-
Notifications
You must be signed in to change notification settings - Fork 4
/
esm-lecture-9.tex
830 lines (541 loc) · 25.8 KB
/
esm-lecture-9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
% NB: use pdflatex to compile NOT pdftex. Also make sure youngtab is
% there...
% converting eps graphics to pdf with ps2pdf generates way too much
% whitespace in the resulting pdf, so crop with pdfcrop
% cf. http://www.cora.nwra.com/~stockwel/rgspages/pdftips/pdftips.shtml
\documentclass[10pt,aspectratio=169,dvipsnames]{beamer}
\usetheme[color/block=transparent]{metropolis}
\usepackage[absolute,overlay]{textpos}
\usepackage{booktabs}
\usepackage[utf8]{inputenc}
\usepackage{tikz}
\usepackage[scale=2]{ccicons}
\usepackage[official]{eurosym}
%use this to add space between rows
\newcommand{\ra}[1]{\renewcommand{\arraystretch}{#1}}
\newcommand{\R}{\mathbb{R}}
\setbeamerfont{alerted text}{series=\bfseries}
\setbeamercolor{alerted text}{fg=Mahogany}
\setbeamercolor{background canvas}{bg=white}
\def\l{\lambda}
\def\m{\mu}
\def\d{\partial}
\def\cL{\mathcal{L}}
\def\co2{CO${}_2$}
\def\bra#1{\left\langle #1\right|}
\def\ket#1{\left| #1\right\rangle}
\newcommand{\braket}[2]{\langle #1 | #2 \rangle}
\newcommand{\norm}[1]{\left\| #1 \right\|}
\def\corr#1{\Big\langle #1 \Big\rangle}
\def\corrs#1{\langle #1 \rangle}
\def\mw{\text{ MW}}
\def\mwh{\text{ MWh}}
\def\emwh{\text{ \euro/MWh}}
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
% for sources http://tex.stackexchange.com/questions/48473/best-way-to-give-sources-of-images-used-in-a-beamer-presentation
\setbeamercolor{framesource}{fg=gray}
\setbeamerfont{framesource}{size=\tiny}
\newcommand{\source}[1]{\begin{textblock*}{5cm}(10.5cm,8.35cm)
\begin{beamercolorbox}[ht=0.5cm,right]{framesource}
\usebeamerfont{framesource}\usebeamercolor[fg]{framesource} Source: {#1}
\end{beamercolorbox}
\end{textblock*}}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage[europeanresistors,americaninductors]{circuitikz}
%\usepackage[pdftex]{graphicx}
\graphicspath{{graphics/}}
\DeclareGraphicsExtensions{.pdf,.jpeg,.png,.jpg,.gif}
\def\goat#1{{\scriptsize\color{green}{[#1]}}}
\let\olditem\item
\renewcommand{\item}{%
\olditem\vspace{5pt}}
\title{Energy System Modelling\\ Summer Semester 2020, Lecture 9}
%\subtitle{---}
\author{
{\bf Dr. Tom Brown}, \href{mailto:[email protected]}{[email protected]}, \url{https://nworbmot.org/}\\
\emph{Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI)}
}
\date{}
\titlegraphic{
\vspace{0cm}
\hspace{10cm}
\includegraphics[trim=0 0cm 0 0cm,height=1.8cm,clip=true]{kit.png}
\vspace{5.1cm}
{\footnotesize
Unless otherwise stated, graphics and text are Copyright \copyright Tom Brown, 2020.
Graphics and text for which no other attribution are given are licensed under a
\href{https://creativecommons.org/licenses/by/4.0/}{Creative Commons
Attribution 4.0 International Licence}. \ccby}
}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Table of Contents}
\setbeamertemplate{section in toc}[sections numbered]
\tableofcontents[hideallsubsections]
\end{frame}
\section{Duration Curves and Capacity Factors: Examples from Germany in 2015}
\begin{frame}{Load curve}
Here's the electrical demand (load) in Germany in 2015:
\centering
\includegraphics[width=11cm]{load-2015}
\raggedright
To understand this curve better and its implications for the market,
it's useful to stack the hours of the year from left to right in
order of the amount of load.
\end{frame}
\begin{frame}{Load duration curve}
This re-ordering is called a \alert{duration curve}.\\
For the load it's the \alert{load duration curve}.
