is not utilized.
% setenv ARMCI_OPENIB_DEVICE mlx4_0\n
"},{"location":"TCE.html#ccsdt-method-with-cuda","title":"CCSD(T) method with CUDA","text":"NWChem 6.3 offers a possibility of using GPU accelerators to perform the most computationally intensive part of the CCSD(T) calculations (non-iterative triples corrections). To enable this option one has to enable compilation options described below and add the cuda n
directive to the tce block of input, where n
refers to number of CUDA devices per node.
geometry/basis set specifications
tce \n io ga\n freeze atomic\n thresh 1.0d-6\n tilesize 15\n ccsd(t)\n cuda 1\nend\n
In the example above the number of CUDA devises is set equal to 1, which means that user will use 1 GPU per node.
To enable the compilation of CUDA code one has to set the follwoing variables before the compilation of NWChem.
export TCE_CUDA=Y \nexport CUDA_LIBS=\"-L<Your Path to cuda>/lib64 -L<Your Path to cuda>/lib -lcudart\"\nexport CUDA_FLAGS=\"-arch <Your Cuda architecture>\" \nexport CUDA_INCLUDE=\"-I. -I<Your Path to cuda>/include\"\n
For example:
export TCE_CUDA=Y\nexport CUDA_LIBS=\"-L/usr/local/cuda-5.0/lib64 -L/usr/local/cuda-5.0/lib -lcudart\"\nexport CUDA_FLAGS=\"-arch sm_20 \"\nexport CUDA_INCLUDE=\"-I. -I/usr/local/cuda-5.0/include\"\n
In addition the code needs to be compiled with the following make command
make FC=<fortran compiler> CUDA=nvcc\n
Before running production style calculations we strongly suggest the users to perform QA test from the /nwchem/QA/tests/tce_cuda directory. A full example of a TCE CUDA input file is given below:
start tce_cuda\necho\nmemory stack 1000 mb heap 100 mb global 500 mb verify\ngeometry units bohr\n O 0.00000000 0.00000000 0.22138519\n H 0.00000000 -1.43013023 -0.88554075\n H 0.00000000 1.43013023 -0.88554075\nend\nbasis spherical\n H library cc-pVDZ\n O library cc-pVDZ\nend\ncharge 0\nscf\n thresh 1.0e-10\n tol2e 1.0e-10\n singlet\n rhf\nend\ntce\n ccsd(t)\n io ga\n cuda 1\n tilesize 18\nend\ntask tce energy\n
"},{"location":"TITLE.html","title":"TITLE","text":""},{"location":"TITLE.html#title","title":"TITLE","text":"Specify job title.
This top-level directive allows the user to identify a job or series of jobs that use a particular database. It is an optional directive, and if omitted, the character string containing the input title will be empty. Multiple TITLE directives may appear in the input file (e.g., the water example file) in which case a task will use the one most recently specified. The format for the directive is as follows:
TITLE
The character string
is assigned to the contents of the string following the TITLE directive. If the string contains white space, it must be surrounded by double quotes. For example,
title\u00a0\"This\u00a0is\u00a0the\u00a0title\u00a0of\u00a0my\u00a0NWChem\u00a0job\"
The title is stored in the database and will be used in all subsequent tasks/jobs until redefined in the input.
"},{"location":"Top-level.html","title":"Top-level Directives","text":""},{"location":"Top-level.html#overview","title":"Overview","text":"Top-level directives are directives that can affect all modules in the code. Some specify molecular properties or other data that should apply to all subsequent calculations with the current database. However, most top-level directives provide the user with the means to manage the resources for a calculation and to start computations. As the first step in the execution of a job, NWChem scans the entire input file looking for start-up directives, which NWChem must process before all other input. The input file is then rewound and processed sequentially, and each directive is processed in the order in which it is encountered. In this second pass, start-up directives are ignored.
The following sections describe each of the top-level directives in detail, noting all keywords, options, required input, and defaults.
START/RESTART
PERMANENT_DIR
SCRATCH_DIR
MEMORY
ECHO
TITLE
PRINT / NOPRINT
SET
UNSET
STOP
TASK
ECCE_PRINT
Slides presented at V\u0399-SEEM NAT-GR LS+ : 2018 NWChem Workshop 10-11 September 2018 National Hellenic Research Foundation (NHRF)
Introduction
SCF and DFT
TD-DFT
Correlated Methods
Arrows
Relativity and Spectroscopy
Plane-Wave
Potential Energy Surfaces
QMD
"},{"location":"Tutorial-Slides.html","title":"Tutorial Slides","text":"Introduction
DFT and TDDFT
Correlated Methods
Relativity and Spectroscopy
Plane-Wave
Properties
Potential Energy Surfaces
"},{"location":"Tutorials.html","title":"Tutorials","text":""},{"location":"Tutorials.html#links-to-material-of-past-nwchem-tutorials","title":"Links to material of past NWChem Tutorials","text":"EMSL Integration 2018 meeting Tutorial EMSL 2018
V\u0399-SEEM NAT-GR LS+ : 2018 NWChem Workshop (10-11 September 2018, Athens, Greece) Tutorial Athens 2018
Tutorial 2019 EMSL/ARM Aerosol Summer School
Tutorial 2012 Singapore A*STAR
PRACE Spring School in Computational Chemistry 2019 https://web.archive.org/web/20221103195703/https://events.prace-ri.eu/event/786/attachments/840/1256/QC-workshop-advanced.pdf
Introduction To NWChem by B.J. Lynch (UMN) 2006 https://www.msi.umn.edu/sites/default/files/IntroNWChem.pdf
Quantum Chemistry Course at Radboud University - Nijmegen https://www.theochem.ru.nl/quantumchemistry
Delete data in the RTDB.
This directive gives the user a way to delete simple entries from the database. The general form of the directive is as follows:
UNSET\u00a0<string name>[*]\n
This directive cannot be used with complex objects such as geometries and basis sets. Complex objects are stored using a structured naming convention that is not matched by a simple wild card. A wild-card (*)
specified at the end of the string <name>
will cause all entries whose name begins with that string to be deleted. This is very useful as a way to reset modules to their default behavior, since modules typically store information in the database with names that begin with module:. For example, the SCF program can be restored to its default behavior by deleting all database entries beginning with scf:, using the directive
unset\u00a0scf:*\n
The section on fragment guess has an example using unset on a water dimer calculation.
The following example makes an entry in the database using the SET directive, and then immediately deletes it using the UNSET directive:
set\u00a0mylist\u00a01\u00a02\u00a03\u00a04\u00a0 \nunset\u00a0mylist\n
"},{"location":"VEM-Model.html","title":"VEM (Vertical Excitation or Emission) Model","text":""},{"location":"VEM-Model.html#overview","title":"Overview","text":"The VEM is a model for calculating the vertical excitation (absorption) or vertical emission (fluorescence) energy in solution according to a two-time-scale model of solvent polarization. The model is described in reference1.
The current implementation is based on the VEM(d,RD) algorithm as described in the above paper. The method is available only at the TDDFT level of theory, including both full-linear response TDDFT (sometimes called LR-TDDFT or regular TDDFT) and the Tamm\u2013Dancoff approximation, TDDFT-TDA (sometimes just called TDA). The configuration interaction singles (CIS) wave function method can also be used along with VEM by considering CIS to be a special case of TDDFT-TDA.
The abbreviation VEM originally referred to the vertical excitation model of reference2, but the current implementation of VEM extends to both excitation and emission calculations in solution, and the E in VEM now stands for excitation/emission. Furthermore, the current version of VEM (based on the Marenich et al. paper1) does not reduce to the original VEM of Li et al., but is improved as described in reference1.
The VEM model is based on a nonequilibrium dielectric-continuum approach in terms of two-time-scale solvent response. The solvent\u2019s bulk-electrostatic polarization is described by using the reaction field partitioned into slow and fast components, and only the fast component is self-consistently (iteratively) equilibrated with the charge density of the solute molecule in its final state. During the VEM calculation, the slow component is kept in equilibrium with the initial state\u2019s solute charge density but not with the final state\u2019s one. In the case of vertical absorption the initial state is the ground electronic state of the solute molecule in solution and the final state is an excited electronic state in solution (and vice versa in the case of an emission spectrum). Both the ground- and excited-state calculations involve an integration of the nonhomogeneous-dielectric Poisson equation for bulk electrostatics in terms of the COSMO model as implemented in NWChem with the modified COSMO scaling factor (iscren 0
) and by using the SMD intrinsic atomic Coulomb radii (by default; see the section of the manual describing SMD). The excited-state electron density is calculated using the Z-Vector \u201crelaxed density\u201d approach.
