-
Notifications
You must be signed in to change notification settings - Fork 2
/
WH_Res_MorphSTC_bioRxiv0.py
executable file
·203 lines (131 loc) · 7.31 KB
/
WH_Res_MorphSTC_bioRxiv0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
=========================================================
Morph STCs of resolution metrics for W&H data set.
e.g.: run WH_Res_MorphSTC.py WH_Res_config 11 SensitivityMaps SensMap RMS
or: run WH_Res_MorphSTC.py WH_Res_config 11 ResolutionMetrics locerr_peak
=========================================================
"""
# OH, July 2018
print __doc__
import os
import os.path as op
import sys
sys.path = [
'/home/olaf/MEG/WakemanHensonEMEG/ScriptsResolution', # following list created by trial and error
'/imaging/local/software/mne_python/latest_v0.16',
'/imaging/local/software/anaconda/2.4.1/2/bin',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages/pysurfer-0.8.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages/h5io-0.1.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/lib-dynload',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages'
]
import importlib
import glob
import numpy as np
import mne
print('MNE Version: %s\n\n' % mne.__version__) # just in case
# ## get analysis parameters from config file
module_name = sys.argv[1]
C = importlib.import_module(module_name)
reload(C)
# get functions for metrics etc.
R = importlib.import_module('WH_Resolution_Functions')
reload(R)
# get subject ID to process
# qsub start at 0, thus +1 here
sbj_ids = [int(sys.argv[2]) + 1]
# hack to have variables via qsub
stc_path, stc_type, metric = '', '', ''
# read variables specified via qsub
if len(sys.argv)>3: # if additional variable specified
stc_path = sys.argv[3] # pathname (e.g. 'SensitivityMap')
if len(sys.argv) > 4:
stc_type = sys.argv[4] # beginning of filename (e.g. 'LocErrPeak')
if len(sys.argv) > 5:
metric = sys.argv[5] # end of filename (e.g. 'RMS')
print('###\nChosen variables: %s, %s, %s.\n###' % (stc_path, stc_type, metric))
# for filenames
st_duration = C.res_st_duration
origin = C.res_origin
# only one morph_mat per subject needed
morph_mat = []
###
for sbj in sbj_ids:
subject = 'Sub%02d' % sbj
print('###\nAbout to morph STCs for %s.\n###' % (subject))
for modality in C.modalities + [x+'-'+y for (x,y) in C.modal_contr]: # EEG/MEG/EEGMEG and subtractions
# subtraction contrasts for inverse methods only computed for EEGMEG
if modality == 'EEGMEG':
res_inv_types = C.res_inv_types + [x+'-'+y for (x,y) in C.meth_contr]
# + ['MNE-dSPM', 'MNE-sLORETA', 'dSPM-sLORETA', 'MNE-LCMV', 'dSPM-LCMV', 'sLORETA-LCMV']
else:
res_inv_types = C.res_inv_types
for inv_type in res_inv_types: # 'MNE', 'LCMV' etc.
for lambda2 in C.res_lambda2s: # regularisation parameters
lamb2_str = str(lambda2).replace('.', '')
if len(lamb2_str) > 3:
lamb2_str = lamb2_str[:3]
# for CTFs and PSFs
for functype in ['CTF', 'PSF']:
# iterate over inverse operator types
for loose in C.inv_loose: # orientation constraint
for depth in C.inv_depth: # depth weighting
print('\n###\nDoing %ss for %s and %s.\n###\n' % (functype, inv_type, modality))
if loose == None: loose = 0
loo_str = 'loo%s' % str(int(100*loose))
if depth == None: depth = 0
dep_str = 'dep%s' % str(int(100*depth))
mytext = '%s_%s_%s_%s_%s_%s_%s' % (functype, inv_type, lamb2_str, stc_type, modality, loo_str, dep_str)
if metric != '':
mytext = mytext + '_' + metric
fname_stc = C.fname_STC(C, stc_path, subject, mytext)
fname_morph = C.fname_STC(C, stc_path, subject, mytext + '_mph')
# read existing source estimate
print('Reading: %s.' % fname_stc)
stc = mne.read_source_estimate(fname_stc, subject)
# compute morph_mat only once per subject
if morph_mat == []:
vertices_to = mne.grade_to_vertices(subject=C.stc_morph, grade=5, subjects_dir=C.subjects_dir)
morph_mat = mne.compute_morph_matrix(subject_from=subject, subject_to=C.stc_morph,
vertices_from=stc.vertices, vertices_to=vertices_to,
subjects_dir=C.subjects_dir)
# Morphing to standard brain
morphed = mne.morph_data_precomputed(subject_from=subject, subject_to=C.stc_morph, stc_from=stc,
vertices_to=vertices_to, morph_mat=morph_mat)
print('Writing morphed to: %s.' % fname_morph)
morphed.save(fname_morph)
# Depth weighting is separate
for modality in ['EEGMEG']: # EEG/MEG/EEGMEG
# create strings for filenames corresponding to contrasts
res_inv_types = ['dep'+str(int(100*x))+'-'+str(int(100*y)) for (x,y) in C.meth_contr_dep]
for inv_type in res_inv_types: # 'MNE', 'LCMV' etc.
for lambda2 in C.res_lambda2s: # regularisation parameters
lamb2_str = str(lambda2).replace('.', '')
if len(lamb2_str) > 3:
lamb2_str = lamb2_str[:3]
# for CTFs and PSFs
for functype in ['CTF', 'PSF']:
loose = 0
loo_str = 'loo%s' % str(int(100*loose))
mytext = '%s_%s_%s_%s_%s_%s' % (functype, inv_type, lamb2_str, stc_type, modality, loo_str)
if metric != '':
mytext = mytext + '_' + metric
fname_stc = C.fname_STC(C, stc_path, subject, mytext)
fname_morph = C.fname_STC(C, stc_path, subject, mytext + '_mph')
# read existing source estimate
print('Reading: %s.' % fname_stc)
stc = mne.read_source_estimate(fname_stc, subject)
# compute morph_mat only once per subject
if morph_mat == []:
vertices_to = mne.grade_to_vertices(subject=C.stc_morph, grade=5, subjects_dir=C.subjects_dir)
morph_mat = mne.compute_morph_matrix(subject_from=subject, subject_to=C.stc_morph,
vertices_from=stc.vertices, vertices_to=vertices_to,
subjects_dir=C.subjects_dir)
# Morphing to standard brain
morphed = mne.morph_data_precomputed(subject_from=subject, subject_to=C.stc_morph, stc_from=stc,
vertices_to=vertices_to, morph_mat=morph_mat)
print('Writing morphed to: %s.' % fname_morph)
morphed.save(fname_morph)
# Done