forked from NathanLo3/Publication-codes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMDA_CEA_model_CaseWestern.m
887 lines (713 loc) · 41.3 KB
/
MDA_CEA_model_CaseWestern.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
function [total_DALY_sequelae_pre, total_DALY_sequelae_c, total_DALY_sequelae_a, ICER_values, total_DALYs_age, total_cost, total_DALY_iteration] = MDA_CEA_model_CaseWestern(MDA_strategy, snail_strategy, g_MDA, g_snail, MDA_freq, snail_freq, excel_decision)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cost-effectiveness analysis for control/elimination of schistosomiasis
% We test MDA, molluscicides, integrated MDA+molluscicides
% Adapted from Lo et al (2016) Lancet Infect Dis
% Written by Nathan Lo
%
% Last updated: 8/16/17
%
% Collaboration with Case Western
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUMMARY
% This function computes cost-effectiveness of schistosomiasis
% control and elimination strategies. We use results from a dynamic
% transmission model (human-snail coupled model, Case Western) that
% simulates various interventions. We input prevalence of no, light, and
% heavy infections for S. haematobium for each age sub-group (pre-school
% aged children, school-aged children, and adults). We then compute the
% total costs (2016 USD), disability (DALYs), and the ICER values for
% specified straegies including MDA, molluscicides, and an integrated
% MDA+molluscicide strategy.This simulation is a a 10-year period.
% Disability is assigned following prior work and as outlined in the
% Methods/appendix. Disability is reported by age, sequelae, and total.
% The transmission modeling is provided by David Gurarie and Charles King
% (Case Western), and results are shared through excel files.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% INPUTS:
%
% 1) MDA_strategy (scalar)
% (0)None
% (1)MDA (SAC)
% (2)MDA (SAC, pre-SAC)
% (3)MDA (Community)
% 2) Snail_strategy (scalar)
% (0)None
% (1)Molluscicides
% 3) MDA_coverage (g_MDA; 1x3 vector; fraction e.g., 75% is "0.75")
% Note: [pre-SAC, SAC, adults]
% 4) Snail_coverage (g_snail; scalar; fraction e.g., 75% is "0.75") )
% 5) MDA frequency (MDA_freq)
% (1)Annual
% (2)Biannual (2/year)
% 6) Molluscicides frequency (snail_freq)
% (1)Annual
% (2)Biannual (2/year)
% (12)Monthly
% 7) excel_decision
% (1) Which sheet (1, 2, 3...)
% (2) Base case (0), lower limit (-1), upper limit (1)
% Each input matrix is 12x121. The columns represent time (121). Each
% column is the prevalence measurement at baseline (time_0) and for 10
% years at 1 month time steps. The rows represent age-specific prevalence
% of light and heavy infection (mean and SD) from simulation.
% Note: Focus on five years of data
% Rows are organized by:
% 1) prevalence (mean) of light infections (pre-SAC)
% 2) prevalence (SD) of light infections (pre-SAC)
% 3) prevalence (mean) of heavy infections (pre-SAC)
% 4) prevalence (SD) of heavy infections (pre-SAC)
% 5) prevalence (mean) of light infections (SAC)
% 6) prevalence (SD) of light infections (SAC)
% 7) prevalence (mean) of heavy infections (SAC)
% 8) prevalence (SD) of heavy infections (SAC)
% 9) prevalence (mean) of light infections (adult)
% 10) prevalence (SD) of light infections (adult)
% 11) prevalence (mean) of heavy infections (adult)
% 12) prevalence (SD) of heavy infections (adult)
% Excel files (folder: Stanford research -> Case Western -> Data)
% 1) PrvHighRist.xlsx
% 2) PrvLowRist.xlsx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% OUTPUTS:
% 1) total_DALY_sequelae_pre*- DALYs for each sequelae in pre-SAC
% 2) total_DALY_sequelae_c*- DALYs for each sequelae in SAC
% 3) total_DALY_sequelae_a*- DALYs for each sequelae in adults
% 4) ICER_values (1x2)- Total cost (USD) and total disability (DALY)
% 5) total_DALYs_age- Total DALYs for each age: 1) pre-SAC; 2) SAC; 3)
% adults
% 6) total_cost- Total cost (USD)
% 7) total_DALY_iteration- DALY breakdown by time step (5 years, with
% one month time step)
% *Not discounted
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Case Western data inputs (based on tested strategies)
% MDA_strategy=[3, 3, 1, 1, 0, 0, 3, 3, 3, 3, 1, 1, 1, 1];
% snail_strategy=[0, 0, 0, 0, 1, 1, 1, 1 ,1 ,1 ,1 ,1 ,1 ,1];
% g_MDA=[0.75 0.75 0.75];
% g_snail=0.9;
% MDA_freq=[1, 2, 1, 2, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2];
% snail_freq=[0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2];
% 1. CWA
% 2. CWB
% 3. SBA
% 4. SBB
% 5. SCA
% 6. SCB
% 7. CWA+SCA
% 8. CWA+SCB
% 9. CWB+SCA
% 10. CWB+SCB
% 11. SBA+SCA
% 12. SBA+SCB
% 13. SBB+SCA
% 14. SBB+SCB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Model inputs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
low_high=1; % (1)0 low prevalence- Mwaembe; (2) high prevalence- Milalina
lower_SD=0; % -1.96
upper_SD=0; % 1.96
% Non-compliance (0- missing at random; 0.1- 10% systematic noncompliance
% (base case scenario))
non_compliance=0.1;
% e) Discounting- 3% annual: (0) no; (1); yes
discounting_on=1; % keep on
disc_rate=0.03; %discounting 0.03
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% a) Costing inputs (2016 US$) and coverage
% Cost inputs (MDA)
cost_PRZ=0.21;
%cost_ALB=0.03;
base_cost=0.5;
community_cost_multiplier=3;
school_delivery_cost=base_cost;
community_delivery_cost=school_delivery_cost*community_cost_multiplier;
% community_delivery_cost=1.50;
% cost_children=cost_PRZ+cost_ALB+school_delivery_cost;
% cost_adults=cost_PRZ+cost_ALB+community_delivery_cost;
% cost_pre=cost_PRZ+cost_ALB+community_delivery_cost;
cost_children=cost_PRZ+school_delivery_cost;
cost_adults=cost_PRZ+community_delivery_cost;
cost_pre=cost_PRZ+community_delivery_cost;
% Cost inputs (molluscicides)
cost_snail_control_community=379.43;
% Coverage rate for mass treatment (g)
g_MDA_pre=g_MDA(1);
g_MDA_c=g_MDA(2);
