-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
134 lines (110 loc) · 4.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# main.py
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from fastapi.responses import HTMLResponse, JSONResponse
from ai_configurator import AIConfigurator
from message_logger import MessageLogger
from openai import OpenAI
import tiktoken
import os
from random import sample
from typing import Optional
app = FastAPI(debug=True)
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_methods=['*'],
allow_headers=['*']
)
ai_configurator = AIConfigurator()
message_logger = MessageLogger()
with open("suggested-prompts.txt", "r") as new_file:
prompt_list = new_file.readlines()
def call_function_from_file(folder_path, module_name, function_name):
"""
Use to load a module and call the function from a file in a specific folder.
Example usage:
folder_path = "/path/to/your/folder" # Update this path as needed
module_name = "module"
function_name = "example_function"
Call the function
result = call_function_from_file(folder_path, module_name, function_name)
print(result)
"""
# Check if the folder exists
if os.path.exists(folder_path):
# Add the folder path to the system path to allow importing
import sys
sys.path.append(folder_path)
# Import the module
module = __import__(module_name)
# Get the function by name and call it
func = getattr(module, function_name)
return func()
else:
return "Folder does not exist."
@app.get("/pre_user_prompt", response_class=JSONResponse)
async def pre_user_prompt():
"""
Simulate fetching data from a third-party API before the user sends a prompt.
This data could be used to give context or information to the user.
"""
suggested_prompts = sample(prompt_list, 3)
return JSONResponse(suggested_prompts)
@app.get("/post_response", response_class=JSONResponse)
async def post_response(keyword: str):
"""
Fetching additional data from a third-party API or feed after sending a response to the user.
This could be further reading, sources, or related topics.
"""
search_rss_feed = call_function_from_file("modules/buildly-collect", "news-blogs", "search_rss_feed")
# Get Data from Buildly News Blogs
# Search the feed
news = search_rss_feed(rss_url = "https://www.buildly.io/news/feed/", keyword = keyword)
return JSONResponse(news)
@app.get("/", response_class=HTMLResponse)
async def chat_view(request: Request):
# return JSONResponse({"status": "Server is runnning on port 8000"})
return templates.TemplateResponse("chat.html", {"request": request})
@app.post("/chatbot")
async def chatbot(request: Request):
data = await request.json()
user_message, history, tokens = data.get("prompt"), data.get("history"), data.get("tokens")
llm = "gpt-3.5-turbo" # specify the model you want to use
provider = "openai" # specify the provider for this model
tokenizer = tiktoken.get_encoding("cl100k_base") # specify the tokenizer to use for this model
tokenizer_function = lambda text: len(tokenizer.encode(text)) # specify the tokenizing function to use
# specify the completion function you'd like to use
def completion_function(api_key: str,
initial_prompt: Optional[str],
user_message: str,
conversation_history: str,
max_tokens: int,
temperature: float,
model_name: str):
client = OpenAI(api_key=api_key)
try:
response = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": initial_prompt},
{"role": "user", "content": conversation_history + user_message}
],
max_tokens=max_tokens,
temperature=temperature,
)
return response.choices[0].message.content.strip()
except Exception as e:
raise e
message_logger.log_message(user_message)
try:
ai_configurator.set_model(provider, llm, tokenizer_function, completion_function, use_initial_prompt=True)
chat_response = ai_configurator.get_response(history, user_message, tokens)
return chat_response
except Exception as e:
print(f"An error occurred: {e}")
return JSONResponse({"response": "Sorry... An error occurred."})