\centering
\includegraphics[width=13cm]{load-duration-2015}
\end{frame}
\begin{frame}{Nuclear curve}
Can do the same for nuclear output:
\centering
\includegraphics[width=10.5cm]{Nuclear-2015}
\end{frame}
\begin{frame}{Nuclear duration curve}
Duration curve is pretty flat, because it is economic to run nuclear almost all the time as \alert{baseload plant}:
\centering
\includegraphics[width=13cm]{Nuclear-duration-2015}
\raggedright
The equivalent fraction of time that the plants run at full capacity over the year is the \alert{capacity factor} - nuclear has a high capacity factor, usually around 70-90\%.
\end{frame}
\begin{frame}{Gas curve}
Can do the same for gas output:
\centering
\includegraphics[width=13cm]{Gas-2015}
\end{frame}
\begin{frame}{Gas duration curve}
Duration curve is partially flat (for heat-driven CHP) and partially peaked (for \alert{peaking plant}):
\centering
\includegraphics[width=12cm]{Gas-duration-2015}
\raggedright
The capacity factor for gas is much lower - more like 20\%.
\end{frame}
\begin{frame}{Price curve}
Can do the same for price during the year:
\centering
\includegraphics[width=13cm]{price-2015}
\end{frame}
\begin{frame}{Price duration curve}
By ordering we get the \alert{price duration curve}:
\centering
\includegraphics[width=13cm]{price-duration-2015}
\end{frame}
\begin{frame}{Question}
Now we are in a position to consider the questions:
\begin{itemize}
\item What determines the distribution of investment in different generation technologies?
\item How is it connected to variable costs, capital costs and capacity factors?
\end{itemize}
We will find the price and load duration curves very useful.
\end{frame}
\section{Investment Optimisation: Dispatchable Generation}
\begin{frame}[fragile]
\frametitle{Investment optimisation}
Now we also optimise \alert{investment} in the \alert{capacities} of generators,
storage and network lines for the \alert{whole system} not just a single plant operator, to maximise \alert{long-run efficiency}.
We will promote the capacities $G_{i,s}$, $G_{i,r,*}$, $E_{i,r}$ and
$F_{\ell}$ to optimisation variables.
For generation investment, we want to answer the following questions:
\begin{itemize}
\item What determines the distribution of investment in different generation technologies?
\item How is it connected to variable costs, capital costs and capacity factors?
\end{itemize}
We will find price and load duration curves very useful.
\end{frame}
\begin{frame}{Definition of long-run efficiency}
Up until now we have considered \alert{short-run} equilibria that
ensure \alert{short-run} efficiency (static), i.e. they make the best use of
presently available productive resources.
\alert{Long-run} efficiency (dynamic) requires in addition the optimal
investment in productive capacity.
Concretely: given a set of options, costs and constraints for different
generators (nuclear/gas/wind/solar) what is the optimal generation
portfolio for maximising long-run welfare?
From an individual generators' perspective: how best should I invest in extra capacity?
We will show again that with perfect competition and no barriers to
entry, the system-optimal situation can be reached by individuals
following their own profit.
\end{frame}
\begin{frame}
\frametitle{Baseload versus Peaking Plant}
\alert{Load} (= Electrical Demand) is low during night; in Northern Europe in the winter, the peak is in the evening.
To meet this load profile, cheap \alert{baseload} generation runs the whole time; more expensive \alert{peaking plant} covers the difference.
