-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
executable file
·129 lines (105 loc) · 3.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import math
import random
import numpy as np
from tqdm import tqdm
import omegaconf
from omegaconf import OmegaConf
import argparse
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from dataset.shrec24_dataset import FinetuningDataset
import os
import os.path as opt
import sys
sys.path.append('./model')
from model.vit import ViT
from model.mae import MAE
from model.stgcn import STGCN
from utils.stgcn_utils import eval_stgcn
def seed_everything(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--cfg_path', default='configs/shrec24_configs.yaml', help='Path to the train.yaml config')
args = parser.parse_args()
## configs
cfg_path = args.cfg_path
args = OmegaConf.load(cfg_path)
device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
seed_everything(args.seed)
print('\nARGUMENTS....')
for arg, val in args.__dict__['_content'].items():
if isinstance(val, omegaconf.nodes.AnyNode):
print('> {}: {}'.format(arg, val))
else:
print('> {}'.format(arg))
for arg_, val_ in val.items():
print('\t- {}: {}'.format(arg_, val_))
print(15*'=', '\nEVALUATION', 15*'=')
print('\nLoading Finetuning data....')
data_args = args.data
mae_args = args.mae
stgcn_args = args.stgcn
valid_set = FinetuningDataset(data_dir=data_args.test_data_dir,
T=stgcn_args.sequence_length,
normalize=data_args.normalize)
print('# Test: {}'.format(len(valid_set)))
valid_loader = DataLoader(valid_set, batch_size=1, shuffle=False)
print('\nLOADING MAE PRE-TRAINED WEIGHTS....', end='')
encoder = ViT(
num_nodes=mae_args.num_joints,
node_dim=mae_args.coords_dim,
num_classes=mae_args.coords_dim,
dim=mae_args.encoder_embed_dim,
depth=mae_args.encoder_depth,
heads=mae_args.num_heads,
mlp_dim=mae_args.mlp_dim ,
pool = 'cls',
dropout = 0.,
emb_dropout = 0.
)
mae = MAE(encoder=encoder,
decoder_dim=mae_args.decoder_dim,
decoder_depth=mae_args.decoder_depth,
masking_strategy=mae_args.masking_strategy,
masking_ratio=mae_args.masking_ratio
)
chkpt = opt.join(args.save_folder_path, args.exp_name,'weights', 'best_mae_model.pth')
if not os.path.isfile(chkpt):
print(f"File not found: ", chkpt)
raise FileNotFoundError
mae_chkpt = torch.load(chkpt)
print('[optimal epoch={}]'.format(mae_chkpt['epoch']))
mae.load_state_dict(mae_chkpt['state_dict'])
mae = mae.to(device)
print('\nLOADING STGCN PRE-TRAINED WEIGHTS....')
stgcn = STGCN(channel=64,
num_class=stgcn_args.num_classes,
window_size=stgcn_args.sequence_length,
num_point=mae_args.num_joints,
num_person=1,
use_data_bn=False,
backbone_config=None,
graph_args={'config':'shrec24'},
mask_learning=False,
use_local_bn=False,
multiscale=False,
temporal_kernel_size=11,
dropout=0.5)
stgcn_chkpt = opt.join(args.save_folder_path, args.exp_name,'weights', 'best_stgcn_model.pth')
if not os.path.isfile(stgcn_chkpt):
print(f"File not found: ", stgcn_chkpt)
raise FileNotFoundError
stgcn_chkpt = torch.load(stgcn_chkpt)
stgcn.load_state_dict(stgcn_chkpt['state_dict'])
stgcn = stgcn.to(device)
print('\nINFERENCE [optimal MAE epoch={} & optimal STGCN epoch={}]\n'.format(mae_chkpt['epoch'], stgcn_chkpt['epoch']))
eval_stgcn(stgcn, mae, valid_loader, device, args)