g_MDA_a=g_MDA(3);
% Coverage rate for snail control
g_snail;
% b) Demographic and model parameters
% Proportion of population pre-SAC (X_pre), children (X_c), and adults (X_a)
% Case Western- Kenya stats
X_c=0.28; %0.153;
X_a=0.54 ; %0.763;
X_pre=0.18; % 0.084;
% Total population size for simulation
total_pop=5000;
% Compute size of each age population
total_pop_c=total_pop*X_c;
total_pop_a=total_pop*X_a;
total_pop_pre=total_pop*X_pre;
% c) Anemia modeling parameters
% Baseline Hb mean and SD for population in Cote d'Ivoire
mean_Hb_pop_c=112; SD_Hb_pop_c=15;
mean_Hb_pop_pre=mean_Hb_pop_c; SD_Hb_pop_pre=SD_Hb_pop_c;
mean_Hb_pop_a_men=134; SD_Hb_pop_a_men=19;
mean_Hb_pop_a_women=111; SD_Hb_pop_a_women=16;
% d) Caclulate time length of simulation
% see below
% f) Schistosomiasis disability and mortality rate
schisto_DALY= [0.014 0.02 0.05];
schisto_weight=schisto_DALY;
anemia_weight=[0.0041 0.0056 0.1615];
mortality_rate_schisto=1/20000; % Using 2010 GBD Lancet study on
% global mortality data (1 in 20,000 infections)
LE_CI=61; % Life expectancy in Kenya
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load transmission data
% Read Case Western data (excel)
if low_high==1 && non_compliance==0.1
filename1 = 'Mwaembe 14.xls';
elseif low_high==2 && non_compliance==0.1
filename1 = 'Milalani 14.xls';
elseif low_high==1 && non_compliance==0
%filename1 = 'SWB projections of prevalences in LOW RISK Sh villages LDC population profile missing at random 091916 .xlsx';
elseif low_high==2 && non_compliance==0
%filename1 = 'SWB projections of prevalences in HIGH RISK Sh villages LDC population profile missing at random 091916 .xlsx';
elseif low_high==2 && non_compliance==0.05
%filename1 = 'SWB projections of prevalences in HIGH RISK Sh villages LDC population profile 5pc chronic non adherence 091916 .xlsx';
end
sheet_name = {'Strategy1', 'Strategy2', 'Strategy3', 'Strategy4', 'Strategy5', 'Strategy6', 'Strategy7', 'Strategy8', 'Strategy9', 'Strategy10', 'Strategy11', 'Strategy12', 'Strategy13', 'Strategy14'};
xlRange = 'A2:L122';
% Load transmission data into 3D array (12x121x14)
% Note: 3rd dimension (z) is for each of 14 strategies
for i=1:length(sheet_name)
Data_High_temp(:,:,i)= xlsread(filename1, char(sheet_name(i)),xlRange);
end
Data_High_1 = zeros(size(Data_High_temp)+[0,0,1]);
Data_High_1(:,:,1) = repmat(Data_High_temp(1,:,1),121,1);
Data_High_1(:,:,2:15) = Data_High_temp;
% d) Caclulate time length of simulation
epi_vector_size=length(Data_High_1);
time_model=ceil(epi_vector_size(1));
% Re-format data for CEA code.
% Rows: Monthly measurements
% Columns: 1) prevalence (0-1); 2) number uninfected (#); 3) number light
% infections (#); 4) number heavy infections (#)
% Mean of transmission results
for i=1:size(Data_High_1, 3)
% Excel_decision
% 1- which sheet
% 2- base case (0), lower (-1), upper(1)
schisto_epi_vector_pre_full(:,3:4, i) = (Data_High_1(:,[1,7],i));
schisto_epi_vector_children_full(:,3:4, i) = (Data_High_1(:,[3,9],i));
schisto_epi_vector_adults_full(:,3:4, i) = (Data_High_1(:,[5,11],i));
schisto_epi_SD_pre= (Data_High_1(:,[2,8],i));
schisto_epi_SD_c= (Data_High_1(:,[4,10],i));
schisto_epi_SD_a= (Data_High_1(:,[6,12],i));
if excel_decision(2)==0
elseif excel_decision(2)==-1
schisto_epi_vector_pre_full(:,3:4, i)=schisto_epi_vector_pre_full(:,3:4, i)- lower_SD*schisto_epi_SD_pre;
schisto_epi_vector_children_full(:,3:4, i)=schisto_epi_vector_children_full(:,3:4, i)- lower_SD*schisto_epi_SD_c;
schisto_epi_vector_adults_full(:,3:4, i)=schisto_epi_vector_adults_full(:,3:4, i)- lower_SD*schisto_epi_SD_a;
elseif excel_decision(2)==1
schisto_epi_vector_pre_full(:,3:4, i)=schisto_epi_vector_pre_full(:,3:4, i)+ upper_SD*schisto_epi_SD_pre;
schisto_epi_vector_children_full(:,3:4, i)=schisto_epi_vector_children_full(:,3:4, i)+ upper_SD*schisto_epi_SD_c;
schisto_epi_vector_adults_full(:,3:4, i)=schisto_epi_vector_adults_full(:,3:4, i)+ upper_SD*schisto_epi_SD_a;
end
schisto_epi_vector_pre_full(:,1, i)= schisto_epi_vector_pre_full(:,3, i) + schisto_epi_vector_pre_full(:,4, i);
schisto_epi_vector_pre_full(:,2, i)= round((1-schisto_epi_vector_pre_full(:,1, i))*total_pop_pre);
schisto_epi_vector_pre_full(:,3, i)= round(schisto_epi_vector_pre_full(:,3, i)*total_pop_pre);
schisto_epi_vector_pre_full(:,4, i)= round(schisto_epi_vector_pre_full(:,4, i)*total_pop_pre);
schisto_epi_vector_children_full(:,1, i)= schisto_epi_vector_children_full(:,3, i) + schisto_epi_vector_children_full(:,4, i);
schisto_epi_vector_children_full(:,2, i)= round((1-schisto_epi_vector_children_full(:,1, i))*total_pop_c);
schisto_epi_vector_children_full(:,3, i)= round(schisto_epi_vector_children_full(:,3, i)*total_pop_c);
schisto_epi_vector_children_full(:,4, i)= round(schisto_epi_vector_children_full(:,4, i)*total_pop_c);
schisto_epi_vector_adults_full(:,1, i)= schisto_epi_vector_adults_full(:,3, i) + schisto_epi_vector_adults_full(:,4, i);
schisto_epi_vector_adults_full(:,2, i)= round((1-schisto_epi_vector_adults_full(:,1, i))*total_pop_a);
schisto_epi_vector_adults_full(:,3, i)= round(schisto_epi_vector_adults_full(:,3, i)*total_pop_a);
schisto_epi_vector_adults_full(:,4, i)= round(schisto_epi_vector_adults_full(:,4, i)*total_pop_a);
% Sensitivity analysis: Can take mean+/-SD of transmission results to
% generate uncertainty interval
end
schisto_epi_vector_pre = schisto_epi_vector_pre_full(:,:,excel_decision(1));
schisto_epi_vector_children = schisto_epi_vector_children_full(:,:,excel_decision(1));
schisto_epi_vector_adults = schisto_epi_vector_adults_full(:,:,excel_decision(1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute mortality
% Compute average number of years of life lost in case of death
% resulting from schistosomiasis. An average discounted DALY value is
% assigned based upon whether death occurs in pre-SAC, SAC, or adult
% population.
