-
Notifications
You must be signed in to change notification settings - Fork 2
/
WH_Res_ResolutionMetrics_bioRxiv0.py
executable file
·456 lines (273 loc) · 17.3 KB
/
WH_Res_ResolutionMetrics_bioRxiv0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
"""
=========================================================
Compute whole-brain resolution metrics for WH data set.
E.g. run WH_Res_ResolutionMetrics.py WH_MNE_Resolution_config 0 locerr peak
=========================================================
"""
# OH, July 2018
print __doc__
import os
import os.path as op
import sys
sys.path = [
'/home/olaf/MEG/WakemanHensonEMEG/ScriptsResolution', # following list created by trial and error
'/imaging/local/software/mne_python/latest_v0.16',
'/imaging/local/software/anaconda/2.4.1/2/bin',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages/pysurfer-0.8.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages/h5io-0.1.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/lib-dynload',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages'
]
import importlib
import glob
import time
import numpy as np
import mne
print('MNE Version: %s\n\n' % mne.__version__) # just in case
## get analysis parameters from config file
module_name = sys.argv[1]
C = importlib.import_module(module_name)
reload(C)
# get functions for metrics etc.
R = importlib.import_module('WH_Resolution_Functions')
reload(R)
# get subject ID to process
# qsub start at 0, thus +1 here
sbj_ids = [int(sys.argv[2]) + 1]
# for filenames
st_duration = C.res_st_duration
origin = C.res_origin
# resolution metric to be computed
# read variables specified via qsub
if len(sys.argv)>3: # if additional variable specified
metric_type = sys.argv[3] # metric type, e.g. 'width' or 'locerr'
metric = sys.argv[4] # exact metric, e.g. 'RMS'
# timing of computations for resolution matrix and metrics
timing = {'R': [], metric: []}
for sbj in sbj_ids:
subject = 'Sub%02d' % sbj
print('###\nWorking hard on %s.\n###' % (subject))
fname_stc = C.fname_STC(C, 'ResolutionMetrics', subject, '')
# create output path if necessary
if not os.path.exists(fname_stc):
os.mkdir(fname_stc)
fwd_fname = C.fname_ForwardSolution(C, subject, 'EEGMEG')
print('###\nReading EEGMEG forward solutions: %s .\n###' % (fwd_fname))
fwd = mne.read_forward_solution(fwd_fname)
fwd = mne.convert_forward_solution(fwd, surf_ori=True, force_fixed=True)
# used vertex numbers, later assumed to be the same as for invop
vertno_0 = fwd['src'][0]['vertno']
vertno_1 = fwd['src'][1]['vertno']
vertno = [vertno_0, vertno_1]
# locations of used vertices in forward (and inverse) solution
locations_0 = fwd['src'][0]['rr'][vertno_0,:]
locations_1 = fwd['src'][1]['rr'][vertno_1,:]
locations = np.vstack([locations_0, locations_1])
# covariance matrix (filter with wildcard)
fname_cov = C.fname_cov(C, subject, st_duration, origin, C.res_cov_latwin, C.inv_cov_method, '*')
# method may be underspecified, since it may be ranked differently for different subjects
fname_cov = glob.glob(fname_cov)[0] # be careful if multiple options present
print('###\nReading noise covariance matrix from: %s.\n###' % (fname_cov))
noise_cov = mne.read_cov(fname_cov)
