-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathderived_parameters.jl
683 lines (542 loc) · 25.9 KB
/
derived_parameters.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
### A Pluto.jl notebook ###
# v0.19.6
using Markdown
using InteractiveUtils
# ╔═╡ 4a97d273-8195-4493-b13d-2e41de123d5d
begin
using Markdown
using InteractiveUtils
using Printf
using DataFrames
using XLSX, CSV
md"""
#### Load necessary packages
"""
end
# ╔═╡ 2cad0dea-172e-4779-96b1-259d8393612c
md"""
# Derived Rate Constants Workbook
Here we derive the basal fluxes and rate constants of the model. We rely on literature and steady state constraints to determine the typical value (TV) of the parameters of the model. We then allow these parameters to float to a lower bound value (LV) and higher bound value (HV) in our plausible patient searching.
"""
# ╔═╡ 8f830c81-e3ce-445f-a338-154d4a3f9038
begin
df = DataFrame(XLSX.readtable("parameters.xlsx","parameters")...)
#dict1 = Dict(Pair.(df.Parameter, df.ParamNum))
md"""
#### Load parameters.xlsx into a DataFrame
"""
end
# ╔═╡ 68c18624-20a2-4085-85c0-5efb600ee505
begin
kg_to_g = 1000.0 # [g/kg]
L_to_mL = 1000.0 # [mL/L]
rho_tg = 0.9 # [g/cm^3], https://bionumbers.hms.harvard.edu/files/Densities%20of%20triglycerides%20at%2020%C2%B0C%20&%2040%C2%B0C.pdf
tg_MW = 772 # molecular weight of an average TG, https://laney.edu/bill_trego/wp-content/uploads/sites/242/2015/01/Calculating-FATG-Molar-Mass.pdf
glycerol_MW = 92.1
FA_TG = 3 # [mol FA/mol TG], conversion
fa_MW = (tg_MW - glycerol_MW)/FA_TG
rhoe_tg = 9*tg_MW/1000.0 # kcal/g --> kcal/mmol
rhoe_fa = 9.6*fa_MW/1000.0 # [kcal/mmol], includes unit conversions
vol_frac_cytosol = 0.7 # [fraction], https://www.proteinatlas.org/humanproteome/cell/cytosol
vol_ratio_er_to_cyt = 0.16/0.5 # [ratio], http://book.bionumbers.org/how-big-is-the-endoplasmic-reticulum-of-cells/
vol_hepat = 3.4e-9 # [cm^3/cell], https://en.wikipedia.org/wiki/Hepatocyte
num_hepat = 139*10^6 # [cells/g liver], https://www.sciencedirect.com/science/article/pii/S088723330600124X?via%3Dihub
mass_liver = 1500 # [g], https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/liver-weight
mass_liver_low = (1677 - 2*396)/1677 # [multiplier], Grandmaison et al. FSI. 2001. 2SD
mass_liver_high = (1677 + 2*396)/1677 # [multiplier], Grandmaison et al. FSI. 2001. 2SD
vol_hepat_tot = vol_hepat*num_hepat*mass_liver # [mL]
diet_kcals = 2400 # [kcal/day], middle-aged male at normal BMI, moderate exercise (https://www.calculator.net/calorie-calculator.html?ctype=standard&cage=45&csex=m&cheightfeet=5&cheightinch=10&cpound=165&cheightmeter=180&ckg=65&cactivity=1.465&cmop=0&coutunit=c&cformula=m&cfatpct=20&printit=0&x=22&y=15)
diet_kcals_low = 1596 # [kcal/day], 60kg, 80 year old male with no regular exercise, low-fat diet
diet_kcals_high = 3230 # [kcal/day], 25 year old, 120 kg male, regular exercise, high-fat diet
diet_frac_fat = 0.35 # [fraction]
lcfa_frac = 0.85 # [fraction]
ba_fat = 0.95 # [fraction], bioavailability of fat, https://www.sciencedirect.com/topics/medicine-and-dentistry/fat-intake
bmr_liver = 300 # [kcal/kg/day], https://www.fao.org/3/m2845e/m2845e00.htm
frac_liver_fatox = 0.6 # [fraction], portion of liver TEE that is from fat oxidation
fa_basal = 0.15 # [mM], Holzhütter H-G, Berndt N. Computational Hypothesis: How Intra-Hepatic Functional Heterogeneity May Influence the Cascading Progression of Free Fatty Acid-Induced Non-Alcoholic Fatty Liver Disease (NAFLD). Cells. 2021; 10(3):578. https://doi.org/10.3390/cells10030578
vol_frac_tg = 0.05 # [fraction]
rho_liver = 1.07 # [g/mL], https://eurjmedres.biomedcentral.com/articles/10.1186/2047-783X-15-8-345#:~:text=Median%20liver%20density%20was%201.07%20g%2Fml.