The VEM excitation or emission energy includes only a bulk-electrostatic contribution without any cavity\u2013dispersion\u2013solvent-structure (CDS) contributions (such contributions are used in SMD ground-state calculations as described in the SMD section of this manual, but are not used in VEM calculations). When one considers solvatochromic shifts, the main contributions beyond bulk electrostatics are solute\u2013solvent dispersion interactions, hydrogen bonding (the latter is most important in protic solvents), and perhaps charge transfer between the solute and the solvent. To explicitly account for solute\u2013solvent charge transfer and hydrogen bonding, the user can run a VEM calculation on a supersolute that involves a solute\u2013solvent molecular cluster with one or a few solvent molecules added explicitly to a bare solute. The solute\u2013solvent dispersion contribution to the solvatochromic shift, if desired, can be estimated by the solvation model with state-specific polarizability (SMSSP) described in reference3.
In this case, the user needs to provide values of ground- and excited-state spherically averaged molecular polarizabilities of the solvent.
"},{"location":"VEM-Model.html#syntax","title":"Syntax","text":"The VEM-specific input options are as follows:
"},{"location":"VEM-Model.html#do_cosmo_vem","title":"DO_COSMO_VEM:","text":" do_cosmo_vem <integer do_cosmo_vem default 0>\n
The do_cosmo_vem
can be set to the following values: - 0
(do not do any VEM calculation even if the task tddft gradient line is present; default). - 1
(do a nonequilibrium VEM excitation energy calculation; in this case the task tddft gradient
line should be present, too) - 2
(do an equilibrium VEM excitation energy calculation followed by a nonequilibrium emission energy calculation; task tddft gradient
line should be present)
The VEM solvent (which is water by default) can be specified by using the solvent keyword described in the SMD section of this manual or by specifying the VEM solvent descriptors such as
dielec (real input)
static dielectric constant
dielecinf (real input)
optical dielectric constant which is set (by default) to the squared value of the solvent\u2019s index of refraction (see the keyword soln
, but note that if the solvent is specified with the solvent keyword, the refractive index is set by the program without needing the user to supply it.)
Solvent descriptors set by the program are based on the Minnesota Solvent Descriptor Database4:
If the option do_cosmo_vem 1
or do_cosmo_vem 2
is specified the program will run VEM ground- and excited-state bulk-electrostatic calculations using the COSMO algorithm with the SMD Coulomb radii by default. If the user wants to use the default COSMO radii in such calculations (this is not recommended) the option do_cosmo_smd .false.
should be specified.
If the SMSSP estimate of a solute\u2013solvent dispersion contribution to the solvatochromic shift is desired, the following options should be used:
polgs_cosmo_vem (real input)
user-provided value of the spherically-averaged molecular polarizability of the solute in the ground state (in \u00c53)
poles_cosmo_vem (real input)
user-provided value of the spherically-averaged molecular polarizability of the solute in an exited state of interest (in \u00c53)
An example of the VEM input file is provided below.
echo \ntitle 'VEM/TDDFT-B3LYP/6-311+G(d) vertical excitation energy + SMSSP for formaldehyde in methanol' \nstart \ngeometry nocenter \n O 0.0000000000 0.0000000000 0.6743110000 \n C 0.0000000000 0.0000000000 -0.5278530000 \n H 0.0000000000 0.9370330000 -1.1136860000 \n H 0.0000000000 -0.9370330000 -1.1136860000 \nsymmetry c1 \nend \nbasis \n* library 6-311+G* \nend \ndft \n XC b3lyp \nend \ncosmo \n do_cosmo_smd true \n do_cosmo_vem 1 \n solvent methanol \n polgs_cosmo_vem 2.429 \n poles_cosmo_vem 3.208 \nend \ntddft \n nroots 10 \n target 1 \n singlet \n notriplet \n algorithm 1 \n civecs \nend \ngrad \n root 1 \n solve_thresh 1d-05 \nend \ntask tddft gradient\n
"},{"location":"VEM-Model.html#references","title":"References","text":"Marenich, A. V.; Cramer, C. J.; Truhlar, D. G.; Guido, C. A.; Mennucci, B.; Scalmani, G.; Frisch, M. J. Practical Computation of Electronic Excitation in Solution: Vertical Excitation Model. Chemical Science 2011, 2 (11), 2143. https://doi.org/10.1039/c1sc00313e.\u00a0\u21a9\u21a9\u21a9
Li, J.; Cramer, C. J.; Truhlar, D. G. Two-Response-Time Model Based on CM2/INDO/S2 Electrostatic Potentials for the Dielectric Polarization Component of Solvatochromic Shifts on Vertical Excitation Energies. International Journal of Quantum Chemistry 2000, 77 (1), 264\u2013280. https://doi.org/10.1002/(sici)1097-461x(2000)77:1<264::aid-qua24>3.0.co;2-j.\u00a0\u21a9
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Uniform Treatment of Solute-Solvent Dispersion in the Ground and Excited Electronic States of the Solute Based on a Solvation Model with State-Specific Polarizability. Journal of Chemical Theory and Computation 2013, 9 (8), 3649\u20133659. https://doi.org/10.1021/ct400329u.\u00a0\u21a9
Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvent Descriptor Database. Minneapolis, MN: Department of Chemistry and Supercomputer Institute 1999.\u00a0\u21a9
The VSCF module can be used to calculate the anharmonic contributions to the vibrational modes of the molecule of interest. Energies are calculated on a one-dimensional grid along each normal mode, on a two-dimensional grid along each pair of normal modes, and optionally on a three-dimensional grid along each triplet of normal modes. These energies are then used to calculate the vibrational nuclear wavefunction at an SCF- (VSCF) and MP2-like (cc-VSCF) level of theory.
VSCF can be used at all levels of theory, SCF and correlated methods, and DFT. For correlated methods, only the SCF level dipole is evaluated and used to calculate the IR intensity values.
The VSCF module is started when the task directive TASK <theory> vscf
is defined in the user input file. The input format has the form:
\u00a0VSCF\n\u00a0\u00a0\u00a0[coupling\u00a0<string\u00a0couplelevel\u00a0default\u00a0\"pair\">] \n\u00a0\u00a0\u00a0[ngrid\u00a0\u00a0\u00a0\u00a0<integer\u00a0default\u00a016\u00a0>] \n\u00a0\u00a0\u00a0[iexcite\u00a0\u00a0<integer\u00a0default\u00a01\u00a0\u00a0>] \n\u00a0\u00a0\u00a0[vcfct\u00a0\u00a0\u00a0\u00a0<real\u00a0\u00a0\u00a0\u00a0default\u00a01.0>] \n\u00a0END\n
The order of coupling of the harmonic normal modes included in the calculation is controlled by the specifying:
\u00a0\u00a0\u00a0coupling\u00a0<string\u00a0couplelevel\u00a0default\u00a0\"pair\">\n
For coupling=diagonal
a one-dimensional grid along each normal mode is computed. For coupling=pair
a two-dimensional grid along each pair of normal modes is computed. For coupling=triplet
a three-dimensional grid along each triplet of normal modes is computed.
The number of grid points along each normal mode, or pair of modes can be defined by specifying:
\u00a0\u00a0\u00a0ngrid\u00a0<integer\u00a0default\u00a016>\n
This VSCF module by default calculates the ground state (\u03bd=0), but can also calculate excited states (such as \u03bd=1). The number of excited states calculated is defined by specifying:
\u00a0\u00a0\u00a0iexcite\u00a0<integer\u00a0default\u00a01>\n
With iexcite=1
the fundamental frequencies are calculated. With iexcite=2
the first overtones are calculated. With iexcite=3
the second overtones are calculated.
In certain cases the pair coupling potentials can become larger than those for a single normal mode. In this case the pair potentials need to be scaled down. The scaling factor used can be defined by specifying:
\u00a0\u00a0\u00a0vcfct\u00a0<real\u00a0default\u00a01.0>\n
References
The nuclear hessian which is used to compute the vibrational frequencies can be computed by finite difference for any ab initio wave-function that has analytic gradients or by analytic methods for SCF and DFT (see Hessians for details). The appropriate nuclear hessian generation algorithm is chosen based on the user input when TASK frequencies is the task directive.
The vibrational package was integrated from the Utah Messkit and can use any nuclear hessian generated from the driver routines, finite difference routines or any analytic hessian modules. There is no required input for the \u201cVIB\u201d package. VIB computes the Infra Red frequencies and intensities for the computed nuclear hessian and the \u201cprojected\u201d nuclear hessian. The VIB module projects out the translations and rotations of the nuclear hessian using the standard Eckart projection algorithm. It also computes the zero point energy for the molecular system based on the frequencies obtained from the projected hessian.
The default mass of each atom is used unless an alternative mass is provided via the geometry input or redefined using the vibrational module input. The default mass is the mass of the most abundant isotope of each element. If the abundance was roughly equal, the mass of the isotope with the longest half life was used.
In addition, the vibrational analysis is given at the default standard temperature of 298.15 degrees.
