-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_n_avgd_23.py
59 lines (44 loc) · 1.55 KB
/
plot_n_avgd_23.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import csv
import matplotlib
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
csv_read = csv.reader(open('log.txt'), delimiter=',')
n = {1000:[], 2000:[], 3000:[], 4000:[], 5000:[]}
avgd = {1000:[], 2000:[], 3000:[], 4000:[], 5000:[]}
two3 = {1000:[], 2000:[], 3000:[], 4000:[], 5000:[]}
for row in csv_read:
#import ipdb ; ipdb.set_trace()
for i, col in enumerate(row):
# 0 - <>
# 1 - M
# 2 - N
# 3 - size
# 4 - degree min
# 5 - degree max
# 6 - shortestpath
# 7 - 2/3
sz = int(row[3])
n_rw = int(row[2])
avgd_rw = np.mean([int(row[4]), int(row[5])])
two3_rw = float(row[7])
n[sz].append(n_rw)
avgd[sz].append(avgd_rw)
two3[sz].append(two3_rw)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for i, j in enumerate(n[1000]):
print(n[1000][i], avgd[1000][i], two3[1000][i])
ax.scatter(n[1000], avgd[1000], two3[1000], c='r', marker='x', label='1000')
ax.scatter(n[2000], avgd[2000], two3[2000], c='g', marker='+', label='2000')
ax.scatter(n[3000], avgd[3000], two3[3000], c='b', marker='1', label='3000')
ax.scatter(n[4000], avgd[4000], two3[4000], c='purple', marker='2', label='4000')
ax.scatter(n[5000], avgd[5000], two3[5000], c='c', marker='3', label='5000')
#ax.set_xscale('log')
#ax.set_xticklabels([1,2,3,10,100])
#ax.set_xticks([1,2,3,10,100])
ax.set_xlabel('N')
ax.set_ylabel('Average degree')
ax.set_zlabel('Time to reach 2/3rds of nodes')
ax.legend()
plt.show()