-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathWH_Res_AvgSTCs_bioRxiv0.py
executable file
·166 lines (107 loc) · 5.78 KB
/
WH_Res_AvgSTCs_bioRxiv0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
=========================================================
Grand-average of morphed STCs for resolution metrics
for WH data set.
Doesn't run in parallel mode.
e.g.: run WH_Res_AvgSTC.py WH_Res_config SensitivityMaps SensMap RMS
or: run WH_Res_AvgSTC.py WH_Res_config ResolutionMetrics locerr_peak
=========================================================
"""
# OH, July 2018
print __doc__
import os
import os.path as op
import sys
sys.path = [
'/home/olaf/MEG/WakemanHensonEMEG/ScriptsResolution', # following list created by trial and error
'/imaging/local/software/mne_python/latest_v0.16',
'/imaging/local/software/anaconda/2.4.1/2/bin',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages/pysurfer-0.8.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages/h5io-0.1.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/lib-dynload',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages'
]
import importlib
import glob
import numpy as np
import mne
print('MNE Version: %s\n\n' % mne.__version__) # just in case
## get analysis parameters from config file
module_name = sys.argv[1]
C = importlib.import_module(module_name)
reload(C)
# get functions for metrics etc.
R = importlib.import_module('WH_Resolution_Functions')
reload(R)
# Type of inverse method, 'norm' | 'lcmv'
inv_types = ['norm', 'lcmv']
# hack to have variables via qsub
stc_path, stc_type, metric = '', '', ''
# read variables specified via qsub
if len(sys.argv)>2: # if additional variable specified
stc_path = sys.argv[2] # pathname (e.g. 'SensitivityMap')
if len(sys.argv) > 3:
stc_type = sys.argv[3] # beginning of filename (e.g. 'LocErrPeak')
if len(sys.argv) > 4:
metric = sys.argv[4] # end of filename (e.g. 'RMS')
print('###\nChosen variables: %s, %s, %s.\n###' % (stc_path, stc_type, metric))
# Maxfilter parameters for filenames
st_duration = C.res_st_duration
origin = C.res_origin
# create dir for average if necessary
fname_avg = C.fname_STC(C, stc_path, C.stc_morph, '')
if not op.exists(fname_avg):
os.mkdir(fname_avg)
for modality in C.modalities + [x+'-'+y for (x,y) in C.modal_contr]: #['EEGMEG', 'MEG', 'EEG', 'EEGMEG-MEG', 'EEGMEG-EEG']: # EEG/MEG/EEGMEG
# contrasts for inverse methods only computed for EEGMEG
if modality == 'EEGMEG':
res_inv_types = C.res_inv_types + \
[x+'-'+y for (x,y) in C.meth_contr] + \
['dep'+str(int(100*x))+'-'+str(int(100*y)) for (x,y) in C.meth_contr_dep]
# res_inv_types = C.res_inv_types + ['MNE-dSPM', 'MNE-sLORETA', 'dSPM-sLORETA',
# 'MNE-LCMV', 'dSPM-LCMV', 'sLORETA-LCMV', 'dep0-40', 'dep0-80']
else:
res_inv_types = C.res_inv_types
for inv_type in res_inv_types: # 'MNE', 'LCMV' etc.
for lambda2 in C.res_lambda2s: # regularisation parameters
lamb2_str = str(lambda2).replace('.', '')
if len(lamb2_str) > 3:
lamb2_str = lamb2_str[:3]
# for CTFs and PSFs
for functype in ['CTF', 'PSF']:
# iterate over inverse operator types
for loose in C.inv_loose: # orientation constraint
for depth in C.inv_depth: # depth weighting
stcs = [] # Will contain STCs per subject for averaging
if loose == None: loose = 0
loo_str = 'loo%s' % str(int(100*loose))
if depth == None: depth = 0
dep_str = 'dep%s' % str(int(100*depth))
if inv_type[:3] == 'dep': # exception for depth-weighted MNE
mytext = '%s_%s_%s_%s_%s_%s' % (functype, inv_type, lamb2_str, stc_type, modality, loo_str)
else:
mytext = '%s_%s_%s_%s_%s_%s_%s' % (functype, inv_type, lamb2_str, stc_type, modality, loo_str, dep_str)
if metric != '':
mytext = mytext + '_' + metric
for sbj in C.subjs:
subject = 'Sub%02d' % sbj
fname_morph = C.fname_STC(C, stc_path, subject, mytext + '_mph')
# READ EXISTING SOURCE ESTIMATE
print('Reading: %s.' % fname_morph)
stc = mne.read_source_estimate(fname_morph, subject)
stcs.append(stc)
# average STCs across subjects
print('Averaging %d STC files.' % len(stcs))
avg = np.average([s.data for s in stcs], axis=0)
# turn average into source estimate object
avg_stc = mne.SourceEstimate(avg, stcs[0].vertices, stcs[0].tmin, stcs[0].tstep)
fname_avg = C.fname_STC(C, stc_path, C.stc_morph, mytext)
print('###\nWriting grand-average STC file %s.\n###' % fname_avg)
avg_stc.save(fname_avg)
if inv_type[:3] == 'dep': # depth-weighted MNE only for one depth
break
if inv_type[:3] == 'dep': # depth-weighted MNE only for one loose
break
# Done