\centering
\includegraphics[width=8.5cm]{baseload-peaking}
\source{Tom Brown}
\end{frame}
\begin{frame}{Different types of generators}
\ra{1.1}
\begin{table}[!t]
\centering
\begin{tabular}{@{}llllll@{}}
\toprule
Fuel/Prime & Marginal & Capital & Controllable & Predictable & CO2 \\
mover & cost & cost & & days ahead & \\
\midrule
Oil & V. High & Low & Yes & Yes & Medium \\
Gas OCGT & High & Low & Yes & Yes & Medium \\
Gas CCGT & Medium & Medium & Yes & Yes & Medium \\
Hard Coal & Medium & Lowish & Yes & Yes & High \\
Brown Coal & Low & Medium & Partly & Yes & High \\
Nuclear & V. Low & High & Partly & Yes & Zero \\
Hydro dam & Zero & High & Yes & Yes & Zero \\
Wind/Solar & Zero & High & Down & Partly & Zero \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}{System-optimal dispatchable generator capacities and dispatch}
Suppose we have generators labelled by $s$ at a single node with \alert{marginal costs} $o_s$ from each unit of
production $g_{s,t}$ and \alert{specific capital costs} $c_s$ from fixed costs
regardless of the rate of production (e.g. investment in building
capacity $G_s$). For a variety of demand values $d_t$ that occur with probability $p_t$ ($\sum_t p_t = 1$) we optimise the total \alert{average hourly system costs}
\begin{equation*}
\min_{\{g_{s,t}\},\{G_s\}} \left[\sum_{s}c_s G_s + \sum_{s,t} p_t o_{s} g_{s,t} \right]
\end{equation*}
such that (rescaling the KKT multipliers by $p_t$ to simplify later formulae)
\begin{align*}
\sum_s g_{s,t} & = d_t \hspace{1cm}\leftrightarrow\hspace{1cm} p_t \l_t \\
- g_{s,t} & \leq 0 \hspace{1cm}\leftrightarrow\hspace{1cm} p_t \ubar{\m}_{s,t} \\
g_{s,t} - G_s & \leq 0 \hspace{1cm}\leftrightarrow\hspace{1cm} p_t \bar{\m}_{s,t}
\end{align*}
Assume ordering $o_1 \leq o_2 \leq \cdots \leq o_S = v$ where $s=S$ is the generator for load-shedding,
$o_S = v$ (Value of Lost Load), $c_S=0$ (the capacity to shed load
is assumed cost-free).
\end{frame}
\begin{frame}{Beware units and scaling}
We've chosen the units here so that the total objective function has units \euro{}h$^{-1}$, the \alert{average hourly system costs}.
$\sum_{s,t} p_t o_{s} g_{s,t}$ is the expectation value of the hourly production costs. $g_{s,t}$ has units MW, $o_{s}$ has units \euro{}(MWh)$^{-1}$.
$c_sG_s$ is the investment cost averaged over each hour, i.e. the annualised investment cost $a(r,T)I_0$ (like a mortgage - we'll cover how to get this next lecture from the investment cost $I_0$, interest rate $r$ and lifetime $T$ via the annuity $a(r,T)$) divided by 8760, $\frac{a(r,T)I_0}{8760}$ (we can also add the fixed O\&{}M costs $B$ to it). $G_s$ has units MW, $c_s$ has units
\euro{}MW$^{-1}$h$^{-1}$.
We could have instead optimised \alert{average yearly system costs}, then $c_s G_s$ would simply be the annuity, and instead of weighting with $p_t$ such that $\sum_t p_t = 1$, we replace it with a weighting $w_t$ such that $\sum_t w_t = 8760$. In this case, the total objective would have units \euro{}a$^{-1}$.
\end{frame}
\begin{frame}{System-optimal generator capacities and dispatch}
Stationarity for $g_{s,t}$ gives us for each $s$ and $t$ the same equation we had without capacity optimisation:
\begin{align*}
0 = \frac{\d \cL}{\d g_{s,t}} = p_t \left(o_s - \l_t^* - \bar{\m}^*_{s,t} + \ubar{\m}^*_{s,t} \right)
\end{align*}
and for the capacity $G_s$ for each $s$ it relates the capital cost $c_s$ to the KKT multipliers for the capacity constraint:
\begin{align*}
0 = \frac{\d \cL}{\d G_{s}} = c_s + \sum_t p_t \bar{\m}^*_{s,t}
\end{align*}
and from complementarity we get
\begin{align*}
\bar{\m}^*_{s,t}(g_{s,t}^* - G_s^*) & = 0 \\
\ubar{\m}^*_{s,t}g_{s,t}^* & = 0
\end{align*}
and dual feasibility (negative for minimisation) $ \bar{\m}^*_{s,t}, \ubar{\m}^*_{s,t} \leq 0$.