DALY_schisto_death_a_years=round(LE_CI-((15+LE_CI)/2));
DALY_schisto_death_c_years=round(LE_CI-((5+14)/2));
DALY_schisto_death_pre_years=round(LE_CI-((1+4)/2));
% Years of life (DALYs lost) is discounted at 3% annually as per
% convention.
for t=1:LE_CI
if discounting_on==1; discount=1/((1+(disc_rate))^(t-1)); end
if discounting_on==0; discount=1; end
if t<=DALY_schisto_death_a_years
DALY_schisto_death_a(t)=1*discount;
end
if t<=DALY_schisto_death_c_years
DALY_schisto_death_c(t)=1*discount;
end
if t<=DALY_schisto_death_pre_years
DALY_schisto_death_pre(t)=1*discount;
end
end
DALY_schisto_death_a=sum(DALY_schisto_death_a);
DALY_schisto_death_c=sum(DALY_schisto_death_c);
DALY_schisto_death_pre=sum(DALY_schisto_death_pre);
drawnow; pause(0.1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Disability modeling
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Disability #1: Anemia
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Main Steps:
% 1) Input parameters
% 2) Mixture model methodology
% 3) Quantify baseline anemia
% 4) Compute anemia at each time step
% 1) Input parameters
% Anemia thresold (Hb; g/L)
% Anemia thresholds for pre-SAC
pre_anemia_low=110;
pre_anemia_mod=100;
pre_anemia_severe=70;
% Anemia thresholds for SAC
SAC_anemia_low=116.5;
SAC_anemia_mod=110;
SAC_anemia_severe=80;
% Anemia thresholds for men
men_anemia_low=130;
men_anemia_mod=110;
men_anemia_severe=80;
% Anemia thresholds for women
women_anemia_low=120;
women_anemia_mod=110;
women_anemia_severe=80;
PZQ_eff=2.8;
%PZQ_eff=0;
PZQ_treatment_effect_a=PZQ_eff;
PZQ_treatment_effect_c=PZQ_eff;
PZQ_treatment_effect_pre=PZQ_eff;
% 2) Mixture model methodology
% Goal is to to discern Hb of uninfected individuals for all
% sub-populations at baseline
% 1) SAC
% Calculate proportion of children who are: 1) Schisto infected
baseline_frac_c(1,1)= schisto_epi_vector_children(1,1);
% Perform mixture model calculations to discern Hb of uninfected children
% for future calculations
% The following set of two equations are used in this calculation:
% 1) Hb_uninfected-Hb_schisto=2.80
% 3) Hb_uninfected*X_uninfected + Hb_schisto*X_schisto= Obs_pop_Hb
Hb_matrix_baseline_c=[1 -1; (1-baseline_frac_c(1,1)) baseline_frac_c(1,1)];
Hb_Bmatrix_baseline_c=[2.80 mean_Hb_pop_c]';
Hb_matrix_results_c=(Hb_matrix_baseline_c\Hb_Bmatrix_baseline_c)';
Hb_uninfected_c=Hb_matrix_results_c(1);
% 2) Pre-SAC
% Calculate proportion of preSAC who are: 1) Schisto infected
baseline_frac_pre(1,1)= schisto_epi_vector_pre(1,1);
% Perform mixture model calculations to discern Hb of uninfected preSAC
% for future calculations
% The following set of two equations are used in this calculation:
% 1) Hb_uninfected-Hb_schisto=2.80
% 3) Hb_uninfected*X_uninfected + Hb_schisto*X_schisto= Obs_pop_Hb
Hb_matrix_baseline_pre=[1 -1; (1-baseline_frac_pre(1,1)) baseline_frac_pre(1,1)];
Hb_Bmatrix_baseline_pre=[2.80 mean_Hb_pop_pre]';
Hb_matrix_results_pre=(Hb_matrix_baseline_pre\Hb_Bmatrix_baseline_pre)';
Hb_uninfected_pre=Hb_matrix_results_pre(1);
% 3) Adult- males
% Calculate proportion of men who are: 1) Schisto infected
baseline_frac_a_men(1,1)= schisto_epi_vector_adults(1,1);
% Perform mixture model calculations to discern Hb of uninfected men
% for future calculations
% The following set of two equations are used in this calculation:
% 1) Hb_uninfected-Hb_schisto=2.80
% 3) Hb_uninfected*X_uninfected + Hb_schisto*X_schisto= Obs_pop_Hb
Hb_matrix_baseline_a_men=[1 -1; (1-baseline_frac_a_men(1,1)) baseline_frac_a_men(1,1)];
Hb_Bmatrix_baseline_a_men=[2.80 mean_Hb_pop_a_men]';
Hb_matrix_results_a_men=(Hb_matrix_baseline_a_men\Hb_Bmatrix_baseline_a_men)';
Hb_uninfected_a_men=Hb_matrix_results_a_men(1);
% 4) Adult- females
% Calculate proportion of men who are: 1) Schisto infected
baseline_frac_a_women(1,1)= schisto_epi_vector_adults(1,1);
% Perform mixture model calculations to discern Hb of uninfected women
% for future calculations
% The following set of two equations are used in this calculation:
% 1) Hb_uninfected-Hb_schisto=2.80
% 3) Hb_uninfected*X_uninfected + Hb_schisto*X_schisto= Obs_pop_Hb