"},{"location":"Vibration.html#vibrational-module-input","title":"Vibrational Module Input","text":"All input for the Vibrational Module is optional since the default definitions will compute the frequencies and IR intensities. The generic module input can begin with vib, freq, frequency and has the form:
{freq || vib || frequency} \n [reuse [<string hessian_filename>]] \n [mass <integer lexical_index> <real new_mass>] \n [mass <string tag_identifier> <real new_mass>] \n [{temp || temperature} <integer number_of_temperatures> \\ \n <real temperature1 temperature2 ...>] \n [animate [<real step_size_for_animation>]] \n end\n
"},{"location":"Vibration.html#hessian-file-reuse","title":"Hessian File Reuse","text":"By default the task frequencies directive will recompute the hessian. To reuse the previously computed hessian you need only specify reuse in the module input block. If you have stored the hessian in an alternate place you may redirect the reuse directive to that file by specifying the path to that file.
reuse /path_to_hessian_file\n
This will reuse your saved Hessian data but one caveat is that the geometry specification at the point where the hessian is computed must be the default \u201cgeometry\u201d on the current run-time-data-base for the projection to work properly.
"},{"location":"Vibration.html#redefining-masses-of-elements","title":"Redefining Masses of Elements","text":"You may also modify the mass of a specific center or a group of centers via the input.
To modify the mass of a specific center you can simply use:
mass 3 4.00260324\n
which will set the mass of center 3 to 4.00260324 AMUs. The lexical index of centers is determined by the geometry object.
To modify all Hydrogen atoms in a molecule you may use the tag based mechanism:
mass hydrogen 2.014101779\n
The mass redefinitions always start with the default masses and change the masses in the order given in the input. Care must be taken to change the masses properly. For example, if you want all hydrogens to have the mass of Deuterium and the third hydrogen (which is the 6th atomic center) to have the mass of Tritium you must set the Deuterium masses first with the tag based mechanism and then set the 6th center\u2019s mass to that of Tritium using the lexical center index mechanism.
The mass redefinitions are not fully persistent on the run-time-data-base. Each input block that redefines masses will invalidate the mass definitions of the previous input block. For example,
freq \n reuse \n mass hydrogen 2.014101779 \nend \ntask scf frequencies \nfreq \n reuse \n mass oxygen 17.9991603 \nend \ntask scf frequencies\n
will use the new mass for all hydrogens in the first frequency analysis. The mass of the oxygen atoms will be redefined in the second frequency analysis but the hydrogen atoms will use the default mass. To get a modified oxygen and hydrogen analysis you would have to use:
freq \n reuse \n mass hydrogen 2.014101779 \nend \ntask scf frequencies \nfreq \n reuse \n mass hydrogen 2.014101779 \n mass oxygen 17.9991603 \nend \ntask scf frequencies\n
"},{"location":"Vibration.html#temp-or-temperature","title":"Temp or Temperature","text":"The \u201cVIB\u201d module can generate the vibrational analysis at various temperatures other than at standard room temperature. Either temp or temperature can be used to initiate this command.
To modify the temperature of the computation you can simply use:
temp 4 298.15 300.0 350.0 400.0\n
At this point, the temperatures are persistant and so the user must \u201creset\u201d the temperature if the standard behavior is required after setting the temperatures in a previous \u201cVIB\u201d command, i.e.
temp 1 298.15\n
"},{"location":"Vibration.html#animation","title":"Animation","text":"The \u201cVIB\u201d module also can generate mode animation input files in the standard xyz file format for graphics packages like RasMol or XMol There are scripts to automate this for RasMol in $NWCHEM_TOP/contrib/rasmolmovie. Each mode will have 20 xyz files generated that cycle from the equilibrium geometry to 5 steps in the positive direction of the mode vector, back to 5 steps in the negative direction of the mode vector, and finally back to the equilibrium geometry. By default these files are not generated. To activate this mechanism simply use the following input directive
animate\n
anywhere in the frequency/vib input block.
"},{"location":"Vibration.html#controlling-the-step-size-along-the-mode-vector","title":"Controlling the Step Size Along the Mode Vector","text":"By default, the step size used is 0.15 a.u. which will give reliable animations for most systems. This can be changed via the input directive
animate real <step_size>\n
where is the real number that is the magnitude of each step along the eigenvector of each nuclear hessian mode in atomic units."},{"location":"Vibration.html#an-example-input-deck","title":"An Example Input Deck","text":"
This example input deck will optimize the geometry for the given basis set, compute the frequencies for H2O, H2O at different temperatures, D2O, HDO, and TDO.
start h2o \ntitle Water \ngeometry units au autosym \n O 0.00000000 0.00000000 0.00000000 \n H 0.00000000 1.93042809 -1.10715266 \n H 0.00000000 -1.93042809 -1.10715266 \nend \nbasis noprint \n H library sto-3g \n O library sto-3g \nend \nscf; thresh 1e-6; end \ndriver; tight; end \ntask scf optimize \n\nscf; thresh 1e-8; print none; end \ntask scf freq \n\nfreq \n reuse; temp 4 298.15 300.0 350.0 400.0 \nend \ntask scf freq \n\nfreq \n reuse; mass H 2.014101779 \n temp 1 298.15 \nend \ntask scf freq \n\nfreq \n reuse; mass 2 2.014101779 \nend \ntask scf freq \n\nfreq \n reuse; mass 2 2.014101779 ; mass 3 3.01604927 \nend \ntask scf freq\n
"},{"location":"ZCOORD-Forcing-internal-coordinates.html","title":"ZCOORD Forcing internal coordinates","text":""},{"location":"ZCOORD-Forcing-internal-coordinates.html#zcoord-forcing-internal-coordinates","title":"ZCOORD: Forcing internal coordinates","text":"By default redundant internal coordinates are generated for use in geometry optimizations. Connectivity is inferred by comparing inter-atomic distances with the sum of the van der Waals radii of the two atoms involved in a possible bond, times a scaling factor. The scaling factor is an input parameter of ZCOORD which maybe changed from its default value of 1.3. Under some circumstances (unusual bonding, bond dissociation, \u2026) it will be necessary to augment the automatically generated list of internal coordinates to force some specific internal coordinates to be included in among the internal coordinates. This is accomplished by including the optional directive ZCOORD within the geometry directive. The general form of the ZCOORD directive is as follows:
ZCOORD \n CVR_SCALING <real value> \n BOND <integer i> <integer j> \\ \n [<real value>] [<string name>] [constant] \n ANGLE <integer i> <integer j> <integer k> \\ \n [<real value>] [<string name>] [constant]` \n TORSION <integer i> <integer j> <integer k> <integer l> \\ \n [<real value>] [<string name>] [constant] \n END\n
The centers i, j, k and l must be specified using the numbers of the centers, as supplied in the input for the Cartesian coordinates. The ZCOORD
input parameters are defined as follows:
cvr_scaling
\u2013 scaling factor applied to van der Waals radii.bond
\u2013 a bond between the two centers.angle
\u2013 an angle among the three atoms i, j and k.torsion
\u2013 a torsion (or dihedral) angle. The angle between the planes i-j-k and j-k-l.A value may be specified for a user-defined internal coordinate, in which case it is forced upon the input Cartesian coordinates while attempting to make only small changes in the other internal coordinates. If no value is provided the value implicit in the input coordinates is kept. If the keyword constant is specified, then that internal variable is not modified during a geometry optimization with DRIVER. Each internal coordinate may also be named either for easy identification in the output, or for the application of constraints (Applying constraints in geometry optimizations).
If the keyword adjust is specified on the main GEOMETRY directive, only ZCOORD data may be specified and it can be used to change the user-defined internal coordinates, including adding/removing constraints and changing their values.
"},{"location":"ZCOORD-Forcing-internal-coordinates.html#applying-constraints-in-geometry-optimizations","title":"Applying constraints in geometry optimizations","text":"Internal coordinates specified as constant in a ZCOORD directive or in the constants section of a ZMATRIX directive, will be frozen at their initial values if a geometry optimization is performed with DRIVER (Section 20).
If internal coordinates have the same name (give or take an optional sign for torsions) then they are forced to have the same value. This may be used to force bonds or angles to be equal even if they are not related by symmetry.
When atoms have been specified by their Cartesian coordinates, and internal coordinates are not being used, it is possible to freeze the cartesian position of selected atoms. This is useful for such purposes as optimizing a molecule absorbed on the surface of a cluster with fixed geometry. Only the gradients associated with the active atoms are computed. This can result in a big computational saving, since gradients associated with frozen atoms are forced to zero (Note, however, that this destroys the translational and rotational invariance of the gradient. This is not yet fully accommodated by the STEPPER geometry optimization software, and can sometimes result in slower convergence of the optimization. The DRIVER optimization package does not suffer from this problem).
The SET directive is used to freeze atoms, by specifying a directive of the form:
set geometry:actlist <integer list_of_center_numbers>\n
This defines only the centers in the list as active. All other centers will have zero force assigned to them, and will remain frozen at their starting coordinates during a geometry optimization.