tg_plasma_basal = 1.5385 # [mM], approximately a mean daily concentration
vd_tg_plasma = 4.515 # [L], https://doi.org/10.1007/s11745-001-0696-6
vd_tg_plasma_low = 4.515 - 2*0.308*sqrt(10) # [L], mean - 2*SD
vd_tg_plasma_high = 4.515 + 2*0.308*sqrt(10)# [L], mean + 2*SD
emax_vldl_prod = 33.62629534 # [mmols/day], Adiels et al. 2005.
ec50_lit = 2.2879 # [%-volume], Adiels et al. 2005.
frac_fa_dnl_basal = 0.05 # [fraction], Lambert et al. 2014.
frac_fa_diet_basal = 0.05 # [fraction], Lambert et al. 2014.
dnl_low = 0.1 #(3.3 - 2*sqrt(6)*0.8)/3.3 # [multiplier], Schwarz et al. JCI. 1995. 2SD of eucaloric feed value overlaps zero, assume the lower-bound is ~0. Lower bound 0 is not useful for parameter searching, so set at low, but non-zero.
dnl_high = 8 # [multiplier], Schwarz et al. JCI. 1995. 6 - 10x increase observed from basal with high CHO intake.
# Useful values for setting LV/HV of parameters
tg_plasma_low = 30/tg_MW*10.0 # [mM], low plasma TG value, mg/dL --> mM
tg_plasma_high = 750/tg_MW*10.0 # [mM], high plasma TG value, mg/dL --> mM
lf_prct_low = 0.3 # [%], low liver fat as vol. %. Functionally, there are many people without observable liver fat, set very low, but non-zero
lf_prct_high = 67.5 # [%], high liver fast as vol. %
Q_cardiac = 5*1440.0 # [L/day], cardiac output of adult converted to per day
nefa_high = 0.900 # [mM], https://doi.org/10.1161/01.ATV.20.6.1588, Table 1, Diabetic group.
md"""
### Useful constants for calculations
Various physical and biological constants used in the calculations below. Some could be treated as variables for inter-patient variability (e.g., diet kcals, diet frac fat), if desired.
"""
end
# ╔═╡ 0bcd76cf-e186-4c73-b701-801c933c14b9
begin
vd_cyt = vol_frac_cytosol * vol_hepat * num_hepat * mass_liver * 1/L_to_mL # [L]
vd_er = vd_cyt*vol_ratio_er_to_cyt
md"""
### Cytosolic and ER Volumes (L)
Determine the volume of the cytosol of a hepatocyte. This value can be floated for plausible patients, but reasonably not over orders-of-magnitude.
"""
end
# ╔═╡ 0feb0564-0a63-48ef-a748-3d3fbfe76d7d
begin
liver_fat_ox = bmr_liver*frac_liver_fatox*mass_liver/kg_to_g # [kcal/day]
liver_fat_ox_mmol = liver_fat_ox/rhoe_fa # [mmols-FA/day]
kbetaox = liver_fat_ox_mmol/(fa_basal*vd_cyt) # [1/day], FA_basal is assumed from a literature source (see reference in Description).
md"""
### Rate Constant of Beta Oxidation
"""
end
# ╔═╡ 7c06328e-6039-4077-b25e-d2285ba3c4ff
begin
chylo_basal_flux = diet_kcals*diet_frac_fat*lcfa_frac*ba_fat/rhoe_tg # [mmol-TG/day]
md"""
### Daily Chylomicron Flux
Chylomicron flux is essentially a proxy for fat intake over 24 hours, adjusted slightly for bioavailability.
"""
end
# ╔═╡ 1eec7d02-2720-44b7-9f15-fde740c0443e
begin
tg_cy_basal = vol_hepat_tot*vol_frac_tg*rho_tg/tg_MW*1e6/vol_hepat_tot # [mM]
md"""
### Basal Hepatocyte Triglyceride Concentrations
Concentration of triglyceride in the cytosol and ER. Straight calculation of amount of TG, density of TG, and volume of cytosol (calculated previously). ER is assumed similar to cytosol.