Hb_matrix_baseline_a_women=[1 -1; (1-baseline_frac_a_women(1,1)) baseline_frac_a_women(1,1)];
Hb_Bmatrix_baseline_a_women=[2.80 mean_Hb_pop_a_women]';
Hb_matrix_results_a_women=(Hb_matrix_baseline_a_women\Hb_Bmatrix_baseline_a_women)';
Hb_uninfected_a_women=Hb_matrix_results_a_women(1);
% Update mean_Hb_pop to reflect mean Hb of uninfected individuals
mean_Hb_pop_c=Hb_uninfected_c;
mean_Hb_pop_a_men=Hb_uninfected_a_men;
mean_Hb_pop_a_women=Hb_uninfected_a_women;
mean_Hb_pop_pre=Hb_uninfected_pre;
% 3) Quantify baseline anemia in worm free population
% Quantify baseline anemia (i.e. in a population without schisto/helminths, what is the baseline anemia)
% In these computations, a schisto-free mean Hb is used for each population
%
% Matrix organization
% 1- severe anemia
% 2- moderate anemia
% 3- mild anemia
% 4- no anemia
% Children
% Heavy anemia
anemia_tracker_c_baseline(1,1)=round(normcdf(SAC_anemia_severe,mean_Hb_pop_c, SD_Hb_pop_c)*total_pop_c);
% Moderate anemia
anemia_tracker_c_baseline(1,2)=round(normcdf(SAC_anemia_mod,mean_Hb_pop_c, SD_Hb_pop_c)*total_pop_c)-anemia_tracker_c_baseline(1,1);
% Heavy anemia
anemia_tracker_c_baseline(1,3)=round(normcdf(SAC_anemia_low,mean_Hb_pop_c, SD_Hb_pop_c)*total_pop_c)-anemia_tracker_c_baseline(1,1)-anemia_tracker_c_baseline(1,2);
% No anemia
anemia_tracker_c_baseline(1,4)=round(normcdf(inf,mean_Hb_pop_c, SD_Hb_pop_c)*total_pop_c)-anemia_tracker_c_baseline(1,1)-anemia_tracker_c_baseline(1,2)-anemia_tracker_c_baseline(1,3);
% Pre-SAC
% Heavy anemia
anemia_tracker_pre_baseline(1,1)=round(normcdf(pre_anemia_severe,mean_Hb_pop_pre, SD_Hb_pop_c)*total_pop_pre);
% Moderate anemia
anemia_tracker_pre_baseline(1,2)=round(normcdf(pre_anemia_mod,mean_Hb_pop_pre, SD_Hb_pop_c)*total_pop_pre)-anemia_tracker_pre_baseline(1,1);
% Heavy anemia
anemia_tracker_pre_baseline(1,3)=round(normcdf(pre_anemia_low,mean_Hb_pop_pre, SD_Hb_pop_c)*total_pop_pre)-anemia_tracker_pre_baseline(1,1)-anemia_tracker_pre_baseline(1,2);
% No anemia
anemia_tracker_pre_baseline(1,4)=round(normcdf(inf,mean_Hb_pop_pre, SD_Hb_pop_c)*total_pop_pre)-anemia_tracker_pre_baseline(1,1)-anemia_tracker_pre_baseline(1,2)-anemia_tracker_pre_baseline(1,3);
% Adults-male
% Heavy anemia
anemia_tracker_a_men_baseline(1,1)=round(normcdf(men_anemia_severe,mean_Hb_pop_a_men, SD_Hb_pop_a_men)*total_pop_a*0.5);
% Moderate anemia
anemia_tracker_a_men_baseline(1,2)=round(normcdf(men_anemia_mod,mean_Hb_pop_a_men, SD_Hb_pop_a_men)*total_pop_a*0.5)-anemia_tracker_a_men_baseline(1,1);
% Heavy anemia
anemia_tracker_a_men_baseline(1,3)=round(normcdf(men_anemia_low,mean_Hb_pop_a_men, SD_Hb_pop_a_men)*total_pop_a*0.5)-anemia_tracker_a_men_baseline(1,1)-anemia_tracker_a_men_baseline(1,2);
% No anemia
anemia_tracker_a_men_baseline(1,4)=round(normcdf(inf,mean_Hb_pop_a_men, SD_Hb_pop_a_men)*total_pop_a*0.5)-anemia_tracker_a_men_baseline(1,1)-anemia_tracker_a_men_baseline(1,2)-anemia_tracker_a_men_baseline(1,3);
% Adults-female
% Heavy anemia
anemia_tracker_a_women_baseline(1,1)=round(normcdf(women_anemia_severe,mean_Hb_pop_a_women, SD_Hb_pop_a_women)*total_pop_a*0.5);
% Moderate anemia
anemia_tracker_a_women_baseline(1,2)=round(normcdf(women_anemia_mod,mean_Hb_pop_a_women, SD_Hb_pop_a_women)*total_pop_a*0.5)-anemia_tracker_a_women_baseline(1,1);
% Heavy anemia
anemia_tracker_a_women_baseline(1,3)=round(normcdf(women_anemia_low,mean_Hb_pop_a_women, SD_Hb_pop_a_women)*total_pop_a*0.5)-anemia_tracker_a_women_baseline(1,1)-anemia_tracker_a_women_baseline(1,2);
% No anemia
anemia_tracker_a_women_baseline(1,4)=round(normcdf(inf,mean_Hb_pop_a_women, SD_Hb_pop_a_women)*total_pop_a*0.5)-anemia_tracker_a_women_baseline(1,1)-anemia_tracker_a_women_baseline(1,2)-anemia_tracker_a_women_baseline(1,3);
% Adults- combined
anemia_tracker_a_combined_baseline(1,:)=anemia_tracker_a_men_baseline(1,:)+anemia_tracker_a_women_baseline(1,:);
% 4) Compute anemia at each time step
for i= 1:time_model
% Calculate anemia present at each time step of the 5 year simulation,
% including light, moderate, and heavy anemia following
% age/gender-specific hemoglobin (Hb) thresholds as previously stated.