For example, the following directive specifies that atoms numbered 1, 5, 6, 7, 8, and 15 are active and all other atoms are frozen:
set geometry:actlist 1 5:8 15\n
or equivalently,
set geometry:actlist 1 5 6 7 8 15\n
If this option is not specified by entering a SET directive, the default behavior in the code is to treat all atoms as active. To revert to this default behavior after the option to define frozen atoms has been invoked, the UNSET directive must be used. The form of the UNSET directive is as follows:
unset geometry:actlist\n
"},{"location":"ZMATRIX-Z-matrix-input.html","title":"ZMATRIX Z matrix input","text":""},{"location":"ZMATRIX-Z-matrix-input.html#zmatrix-z-matrix-input","title":"ZMATRIX: Z-matrix input","text":"The ZMATRIX
directive is an optional directive that can be used within the compound GEOMETRY
directive to specify the structure of the system with a Z-matrix, which can include both internal and Cartesian coordinates. The ZMATRIX
directive is itself a compound directive that can include the VARIABLES
and CONSTANTS
directives, depending on the options selected. The general form of the compound ZMATRIX
directive is as follows:
[ZMATRIX || ZMT || ZMAT \n <string tagn> <list_of_zmatrix_variables> \n ... \n [VARIABLES \n <string symbol> <real value> \n ... ] \n [CONSTANTS \n <string symbol> <real value> \n ... ] \n (END || ZEND)]\n
The input module recognizes three possible spellings of this directive name. It can be invoked with ZMATRIX
, ZMT
, or ZMAT
. The user can specify the molecular structure using either Cartesian coordinates or internal coordinates (bond lengths, bond angles and dihedral angles. The Z-matrix input for a center defines connectivity, bond length, and bond or torsion angles. Cartesian coordinate input for a center consists of three real numbers defining the x,y,z coordinates of the atom.
Within the Z-matrix input, bond lengths and Cartesian coordinates must be input in the user-specified units, as defined by the value specified for the variable units
on the first line of the GEOMETRY directive. All angles are specified in degrees.
The individual centers (denoted as i, j, and k below) used to specify Z-matrix connectivity may be designated either as integers (identifying each center by number) or as tags (If tags are used, the tag must be unique for each center.) The use of dummy atoms is possible, by using X or BQ at the start of the tag.
Bond lengths, bond angles and dihedral angles (denoted below as R, alpha, and beta, respectively) may be specified either as numerical values or as symbolic strings that must be subsequently defined using the VARIABLES
or CONSTANTS
directives. The numerical values of the symbolic strings labeled VARIABLES
may be subject to changes during a geometry optimization say, while the numerical values of the symbolic strings labeled CONSTANTS
will stay frozen to the value given in the input. The same symbolic string can be used more than once, and any mixture of numeric data and symbols is acceptable. Bond angles (\u03b1) must be in the range 0 < \u03b1 < 180.
The Z-matrix input is specified sequentially as follows:
tag1 \n tag2 i R \n tag3 i R j alpha \n tag4 i R j alpha k beta [orient] \n ...\n
The structure of this input is described in more detail below. In the following discussion, the tag or number of the center being currently defined is labeled as C (C for current). The values entered for these tags for centers defined in the Z-matrix input are interpreted in the same way as the tag
entries for Cartesian coordinates described above (see Cartesian coordinate input). Figures 1, 2 and 3 display the relationships between the input data and the definitions of centers and angles.
Figure 1: Relationships between the centers, bond angle and dihedral angle in Z-matrix input.
Figure 2: Relationships between the centers and two bond angles in Z-matrix input with optional parameter specified as +1.
Figure 3: Relationships between the centers and two bond angles in Z-matrix input with optional parameter specified as -1.
The Z-matrix input shown above is interpreted as follows:
tag1
Only a tag is required for the first center.tag2 i R
The second center requires specification of its tag and the bond length (RCi) distance to a previous atom, which is identified by i.tag3 i R j alpha
The third center requires specification of its tag, its bond length distance (RCi) to one of the two previous centers (identified by the value of i), and the bond angle .tag i R j alpha k beta [<integer orient default 0>]
The fourth, and all subsequent centers, require the tag, a bond length (RCi) relative to center i, the bond angle with centers i and j ( ), and either the dihedral angle (\u03b2) between the current center and centers i, j, and k (Figure 1), or a second bond angle and an orientation to the plane containing the other three centers (Figure 2 and 3).By default, \u03b2 is interpreted as a dihedral angle (see Figure 1), but if the optional final parameter (orient
) is specified with the value \u00b11, then \u03b2 is interpreted as the angle . The sign of orient
specifies the direction of the bond angle relative to the plane containing the three reference atoms. If orient
is +1, then the new center (C) is above the plane (Figure 2); and if orient
is -1, then C is below the plane (Figure 3).
Following the Z-matrix center definitions described above, the user can specify initial values for any symbolic variables used to define the Z-matrix tags. This is done using the optional VARIABLES
directive, which has the general form:
VARIABLES \n <string symbol> <real value> \n ...\n
Each line contains the name of a variable followed by its value. Optionally, an equals sign (=) can be included between the symbol and its value, for clarity in reading the input file.
Following the VARIABLES
directive, the CONSTANTS
directive may be used to define any Z-matrix symbolic variables that remain unchanged during geometry optimizations. To freeze the Cartesian coordinates of an atom, refer to Applying constraints in geometry optimizations. The general form of this directive is as follows:
CONSTANTS \n <string symbol> <real value> \n ...\n
Each line contains the name of a variable followed by its value. As with the VARIABLES
directive, an equals sign (=) can be included between the symbol and its value.
The end of the Z-matrix input using the compound ZMATRIX
directive is signaled by a line containing either END
or ZEND
, following all input for the directive itself and its associated optional directives.
A simple example is presented for water. All Z-matrix parameters are specified numerically, and symbolic tags are used to specify connectivity information. This requires that all tags be unique, and therefore different tags are used for the two hydrogen atoms, which may or may not be identical.
geometry \n zmatrix \n O \n H1 O 0.95 \n H2 O 0.95 H1 108.0 \n end \n end\n
The following example illustrates the Z-matrix input for the molecule CH3CF3. This input uses the numbers of centers to specify the connectivity information (i, j, and k), and uses symbolic variables for the Z-matrix parameters R, alpha, and beta, which are defined in the inputs for the VARIABLES
and CONSTANTS
directives.
geometry \n zmatrix \n C \n C 1 CC \n H 1 CH1 2 HCH1 \n H 1 CH2 2 HCH2 3 TOR1 \n H 1 CH3 2 HCH3 3 -TOR2 \n F 2 CF1 1 CCF1 3 TOR3 \n F 2 CF2 1 CCF2 6 FCH1 \n F 2 CF3 1 CCF3 6 -FCH1 \n variables \n CC 1.4888 \n CH1 1.0790 \n CH2 1.0789 \n CH3 1.0789 \n CF1 1.3667 \n CF2 1.3669 \n CF3 1.3669 \n constants \n HCH1 104.28 \n HCH2 104.74 \n HCH3 104.7 \n CCF1 112.0713 \n CCF2 112.0341 \n CCF3 112.0340 \n TOR1 109.3996 \n TOR2 109.3997 \n TOR3 180.0000 \n FCH1 106.7846 \n end \nend\n
The input for any centers specified with Cartesian coordinates must be specified using the format of the tag
lines described in Cartesian coordinate input above. However, in order to correctly specify these Cartesian coordinates within the Z-matrix, the user must understand the orientation of centers specified using internal coordinates. These are arranged as follows:
The ZMATRIX
directive is an optional directive that can be used within the compound GEOMETRY
directive to specify the structure of the system with a Z-matrix, which can include both internal and Cartesian coordinates. The ZMATRIX
directive is itself a compound directive that can include the VARIABLES
and CONSTANTS
directives, depending on the options selected. The general form of the compound ZMATRIX
directive is as follows:
[ZMATRIX || ZMT || ZMAT \n <string tagn> <list_of_zmatrix_variables> \n ... \n [VARIABLES \n <string symbol> <real value> \n ... ] \n [CONSTANTS \n <string symbol> <real value> \n ... ] \n (END || ZEND)]\n
The input module recognizes three possible spellings of this directive name. It can be invoked with ZMATRIX
, ZMT
, or ZMAT
. The user can specify the molecular structure using either Cartesian coordinates or internal coordinates (bond lengths, bond angles and dihedral angles. The Z-matrix input for a center defines connectivity, bond length, and bond or torsion angles. Cartesian coordinate input for a center consists of three real numbers defining the x,y,z coordinates of the atom.
Within the Z-matrix input, bond lengths and Cartesian coordinates must be input in the user-specified units, as defined by the value specified for the variable units
on the first line of the GEOMETRY
directive. All angles are specified in degrees.
The individual centers (denoted as i, j, and k below) used to specify Z-matrix connectivity may be designated either as integers (identifying each center by number) or as tags (If tags are used, the tag must be unique for each center.) The use of dummy atoms is possible, by using X or BQ at the start of the tag.