\end{frame}
\begin{frame}{System-optimal generator capacities and dispatch}
The solution for the dispatch $g_{s,t}^*$ is exactly the same as
without capacity optimisation. For each $t$, find the marginal generator $m$
where the supply curve intersects with the demand $d_t$, i.e. the $m$
where $\sum_{s=1}^{m-1} G_s^* < d_t < \sum_{s=1}^{m} G_s^*$.
The \alert{marginal generator will set the price} $\l^*_t = o_m$, like before.
For $s < m$ we have $g_{s,t}^* = G_s^*$, $\ubar{\m}^*_{s,t} = 0$,
$\bar{\m}^*_{s,t} = o_s - \l_t^* \leq 0$.
For $s = m$ we have $g_{m,t}^* = d_t - \sum_{s=1}^{m-1} G_s^*$ to cover
what's left of the demand. Since $0 < g_{m,t}^* < G_m$ we have
$\ubar{\m}^*_{m,t} = \bar{\m}^*_{m,t} = 0$ and therefore $\l_t^* = o_m$.
For $s > m$ we have $g_{s,t}^* = 0$,
$\ubar{\m}^*_{s,t} = \l_t^*-o_s \leq 0 $, $\bar{\m}^*_{s,t} = 0$.
What about the $G_s^*$?
\end{frame}
\begin{frame}{System-optimal generator capacities and dispatch}
The $G_s^*$ are determined implicitly based on the interactions between costs and prices.
From stationarity we had the relation
\begin{align*}
c_s = - \sum_t p_t \bar{\m}^*_{s,t}
\end{align*}
The $\bar{\m}^*_{s,t}$ were only non-zero with $\l^*_{t} > o_s$ so we can re-write this as
\begin{align*}
c_s = \sum_{t| \l^*_{t} > o_s} p_t (\l^*_{t} - o_s)
\end{align*}
This is the \alert{average profit the generator makes in the short-run market}.
`Increase capacity until marginal increase in profit equals the cost of extra capacity.'
Above this capacity the generator makes less money from the market than its cost $\Rightarrow$ bad investment.
\end{frame}
\begin{frame}{Multiple price duration}
The optimal mix of generation is where, for each generation type,
the area under the price–duration curve and above the variable cost
of that generation type is equal to the fixed cost of adding
capacity of that generation type.
\centering
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=8.5cm]{multiple-price-duration-clean}};
\draw (0.6,1.8) node{$o_1$};
\draw (0.6,2.6) node{$o_2$};
\draw (0.6,3.4) node{$o_3$};
\end{tikzpicture}
\source{Biggar and Hesamzadeh, 2014}
\end{frame}
\begin{frame}{Multiple generators with linear costs and inelastic demand}
Assume again we have $o_1 \leq o_2 \leq \cdots \leq o_S = v$ and $K_s = \sum_{p=1}^s G_p^*$
then:
\begin{equation*}
\l_t = \left\{ \begin{array}{ll}
v& \textrm{ for } d_t > K_{S-1} \\
o_s & \textrm{ if } K_{s-1} < d_t \leq K_s, \hspace{1cm} \textrm{ for } s = 1, \dots S-1
\end{array}\right.
\end{equation*}
Looking at the area under the price duration curve but above the
variable cost, we then find:
\begin{equation*}
c_s = (v-o_s)P(d>K_{S-1}) + \sum_{j=s+1}^{S-1} (o_j-o_s) P(K_{j-1} < d \leq K_j)
\end{equation*}
\end{frame}
\begin{frame}{Example with three generators plus load shedding}
\begin{columns}[T]
\begin{column}{6cm}
\includegraphics[width=6.4cm]{stacked-3-gen-durations.pdf}
\end{column}
\begin{column}{8cm}
Example for $S=4$ (3 generators plus load-shedding).
\vspace{0.5cm}
The upper graph is the load duration curve.
The y-axis is marked with the summed capacities of the generators $K_s = \sum_{p=1}^s G_p^*$.
These meet the curve at $\theta_s = P(d_t > K_s)$ (the definition of load duration curve).
\vspace{1cm}
The lower graph is the price duration curve.
During the time when generator $s$ is price-setting, the price is $o_s$.
When $d_t > G_1^* + G_2^* + G_3^*$ then we have load-shedding and the price is $v$.
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Example with three generators plus load shedding}
\begin{columns}[T]
\begin{column}{6cm}
\includegraphics[width=6.4cm]{stacked-3-gen-durations-0.pdf}
\end{column}
\begin{column}{8cm}
How is this related to the capital costs?