"""
end
# ╔═╡ 407c2009-d18e-48b1-89d6-04ff4cafb1bc
begin
ec50_vldl_voltg_mL = ec50_lit/100*vol_hepat_tot # [mL]
ec50_vldl_mM = ec50_vldl_voltg_mL*rho_tg/tg_MW/vol_hepat_tot*1e6 # [mM], includes unit conversions for mol/mL --> mmol/L
md"""
### EC50 VLDL Production -- Unit Conversion
"""
end
# ╔═╡ ea93a794-3847-4828-8b47-bd72e9d3cb44
begin
vldl_flux_basal = emax_vldl_prod*tg_cy_basal/(ec50_vldl_mM+tg_cy_basal) # [mmols-TG/day], we assumed ER ~ Cytosolic concentration at basal
tg_input_flux = vldl_flux_basal + chylo_basal_flux # [mmols-TG]/day
# Total output of FA from the liver/day:
fa_liver_output_flux = vldl_flux_basal*FA_TG + liver_fat_ox_mmol # [mmol-FA/day]
fa_liver_input_flux = fa_liver_output_flux # [mmol-FA/day], mass balance at steady state (input == output)
# Break down/out the various FA input fluxes (i.e., DNL, plasma uptake, NEFAs)
frac_fa_other = 1 - (frac_fa_dnl_basal + frac_fa_diet_basal) # [fraction]
dnl_flux_basal = fa_liver_input_flux*frac_fa_dnl_basal # [mmol/day]
# Dietary contribution is trickier because VLDL is originating from multiple sources. _Assume_ that chylos are diet and everything else is "fatty acid" derived (adipose storage)
frac_tg_plasma_diet = chylo_basal_flux/tg_input_flux # [fraction], approximation
kuptake_liver_tg = frac_fa_diet_basal*fa_liver_input_flux/(FA_TG*
tg_plasma_basal*vd_tg_plasma*frac_tg_plasma_diet) # [1/day]
tot_tg_liver_uptake = kuptake_liver_tg*tg_plasma_basal*vd_tg_plasma # [mmols-TG/day]
nefa_uptake_flux = fa_liver_input_flux - dnl_flux_basal - FA_TG*tot_tg_liver_uptake # [mmols-FA/day]
md"""
### TG Mass Balance
We work backwards through several of the fluxes in the model to use the steady state constraints to determine the needed flux values and rate constants for the system to be at steady state.
"""
end
# ╔═╡ a7080cb5-6afc-4572-9c8f-adf0c70ef071
begin
tg_lipase_clear = tg_input_flux - tot_tg_liver_uptake # [mmols/day]
klipase_clear = tg_lipase_clear/(tg_plasma_basal*vd_tg_plasma) # [1/day], clearance by lipases in plasma
md"""
### TG Plasma Clearance Rate
Calculate the clearance rate of triglyceride from the plasma via lipoprotein lipase and endothelial lipase
"""
end
# ╔═╡ 7c1c980e-b248-4932-86b8-f2fb878a7eb5
begin
fa_er_basal = fa_basal # [mM], assumption
tg_synth_er_basal = vldl_flux_basal/vd_er # [mM-TG/day]
ksynth_er_tg = vldl_flux_basal*FA_TG/(fa_er_basal^3*vd_er) # [1/(mM^2*days)]
kuptake_er = vldl_flux_basal*FA_TG/(fa_basal*vd_cyt) # [1/days]
#er_uptake_flux = kuptake_er*fa_basal*vd_cyt # [mmols-FA-cyt/day]
#vd_er
md"""
### Remaining Mass Balances
We back-solved for the majority of the major fluxes at baseline. Now back-solve for the remaining rate constants needed to support the flux.
"""
end
# ╔═╡ bb78de7c-a91f-42f5-8658-6e0669b108ec
begin
vldl_frac_ltg_cyt = 0.35 # [fraction], based off Fabrinni 2008 to approximate a residence time of 3 - 4 days
lipolysis_flux_mmols = vldl_flux_basal*vldl_frac_ltg_cyt # [mmols-TG/day], estimation of a residence time
klipo_cy_tg = lipolysis_flux_mmols/(tg_cy_basal*vd_cyt) # [1/day]
ksynth_cy_tg = lipolysis_flux_mmols*FA_TG/(fa_basal^3*vd_cyt) # [1/(mM^2*day]
ester_cyt_flux = ksynth_cy_tg*fa_basal^3*vd_cyt
md"""
### Lipid Droplet Dynamics
In the basal or baseline state, the lipid droplet should be approximately in equilibrium, neither growing nor shrinking dramatically. Thus, estimating one arm (i.e., lipolysis or esterification) will determine the second arm. We base our estimate on estimates of liver TG being the primary contributor to VLDL, which indicates a need for a high cycling rate.