% First, the proportion of each age groups that is: (1) uninfected; (2)
% infected w/ schisto; (3) the mean Hb is calculated based upon
% previously calculated "uninfected" Hb, a schisto Hb downshift of
% 2.80 g/L following the GBD anemia study (Blood, 2014)
% SAC
anemia_matrix_c(i,1)= 1-schisto_epi_vector_children(i,1);
anemia_matrix_c(i,2)= schisto_epi_vector_children(i,1);
anemia_matrix_c(i,4)= mean_Hb_pop_c*anemia_matrix_c(i,1) + (mean_Hb_pop_c-PZQ_treatment_effect_c)*anemia_matrix_c(i,2);
% Pre-SAC
anemia_matrix_pre(i,1)= 1-schisto_epi_vector_pre(i,1);
anemia_matrix_pre(i,2)= schisto_epi_vector_pre(i,1);
anemia_matrix_pre(i,4)= mean_Hb_pop_pre*anemia_matrix_pre(i,1) + (mean_Hb_pop_pre-PZQ_treatment_effect_pre)*anemia_matrix_pre(i,2);
% Adults- Male
anemia_matrix_a_men(i,1)= 1-schisto_epi_vector_adults(i,1);
anemia_matrix_a_men(i,2)= schisto_epi_vector_adults(i,1);
anemia_matrix_a_men(i,4)= mean_Hb_pop_a_men*anemia_matrix_a_men(i,1) + (mean_Hb_pop_a_men-PZQ_treatment_effect_a)*anemia_matrix_a_men(i,2);
% Adults- Female
anemia_matrix_a_women(i,1)= 1-schisto_epi_vector_adults(i,1);
anemia_matrix_a_women(i,2)= schisto_epi_vector_adults(i,1);
anemia_matrix_a_women(i,4)= mean_Hb_pop_a_women*anemia_matrix_a_women(i,1) + (mean_Hb_pop_a_women-PZQ_treatment_effect_a)*anemia_matrix_a_women(i,2);
% Calculate anemia at each iteration
% 1- heavy anemia
% 2- moderate anemia
% 3- light anemia
% 4- no anemia
% a) SAC
% Heavy anemia
anemia_tracker_c(i,1)=round(normcdf(SAC_anemia_severe,anemia_matrix_c(i,4), SD_Hb_pop_c)*total_pop_c);
% Moderate anemia
anemia_tracker_c(i,2)=round(normcdf(SAC_anemia_mod,anemia_matrix_c(i,4), SD_Hb_pop_c)*total_pop_c)-anemia_tracker_c(i,1);
% Light anemia
anemia_tracker_c(i,3)=round(normcdf(SAC_anemia_low,anemia_matrix_c(i,4), SD_Hb_pop_c)*total_pop_c)-anemia_tracker_c(i,1)-anemia_tracker_c(i,2);
% No anemia
anemia_tracker_c(i,4)=round(normcdf(inf,anemia_matrix_c(i,4), SD_Hb_pop_c)*total_pop_c)-anemia_tracker_c(i,1)-anemia_tracker_c(i,2)-anemia_tracker_c(i,3);
% b) Pre-SAC
% Heavy anemia
anemia_tracker_pre(i,1)=round(normcdf(pre_anemia_severe,anemia_matrix_pre(i,4), SD_Hb_pop_pre)*total_pop_pre);
% Moderate anemia
anemia_tracker_pre(i,2)=round(normcdf(pre_anemia_mod,anemia_matrix_pre(i,4), SD_Hb_pop_pre)*total_pop_pre)-anemia_tracker_pre(i,1);
% Light anemia
anemia_tracker_pre(i,3)=round(normcdf(pre_anemia_low,anemia_matrix_pre(i,4), SD_Hb_pop_pre)*total_pop_pre)-anemia_tracker_pre(i,1)-anemia_tracker_pre(i,2);
% No anemia
anemia_tracker_pre(i,4)=round(normcdf(inf,anemia_matrix_pre(i,4), SD_Hb_pop_pre)*total_pop_pre)-anemia_tracker_pre(i,1)-anemia_tracker_pre(i,2)-anemia_tracker_pre(i,3);
% c) Adults-male
% Heavy anemia
anemia_tracker_a_men(i,1)=round(normcdf(men_anemia_severe,anemia_matrix_a_men(i,4), SD_Hb_pop_a_men)*total_pop_a*0.5);
% Moderate anemia
anemia_tracker_a_men(i,2)=round(normcdf(men_anemia_mod,anemia_matrix_a_men(i,4), SD_Hb_pop_a_men)*total_pop_a*0.5)-anemia_tracker_a_men(i,1);
% Light anemia
anemia_tracker_a_men(i,3)=round(normcdf(men_anemia_low,anemia_matrix_a_men(i,4), SD_Hb_pop_a_men)*total_pop_a*0.5)-anemia_tracker_a_men(i,1)-anemia_tracker_a_men(i,2);
% No anemia
anemia_tracker_a_men(i,4)=round(normcdf(inf,anemia_matrix_a_men(i,4), SD_Hb_pop_a_men)*total_pop_a*0.5)-anemia_tracker_a_men(i,1)-anemia_tracker_a_men(i,2)-anemia_tracker_a_men(i,3);
% d) Adults-female
% Heavy anemia
anemia_tracker_a_women(i,1)=round(normcdf(women_anemia_severe,anemia_matrix_a_women(i,4), SD_Hb_pop_a_women)*total_pop_a*0.5);
% Moderate anemia
anemia_tracker_a_women(i,2)=round(normcdf(women_anemia_mod,anemia_matrix_a_women(i,4), SD_Hb_pop_a_women)*total_pop_a*0.5)-anemia_tracker_a_women(i,1);
% Light anemia
anemia_tracker_a_women(i,3)=round(normcdf(women_anemia_low,anemia_matrix_a_women(i,4), SD_Hb_pop_a_women)*total_pop_a*0.5)-anemia_tracker_a_women(i,1)-anemia_tracker_a_women(i,2);
% No anemia
anemia_tracker_a_women(i,4)=round(normcdf(inf,anemia_matrix_a_women(i,4), SD_Hb_pop_a_women)*total_pop_a*0.5)-anemia_tracker_a_women(i,1)-anemia_tracker_a_women(i,2)-anemia_tracker_a_women(i,3);
% Adults- combined
anemia_tracker_a_combined(i,:)=anemia_tracker_a_men(i,:)+anemia_tracker_a_women(i,:);
end
for i=2:time_model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Disability #1b: Anemia counting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Counter anemia is a matrix that stores averted anemia: 1- severe anemia
% (0.1615 DALYs); 2- moderate anemia (0.0056 DALYs), 3- light anemia
% (0.0041 DALYs)
% Severe anemia counter
counter_anemia_adults(i,1)= anemia_tracker_a_combined(i,1)-anemia_tracker_a_combined_baseline(1,1);
counter_anemia_children(i,1)= anemia_tracker_c(i,1)-anemia_tracker_c_baseline(1,1);
counter_anemia_pre(i,1)= anemia_tracker_pre(i,1)-anemia_tracker_pre_baseline(1,1);
% Moderate anemia counter
counter_anemia_adults(i,2)= anemia_tracker_a_combined(i,2)-anemia_tracker_a_combined_baseline(1,2);
counter_anemia_children(i,2)= anemia_tracker_c(i,2)-anemia_tracker_c_baseline(1,2);
counter_anemia_pre(i,2)= anemia_tracker_pre(i,2)-anemia_tracker_pre_baseline(1,2);
% Light anemia counter
counter_anemia_adults(i,3)= anemia_tracker_a_combined(i,3)-anemia_tracker_a_combined_baseline(1,3);
counter_anemia_children(i,3)= anemia_tracker_c(i,3)-anemia_tracker_c_baseline(1,3);
counter_anemia_pre(i,3)= anemia_tracker_pre(i,3)-anemia_tracker_pre_baseline(1,3);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Disability #2: Schistosomiasis (S. haematobium) symptomatic infection
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DALY weight applied differentially based upon infection intensity
% light- 1.4% and heavy- 5%
schisto_sequela_c(i,1) = (schisto_epi_vector_children(i,3));
schisto_sequela_a(i,1) = (schisto_epi_vector_adults(i,3));
schisto_sequela_pre(i,1)= (schisto_epi_vector_pre(i,3));
schisto_sequela_c(i,2) = (schisto_epi_vector_children(i,4));
schisto_sequela_a(i,2) = (schisto_epi_vector_adults(i,4));
schisto_sequela_pre(i,2)= (schisto_epi_vector_pre(i,4));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Distribution of disease within population
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Creates matrix with DALY weight assigned in a row corresponding to the
% probabilistic combination of sequelae. Deterministic
DALY_matrix_count_c=zeros(1, 10);
DALY_matrix_count_a=zeros(1, 10);
DALY_matrix_count_pre=zeros(1, 10);
% 1- schistosomiasis
% 2- Anemia (three transitions possible)
% 3- total DALYs
% Calculates probability of each sequelae.