Bond lengths, bond angles and dihedral angles (denoted below as R, alpha, and beta, respectively) may be specified either as numerical values or as symbolic strings that must be subsequently defined using the VARIABLES
or CONSTANTS
directives. The numerical values of the symbolic strings labeled VARIABLES
may be subject to changes during a geometry optimization say, while the numerical values of the symbolic strings labeled CONSTANTS
will stay frozen to the value given in the input. The same symbolic string can be used more than once, and any mixture of numeric data and symbols is acceptable. Bond angles (\u03b1) must be in the range 0 < \u03b1 < 180.
The Z-matrix input is specified sequentially as follows:
tag1 \n tag2 i R \n tag3 i R j alpha \n tag4 i R j alpha k beta [orient] \n ...\n
The structure of this input is described in more detail below. In the following discussion, the tag or number of the center being currently defined is labeled as C (C for current). The values entered for these tags for centers defined in the Z-matrix input are interpreted in the same way as the tag
entries for Cartesian coordinates described above (see Cartesian coordinate input). Figures 1, 2 and 3 display the relationships between the input data and the definitions of centers and angles.
Figure 1: Relationships between the centers, bond angle and dihedral angle in Z-matrix input.
Figure 2: Relationships between the centers and two bond angles in Z-matrix input with optional parameter specified as +1.
Figure 3: Relationships between the centers and two bond angles in Z-matrix input with optional parameter specified as -1.
The Z-matrix input shown above is interpreted as follows:
tag1
Only a tag is required for the first center.tag2 i R
The second center requires specification of its tag and the bond length (RCi) distance to a previous atom, which is identified by i.tag3 i R j alpha
The third center requires specification of its tag, its bond length distance (RCi) to one of the two previous centers (identified by the value of i), and the bond angle \u03b1 = \u2220C i j.tag i R j alpha k beta [<integer orient default 0>]
The fourth, and all subsequent centers, require the tag, a bond length (RCi) relative to center i, the bond angle with centers i and j (\u03b1 = \u2220C i j), and either the dihedral angle (\u03b2) between the current center and centers i, j, and k (Figure 1), or a second bond angle \u03b2 = \u2220 C i k and an orientation to the plane containing the other three centers (Figure 2 and 3).By default, \u03b2 is interpreted as a dihedral angle (see Figure 1), but if the optional final parameter (orient
) is specified with the value \u00b11, then \u03b2 is interpreted as the angle \u2220 C i k. The sign of orient
specifies the direction of the bond angle relative to the plane containing the three reference atoms. If orient
is +1, then the new center (C) is above the plane (Figure 2); and if orient
is -1, then C is below the plane (Figure 3).
Following the Z-matrix center definitions described above, the user can specify initial values for any symbolic variables used to define the Z-matrix tags. This is done using the optional VARIABLES
directive, which has the general form:
VARIABLES \n <string symbol> <real value> \n ...\n
Each line contains the name of a variable followed by its value. Optionally, an equals sign (=) can be included between the symbol and its value, for clarity in reading the input file.
Following the VARIABLES
directive, the CONSTANTS
directive may be used to define any Z-matrix symbolic variables that remain unchanged during geometry optimizations. To freeze the Cartesian coordinates of an atom, refer to the section Applying constraints in geometry optimizations. The general form of this directive is as follows:
CONSTANTS \n <string symbol> <real value> \n ...\n
Each line contains the name of a variable followed by its value. As with the VARIABLES
directive, an equals sign (=) can be included between the symbol and its value.
The end of the Z-matrix input using the compound ZMATRIX
directive is signaled by a line containing either END
or ZEND
, following all input for the directive itself and its associated optional directives.
A simple example is presented for water. All Z-matrix parameters are specified numerically, and symbolic tags are used to specify connectivity information. This requires that all tags be unique, and therefore different tags are used for the two hydrogen atoms, which may or may not be identical.
geometry \n zmatrix \n O \n H1 O 0.95 \n H2 O 0.95 H1 108.0 \n end \n end\n
The following example illustrates the Z-matrix input for the molecule CH3CF3. This input uses the numbers of centers to specify the connectivity information (i, j, and k), and uses symbolic variables for the Z-matrix parameters R, alpha, and beta, which are defined in the inputs for the VARIABLES
and CONSTANTS
directives.
geometry \n zmatrix \n C \n C 1 CC \n H 1 CH1 2 HCH1 \n H 1 CH2 2 HCH2 3 TOR1 \n H 1 CH3 2 HCH3 3 -TOR2 \n F 2 CF1 1 CCF1 3 TOR3 \n F 2 CF2 1 CCF2 6 FCH1 \n F 2 CF3 1 CCF3 6 -FCH1 \n variables \n CC 1.4888 \n CH1 1.0790 \n CH2 1.0789 \n CH3 1.0789 \n CF1 1.3667 \n CF2 1.3669 \n CF3 1.3669 \n constants \n HCH1 104.28 \n HCH2 104.74 \n HCH3 104.7 \n CCF1 112.0713 \n CCF2 112.0341 \n CCF3 112.0340 \n TOR1 109.3996 \n TOR2 109.3997 \n TOR3 180.0000 \n FCH1 106.7846 \n end \nend\n
The input for any centers specified with Cartesian coordinates must be specified using the format of the tag
lines described in Cartesian coordinate input above. However, in order to correctly specify these Cartesian coordinates within the Z-matrix, the user must understand the orientation of centers specified using internal coordinates. These are arranged as follows:
Fork the github wiki repository, modify it and send a pull request.
"},{"location":"_Sidebar.html","title":"Sidebar","text":""},{"location":"_Sidebar.html#nwchem-user-documentation","title":"NWChem User Documentation","text":"The MEPGS module performs a search for the two critical points on the potential energy surface connected to a saddle point of the molecule defined by input using the GEOMETRY
directive (see Section geometry ). The algorithm programmed in MEPGS is a constrained trust region quasi-newton optimization and approximate energy Hessian updates.
Optional input for this module is specified within the compound directive,
MEPGS \n OPTTOL <real opttol default 3e-4>\n EPREC <real eprec default 1e-7>\n STRIDE <real stride default 0.1>\n EVIB <real evib default 1e-4>\n MAXMEP <integer maxiter default 250>\n MAXITER <integer maxiter default 20>\n INHESS <integer inhess default 2>\n (BACKWARD || FORWARD) <string default both>\n (MSWG || NOMSWG) <string default NOMSWG>\n (XYZ || NOXYZ) \n END\n
"},{"location":"mepgs.html#convergence-criteria","title":"Convergence criteria","text":"The user may request a specific value for the tolerance with the keyword OPTTOL
which will couple all the convergence criteria in the following way:
GRMS 1.0*OPTTOL\n GMAX 1.5*OPTTOL\n XRMS 4.0*OPTTOL\n XMAX 6.0*OPTTOL\n
"},{"location":"mepgs.html#available-precision","title":"Available precision","text":" EPREC <real eprec default 1e-7>\n
In performing a constrained trust region optimization the precision of the energy is coupled to the convergence criteria (see Section TROPT ). Note that the default EPREC for DFT calculations is 5e-6 instead of 1e-7.
"},{"location":"mepgs.html#controlling-the-step-length","title":"Controlling the step length","text":" STRIDE <real stride default 0.1>\n
A dynamic stride (stride
) is used to control the step length during the minimum energy path walking when taking the Euler step as starting point.
EVIB <real evib default 1e-4>\n
The expected decrease in energy (evib
) assuming a quadratic approximation around the saddle structure to be obtained.
MAXMEP <integer maxmep default 250>\n
By default at most 250 minimum energy path steps will be taken, but this may be modified with this directive.
"},{"location":"mepgs.html#maximum-number-of-steps","title":"Maximum number of steps","text":" MAXITER <integer maxiter default 20>\n
By default at most 20 constrained geometry optimization steps will be taken, but this may be modified with this directive.
"},{"location":"mepgs.html#initial-hessian","title":"Initial Hessian","text":" INHESS <integer inhess default 2>\n
With this option the MEPGS module will be able to transform Cartesian Hessian from previous frequency calculation.
"},{"location":"mepgs.html#selecting-the-side-to-traverse","title":"Selecting the side to traverse","text":" (BACKWARD || FORWARD) <string default both>\n
With this option the MEPGS module will select which side of the minimum energy path to explore. By default both sides are explored for a MEPGS run.
"},{"location":"mepgs.html#using-mass","title":"Using mass","text":" (MSWG || NOMSWG) <string default NOMSWG>\n
With this option the MEPGS will trigger the use of mass when following the minimum energy path. Mass is not used as default, if mass is used then this formally becomes an intrinsic reaction coordinate.
"},{"location":"mepgs.html#minimum-energy-path-saved-xyz-file","title":"Minimum energy path saved XYZ file","text":" XYZ [<string xyz default $fileprefix>]\n NOXYZ\n
The XYZ
directive causes the geometry at each calculated structure on the minimum energy path to be output into file in the permanent directory in XYZ format. The optional string will prefix the filename. The NOXYZ
directive turns this off.
