-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathmaml_conv4_1xb105_cub_5way-1shot.py
52 lines (48 loc) · 1.63 KB
/
maml_conv4_1xb105_cub_5way-1shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
_base_ = [
'../../_base_/meta_test/cub_meta-test_5way-1shot.py',
'../../_base_/runtime/iter_based_runtime.py',
'../../_base_/schedules/adam_100k_iter.py'
]
img_size = 84
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=img_size),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
data = dict(
samples_per_gpu=1,
workers_per_gpu=8,
train=dict(
type='EpisodicDataset',
num_episodes=100000,
num_ways=5,
num_shots=5,
num_queries=16,
dataset=dict(
type='CUBDataset',
data_prefix='data/CUB_200_2011',
subset='train',
pipeline=train_pipeline)),
val=dict(
meta_test_cfg=dict(
fast_test=False, support=dict(batch_size=5, num_inner_steps=5))),
test=dict(
meta_test_cfg=dict(
fast_test=False, support=dict(batch_size=5, num_inner_steps=5))))
model = dict(
type='MAML',
num_inner_steps=2,
inner_lr=0.01,
first_order=False,
backbone=dict(type='Conv4'),
head=dict(type='LinearHead', num_classes=5, in_channels=1600))
optimizer_config = dict(
type='GradientCumulativeOptimizerHook', cumulative_iters=8, grad_clip=None)
optimizer = dict(type='Adam', lr=0.001)