#Unique Paths ##Problem: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
##Idea:
Dynamic Programming
class Solution {
public:
int uniquePaths(int m, int n) {
int sub[m][n];
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
{
if(i==0||j==0) sub[i][j]=1;
else sub[i][j] = sub[i][j-1]+sub[i-1][j];
}
}
return sub[m-1][n-1];
}
};
//Space Complexity:O(m*n)
##To Study: 1.1-D array
class Solution {
public:
int uniquePaths(int m, int n) {
if(m>n) return uniquePaths(n,m);
vector<int> current(m,1);
for(int j=1;j<n;j++)
{
for(int i=1;i<m;i++)
{
current[i] += current[i-1];
}
}
return current[m-1];
}
};
//Space Complexity:O(min(m,n))
2.Math C(m+n-2,m-1)
class Solution {
public:
int uniquePaths(int m, int n) {
long result=1;
for(int i=1;i<=m-1;i++)
{
result = result*(i+n-1)/i;
}
return (int)result;
}
};
注意要转换为long,不然可能超出范围出错