Skip to content

Latest commit

 

History

History
176 lines (146 loc) · 7.32 KB

PLANET.md

File metadata and controls

176 lines (146 loc) · 7.32 KB

Generating a Map of the World

To generate a map of the world using the built-in OpenMapTiles profile, you will need a machine with Java 21 or later installed and at least 10x as much disk space and at least 0.5x as much RAM as the planet.osm.pbf file you start from. All testing has been done using Digital Ocean droplets with dedicated vCPUs (referral link) and OpenJDK 21 installed through apt. Planetiler splits work among available CPUs so the more you have, the less time it takes.

1) Choose the Data Source

First decide where to get the planet.osm.pbf file:

  • One of the official mirrors

  • The AWS Registry of Open Data public S3 mirror (default)

  • Or a Daylight Distribution snapshot from Facebook that includes extra quality/consistency checks, and add-ons like ML-detected roads and buildings. Combine add-ons and re-number using osmium-tool:

    osmium apply-changes daylight.osm.pbf admin.osc.bz2 <buildings.osc.bz2, ...> -o everything.osm.pbf
    osmium renumber everything.osm.pbf -o planet.osm.pbf
  • If you would like to update your planet.osm.pbf file to the latest changes from OpenStreetMap, you can use pyosmium-up-to-date:

    pyosmium-up-to-date --size 20000 -v planet.osm.pbf

    NOTE: you need at least admin.osc.bz2 for the boundary layer to show. This takes about 2.5 hours and needs as much RAM as the planet.osm.pbf size.

2) Run Planetiler

Download the latest release of planetiler.jar.

If your system has at least 1.5x as much memory as the input OSM file size, run this command to store node location cache in-memory:

java -Xmx110g \
  `# return unused heap memory to the OS` \
  -XX:MaxHeapFreeRatio=40 \
  -jar planetiler.jar \
  `# Download the latest planet.osm.pbf from s3://osm-pds bucket` \
  --area=planet --bounds=planet --download \
  `# Accelerate the download by fetching the 10 1GB chunks at a time in parallel` \
  --download-threads=10 --download-chunk-size-mb=1000 \
  `# Also download name translations from wikidata` \
  --fetch-wikidata \
  --output=output.mbtiles \
  `# Store temporary node locations in memory` \
  --nodemap-type=array --storage=ram

If your system has less than 1.5x as much memory as the input OSM file size, run this command to store node location cache in a temporary memory-mapped file by setting --storage=mmap and -Xmx20g to reduce the JVM's memory usage.

java -Xmx20g \
  -jar planetiler.jar \
  `# Download the latest planet.osm.pbf from s3://osm-pds bucket` \
  --area=planet --bounds=planet --download \
  `# Accelerate the download by fetching the 10 1GB chunks at a time in parallel` \
  --download-threads=10 --download-chunk-size-mb=1000 \
  `# Also download name translations from wikidata` \
  --fetch-wikidata \
  --output=output.mbtiles \
  `# Store temporary node locations at fixed positions in a memory-mapped file` \
  --nodemap-type=array --storage=mmap

Run with --help to see all available arguments.

NOTE: The default OpenMapTiles profile merges nearby buildings at zoom-level 13 (for example, see Boston). This adds about 14 CPU hours (~50 minutes with 16 CPUs) to planet generation time and can be disabled using --building-merge-z13=false.

Example

To generate the tiles shown on https://onthegomap.github.io/planetiler-demo/ I used the planet-211011.osm.pbf (64.7GB) S3 snapshot, then ran Planetiler on a Digital Ocean Memory-Optimized droplet with 16 CPUs, 128GB RAM, and 1.17TB disk running Ubuntu 21.04 x64 in the nyc3 location.

