-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnlp_save_features.py
166 lines (134 loc) · 5.19 KB
/
nlp_save_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import logging
from pathlib import Path
import hydra
import numpy as np
import torch
import yaml
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from src.data import ag_news
from src.model import ContrastiveFastText
def convert_vectors(data_loader: torch.utils.data.DataLoader, model: ContrastiveFastText,
device: torch.device) -> tuple:
"""
Convert images to feature representations.
:param data_loader: Data loader of the dataset.
:param model: Pre-trained instance.
:param device: PyTorch's device instance.
:return: Tuple of numpy; data and labels.
"""
model.eval()
new_X = []
new_y = []
with torch.no_grad():
for x_batches, y_batches, offsets in data_loader:
new_X.append(
model(x_batches.to(device), offsets.to(device))
)
new_y.append(y_batches)
X = torch.cat(new_X).cpu()
y = torch.cat(new_y).cpu()
return X.numpy(), y.numpy()
@hydra.main(config_path="conf", config_name="nlp_analysis_config")
def main(cfg: OmegaConf):
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.INFO)
stream_handler.terminator = ""
logger.addHandler(stream_handler)
seed = cfg["experiment"]["seed"]
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
use_cuda = cfg["experiment"]["use_cuda"] and torch.cuda.is_available()
if use_cuda:
device_id = cfg["experiment"]["gpu_id"] % torch.cuda.device_count()
device = torch.device(device_id)
else:
device = torch.device("cpu")
logger.info("Using {}".format(device))
# initialise data loaders
training_dataset, validation_dataset = ag_news.get_train_val_datasets(
root=Path.home() / "pytorch_datasets",
min_freq=cfg["dataset"]["min_freq"],
)
training_data_loader = DataLoader(
training_dataset,
batch_size=cfg["experiment"]["batches"],
shuffle=False,
collate_fn=ag_news.collate_eval_batch,
drop_last=False
)
validation_data_loader = DataLoader(
validation_dataset,
batch_size=cfg["experiment"]["batches"],
shuffle=False,
collate_fn=ag_news.collate_eval_batch,
drop_last=False
)
weights_path = Path(cfg["experiment"]["target_weight_file"])
key = weights_path.name
vocab_size = training_dataset.vocab_size
logger.info("Save features extracted by using {}".format(key))
self_sup_config_path = weights_path.parent / ".hydra" / "config.yaml"
with open(self_sup_config_path) as f:
self_sup_conf = yaml.load(f, Loader=yaml.FullLoader)
model = ContrastiveFastText(
num_embeddings=vocab_size,
embedding_dim=self_sup_conf["architecture"]["embedding_dim"],
num_last_hidden_units=self_sup_conf["architecture"]["embedding_dim"],
with_projection_head=True
).to(device)
state_dict = torch.load(weights_path)
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
if use_cuda:
model.load_state_dict(state_dict, strict=False)
else:
model.load_state_dict(state_dict, strict=False, map_location=device)
# remove projection head or not
if not cfg["experiment"]["use_projection_head"]:
model.g = torch.nn.Identity()
X_train, y_train = convert_vectors(training_data_loader, model, device)
X_val, y_val = convert_vectors(validation_data_loader, model, device)
fname = "{}.feature.train.npy".format(key)
np.save(fname, X_train)
fname = "{}.label.train.npy".format(key)
np.save(fname, y_train)
fname = "{}.feature.val.npy".format(key)
np.save(fname, X_val)
fname = "{}.label.val.npy".format(key)
np.save(fname, y_val)
vocab_size = training_dataset.vocab_size
augmentation_type = self_sup_conf["dataset"]["augmentation_type"]
if augmentation_type == "erase":
replace_data = None
else:
replace_data = np.load(self_sup_conf["dataset"]["replace_data"])
assert len(replace_data) == vocab_size
# with data-augmentation
training_data_loader = DataLoader(
training_dataset,
batch_size=cfg["experiment"]["batches"],
shuffle=False,
collate_fn=ag_news.CollateSupervised(
self_sup_conf["dataset"]["mask_ratio"], replace_data, np.random.RandomState(seed), augmentation_type),
drop_last=False
)
validation_data_loader = DataLoader(
validation_dataset,
batch_size=cfg["experiment"]["batches"],
shuffle=False,
collate_fn=ag_news.CollateSupervised(
self_sup_conf["dataset"]["mask_ratio"], replace_data, np.random.RandomState(seed), augmentation_type),
drop_last=False
)
for a in range(2):
X_train, _ = convert_vectors(training_data_loader, model, device)
X_val, _ = convert_vectors(validation_data_loader, model, device)
fname = "{}.feature.{}.train.npy".format(key, a)
np.save(fname, X_train)
fname = "{}.feature.{}.val.npy".format(key, a)
np.save(fname, X_val)
if __name__ == "__main__":
main()