% Note that probabilities are computed over denominator of all
% people
schisto_prob1_c= schisto_sequela_c(i,1)/total_pop_c;
schisto_prob1_a= schisto_sequela_a(i,1)/total_pop_a;
schisto_prob1_pre= schisto_sequela_pre(i,1)/total_pop_pre;
schisto_prob2_c= schisto_sequela_c(i,2)/total_pop_c;
schisto_prob2_a= schisto_sequela_a(i,2)/total_pop_a;
schisto_prob2_pre= schisto_sequela_pre(i,2)/total_pop_pre;
schisto_deathprob1_c= schisto_epi_vector_children(i,1);
schisto_deathprob1_a= schisto_epi_vector_adults(i,1);
schisto_deathprob1_pre= schisto_epi_vector_pre(i,1);
% Note that probabilities are computed over denominator of infected
% people
prob_anemia_low_a=counter_anemia_adults(i,3)/(total_pop_a*schisto_epi_vector_adults(i,1));
prob_anemia_low_c=counter_anemia_children(i,3)/(total_pop_c*schisto_epi_vector_children(i,1));
prob_anemia_low_pre=counter_anemia_pre(i,3)/(total_pop_pre*schisto_epi_vector_pre(i,1));
prob_anemia_mod_a=counter_anemia_adults(i,2)/(total_pop_a*schisto_epi_vector_adults(i,1));
prob_anemia_mod_c=counter_anemia_children(i,2)/(total_pop_c*schisto_epi_vector_children(i,1));
prob_anemia_mod_pre=counter_anemia_pre(i,2)/(total_pop_pre*schisto_epi_vector_pre(i,1));
prob_anemia_severe_a=counter_anemia_adults(i,1)/(total_pop_a*schisto_epi_vector_adults(i,1));
prob_anemia_severe_c=counter_anemia_children(i,1)/(total_pop_c*schisto_epi_vector_children(i,1));
prob_anemia_severe_pre=counter_anemia_pre(i,1)/(total_pop_pre*schisto_epi_vector_pre(i,1));
% Define disability (multiplicative)
disability_schisto_no_anemia_no= 0;
disability_schisto_light_anemia_no= 1 - ( (1-schisto_weight(1))*(1-0));
disability_schisto_light_anemia_low= 1 - ( (1-schisto_weight(1))*(1-anemia_weight(1)));
disability_schisto_light_anemia_mod= 1 - ( (1-schisto_weight(1))*(1-anemia_weight(2)));
disability_schisto_light_anemia_sev= 1 - ( (1-schisto_weight(1))*(1-anemia_weight(3)));
disability_schisto_heavy_anemia_no= 1 - ( (1-schisto_weight(3))*(1-0));
disability_schisto_heavy_anemia_low= 1 - ( (1-schisto_weight(3))*(1-anemia_weight(1)));
disability_schisto_heavy_anemia_mod= 1 - ( (1-schisto_weight(3))*(1-anemia_weight(2)));
disability_schisto_heavy_anemia_sev= 1 - ( (1-schisto_weight(3))*(1-anemia_weight(3)));
% Assign probablity of each sequelae
% 1) Assign each sequelae for ADULTS
% Prob (schisto) (anemia)
prob_schisto_no_anemia_no_a= (1-schisto_prob1_a-schisto_prob2_a);
prob_schisto_light_anemia_no_a= schisto_prob1_a * (1-prob_anemia_low_a-prob_anemia_mod_a-prob_anemia_severe_a);
prob_schisto_light_anemia_low_a= schisto_prob1_a * (prob_anemia_low_a);
prob_schisto_light_anemia_mod_a= schisto_prob1_a * (prob_anemia_mod_a);
prob_schisto_light_anemia_sev_a= schisto_prob1_a * (prob_anemia_severe_a);
prob_schisto_heavy_anemia_no_a= schisto_prob2_a * (1-prob_anemia_low_a-prob_anemia_mod_a-prob_anemia_severe_a);
prob_schisto_heavy_anemia_low_a= schisto_prob2_a * (prob_anemia_low_a);
prob_schisto_heavy_anemia_mod_a= schisto_prob2_a * (prob_anemia_mod_a);
prob_schisto_heavy_anemia_sev_a= schisto_prob2_a * (prob_anemia_severe_a);
prob_total_a= (prob_schisto_no_anemia_no_a + prob_schisto_light_anemia_no_a + prob_schisto_light_anemia_low_a + prob_schisto_light_anemia_mod_a + prob_schisto_light_anemia_sev_a + prob_schisto_heavy_anemia_no_a + prob_schisto_heavy_anemia_low_a + prob_schisto_heavy_anemia_mod_a + prob_schisto_heavy_anemia_sev_a);
% Disability from each combination of sequelae (including no
% disability). Multiplicative accounted for multiple sequelae.