First, I installed java 21 jre and screen:

apt-get update && apt-get install -y openjdk-21-jre-headless screen

Then I added a script runworld.sh to run with 100GB of RAM:

#!/usr/bin/env bash
set -e
java -Xmx100g \
  -jar planetiler.jar \
  `# Download the latest planet.osm.pbf from s3://osm-pds bucket` \
  --area=planet --bounds=world --download \
  `# Accelerate the download by fetching the 10 1GB chunks at a time in parallel` \
  --download-threads=10 --download-chunk-size-mb=1000 \
  `# Also download name translations from wikidata` \
  --fetch-wikidata \
  --output=output.mbtiles \
  --nodemap-type=sparsearray --nodemap-storage=ram 2>&1 | tee logs.txt

Then I ran this in the background using screen, so it would continue if my shell exited:

screen -d -m "./runworld.sh"
tail -f logs.txt

It took 3h21m (including 12 minutes downloading source data) to generate a 99GB output.mbtiles file. See the full logs from this run or this summary that it printed at the end:

3:21:03 DEB [mbtiles] - Tile stats:
3:21:03 DEB [mbtiles] - z0 avg:71k max:71k
3:21:03 DEB [mbtiles] - z1 avg:171k max:192k
3:21:03 DEB [mbtiles] - z2 avg:258k max:449k
3:21:03 DEB [mbtiles] - z3 avg:117k max:479k
3:21:03 DEB [mbtiles] - z4 avg:51k max:541k
3:21:03 DEB [mbtiles] - z5 avg:23k max:537k
3:21:03 DEB [mbtiles] - z6 avg:14k max:354k
3:21:03 DEB [mbtiles] - z7 avg:11k max:451k
3:21:03 DEB [mbtiles] - z8 avg:6.5k max:356k
3:21:03 DEB [mbtiles] - z9 avg:6k max:485k
3:21:03 DEB [mbtiles] - z10 avg:2.7k max:285k
3:21:03 DEB [mbtiles] - z11 avg:1.3k max:168k
3:21:03 DEB [mbtiles] - z12 avg:741 max:247k
3:21:03 DEB [mbtiles] - z13 avg:388 max:286k
3:21:03 DEB [mbtiles] - z14 avg:340 max:1.7M
3:21:03 DEB [mbtiles] - all avg:395 max:0
3:21:03 DEB [mbtiles] -  # features: 2,832,396,934
3:21:03 DEB [mbtiles] -     # tiles: 264,204,266
3:21:03 INF [mbtiles] - Finished in 4,668s cpu:66,977s avg:14.3

3:21:03 INF - Finished in 12,064s cpu:156,169s avg:12.9

3:21:03 INF - FINISHED!
3:21:03 INF - ----------------------------------------
3:21:03 INF - 	overall	12,064s cpu:156,169s avg:12.9
3:21:03 INF - 	download	169s cpu:1,070s avg:6.3
3:21:03 INF - 	wikidata	553s cpu:3,825s avg:6.9
3:21:03 INF - 	lake_centerlines	0.9s cpu:2s avg:1.8
3:21:03 INF - 	water_polygons	96s cpu:1,150s avg:12
3:21:03 INF - 	natural_earth	6s cpu:21s avg:3.7
3:21:03 INF - 	osm_pass1	921s cpu:5,177s avg:5.6
3:21:03 INF - 	osm_pass2	5,234s cpu:73,527s avg:14
3:21:03 INF - 	boundaries	14s cpu:18s avg:1.3
3:21:03 INF - 	sort	407s cpu:4,403s avg:10.8
3:21:03 INF - 	mbtiles	4,668s cpu:66,977s avg:14.3
3:21:03 INF - ----------------------------------------
3:21:03 INF - 	features	192GB
3:21:03 INF - 	mbtiles	99GB

To generate the extract for the demo I ran:

# install node and tilelive-copy
curl -fsSL https://deb.nodesource.com/setup_16.x | sudo -E bash -
apt-get install -y nodejs
npm install -g @mapbox/tilelive @mapbox/mbtiles
# Extract z0-4 for the world
tilelive-copy --minzoom=0 --maxzoom=4 --bounds=-180,-90,180,90 output.mbtiles demo.mbtiles
# Extract z0-14 for just southern New England
tilelive-copy --minzoom=0 --maxzoom=14 --bounds=-73.6346,41.1055,-69.5464,42.9439 output.mbtiles demo.mbtiles

Then I ran extract.sh in the planetiler-demo repo to extract tiles from the mbtiles file to disk.