For example, the input
mepgs; xyz ; end\n
will cause a trajectory file filename.xyz to be created in the permanent directory.
"},{"location":"mepgs.html#mepgs-usage","title":"MEPGS usage","text":" start somename\n geometry; <saddle point body > ; end \n task theory freq\n freq; reuse somename.hess ; end\n mepgs; <mepgs options> ; end\n task theory mepgs\n
In the above example, after performing a frequency analysis for the saddle point, the information of the force constant matrix is reused (freq directive) in order to be able to follow the transition state mode.
Example input and output files can be find at https://github.com/nwchemgit/nwchem/blob/master/QA/tests/mep-test/mep-test.nw https://github.com/nwchemgit/nwchem/blob/master/QA/tests/mep-test/mep-test.out
"},{"location":"projects.html","title":"Projects","text":""},{"location":"projects.html#ongoing-projects-and-future-directions","title":"Ongoing Projects and Future Directions","text":"\u2019\u2018\u2019Density functional theory (DFT), time-dependent DFT (TD-DFT) and properties \u2018\u2019\u2018
Future projects: Dynamics on excited-state surfaces, surface hopping, GW/BSE for molecular systems, Spin-flip TDDFT, Non-collinear DFT, spin-orbit TDDFT, interface to QWalk Quantum Monte-Carlo Program (w/ Lucas Wagner University of Illinois, Urbana-Champaign)
Plane-Wave Density Functional Theory (DFT), Ab Initio Molecular Dynamics, and NWPhys
Future projects: New NWPhys module development (w/ John Rehr University of Washington) which will include new methods to calculate XPS and XANES spectra. Interface to QWalk Quantum Monte-Carlo Program (w/ Lubos Mitas University of North Carolina).
High-level Coupled-Cluster methods
Future projects: CC/EOMCC analytical gradients, Intel MIC implementations for iterative CC methods, Multi-reference CC formulations employing incomplete model spaces.
Other Correlated methods
\u2019\u2018\u2019Long-term NWChem development plans: \u2018\u2019\u2018
bqzone <double precision default 9.0d0>\n
This directive defines the radius of the zone (in angstroms) around the quantum region where classical residues/segments will be allowed to interact with quantum region both electrostatically and through Van der Waals interactions. It should be noted that classical atoms interacting with quantum region via bonded interactions are always included (this is true even if bqzone is set to 0). In addition, even if one atom of a given charged group is in the bqzone (residues are typically treated as one charged group) then the whole group will be included.
"},{"location":"qmmm_eref.html","title":"QM/MM eref","text":"eref\u00a0<double\u00a0precision\u00a0default\u00a00.0d0>\n
This directive sets the relative zero of energy for the QM component of the system. The need for this directive arises from different definitions of zero energy for QM and MM methods. In QM methods the zero of energy for the system is typically vacuum. The zero of energy for the MM system is by definition of most parameterized force fields the separated atom energy. Therefore in many cases the energetics of the QM system will likely overshadow the MM component of the system. This imbalance can be corrected by suitably chosen value of eref
. In most cases IT IS OK to leave eref
at its default value of zero.
The example below illustrates single point energy calculation at DFT/B3LYP level for ethanol molecule embedded into 20 angstrom box of SPCE/E water molecules.
start etl\n\n permanent_dir ./perm\n scratch_dir ./data\n\n prepare\n source etl0.pdb\n new_top new_seq\n new_rst\n modify atom 1:_C1 quantum\n modify atom 1:2H1 quantum\n modify atom 1:3H1 quantum\n modify atom 1:4H1 quantum\n center\n orient\n solvate box 3.0\n update lists\n ignore\n write etl_ref.rst\n write etl_ref.pdb\n end\n task prepare\n\n md\n system etl_ref\n end\n\n basis\n * library \"6-31G\"\n end\n dft\n xc b3lyp\n end\n\n qmmm\n link_atoms hydrogen\n end\n\n task qmmm dft energy\n
"},{"location":"qmmm_example6.html","title":"Qmmm example6","text":"The example below illustrates QM/MM calculation of ElectroStatic Potential (ESP) charges at DFT/B3LYP level of theory for quantum water molecule embedded into 20 angstrom box of classical SPCE/E water molecules.
The preparation stage that involves definition of the QM region and solvation is performed as part of the calculation. Note that water fragment file wtr.frg is required in this calculation. Prepare run will generate restart file (wtr_ref.rst) and topology file (wtr.top).
In the QM/MM interface block the use of bq_zone value of 3.0 Angstrom is specified.
Important: ESP module relies on the availability of movecs (wavefunction) file. In this example, movecs file was generated by performing energy calculation.
\u00a0\u00a0start\u00a0wtr \n\n\u00a0\u00a0permanent_dir\u00a0./perm \n\u00a0\u00a0scratch_dir\u00a0./data \n\n\u00a0\u00a0prepare \n\u00a0\u00a0source\u00a0wtr0.pdb \n\u00a0\u00a0new_top\u00a0new_seq \n\u00a0\u00a0new_rst \n\u00a0\u00a0modify\u00a0segment\u00a01\u00a0\u00a0quantum \n\u00a0\u00a0center \n\u00a0\u00a0orient \n\u00a0\u00a0solvate\u00a0box\u00a03.0 \n\u00a0\u00a0update\u00a0lists \n\u00a0\u00a0ignore \n\u00a0\u00a0write\u00a0wtr_ref.rst \n\u00a0\u00a0write\u00a0wtr_ref.pdb \n\u00a0\u00a0end \n\n\u00a0\u00a0task\u00a0prepare \n\n\u00a0\u00a0md \n\u00a0\u00a0system\u00a0wtr_ref \n\u00a0\u00a0end \n\n\u00a0\u00a0basis \n\u00a0\u00a0*\u00a0library\u00a0\"6-31G\" \n\u00a0\u00a0end \n\n\u00a0\u00a0dft \n\u00a0\u00a0xc\u00a0b3lyp \n\u00a0\u00a0end \n\n\u00a0\u00a0qmmm \n\u00a0\u00a0bq_zone\u00a03.0 \n\u00a0\u00a0end \n\n\u00a0\u00a0task\u00a0qmmm\u00a0dft\u00a0energy \n\u00a0\u00a0task\u00a0qmmm\u00a0esp\n
"},{"location":"qmmm_example7.html","title":"Qmmm example7","text":""},{"location":"qmmm_example7.html#example-of-qmmm-optimization","title":"Example of QM/MM optimization","text":"The example below illustrates QM/MM optimization at DFT/B3LYP level of theory for quantum water molecule embedded into 20 angstrom box of classical SPCE/E water molecules.
The restart (wtr_ref.rst) and topology (wtr.top) files are assumed to be generated elsewhere.
\u00a0\u00a0start\u00a0wtr \n\n\u00a0\u00a0permanent_dir\u00a0./perm \n\u00a0\u00a0scratch_dir\u00a0./data \n\n\u00a0\u00a0md \n\u00a0\u00a0system\u00a0wtr_ref \n\u00a0\u00a0end \n\n\u00a0\u00a0basis \n\u00a0\u00a0*\u00a0library\u00a0\"6-31G\" \n\u00a0\u00a0end \n\n\u00a0\u00a0dft \n\u00a0\u00a0xc\u00a0b3lyp \n\u00a0\u00a0end \n\n\u00a0\u00a0qmmm \n\u00a0\u00a0region\u00a0\u00a0qm\u00a0\u00a0\u00a0solvent \n\u00a0\u00a0maxiter\u00a010\u00a0\u00a0\u00a01000 \n\u00a0\u00a0ncycles\u00a05 \n\u00a0\u00a0density\u00a0espfit \n\u00a0\u00a0xyz\u00a0\u00a0\u00a0\u00a0foo \n\u00a0\u00a0end \n\n\u00a0\u00a0task\u00a0qmmm\u00a0dft\u00a0optimize\n
"},{"location":"qmmm_introduction.html","title":"QMMM Introduction","text":"The combined quantum mechanical molecular mechanics (QM/MM) approach provides a simple and effective tool to study localized molecular transformations in large scale systems such as those encountered in solution chemistry or enzyme catalysis. In this method an accurate but computationally intensive quantum mechanical (QM) description is only used for the regions where electronic structure transformations are occurring (e.g. bond making and breaking). The rest of the system, whose chemical identity remains essentially the same, is treated at the approximate classical molecular mechanics (MM) level.
The QM/MM module in NWChem is built as a top level interface between the classical MD module and various QM modules,managing initialization, data transfer, and various high level operations. The size of the system (10^3 - 10^5 atoms) and the need for classical force field parameters precludes description of the system through just the geometry input block as would be done in pure QM simulations. Instead a separate preparation stage is required. In a typical setting this preparation run will be done separately from the main QM/MM simulations resulting in the generation of topology and restart files. The topology file contains a list of all relevant force field interactions encountered in the system but has no information about the actual atom positions. Typically the topology file will be generated once and reused throughout the entire simulation. The actual structural information about the system is contained in the restart file, which will be changing as the system coordinates are updated during the course of the simulation.
