-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathWH_Res_SensitivityMaps.py
executable file
·167 lines (102 loc) · 4.88 KB
/
WH_Res_SensitivityMaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""
=========================================================
Compute whole-brain sensitivity maps for WH data set.
E.g.: run WH_Res_SensitivityMaps.py WH_Res_config 13 RMS
=========================================================
"""
# OH, July 2018
print __doc__
import os
import os.path as op
import sys
sys.path = [
'/home/olaf/MEG/WakemanHensonEMEG/ScriptsResolution', # following list created by trial and error
'/imaging/local/software/mne_python/latest_v0.16',
'/imaging/local/software/anaconda/2.4.1/2/bin',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages/pysurfer-0.8.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages/h5io-0.1.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/lib-dynload',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages'
]
import importlib
import glob
import numpy as np
import mne
print('MNE Version: %s\n\n' % mne.__version__) # just in case
## get analysis parameters from config file
module_name = sys.argv[1]
C = importlib.import_module(module_name)
reload(C)
# get functions for metrics etc.
R = importlib.import_module('WH_Resolution_Functions')
reload(R)
# get subject ID to process
# qsub start at 0, thus +1 here
sbj_ids = [int(sys.argv[2]) + 1]
# for filenames
st_duration = C.res_st_duration
origin = C.res_origin
# read variables specified via qsub
if len(sys.argv)>3: # if additional variable specified
metric = sys.argv[3] # (e.g. 'RMS', 'SNR')
else:
metric = 'RMS'
print('Metric: %s.\n' % metric)
for sbj in sbj_ids:
subject = 'Sub%02d' % sbj
print('###\nWorking hard on %s.\n###' % (subject))
fname_stc = C.fname_STC(C, 'SensitivityMaps', subject, '')
# create output path if necessary
if not os.path.exists(fname_stc):
os.mkdir(fname_stc)
fwd_fname = C.fname_ForwardSolution(C, subject, 'EEGMEG')
print('###\nReading EEGMEG forward solutions: %s .\n###' % (fwd_fname))
fwd = mne.read_forward_solution(fwd_fname)
fwd = mne.convert_forward_solution(fwd, surf_ori=True, force_fixed=True)
# covariance matrix (filter with wildcard)
fname_cov = C.fname_cov(C, subject, st_duration, origin, C.res_cov_latwin, C.inv_cov_method, '*')
# method may be underspecified, since it may be ranked differently for different subjects
fname_cov = glob.glob(fname_cov)[0] # be careful if multiple options present
print('###\nReading noise covariance matrix from: %s.\n###' % (fname_cov))
noise_cov = mne.read_cov(fname_cov)
stcs = {} # will contain metric distribution as STC
# iterate over different combinations of sensors
for (eeg,meg,modal) in [(True,True,'EEGMEG'), (False,True,'MEG'), (True,False,'EEG')]:
fwd_use = mne.pick_types_forward(fwd, meg=meg, eeg=eeg)
info = fwd_use['info']
ch_names = info['ch_names']
# restrict to channels in forward solution
noise_cov_use = mne.cov.pick_channels_cov(noise_cov, ch_names)
# fwd doesn't have projs, add from noise_cov
info['projs'] = noise_cov_use['projs']
info['comps'] = '' # dummy to avoid crash
if C.inv_cov_method == 'empirical': # if unregularised
noise_cov_use = mne.cov.regularize(noise_cov_use, info, mag=C.res_lambda_empirical['mag'],
grad=C.res_lambda_empirical['grad'], eeg=C.res_lambda_empirical['eeg'])
# Sensitivity maps with diagnonal noise covariance matrix
stc = R.sensitivity_map(fwd_use, noise_cov_use, diag=True, metric=metric, maxnorm=True)
stcs[modal] = stc
fname_stc = C.fname_STC(C, 'SensitivityMaps', subject, 'SensMap_' + modal + '_' + metric)
print('###\nWriting STC file to: %s.\n###' % (fname_stc))
stc.save(fname_stc)
print('###\nContrasting modalities.\n###')
for (modal1,modal2) in [('EEGMEG', 'MEG'), ('EEGMEG', 'EEG'), ('MEG','EEG')]:
if metric == 'RMS':
print('Ratio for RMS.')
stc_contr = stcs[modal1] / stcs[modal2]
elif metric == 'SNR':
print('Difference for SNR.')
stc_contr = stcs[modal1] - stcs[modal2]
# stc_diff = R.normalise_stc(stc_diff)
mytext = modal1 + '-' + modal2 + '_' + metric
stcs[mytext] = stc_contr
fname_stc = C.fname_STC(C, 'SensitivityMaps', subject, 'SensMap_' + mytext)
print('Saving STC to: %s.' % fname_stc)
stc_contr.save(fname_stc)
### Visualisation:
# clim = {'kind': 'value', 'pos_lims': (0, 0.5, 1)}
# stc_norm['EEGMEG-MEG'].plot(subject=subject, subjects_dir=C.subjects_dir, hemi='both',
# time_viewer=True, transparent=False, colormap='mne', clim=clim)
# Done