-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
msrresnet_x4c64b16_1xb16-1000k_div2k.py
135 lines (124 loc) · 3.63 KB
/
msrresnet_x4c64b16_1xb16-1000k_div2k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
_base_ = [
'../_base_/default_runtime.py', '../_base_/datasets/sisr_x4_test_config.py'
]
experiment_name = 'msrresnet_x4c64b16_1xb16-1000k_div2k'
work_dir = f'./work_dirs/{experiment_name}'
save_dir = './work_dirs/'
scale = 4
# model settings
model = dict(
type='BaseEditModel',
generator=dict(
type='MSRResNet',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16,
upscale_factor=scale),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'),
train_cfg=dict(),
test_cfg=dict(),
data_preprocessor=dict(
type='DataPreprocessor',
mean=[0., 0., 0.],
std=[255., 255., 255.],
))
train_pipeline = [
dict(
type='LoadImageFromFile',
key='img',
color_type='color',
channel_order='rgb'),
dict(
type='LoadImageFromFile',
key='gt',
color_type='color',
channel_order='rgb'),
dict(type='SetValues', dictionary=dict(scale=scale)),
dict(type='PairedRandomCrop', gt_patch_size=128),
dict(
type='Flip',
keys=['img', 'gt'],
flip_ratio=0.5,
direction='horizontal'),
dict(
type='Flip', keys=['img', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['img', 'gt'], transpose_ratio=0.5),
dict(type='PackInputs')
]
val_pipeline = [
dict(
type='LoadImageFromFile',
key='img',
color_type='color',
channel_order='rgb'),
dict(
type='LoadImageFromFile',
key='gt',
color_type='color',
channel_order='rgb'),
dict(type='PackInputs')
]
# dataset settings
dataset_type = 'BasicImageDataset'
data_root = 'data'
train_dataloader = dict(
num_workers=8,
batch_size=16,
persistent_workers=False,
sampler=dict(type='InfiniteSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file='meta_info_DIV2K800sub_GT.txt',
metainfo=dict(dataset_type='div2k', task_name='sisr'),
data_root=data_root + '/DIV2K',
data_prefix=dict(
img='DIV2K_train_LR_bicubic/X4_sub', gt='DIV2K_train_HR_sub'),
filename_tmpl=dict(img='{}', gt='{}'),
pipeline=train_pipeline))
val_dataloader = dict(
num_workers=8,
persistent_workers=False,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
metainfo=dict(dataset_type='set14', task_name='sisr'),
data_root=data_root + '/Set14',
data_prefix=dict(img='LRbicx4', gt='GTmod12'),
pipeline=val_pipeline))
val_evaluator = dict(
type='Evaluator',
metrics=[
dict(type='MAE'),
dict(type='PSNR', crop_border=scale),
dict(type='SSIM', crop_border=scale),
])
train_cfg = dict(
type='IterBasedTrainLoop', max_iters=1_000_000, val_interval=5000)
val_cfg = dict(type='MultiValLoop')
# optimizer
optim_wrapper = dict(
constructor='DefaultOptimWrapperConstructor',
type='OptimWrapper',
optimizer=dict(type='Adam', lr=2e-4, betas=(0.9, 0.999)))
# learning policy
param_scheduler = dict(
type='CosineRestartLR',
by_epoch=False,
periods=[250000, 250000, 250000, 250000],
restart_weights=[1, 1, 1, 1],
eta_min=1e-7)
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=5000,
save_optimizer=True,
by_epoch=False,
out_dir=save_dir,
),
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=100),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
)