We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
scripts/train.py --dataset_type cars_encode --exp_dir directory --use_w_pool --w_discriminator_lambda 0.1 --progressive_start 20000 --id_lambda 0.5 --val_interval 10000 --start_from_latent_avg --max_steps 200000 --stylegan_size 512 --stylegan_weights a/stylegan2-ffhq-config-f.pt --workers 8 --batch_size 8 --test_batch_size 4 --test_workers 4 {'batch_size': 8, 'board_interval': 50, 'checkpoint_path': None, 'd_reg_every': 16, 'dataset_type': 'cars_encode', 'delta_norm': 2, 'delta_norm_lambda': 0.0002, 'encoder_type': 'Encoder4Editing', 'exp_dir': 'directory', 'id_lambda': 0.5, 'image_interval': 100, 'keep_optimizer': False, 'l2_lambda': 1.0, 'learning_rate': 0.0001, 'lpips_lambda': 0.8, 'lpips_type': 'alex', 'max_steps': 200000, 'optim_name': 'ranger', 'progressive_start': 20000, 'progressive_step_every': 2000, 'progressive_steps': [0, 20000, 22000, 24000, 26000, 28000, 30000, 32000, 34000, 36000, 38000, 40000, 42000, 44000, 46000, 48000], 'r1': 10, 'resume_training_from_ckpt': None, 'save_interval': None, 'save_training_data': False, 'start_from_latent_avg': True, 'stylegan_size': 512, 'stylegan_weights': 'a/stylegan2-ffhq-config-f.pt', 'sub_exp_dir': None, 'test_batch_size': 4, 'test_workers': 4, 'train_decoder': False, 'update_param_list': None, 'use_w_pool': True, 'val_interval': 10000, 'w_discriminator_lambda': 0.1, 'w_discriminator_lr': 2e-05, 'w_pool_size': 50, 'workers': 8} Loading encoders weights from irse50! Loading decoder weights from pretrained! Traceback (most recent call last): File "/root/test/encoder4editing-main/encoder4editing-main/scripts/train.py", line 87, in main() File "/root/test/encoder4editing-main/encoder4editing-main/scripts/train.py", line 28, in main coach = Coach(opts, previous_train_ckpt) File "../training/coach.py", line 42, in init self.lpips_loss = LPIPS(net_type=self.opts.lpips_type).to(self.device).eval() File "../criteria/lpips/lpips.py", line 23, in init self.net = get_network(net_type).to("cuda") File "../criteria/lpips/networks.py", line 14, in get_network return AlexNet() File "../criteria/lpips/networks.py", line 81, in init self.layers = models.alexnet(True).features File "/root/miniconda3/lib/python3.8/site-packages/torchvision/models/alexnet.py", line 63, in alexnet state_dict = load_state_dict_from_url(model_urls['alexnet'], File "/root/miniconda3/lib/python3.8/site-packages/torch/hub.py", line 528, in load_state_dict_from_url return torch.load(cached_file, map_location=map_location) File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 593, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 762, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: unpickling stack underflow
Process finished with exit code 1
The text was updated successfully, but these errors were encountered:
No branches or pull requests
scripts/train.py --dataset_type cars_encode --exp_dir directory --use_w_pool --w_discriminator_lambda 0.1 --progressive_start 20000 --id_lambda 0.5 --val_interval 10000 --start_from_latent_avg --max_steps 200000 --stylegan_size 512 --stylegan_weights a/stylegan2-ffhq-config-f.pt --workers 8 --batch_size 8 --test_batch_size 4 --test_workers 4
{'batch_size': 8,
'board_interval': 50,
'checkpoint_path': None,
'd_reg_every': 16,
'dataset_type': 'cars_encode',
'delta_norm': 2,
'delta_norm_lambda': 0.0002,
'encoder_type': 'Encoder4Editing',
'exp_dir': 'directory',
'id_lambda': 0.5,
'image_interval': 100,
'keep_optimizer': False,
'l2_lambda': 1.0,
'learning_rate': 0.0001,
'lpips_lambda': 0.8,
'lpips_type': 'alex',
'max_steps': 200000,
'optim_name': 'ranger',
'progressive_start': 20000,
'progressive_step_every': 2000,
'progressive_steps': [0,
20000,
22000,
24000,
26000,
28000,
30000,
32000,
34000,
36000,
38000,
40000,
42000,
44000,
46000,
48000],
'r1': 10,
'resume_training_from_ckpt': None,
'save_interval': None,
'save_training_data': False,
'start_from_latent_avg': True,
'stylegan_size': 512,
'stylegan_weights': 'a/stylegan2-ffhq-config-f.pt',
'sub_exp_dir': None,
'test_batch_size': 4,
'test_workers': 4,
'train_decoder': False,
'update_param_list': None,
'use_w_pool': True,
'val_interval': 10000,
'w_discriminator_lambda': 0.1,
'w_discriminator_lr': 2e-05,
'w_pool_size': 50,
'workers': 8}
Loading encoders weights from irse50!
Loading decoder weights from pretrained!
Traceback (most recent call last):
File "/root/test/encoder4editing-main/encoder4editing-main/scripts/train.py", line 87, in
main()
File "/root/test/encoder4editing-main/encoder4editing-main/scripts/train.py", line 28, in main
coach = Coach(opts, previous_train_ckpt)
File "../training/coach.py", line 42, in init
self.lpips_loss = LPIPS(net_type=self.opts.lpips_type).to(self.device).eval()
File "../criteria/lpips/lpips.py", line 23, in init
self.net = get_network(net_type).to("cuda")
File "../criteria/lpips/networks.py", line 14, in get_network
return AlexNet()
File "../criteria/lpips/networks.py", line 81, in init
self.layers = models.alexnet(True).features
File "/root/miniconda3/lib/python3.8/site-packages/torchvision/models/alexnet.py", line 63, in alexnet
state_dict = load_state_dict_from_url(model_urls['alexnet'],
File "/root/miniconda3/lib/python3.8/site-packages/torch/hub.py", line 528, in load_state_dict_from_url
return torch.load(cached_file, map_location=map_location)
File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 593, in load
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 762, in _legacy_load
magic_number = pickle_module.load(f, **pickle_load_args)
_pickle.UnpicklingError: unpickling stack underflow
Process finished with exit code 1
The text was updated successfully, but these errors were encountered: