-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmdapack_ex02.m
65 lines (54 loc) · 2.32 KB
/
mdapack_ex02.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
% a second simple example on how to run MDAPACK
clear variables;
clear import;
close all;
% create a PRNG to use with the model - this makes the experiment
% "deterministic", if passed as option.
s1=RandStream('mt19937ar','seed',1);
%% 1) Choose representation, model and model parameters
parameters.representation = { ...
% use PCE as representation, since we want to use SPCU
@(model) representations.PCE( ...
model, ...
'pceOrder', 3, ...
'sampleSize', 10000) ... % also used to compute quantiles
};
parameters.model = {... % bind all parameters of the model generator call
@() models.Lorenz1984(...
'measurementSchedule' , 10:2:100, ...
'plot2dDim', 1, ...
'plotMode', '2d', ...
'tEnd', 120, ...
'evidenceNoiseRng', s1 ...
)...
% Explanation:
% measurementSchedule: 10 days spin-up, then every second day a
% measurement, until day 100. tEnd = 120 means that we run the last 20 days
% without measurements -> "forecast period".
% plot2DDim = 1 means the first dimension of the attractor is plotted.
% Possible values are 1,2,3. plotMode could be set to 3d, to have a nice,
% but pretty much useless, 3d plot of the assimilation.
};
%
%% 2) Choose method and method parameters
parameters.method = {...
@()filters.Pajonk.LPCU()
};
%% 3) Set global parameters
parameters.visualize = {true}; % output live graphics?
parameters.progress = {true}; % output progress information to console?
parameters.nRuns = {1}; % number of runs (to create statistics, requires the use of controllers.multiRun)
parameters.statistics = {true}; % compute statistics over the NRUNS or store all runs?
parameters.stat_spectrum = {false}; % compute SVD of ensemble for results? (normally not necessary)
parameters.stat_mean = {true}; % store mean? (this is typically the "best guess")
parameters.stat_relErrors = {true}; % store RMSE/relErr?
parameters.stat_var = {true}; % store variance?
parameters.stat_skewness = {false};
parameters.stat_kurtosis = {false};
parameters.stat_ksdensity = {false};
parameters.stat_summary = {false}; % store quantiles 0.025, 0.25, 0.5, 0.75, 0.975?
parameters.stat_truth = {true}; % store truth?
%% 4) Run
results = tools.batchcall(parameters, @controllers.singleRun);
% all output can be found in the "results" structure, but is not saved to a
% file