-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathWH_Res_MorphSTC_SMap.py
executable file
·104 lines (72 loc) · 3.29 KB
/
WH_Res_MorphSTC_SMap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
=========================================================
Morph STCs of sensitivity maps for W&H data set.
e.g.: run WH_Res_MorphSTC_SMap.py WH_MNE_Resolution_config 11 RMS
=========================================================
"""
# OH, August 2018
print __doc__
import os
import os.path as op
import sys
sys.path = [
'/home/olaf/MEG/WakemanHensonEMEG/ScriptsResolution', # following list created by trial and error
'/imaging/local/software/mne_python/latest_v0.16',
'/imaging/local/software/anaconda/2.4.1/2/bin',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages/pysurfer-0.8.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages/h5io-0.1.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/lib-dynload',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages'
]
import importlib
import glob
import numpy as np
import mne
print('MNE Version: %s\n\n' % mne.__version__) # just in case
## get analysis parameters from config file
module_name = sys.argv[1]
C = importlib.import_module(module_name)
reload(C)
# get functions for metrics etc.
R = importlib.import_module('WH_Resolution_Functions')
reload(R)
# get subject ID to process
# qsub start at 0, thus +1 here
sbj_ids = [int(sys.argv[2]) + 1]
# hack to have variables via qsub
stc_path, stc_type, metric = '', '', ''
# read variables specified via qsub
if len(sys.argv)>3: # if additional variable specified
metric = sys.argv[3] # (e.g. 'RMS', 'SNR')
else:
metric = 'RMS'
# for filenames
st_duration = C.res_st_duration
origin = C.res_origin
# only one morph_mat per subject needed
morph_mat = []
###
for sbj in sbj_ids:
subject = 'Sub%02d' % sbj
print('###\nAbout to morph STCs for %s.\n###' % (subject))
for modality in ['EEGMEG', 'MEG', 'EEG', 'EEGMEG-MEG', 'EEGMEG-EEG']: # EEG/MEG/EEGMEG
print('\n###\nDoing %ss.\n###\n' % modality)
fname_stc = C.fname_STC(C, 'SensitivityMaps', subject, 'SensMap_' + modality + '_' + metric)
fname_morph = C.fname_STC(C, 'SensitivityMaps', subject, 'SensMap_' + modality + '_' + metric + '_mph')
# read existing source estimate
print('Reading: %s.' % fname_stc)
stc = mne.read_source_estimate(fname_stc, subject)
# compute morph_mat only once per subject
if morph_mat == []:
vertices_to = mne.grade_to_vertices(subject=C.stc_morph, grade=5, subjects_dir=C.subjects_dir)
morph_mat = mne.compute_morph_matrix(subject_from=subject, subject_to=C.stc_morph,
vertices_from=stc.vertices, vertices_to=vertices_to,
subjects_dir=C.subjects_dir)
# Morphing to standard brain
morphed = mne.morph_data_precomputed(subject_from=subject, subject_to=C.stc_morph, stc_from=stc,
vertices_to=vertices_to, morph_mat=morph_mat)
print('Writing morphed to: %s.' % fname_morph)
morphed.save(fname_morph)
# Done