# INITIALISE stcs dict to collect results
# the more the merrier...
stcs = {'PSF': {}, 'CTF': {}}
for functype in stcs.keys(): # PSF/CTF
# contrasts for different inverse methods and subtractions (also depth weighted)
for inv_type in C.res_inv_types + [x+'-'+y for (x,y) in C.meth_contr] + ['dep'+str(int(100*x))+'-'+str(int(100*y)) for (x,y) in C.meth_contr_dep]: # inverse methods
stcs[functype][inv_type] = {}
for lambda2 in C.res_lambda2s: # regularisation parameters
lamb2_str = str(lambda2).replace('.', '')
if len(lamb2_str) > 3:
lamb2_str = lamb2_str[:3]
stcs[functype][inv_type][lamb2_str] = {}
for modal in C.res_modalities + [x+'-'+y for (x,y) in C.modal_contr]: # ['EEGMEG', 'MEG', 'EEG', 'EEGMEG-MEG', 'EEGMEG-EEG', 'MEG-EEG']:
stcs[functype][inv_type][lamb2_str][modal] = {}
for loose in C.inv_loose: # orientation constraint
if loose == None: loose = 0
loo_str = 'loo%s' % str(int(100*loose))
stcs[functype][inv_type][lamb2_str][modal][loo_str] = {}
for depth in C.inv_depth: # depth weighting
if depth == None: depth = 0
dep_str = 'dep%s' % str(int(100*depth))
stcs[functype][inv_type][lamb2_str][modal][loo_str][dep_str] = {}
# iterate over different combinations of sensors
modal_iter = []
for modal in C.res_modalities:
if modal == 'EEGMEG':
modal_iter.append([True, True, 'EEGMEG'])
elif modal == 'MEG':
modal_iter.append([False, True, 'MEG'])
elif modal == 'EEG':
modal_iter.append([True, False, 'EEG'])
else:
print('Modality not defined: %s.' % modal)
for (eeg,meg,modal) in modal_iter:
fwd_use = mne.pick_types_forward(fwd, meg=meg, eeg=eeg)
info = fwd_use['info']
ch_names = info['ch_names']
info['sfreq'] = 1000.
# restrict noise covariance to channels in forward solution
noise_cov_use = mne.cov.pick_channels_cov(noise_cov, ch_names)
info['projs'] = noise_cov_use['projs']
info['comps'] = ''
# regularise noise covariance
if C.inv_cov_method == 'empirical': # if unregularised
noise_cov_use = mne.cov.regularize(noise_cov_use, info, mag=C.res_lambda_empirical['mag'],
grad=C.res_lambda_empirical['grad'], eeg=C.res_lambda_empirical['eeg'])
# Compute some null space components (not sure about it yet)
nullspace, leadfield, pseudoinv, null_proj = R.leadfield_nullspace(fwd_use, noise_cov_use, regpar=0.)
stc = R.mat_to_stc(nullspace, fwd['src'])
mytext = 'Nullspace_' + modal
fname_stc = C.fname_STC(C, 'ResolutionMetrics', subject, mytext)
print('###\nWriting nullspace for %s as STC file to: %s.\n###' % (modal, fname_stc))
stc.save(fname_stc)
# iterate over inverse operator types
for loose in C.inv_loose: # orientation constraint
for depth in C.inv_depth: # depth weighting
inv_fname = C.fname_InverseOperator(C, subject, st_duration, origin, C.res_cov_latwin,
modal, loose, depth)
print('\n###\nReading inverse operator from %s.\n###\n' % (inv_fname))
invop = mne.minimum_norm.read_inverse_operator(inv_fname)
for inv_type in C.res_inv_types: # 'MNE', 'LCMV' etc.