DALY_matrix_count_a(1)= prob_schisto_no_anemia_no_a * total_pop_a * disability_schisto_no_anemia_no;
DALY_matrix_count_a(2)= prob_schisto_light_anemia_no_a * total_pop_a * disability_schisto_light_anemia_no;
DALY_matrix_count_a(3)= prob_schisto_light_anemia_low_a * total_pop_a * disability_schisto_light_anemia_low;
DALY_matrix_count_a(4)= prob_schisto_light_anemia_mod_a * total_pop_a * disability_schisto_light_anemia_mod;
DALY_matrix_count_a(5)= prob_schisto_light_anemia_sev_a * total_pop_a * disability_schisto_light_anemia_sev;
DALY_matrix_count_a(6)= prob_schisto_heavy_anemia_no_a * total_pop_a * disability_schisto_heavy_anemia_no;
DALY_matrix_count_a(7)= prob_schisto_heavy_anemia_low_a * total_pop_a * disability_schisto_heavy_anemia_low;
DALY_matrix_count_a(8)= prob_schisto_heavy_anemia_mod_a * total_pop_a * disability_schisto_heavy_anemia_mod;
DALY_matrix_count_a(9)= prob_schisto_heavy_anemia_sev_a * total_pop_a * disability_schisto_heavy_anemia_sev;
% Compute mortality
DALY_matrix_count_a(10)=(DALY_schisto_death_a*schisto_deathprob1_a*total_pop_a*mortality_rate_schisto);
% 2) Assign each sequelae for CHILDREN
% Prob (schisto) (anemia)
prob_schisto_no_anemia_no_c= (1-schisto_prob1_c-schisto_prob2_c);
prob_schisto_light_anemia_no_c= schisto_prob1_c * (1-prob_anemia_low_c-prob_anemia_mod_c-prob_anemia_severe_c);
prob_schisto_light_anemia_low_c= schisto_prob1_c * (prob_anemia_low_c);
prob_schisto_light_anemia_mod_c= schisto_prob1_c * (prob_anemia_mod_c);
prob_schisto_light_anemia_sev_c= schisto_prob1_c * (prob_anemia_severe_c);
prob_schisto_heavy_anemia_no_c= schisto_prob2_c * (1-prob_anemia_low_c-prob_anemia_mod_c-prob_anemia_severe_c);
prob_schisto_heavy_anemia_low_c= schisto_prob2_c * (prob_anemia_low_c);
prob_schisto_heavy_anemia_mod_c= schisto_prob2_c * (prob_anemia_mod_c);
prob_schisto_heavy_anemia_sev_c= schisto_prob2_c * (prob_anemia_severe_c);
prob_total_c= (prob_schisto_no_anemia_no_c + prob_schisto_light_anemia_no_c + prob_schisto_light_anemia_low_c + prob_schisto_light_anemia_mod_c + prob_schisto_light_anemia_sev_c + prob_schisto_heavy_anemia_no_c + prob_schisto_heavy_anemia_low_c + prob_schisto_heavy_anemia_mod_c + prob_schisto_heavy_anemia_sev_c);
% Disability from each combination of sequelae (including no
% disability). Multiplicative accounted for multiple sequelae.
DALY_matrix_count_c(1)= prob_schisto_no_anemia_no_c * total_pop_c * disability_schisto_no_anemia_no;
DALY_matrix_count_c(2)= prob_schisto_light_anemia_no_c * total_pop_c * disability_schisto_light_anemia_no;
DALY_matrix_count_c(3)= prob_schisto_light_anemia_low_c * total_pop_c * disability_schisto_light_anemia_low;
DALY_matrix_count_c(4)= prob_schisto_light_anemia_mod_c * total_pop_c * disability_schisto_light_anemia_mod;
DALY_matrix_count_c(5)= prob_schisto_light_anemia_sev_c * total_pop_c * disability_schisto_light_anemia_sev;
DALY_matrix_count_c(6)= prob_schisto_heavy_anemia_no_c * total_pop_c * disability_schisto_heavy_anemia_no;
DALY_matrix_count_c(7)= prob_schisto_heavy_anemia_low_c * total_pop_c * disability_schisto_heavy_anemia_low;
DALY_matrix_count_c(8)= prob_schisto_heavy_anemia_mod_c * total_pop_c * disability_schisto_heavy_anemia_mod;
DALY_matrix_count_c(9)= prob_schisto_heavy_anemia_sev_c * total_pop_c * disability_schisto_heavy_anemia_sev;
% Compute mortality
DALY_matrix_count_c(10)=(DALY_schisto_death_c*schisto_deathprob1_c*total_pop_c*mortality_rate_schisto);
% 3) Assign probablity of each sequelae for Pre-SAC
% Prob (schisto) (anemia)
prob_schisto_no_anemia_no_pre= (1-schisto_prob1_pre-schisto_prob2_pre);
prob_schisto_light_anemia_no_pre= schisto_prob1_pre * (1-prob_anemia_low_pre-prob_anemia_mod_pre-prob_anemia_severe_pre);
prob_schisto_light_anemia_low_pre= schisto_prob1_pre * (prob_anemia_low_pre);
prob_schisto_light_anemia_mod_pre= schisto_prob1_pre * (prob_anemia_mod_pre);
prob_schisto_light_anemia_sev_pre= schisto_prob1_pre * (prob_anemia_severe_pre);
prob_schisto_heavy_anemia_no_pre= schisto_prob2_pre * (1-prob_anemia_low_pre-prob_anemia_mod_pre-prob_anemia_severe_pre);
prob_schisto_heavy_anemia_low_pre= schisto_prob2_pre * (prob_anemia_low_pre);
prob_schisto_heavy_anemia_mod_pre= schisto_prob2_pre * (prob_anemia_mod_pre);
prob_schisto_heavy_anemia_sev_pre= schisto_prob2_pre * (prob_anemia_severe_pre);
prob_total_pre= (prob_schisto_no_anemia_no_pre + prob_schisto_light_anemia_no_pre + prob_schisto_light_anemia_low_pre + prob_schisto_light_anemia_mod_pre + prob_schisto_light_anemia_sev_pre + prob_schisto_heavy_anemia_no_pre + prob_schisto_heavy_anemia_low_pre + prob_schisto_heavy_anemia_mod_pre + prob_schisto_heavy_anemia_sev_pre);
% Disability from each combination of sequelae (including no
% disability). Multiplicative accounted for multiple sequelae.