\vspace{0.5cm}
For generator 3, the capital cost $c_3$ is the area above the price duration curve when $\l_t^* > o_3$.
This only happens when there is load-shedding and $\l_t^* = v$ when $d_t > K_3 = G_1^* + G_2^* + G_3^*$.
The area is given by
\begin{align*}
c_3 & = (v - o_3) \theta_3 \\
& = (v - o_3)P(d_t > K_3)
\end{align*}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Example with three generators plus load shedding}
\begin{columns}[T]
\begin{column}{6cm}
\includegraphics[width=6.4cm]{stacked-3-gen-durations-1.pdf}
\end{column}
\begin{column}{8cm}
How is this related to the capital costs?
\vspace{0.5cm}
For generator 2, the capital cost $c_2$ is the area above the price duration curve when $\l_t^* > o_2$.
This only happens when there is load-shedding or when generator 3 is price-setting.
The area is given by
\begin{align*}
c_2 & = (v - o_2) \theta_3 + (o_3 - o_2) (\theta_2 - \theta_3) \\
& = (v - o_2) P(d_t > K_3) \\
& \hspace{1cm}+ (o_3 - o_2) \left(P(d_t > K_2) - P(d_t > K_3)\right) \\
& = (v - o_2) P(d_t > K_3) + (o_3 - o_2) P(K_2 < d_t\leq K_3)
\end{align*}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Example with three generators plus load shedding}
\begin{columns}[T]
\begin{column}{6cm}
\includegraphics[width=6.4cm]{stacked-3-gen-durations-2.pdf}
\end{column}
\begin{column}{8cm}
How is this related to the capital costs?
\vspace{0.5cm}
Finally for generator 1, the capital cost $c_1$ is the area above the price duration curve when $\l_t^* > o_1$.
This only happens when there is load-shedding or when generator 2 or 3 is price-setting.
The area is given by
\begin{align*}
c_1 & = (v - o_1) \theta_3 + (o_3 - o_1) (\theta_2 - \theta_3) + (o_2 - o_1) (\theta_1 - \theta_2) \\
& = (v - o_1) P(d_t > K_3) \\
& \hspace{1cm}+ (o_3 - o_1) \left(P(d_t > K_2) - P(d_t > K_3)\right) \\
& \hspace{1cm}+ (o_2 - o_1) \left(P(d_t > K_1) - P(d_t > K_2)\right) \\
& = (v - o_1) P(d_t > K_3) + (o_3 - o_1) P(K_2 < d_t\leq K_3) \\
& \hspace{1cm}+ (o_2 - o_1) P(K_1 < d_t\leq K_2)
\end{align*}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Screening curve}
These equations can be rewritten recursively using the substitution
$\theta_s = P(d > K_s)$:
\begin{align*}
c_{S-1} + \theta_{S-1} o_{S-1} &= v\theta_{S-1} \\
c_s + \theta_s o_s &= c_{s+1} + \theta_s o_{s+1} \hspace{1cm} \forall s = 1, \dots S-2
\end{align*}
The first equation can be solved to find $\theta_{S-1}$, then the other equations can be solved recursively to find the remaining $\theta_s$. The $\theta_s$ correspond to the optimal \alert{capacity factors} of each type of generator, which correspond to the fraction of time the generator runs at full power.
\end{frame}
\begin{frame}{Screening curve}
The costs $c_s + o_s\theta$ as a function of the capacity factors $\theta$ can be drawn
together as a \alert{screening curve} (more expensive options are
\emph{screened} from the optimal inner polygon).
The intersection points determine which generators are optimal for which capacity factors.
\begin{columns}[T]
\begin{column}{7cm}
\includegraphics[width=7.5cm]{screening_basic.pdf}
\end{column}
\begin{column}{7cm}
$c_s + o_s\theta $ is the cost per MW and per hour of delivering power for $\theta$ of the time.
$c_s$ gives the intercept of the $y$ axis; $o_s$ gives the slope.
\vspace{.3cm}
In this example we have load shedding, a baseload generator 1 and a peaking generator 2.
For a capacity factor between 0 and $\theta_2$, it is cheapest to shed load.