for lambda2 in C.res_lambda2s: # regularisation parameters
lamb2_str = str(lambda2).replace('.', '')
if len(lamb2_str) > 3:
lamb2_str = lamb2_str[:3]
print('\n###\nComputing resolution matrix for %s.\n###\n' % (inv_type))
t1 = time.time()
if inv_type in ['MNE', 'sLORETA', 'dSPM']: # minimum-norm-based methods
resmat = R.make_resolution_matrix(fwd_use, invop, method=inv_type, lambda2=lambda2)
elif inv_type == 'LCMV': # LCMV beamformer
# NOTE: here noise and data cov identical
resmat = R.make_resolution_matrix_lcmv(fwd_use, info, noise_cov_use, noise_cov_use)
t2 = time.time()
timing['R'].append(t2-t1)
print('###\nThis resolution matrix took %fs to compute.\n###\n' % timing['R'][-1])
# turn resolution matrix to STC and save
for (mat, matname) in [(resmat, 'PSF'), (resmat.T, 'CTF')]:
stc = R.mat_to_stc(mat, fwd['src'])
mytext = '%s_plot_%s_%s_%s' % (matname, inv_type, lamb2_str, modal)
fname_stc = C.fname_STC(C, 'ResolutionMetrics', subject, mytext)
print('###\nWriting %s as STC file to: %s.\n###' % (matname, fname_stc))
stc.save(fname_stc)
t1 = time.time()
# compute CTFs and PSFs
for (axis, functype) in [(0, 'PSF'), (1,'CTF')]:
# NOTE: edit metric, metric_text and metric_mat at the same time
if metric_type == 'locerr':
print('###\nComputing localisation error metric for %s.\n###' % functype)
# compute requested resolution metric
metric_mat = R.localisation_error(resmat, locations, axis=axis, metric=metric)
# convert to cm for visualisation (NOTE: may depend on metric)
metric_mat = 100.*metric_mat
elif metric_type == 'width':
print('###\nComputing spatial width metric for %s.\n###' % functype)
metric_mat = R.spatial_width(resmat, locations, axis=axis, metric=metric)
# convert to cm
metric_mat = 100.*metric_mat
elif metric_type == 'amplitude':
print('###\nComputing amplitude metric for %s.\n###' % functype)
metric_mat = R.relative_amplitude(resmat, locations, axis, metric=metric)
t2 = time.time()
timing[metric].append(t2 - t1)
print('### Metric %s took %fs to compute.\n###\n' % (metric, timing[metric][-1]))
# fake multiple time steps
# cm for visualisation
metric_mat_rep = np.repeat(metric_mat[:,np.newaxis], 5, axis=1)
# convert norms to source estimate
stc_metric = mne.SourceEstimate(metric_mat_rep, vertno, tmin=0., tstep=1.)
# for filename
metric_text = metric_type + '_' + metric
if loose == None: loose = 0
loo_str = 'loo%s' % str(int(100*loose))
if depth == None: depth = 0
dep_str = 'dep%s' % str(int(100*depth))
mytext = '%s_%s_%s_%s_%s_%s_%s' % (functype, inv_type, lamb2_str, metric_text, modal, loo_str, dep_str)
fname_stc = C.fname_STC(C, 'ResolutionMetrics', subject, mytext)
print('###\nWriting STC file to: %s.\n###' % (fname_stc))
stc_metric.save(fname_stc)
# collect results in dict
stcs[functype][inv_type][lamb2_str][modal][loo_str][dep_str] = stc_metric
print('\n###\nContrasting modalities.\n###')
for functype in stcs.keys(): # for function types specified above (PSF, CTF)
for inv_type in C.res_inv_types: # 'MNE', 'dSPM', 'lcmv' etc.
for lambda2 in C.res_lambda2s: # regularisation parameters
lamb2_str = str(lambda2).replace('.', '')
if len(lamb2_str) > 3:
lamb2_str = lamb2_str[:3]
for (modal1,modal2) in C.modal_contr: # [('EEGMEG', 'MEG'), ('EEGMEG', 'EEG'), ('MEG','EEG')]:
# iterate over inverse operator types
for loose in C.inv_loose: # orientation constraint
for depth in C.inv_depth: # depth weighting
if loose == None: loose = 0
loo_str = 'loo%s' % str(int(100*loose))
if depth == None: depth = 0
dep_str = 'dep%s' % str(int(100*depth))
stc_contr = stcs[functype][inv_type][lamb2_str][modal1][loo_str][dep_str] - \
stcs[functype][inv_type][lamb2_str][modal2][loo_str][dep_str]
modal = modal1 + '-' + modal2
stcs[functype][inv_type][lamb2_str][modal][loo_str][dep_str] = stc_contr
mytext = '%s_%s_%s_%s_%s_%s_%s' % (functype, inv_type, lamb2_str, metric_text, modal, loo_str, dep_str)
fname_stc = C.fname_STC(C, 'ResolutionMetrics', subject, mytext)
print('Saving STC to: %s.' % fname_stc)
stc_contr.save(fname_stc)
print "Nothing."