DALY_matrix_count_pre(1)= prob_schisto_no_anemia_no_pre * total_pop_pre * disability_schisto_no_anemia_no;
DALY_matrix_count_pre(2)= prob_schisto_light_anemia_no_pre * total_pop_pre * disability_schisto_light_anemia_no;
DALY_matrix_count_pre(3)= prob_schisto_light_anemia_low_pre * total_pop_pre * disability_schisto_light_anemia_low;
DALY_matrix_count_pre(4)= prob_schisto_light_anemia_mod_pre * total_pop_pre * disability_schisto_light_anemia_mod;
DALY_matrix_count_pre(5)= prob_schisto_light_anemia_sev_pre * total_pop_pre * disability_schisto_light_anemia_sev;
DALY_matrix_count_pre(6)= prob_schisto_heavy_anemia_no_pre * total_pop_pre * disability_schisto_heavy_anemia_no;
DALY_matrix_count_pre(7)= prob_schisto_heavy_anemia_low_pre * total_pop_pre * disability_schisto_heavy_anemia_low;
DALY_matrix_preount_pre(8)= prob_schisto_heavy_anemia_mod_pre * total_pop_pre * disability_schisto_heavy_anemia_mod;
DALY_matrix_preount_pre(9)= prob_schisto_heavy_anemia_sev_pre * total_pop_pre * disability_schisto_heavy_anemia_sev;
% Compute mortality
DALY_matrix_count_pre(10)=(DALY_schisto_death_pre*schisto_deathprob1_pre*total_pop_pre*mortality_rate_schisto);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cost-effectiveness analysis: Disability
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sum total DALYs per time step (month)
total_DALY_iteration(i,:)= [sum(DALY_matrix_count_pre)*(1/12), sum(DALY_matrix_count_c)*(1/12), sum(DALY_matrix_count_a)*(1/12)];
% Track sequelae
% 1- schisto light infection
% 2- schisto heavy infection
% 3- anemia, low
% 4- anemia, moderate
% 5- anemia, heavy
% 5- schisto mortality
total_DALY_sequelae_a(i,:)= [schisto_prob1_a*schisto_weight(1)* total_pop_a, schisto_prob2_a*schisto_weight(3)* total_pop_a, prob_anemia_low_a* anemia_weight(1)* total_pop_a, prob_anemia_mod_a* anemia_weight(2)* total_pop_a, prob_anemia_severe_a* anemia_weight(3)* total_pop_a, DALY_matrix_count_a(10)]*(1/12);
total_DALY_sequelae_c(i,:)= [schisto_prob1_c*schisto_weight(1)* total_pop_c, schisto_prob2_c*schisto_weight(3)* total_pop_c, prob_anemia_low_c* anemia_weight(1)* total_pop_c, prob_anemia_mod_c* anemia_weight(2)* total_pop_c, prob_anemia_severe_c* anemia_weight(3)* total_pop_c, DALY_matrix_count_c(10)]*(1/12);
total_DALY_sequelae_pre(i,:)= [schisto_prob1_pre*schisto_weight(1)* total_pop_pre, schisto_prob2_pre*schisto_weight(3)* total_pop_pre, prob_anemia_low_pre* anemia_weight(1)* total_pop_pre, prob_anemia_mod_pre* anemia_weight(2)* total_pop_pre, prob_anemia_severe_pre* anemia_weight(3)* total_pop_pre, DALY_matrix_count_pre(10)]*(1/12);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Costing analysis
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1) MDA_strategy (scalar)
% (0)None
% (1)MDA (SAC)
% (2)MDA (SAC, pre-SAC)
% (3)MDA (Community)
% 2) Snail_strategy (scalar)
% (0)None
% (1)Molluscicides
% 3) MDA_coverage (g_MDA; 1x3 vector; fraction e.g., 75% is "0.75")
% Note: [pre-SAC, SAC, adults]
% 4) Snail_coverage (g_snail; scalar; fraction e.g., 75% is "0.75") )
% 5) MDA frequency (MDA_freq)
% (1)Annual
% (2)Biannual (2/year)
% 6) Molluscicides frequency (snail_freq)
% (1)Annual
% (2)Biannual (2/year)
% (12)Monthly
% MDA (annual cost)
if MDA_strategy==0
total_cost=0;
elseif MDA_strategy==1
total_cost=(cost_children*total_pop_c*g_MDA_c) * MDA_freq;
elseif MDA_strategy==3
total_cost=((cost_pre*total_pop_pre*g_MDA_pre) + (cost_children*total_pop_c*g_MDA_c) + (cost_adults*total_pop_a*g_MDA_a)) * MDA_freq;
end
% Snail control (annual cost)
% Remember to add MDA cost
if snail_strategy==0
total_cost;
elseif snail_strategy==1
total_cost= total_cost + cost_snail_control_community*g_snail*snail_freq;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Discounting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Apply discounting to costs and disability at 3% annually as per WHO
% guidelines.
% Discount DALYs (monthly time step)
% 3% annual rate is equivalent to 0.24663% monthly rate
for t=1:(time_model-1)
if discounting_on==1; discount=1/((1+(0.0024663))^(t-1)); end
if discounting_on==0; discount=1; end
total_DALY_iteration(t+1,1)=total_DALY_iteration(t+1,1)*discount;
total_DALY_iteration(t+1,2)=total_DALY_iteration(t+1,2)*discount;
total_DALY_iteration(t+1,3)=total_DALY_iteration(t+1,3)*discount;
end
% Discount costs (yearly time step)
% 3% annual rate
discount_freq=1;
for t=1:(((time_model-1)/12))
if discounting_on==1; discount=1/((1+disc_rate)^(t-1)); end
if discounting_on==0; discount=1; end
if t==1 || round((t-1)/discount_freq)==((t-1)/discount_freq)
cost_vector(t)= total_cost*discount;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cost-effectiveness analysis: ICER and final calculations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Total DALY summary for intervention
total_DALYs=sum(total_DALY_iteration);
total_DALYs=sum(total_DALYs);
% Total DALY summary for intervention by adults and children, respectively
total_DALYs_age=sum(total_DALY_iteration);
total_cost=sum(cost_vector);
total_DALY_sequelae_a=sum(total_DALY_sequelae_a);
total_DALY_sequelae_c=sum(total_DALY_sequelae_c);
total_DALY_sequelae_pre=sum(total_DALY_sequelae_pre);
% Provide total costs and DALYs for ICER calculations
ICER_values=[total_cost, total_DALYs];
total_DALY_iteration=total_DALY_iteration;
end