Between $\theta_2$ and $\theta_1$ the peaking generator 2 is lowest cost.
Above $\theta_1$ the baseload generator 1 is best.
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Relation to levelised cost of electricity (LCOE)}
\begin{columns}[T]
\begin{column}{7cm}
\includegraphics[width=7.5cm]{screening_LCOE.pdf}
\end{column}
\begin{column}{7cm}
\begin{itemize}
\item $c_s + o_s\theta $ is the cost per MW and per hour of delivering power for $\theta$ of the time.
\item To get the \alert{levelised cost of electricity (LCOE)}, the cost per delivered energy, we divide by $\theta$:
\begin{equation*}
\textrm{LCOE}_s = \frac{c_s}{\theta} + o_s
\end{equation*}
\item The intersection points $\theta_s$ are the same, but it's now harder to read the graph.
\item For peaking generator 2 with low capital cost $c_2$ and high marginal cost $o_2$, LCOE$_2\to o_2$ as $\theta \to 1$.
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Screening curve versus Load duration}
\begin{columns}[T]
\begin{column}{7cm}
\centering
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=6.5cm]{screening-load-duration-clean}};
\draw (1.9,4.2) node{$c_2$};
\draw (1.9,5.6) node{$c_1$};
\draw (2.7,3.5) node{$\theta_2$};
\draw (5.2,3.5) node{$\theta_1$};
\draw (2.7,0.2) node{$\theta_2$};
\draw (5.2,0.2) node{$\theta_1$};
\end{tikzpicture}
\end{column}
\begin{column}{6cm}
The screening curve allows us to read of the optimal generator capacities $G_p^*$ from the load duration curve.
\begin{itemize}
\item We match the intersection points $\theta_s$ to the load duration curve.
\item The values of the load duration curve at $\theta_s$ tell us what the cumulative sums $K_s = \sum_{p=1}^s G_p^*$ of the generator capacities are.
\item This allows us to deduce the generator capacities $G_p^*$.
\end{itemize}
\end{column}
\end{columns}
\source{Biggar and Hesamzadeh, 2014}
\end{frame}
\begin{frame}{Example: 2 generation technologies and load shedding}
Suppose that electrical demand is inelastic with a load duration curve given by $d(\theta)=1000-1000\theta$ for $0\leq \theta \leq 1$. Suppose that there are two different types of generation with variable costs of 2 and 12~\euro/MWh respectively, together with load-shedding at a cost of 1012~\euro/MWh. The fixed costs of the two generation types are 15 and 10~\euro/MWh respectively. See the below table for a summary of the costs.
\ra{1.1}
\begin{table}[!h]
\begin{tabular}{lrr}
\toprule
Generator & $o_s$ [\euro/MWh] & $c_s$ [\euro/MW/h] \\
\midrule
1 & 2 & 15 \\
2 & 12 & 10 \\
LS & 1012 & 0 \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}{Example: 2 generation technologies and load shedding}
\begin{enumerate}
\item What is the interpretation of the load duration curve?
\item Below which capacity factor $\theta_1$ is it cheaper to run Generator 2 rather than to run Generator 1?
\item Below which capacity factor $\theta_2$ is it cheaper to shed load than to run Generator 2?
\item Plot the costs as a function of
$\theta$ and mark these intersection points on a screening curve.
\item Find the optimal capacities of Generators 1 and 2 in this market.
\end{enumerate}
\end{frame}
\begin{frame}{Example: 2 generation technologies and load shedding}
\begin{columns}[T]
\begin{column}{6cm}
\includegraphics[width=6.5cm]{screening-example.pdf}
\end{column}
\begin{column}{7cm}
Procedure:
\begin{itemize}
\item Draw the screening curve and load duration curve $d(\theta)$.
\item Determine the intersection points $\theta_s$ from the screening curve.
\item Compute the cumulative generator capacity sums from the load duration curve $d(\theta_s) = K_s = \sum_{p=1}^s G_p^*$.
\item Find the capacities $G_s^*$ from the cumulative sums $K_s$.