Once restart and topology files are generated, the QM/MM simulation can be initiated by defining the specifics of the QM and MM descriptions, and if necessary QM/MM interface parameters.
The actual QM/MM calculation is invoked with the following task directive.
task qmmm <string qmtheory> <string operation> [numerical] [ignore]\n
where qmtheory specifies quantum method for the calculation of the quantum region. It is expected that most of QM/MM simulations will be performed with with HF, DFT. or CC theories, but any other QM theory supported by NWChem should also work. NWChem supports wide range of QM/MM tasks including
link_atoms <(hydrogen||halogen) default halogen>\n
This directive controls the treatment of bonds crossing the boundary between quantum and classical regions. The use of hydrogen keyword will trigger truncation of such bonds with hydrogen link atoms. The position of the hydrogen atom will be calculated from the coordinates of the quantum and classical atom of the truncated bond using the following expression
where g is the scale factor set at 0.709
Setting link_atoms
to halogen
will result in the modification of the quantum atom of the truncated bond to the fluoride atom. This fluoride atom will typically carry an effective core potential (ECP) basis set as specified in link_ecp
directive.
link_ecp <(auto||user)default auto> \n
This directive specifies ECP basis set on fluoride link atoms. If set to auto the ECP basis set given by Zhang, Lee, Yang for 6-31G basis will be used. Strictly speaking, this implies the use of 6-31G spherical basis as the main basis set. If other choices are desired then keyword user should be used and ECP basis set should be entered separatelly following the format given in section dealing with ECPs . The name tag for fluoride link atoms is F_L
.
load\u00a0\u00a0<\u00a0esp\u00a0>\u00a0[<filename>]\n
This directive instructs to load external file (located in permanent directory) containing esp charges for QM region. If filename is not provided it will be constructed from the name of the restart file by replacing \u201c.rst\u201d suffix with \u201c.esp\u201d. Note that file containing esp charges is always generated whenever esp charge calculation is performed
"},{"location":"qmmm_method.html","title":"Qmmm method","text":" method [method1] [method2] [method3]\n
This directive controls which optimization algorithm will be used for the regions as defined by [[qmmm_region|Qmmm_region]] directive. The allowed values are bfgs
aka DRIVER, lbfgs
limited memory version of quasi-newton, and sd
simple steepest descent algorithm. The use of this directive is not recommended in all but special cases. In particular, bfgs
should be used for QM region if there are any constraints, sd
method should always be used for classical solute and solvent atoms with shake constraints.
mm_charges [exclude <(none||all||linkbond||linkbond_H) default none>]\n [expand <none||all||solute||solvent> default none]\n [update <integer default 0>]\n
This directive controls treatment of classical point (MM) charges that are interacting with QM region. For most QM/MM applications the use of directive will be not be necessary. Its absence would be simply mean that all MM charges within the cuttof distance ( as specified by cutoff ) as well those belonging to the charges groups directly bonded to QM region will be allowed to interact with QM region.
Keyword exclude specifies the subset MM charges that will be specifically excluded from interacting with QM region.
Keyword expand expands the set MM charges interacting with QM region beyond the limits imposed by cutoff value.
Keyword update specifies how often list of MM charges will be updated in the course of the calculation. Default behavior is not to update.
"},{"location":"qmmm_sp_energy.html","title":"QMMM Single Point Calculations","text":"The task directive for QM/MM single point energy and gradient calculations is given by
task qmmm <qmtheory> energy\n
or
task qmmm <qmtheory> gradient [numerical]\n
where qmtheory
refers to the level of QM theory (e.g. dft, tce, mp2, \u2026).
The ground state QM/MM energy calculations should be possible with all QM descriptions available in NWChem, however most of testing was performed using core QM methods (scf,dft,mp2,tce). The ground state QM/MM gradient calculations can be performed analytically with scf,dft,mp2 levels of theory and numerically for all the others.
The relevant settings for QM/MM interface block for energy and gradient calculations include
qmmm_example3
"},{"location":"qmmm_sp_property.html","title":"QM/MM properties","text":"A number of electronic structure properties can be calculated with QM/MM using capabilities provided by property, esp, and dplot modules.
The example below illustrates dipole property QM/MM DFT/B3LYP calculation for quantum water molecule embedded into 20 angstrom box of classical SPCE/E water molecules.
The preparation stage that involves definition of the QM region and solvation is performed as part of the calculation. Note that water fragment file wtr.frg is required in this calculation. Prepare run will generate restart file (wtr_ref.rst) and topology file (wtr.top)
In the QM/MM interface block the use of bq_zone
value of 3.0 Angstrom is specified.
start wtr\n\n permanent_dir ./perm \n scratch_dir ./data\n\n prepare \n source wtr0.pdb \n new_top new_seq \n new_rst \n modify segment 1 quantum \n center \n orient \n solvate box 3.0 \n update lists \n ignore \n write wtr_ref.rst \n write wtr_ref.pdb \n end\n\n task prepare\n\n md \n system wtr_ref \n end\n\n basis \n * library \"6-31G\" \n end\n\n dft \n xc b3lyp \n end\n\n qmmm \n bq_zone 3.0 \n end\n\n property \n dipole \n end\n\n task qmmm dft property\n
"},{"location":"stub.html","title":"Stub","text":"test file
"},{"location":"tropt.html","title":"Tropt","text":""},{"location":"tropt.html#tropt","title":"TROPT","text":"The TROPT module is one of three drivers (see Section Stepper for documentation on STEPPER and Section Driver module for documentation on DRIVER) to perform a geometry optimization function on the molecule defined by input using the GEOMETRY
directive (see Section Geometry). Geometry optimization is either an energy minimization or a transition state optimization. The algorithm programmed in TROPT is a trust region quasi-newton optimization and approximate energy Hessian updates.
TROPT is not selected by default out of the two available modules to perform geometry optimization. In order to force use of TROPT (e.g., because a previous optimization used STEPPER or DRIVER) provide a TROPT input block (below) \u2014 even an empty block will force use of TROPT.
Optional input for this module is specified within the compound directive,
TROPT \n (LOOSE || DEFAULT || TIGHT)\n GMAX <real value>\n GRMS <real value>\n XMAX <real value>\n XRMS <real value>\n\n OPTTOL <real opttol default 3e-4>\n\n EPREC <real eprec default 1e-7>\n\n TRUST <real trust default 0.3>\n\n CLEAR\n REDOAUTOZ\n\n INHESS <integer inhess default 0>\n\n (MODDIR || VARDIR) <integer dir default 0>\n (FIRSTNEG || NOFIRSTNEG)\n\n MAXITER <integer maxiter default 20>\n\n BSCALE <real BSCALE default 1.0>\n ASCALE <real ASCALE default 0.25>\n TSCALE <real TSCALE default 0.1>\n HSCALE <real HSCALE default 1.0>\n\n PRINT ...\n\n XYZ [<string xyz default $file_prefix$>]\n NOXYZ\n\n END\n
"},{"location":"tropt.html#convergence-criteria","title":"Convergence criteria","text":" (LOOSE || DEFAULT || TIGHT)\n GMAX <real value>\n GRMS <real value>\n XMAX <real value>\n XRMS <real value>\n\n OPTTOL <real value>\n
The defaults may be used, or the directives LOOSE
, DEFAULT
, or TIGHT
specified to use standard sets of values, or the individual criteria adjusted. All criteria are in atomic units. GMAX
and GRMS
control the maximum and root mean square gradient in the coordinates being used (Z-matrix, redundant internals, or Cartesian). XMAX
and XRMS
control the maximum and root mean square of the Cartesian step.
LOOSE DEFAULT TIGHT\n GMAX 0.0045d0 0.00045 0.000015 \n GRMS 0.0030d0 0.00030 0.00001\n XMAX 0.0054d0 0.00180 0.00006\n XRMS 0.0036d0 0.00120 0.00004\n
Additionally the user may request a specific value for the tolerance with the keyword OPTTOL
which will couple all the convergence criteria in the following way:
GRMS 1.0*OPTTOL\n GMAX 1.5*OPTTOL\n XRMS 4.0*OPTTOL\n XMAX 6.0*OPTTOL\n
Note that GMAX and GRMS used for convergence of geometry may significantly vary in different coordinate systems such as Z-matrix, redundant internals, or Cartesian. The coordinate system is defined in the input file (default is Z-matrix). Therefore the choice of coordinate system may slightly affect converged energy. Although in most cases XMAX and XRMS are last to converge which are always done in Cartesian coordinates, which insures convergence to the same geometry in different coordinate systems.
