Releases: okunator/cellseg_models.pytorch
v0.1.5
v0.1.4
0.1.4 — 2022-10-06
Test
- Update loss tests
Fixes
-
Add a conv block
BasicConvOld
to enableDippa
to cellseg conversion of models. -
Fix
inst_key
,aux_key
bug inMultiTaskUnet
-
Add a type_map > 0 masking for the
inst_map
s in post-processing -
Modify the optimizer adjustment utility function to adjust any optim/weight params.
-
Modify lit
SegmentationExperiment
according to new changes.
Features
-
Add optional spectral decoupliing to all losses
-
Add optional Label smoothing to all losses
-
Add optional Spatially varying label smoothing to all losses
-
Add mse, ssim and iqi torchmetrics for metric logging.
-
Add wandb per class metric callback for logging.
-
Add
from_yaml
init classmethod to initialize from yaml files.
v0.1.3
0.1.3 — 2022-09-23
Test
- Update tests for Inferes and mask utils.
- Add tests for the benchmarkers.
Fixes
- init and typing fixes
Docs
- Typo fies in docs
Features
- Add numba parallellized median filter and majority voting for post-processing
- Add support for own semantic and type seg post-proc funcs in Inferers
- Add segmentation performance benchmarking helper class.
- Add segmentation latency benchmarking helper class.
v0.1.2
0.1.2 — 2022-09-09
Fixes
- datasets.writers: Update
save2db
&save2folder
for optional type_map and sem_map args. - datasets.writers: Pre-processing (
pre-proc
) callable arg for_get_tiles
method. This enables the Lizard datamodule. - inference: Fix- padding bug with sliding window inference.
Features
-
datamodules: Lizard datamodule (https://arxiv.org/abs/2108.11195)
-
models: Add a universal multi-task U-net model builder (experimental)
Test
-
dataset: Update dataset tests.
-
models: Update tests for multi-task U-Net
Type Hints
- models: Fix incorrect type hints.
Examples
- Add cellpose training with Lizard dataset notebook.