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Example: 2 generation technologies and load shedding}
To find $\theta_1$, solve for the intersection of Generator 1's cost curve with Generator 2's cost curve as a function of capacity factor:
\begin{equation*}
c_1 + \theta_1 o_1 = c_2 + \theta_1 o_2 \hspace{1cm} \Rightarrow \hspace{1cm} 15 + 2 \theta_1 = 10 + 12 \theta_1
\end{equation*}
This gives $\theta_1 = 0.5$. At this point the demand is $d(0.5) = 500$~MW therefore
\begin{equation*}
K_1 = G_1^* = 500\textrm{ MW}
\end{equation*}
To find $\theta_2$, solver for where Generator 2 crosses the load-shedding line:
\begin{equation*}
c_2 + \theta_2 o_2 = c_{LS} + \theta_2 o_{LS} \hspace{1cm} \Rightarrow \hspace{1cm} 10 + 12 \theta_2 = 1012 \theta_2
\end{equation*}
This gives $\theta_2 = 0.01$. At this point the demand is $d(0.01) = 990$~MW so:
\begin{equation*}
K_2 = G_1^* + G_2^* = 990\textrm{ MW}
\end{equation*}
i.e. $G_2^* = 490$ MW. The remaining load is shed, $G_{LS}^* = 10$ MW.
\end{frame}
\section{Investment Optimisation: Transmission}
\begin{frame}[fragile]
\frametitle{Investment optimisation: transmission}
As before, our approach to the question of \alert{``What is the
optimal amount of transmission''} is determined by the most
efficient long-term solution. Promote $F_\ell$ to an optimisation variable with specific capital cost
$c_\ell$. For nodes $i$ and transmission lines $\ell$ enforcing KCL but not KVL:
\begin{equation*}
\min_{\{g_{i,s,t}\},\{G_{i,s}\},\{f_{\ell,t}\},\{F_{\ell}\}} \left[\sum_{s}c_{i,s} G_{i,s} + \sum_{i,s,t} p_t o_{i,s} g_{i,s,t} + \sum_{\ell}c_\ell F_\ell \right]
\end{equation*}
such that
\begin{align*}
\sum_s g_{i,s,t} - \sum_\ell K_{i\ell}f_{\ell,t} & = d_{i,t} \hspace{1cm}\leftrightarrow\hspace{1cm} p_t \l_{i,t} \\
- g_{i,s,t} & \leq 0 \hspace{1cm}\leftrightarrow\hspace{1cm} p_t \ubar{\m}_{i,s,t} \\
g_{i,s,t} - G_{i,s} & \leq 0 \hspace{1cm}\leftrightarrow\hspace{1cm} p_t \bar{\m}_{i,s,t} \\
f_{\ell,t} - F_\ell & \leq 0 \hspace{1cm}\leftrightarrow\hspace{1cm} p_t\bar{\m}_{\ell,t} \\
- f_{\ell,t} - F_\ell & \leq 0 \hspace{1cm}\leftrightarrow\hspace{1cm} p_t\ubar{\m}_{\ell,t}
\end{align*}
\end{frame}
\begin{frame}[fragile]
\frametitle{Investment optimisation: transmission}
From stationarity for $f_{\ell,t}$ we find
\begin{equation*}
0 = \frac{\d \cL}{\d f_{\ell,t}} = p_t \left(\sum_i K_{i\ell} \l_{i,t}^* - \bar{\mu}_{\ell,t}^* + \ubar{\mu}_{\ell,t}^* \right)
\end{equation*}
I.e. the KKT multipliers $\bar{\mu}_{\ell,t}^*$ or
$\ubar{\mu}_{\ell,t}^*$ are non-zero when the line $\ell$ is congested (by definition), at which time one of them equals
the price difference between the ends of the line.
For the investment we find from stationarity $0 = \frac{\d \cL}{\d F_{\ell}}$
\begin{equation*}
c_\ell = - \sum_t p_t \left(\bar{\mu}_{\ell,t}^* + \ubar{\mu}_{\ell,t}^* \right)
\end{equation*}
Remember that $\bar{\mu}_{\ell,t}^*$ and $\ubar{\mu}_{\ell,t}^*$ are only non-zero when the line is congested.
Exactly as with generation dispatch and investment, we
continue to invest in transmission until the marginal benefit of
extra transmission (i.e. extra congestion rent for extra capacity)
is equal to the marginal cost of extra transmission. This determines
the optimal investment level.
\end{frame}
\end{document}