print('\n###\nContrasting inverse methods.\n###')
for functype in stcs.keys(): # for function types specified above (PSF, CTF)
# methods to subtract from each other, meth1-meth2
for modal in ['EEGMEG']:
for (meth1,meth2) in C.meth_contr: # [('MNE','dSPM'), ('MNE','sLORETA'), ('dSPM', 'sLORETA'), ('MNE', 'LCMV'), ('dSPM', 'LCMV'), ('sLORETA','LCMV')]:
for lambda2 in C.res_lambda2s: # regularisation parameters
lamb2_str = str(lambda2).replace('.', '')
if len(lamb2_str) > 3:
lamb2_str = lamb2_str[:3]
# iterate over inverse operator types
for loose in C.inv_loose: # orientation constraint
for depth in C.inv_depth: # depth weighting
if loose == None: loose = 0
loo_str = 'loo%s' % str(int(100*loose))
if depth == None: depth = 0
dep_str = 'dep%s' % str(int(100*depth))
stc_contr = stcs[functype][meth1][lamb2_str][modal][loo_str][dep_str] - \
stcs[functype][meth2][lamb2_str][modal][loo_str][dep_str]
meth = meth1 + '-' + meth2
stcs[functype][meth][lamb2_str][modal][loo_str][dep_str] = stc_contr
mytext = '%s_%s_%s_%s_%s_%s_%s' % (functype, meth, lamb2_str, metric_text, modal, loo_str, dep_str)
fname_stc = C.fname_STC(C, 'ResolutionMetrics', subject, mytext)
print('Saving STC to: %s.' % fname_stc)
stc_contr.save(fname_stc)
# Depth weighting is separate
# Do subtractions if specified for different depth weightings
if not C.meth_contr_dep == []:
loose = 0
loo_str = 'loo%s' % str(int(100*loose))
# For filenames
meth1 = 'MNE'
meth2 = 'MNE'
for (dep1,dep2) in C.meth_contr_dep: # what to subtract from each other
dep_str1 = 'dep%s' % str(int(100*dep1))
dep_str2 = 'dep%s' % str(int(100*dep2))
for lambda2 in C.res_lambda2s: # regularisation parameters
lamb2_str = str(lambda2).replace('.', '')
if len(lamb2_str) > 3:
lamb2_str = lamb2_str[:3]
# subtract depth-weighted from non-weighted MNE
stc_contr = stcs[functype][meth1][lamb2_str][modal][loo_str][dep_str1] - \
stcs[functype][meth2][lamb2_str][modal][loo_str][dep_str2]
# for filename
meth = 'dep%s-%s' % (dep_str1[3:], dep_str2[3:])
stcs[functype][meth][lamb2_str][modal][loo_str][dep_str2] = stc_contr
mytext = '%s_%s_%s_%s_%s_%s' % (functype, meth, lamb2_str, metric_text, modal, loo_str)
fname_stc = C.fname_STC(C, 'ResolutionMetrics', subject, mytext)
print('Saving STC to: %s.' % fname_stc)
stc_contr.save(fname_stc)
print('###\nResolution matrices took on average %f seconds.' % np.mean(timing['R']))
print('Metrics took on average %f seconds.' % np.mean(timing[metric]))
### Visualisation:
# clim = {'kind': 'value', 'pos_lims': (0, 0.5, 1)}
# stc_norm['EEGMEG-MEG'].plot(subject=subject, subjects_dir=C.subjects_dir, hemi='both',
# time_viewer=True, transparent=False, colormap='mne', clim=clim)
# Done