The old criterion may be recovered with the input
gmax 0.0008; grms 1; xrms 1; xmax 1\n
"},{"location":"tropt.html#available-precision","title":"Available precision","text":" EPREC <real eprec default 1e-7>\n
In performing a trust region optimization the precision of the energy is coupled to the convergence criteria. As mentioned above in most cases XMAX and XRMS are last to converge, thus, an accelerated converge is triggered in TROPT when GMAX and GRMS are already converged and the corresponding energy change with respect to the previous point is below the EPREC threshold, then, the structure is treated as optimized. This is used as an accelerated convergence criteria to avoid long tail in the optimization process. This will increase the speed of an optimization in most of the cases but it will be somehow cumbersome when dealing with flat energy surfaces, in this case a more tight EPREC value is recommended. Note that the default EPREC for DFT calculations is 5e-6 instead of 1e-7.
"},{"location":"tropt.html#controlling-the-step-length","title":"Controlling the step length","text":" TRUST <real trust default 0.3>\n
A dynamic trust radius (trust
) is used to control the step during optimization processes both minimization and saddle-point searches. It defaults to 0.3 for minimizations and 0.1 for saddle-point searches.
If a step taken during the optimization is too large or in the wrong direction (e.g., the step causes the energy to go up for a minimization), the TROPT optimizer will automatically \u201cbackstep\u201d and reduce the current value of the trust radius in order to avoid a permanent \u201cbacksteping\u201d.
"},{"location":"tropt.html#maximum-number-of-steps","title":"Maximum number of steps","text":" MAXITER <integer maxiter default 20>\n
By default at most 20 geometry optimization steps will be taken, but this may be modified with this directive.
"},{"location":"tropt.html#discard-restart-information","title":"Discard restart information","text":" CLEAR\n
By default TROPT reuses Hessian information from a previous optimization, and, to facilitate a restart also stores which mode is being followed for a saddle-point search. This option deletes all restart data.
"},{"location":"tropt.html#regenerate-internal-coordinates","title":"Regenerate internal coordinates","text":" REDOAUTOZ\n
Deletes Hessian data and regenerates internal coordinates at the current geometry. Useful if there has been a large change in the geometry that has rendered the current set of coordinates invalid or non-optimal.
"},{"location":"tropt.html#initial-hessian","title":"Initial Hessian","text":" INHESS <integer inhess default 0>\n
0 = Default \u2026 use restart data if available, otherwise use diagonal guess.
1 = Use diagonal initial guess.
2 = Use restart data if available, otherwise transform Cartesian Hessian from previous frequency calculation.
In addition, the diagonal elements of the initial Hessian for internal coordinates may be scaled using separate factors for bonds, angles and torsions with the following
BSCALE <real bscale default 1.0>\n ASCALE <real ascale default 0.25>\n TSCALE <real tscale default 0.1>\n
These values typically give a two-fold speedup over unit values, based on about 100 test cases up to 15 atoms using 3-21g and 6-31g* SCF. However, if doing many optimizations on physically similar systems it may be worth fine tuning these parameters.
Finally, the entire Hessian from any source may be scaled by a factor using the directive
HSCALE <real hscale default 1.0>\n
It might be of utility, for instance, when computing an initial Hessian using SCF to start a large MP2 optimization. The SCF vibrational modes are expected to be stiffer than the MP2, so scaling the initial Hessian by a number less than one might be beneficial.
"},{"location":"tropt.html#mode-or-variable-to-follow-to-saddle-point","title":"Mode or variable to follow to saddle point","text":" (MODDIR || VARDIR) <integer dir default 0>\n (FIRSTNEG || NOFIRSTNEG)\n
When searching for a transition state the program, by default, will take an initial step uphill and then do mode following using a fuzzy maximum overlap (the lowest eigen-mode with an overlap with the previous search direction of 0.7 times the maximum overlap is selected). Once a negative eigen-value is found, that mode is followed regardless of overlap.
The initial uphill step is appropriate if the gradient points roughly in the direction of the saddle point, such as might be the case if a constrained optimization was performed at the starting geometry. Alternatively, the initial search direction may be chosen to be along a specific internal variable (using the directive VARDIR
) or along a specific eigen-mode (using MODDIR
). Following a variable might be valuable if the initial gradient is either very small or very large. Note that the eigen-modes in the optimizer have next-to-nothing to do with the output from a frequency calculation. You can examine the eigen-modes used by the optimizer with
tropt; print hvecs; end\n
The selection of the first negative mode is usually a good choice if the search is started in the vicinity of the transition state and the initial search direction is satisfactory. However, sometimes the first negative mode might not be the one of interest (e.g., transverse to the reaction direction). If NOFIRSTNEG
is specified, the code will not take the first negative direction and will continue doing mode-following until that mode goes negative.
XYZ [<string xyz default $fileprefix>]\n NOXYZ\n
The XYZ
directive causes the geometry at each step to be output into file in the permanent directory in XYZ format. The optional string will prefix the filename. The NOXYZ
directive turns this off.
For example, the input
tropt; xyz ; end\n
will cause a trajectory file filename.xyz to be created in the permanent directory.
"},{"location":"tropt.html#print-options","title":"Print options","text":"The UNIX command \"egrep '^@' < output\"
will extract a pretty table summarizing the optimization.
If you specify the NWChem input
scf; print none; end\n tropt; print low; end\n task scf optimize\n
you\u2019ll obtain a pleasantly terse output.
For more control, these options for the standard print directive are recognized
debug
- prints a large amount of data. Don\u2019t use in parallel.
high
- print the search direction in internals
default
- prints geometry for each major step (not during the line search), gradient in internals (before and after application of constraints)
low
- prints convergence and energy information. At convergence prints final geometry, change in internals from initial geometry
and these specific print options
finish
(low) - print geometry data at end of calculation
bonds
(default) - print bonds at end of calculation
angles
(default) - print angles at end of calculation
hvecs
(never) - print eigen-values/vectors of the Hessian
searchdir
(high) - print the search direction in internals
\u2018internal gradient
\u2019 (default) - print the gradient in internals
sadmode
(default) - print the mode being followed to the saddle point
https://pnnl.cvent.com/events/aerosol-summer-school/agenda-a5619d0658f24e799567a97dbb6ef20d.aspx
This webpage can be reached by using the following URL
https://tinyurl.com/nwaero19
The Arrows webpage can be reached by using the following URL
https://arrows.emsl.pnnl.gov/api/aerosol
"},{"location":"tut2019/index.html#instruction-for-installing-nwchem-on-mac-with-homebrew","title":"Instruction for installing NWChem on Mac with Homebrew","text":"In Terminal App, either use the script https://github.com/nwchemgit/nwchem-wiki/blob/master/tut2019/macinstall.bash or follow these instructions If Homebrew is not installed yet, type
/usr/bin/ruby -e \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)\"\n
type
brew install nwchem\n
"},{"location":"tut2019/index.html#instruction-for-installing-nwchem-on-ubuntu-18-bionic","title":"Instruction for installing NWChem on Ubuntu 18 Bionic","text":"Open terminal and type
sudo apt -y install mpi-default-bin libgfortran4 libopenblas-base \\\nlibopenmpi2 libscalapack-openmpi2.0 openmpi-bin libquadmath0 \\\nlibfabric1 libhwloc5 libibverbs1 libpsm-infinipath1 \\\nopenmpi-common libhwloc-plugins libnl-route-3-200 \\\nocl-icd-libopencl1 librdmacm1\n
Download NWChem install file by typing
wget https://github.com/nwchemgit/nwchem/releases/download/6.8.1-release/nwchem-data_6.8.1+133+gitge032219-2_all.ubuntu_bionic.deb\nwget https://github.com/nwchemgit/nwchem/releases/download/6.8.1-release/nwchem_6.8.1+133+gitge032219-2_amd64.ubuntu_bionic.deb\n
Install the NWChem packages
sudo dpkg -i nwchem_6.8.1+133+gitge032219-2_amd64.ubuntu_bionic.deb \\ \nnwchem-data_6.8.1+133+gitge032219-2_all.ubuntu_bionic.deb\n
Alternative: use the script https://github.com/nwchemgit/nwchem-wiki/blob/master/tut2019/ubuntu18install.bash
"},{"location":"tutorial_singapore2012/index.html","title":"Index","text":""},{"location":"tutorial_singapore2012/index.html#material-from-the-nwchem-tutorial-at-astar-in-singapore-on-october-23-25-2012","title":"Material from the NWChem tutorial at A*STAR in Singapore on October 23-25, 2012","text":"Introduction
SCF, DFT and TDDFT
Correlated Methods
Relativity and Spectroscopy
MD and QM/MM tar file with QM/MM hands-on exercises available at https://rawgit.com/nwchemgit/nwchem-wiki/master/tutorial_singapore2012/tutorialqmm_new.tar.bz2 https://rawgit.com/nwchemgit/nwchem-wiki/master/tutorial_singapore2012/prepare-0.tar.bz2
Plane-Wave
Applications
Parallelization and Benchmarks
tar file with hands-on exercises for all sessions available at https://rawgit.com/nwchemgit/nwchem-wiki/master/tutorial_singapore2012/tutorial.tar.bz2