"""
end
# ╔═╡ f87951a8-b411-498c-ac35-cb3ccb395331
begin
df[df.Parameter .== "klipase_clear", :TV] .= klipase_clear # [1/day]
df[df.Parameter .== "dnl_basal_flux", :TV] .= dnl_flux_basal # [mmols/day]
df[df.Parameter .== "kuptake_liver_tg", :TV] .= kuptake_liver_tg # [mmols/day]
df[df.Parameter .== "nefa_uptake_flux", :TV] .= nefa_uptake_flux # [mmols/day]
df[df.Parameter .== "ec50_vldl_prod", :TV] .= ec50_vldl_mM # [mM-TG]
df[df.Parameter .== "tg_cy_basal", :TV] .= tg_cy_basal # [mM]
df[df.Parameter .== "tg_er_basal", :TV] .= tg_cy_basal # [mM], assumption
df[df.Parameter .== "chylo_basal_flux", :TV] .= chylo_basal_flux # [mmols/day]
df[df.Parameter .== "kbetaox", :TV] .= kbetaox # [1/day]
df[df.Parameter .== "vd_cyt", :TV] .= vd_cyt # [L]
df[df.Parameter .== "vd_er", :TV] .= vd_er # [L]
df[df.Parameter .== "fa_cy_basal", :TV] .= fa_basal # [mM]
df[df.Parameter .== "fa_er_basal", :TV] .= fa_basal # [mM]
df[df.Parameter .== "tg_p_basal", :TV] .= tg_plasma_basal # [mM]
df[df.Parameter .== "vd_tg_p", :TV] .= vd_tg_plasma # [L]
df[df.Parameter .== "emax_vldl_prod", :TV] .= emax_vldl_prod # [mmol-TG/day]
df[df.Parameter .== "kuptake_er", :TV] .= kuptake_er # [1/day]
df[df.Parameter .== "ksynth_er_tg", :TV] .= ksynth_er_tg # [1/(mM^2*day)]
df[df.Parameter .== "ksynth_cy_tg", :TV] .= ksynth_cy_tg # [1/(mM^2*day)]
df[df.Parameter .== "klipo_cy_tg", :TV] .= klipo_cy_tg # [1/day]
# Set the bounds for the plausible patient searches
# LV_M, HV_M (low value multiplier, high value multiplier) should be pre-set (i.e., before the plausible patient search) based on biological constraints.
df[df.Parameter .== "klipase_clear", :LVM] .= tg_plasma_basal/tg_plasma_high
df[df.Parameter .== "klipase_clear", :HVM] .= tg_plasma_basal/tg_plasma_low
df[df.Parameter .== "chylo_basal_flux", :LVM] .= diet_kcals_low/diet_kcals*0.25/0.35
df[df.Parameter .== "chylo_basal_flux", :HVM] .= diet_kcals_high/diet_kcals*0.45/0.35
df[df.Parameter .== "dnl_basal_flux", :LVM] .= dnl_low
df[df.Parameter .== "dnl_basal_flux", :HVM] .= dnl_high
df[df.Parameter .== "nefa_uptake_flux", :LVM] .= 0.5 # If NEFAs are allowed to go too low, they become a non-contributor to hepatic FAs, which is in contrast to Lambert et al. Narrow the lower window a bit.
#df[df.Parameter .== "nefa_uptake_flux", :HVM] .= 4.0 #Alternative (much wider) Q_cardiac*nefa_high/nefa_uptake_flux # Based on limitations only by cardiac output
df[df.Parameter .== "vd_tg_p", :LVM] .= vd_tg_plasma_low/vd_tg_plasma
df[df.Parameter .== "vd_tg_p", :HVM] .= vd_tg_plasma_high/vd_tg_plasma
df[df.Parameter .== "vd_cyt", :LVM] .= mass_liver_low
df[df.Parameter .== "vd_cyt", :HVM] .= mass_liver_high
df[df.Parameter .== "vd_er", :LVM] .= mass_liver_low
df[df.Parameter .== "vd_er", :HVM] .= mass_liver_high
lf_frac_high = lf_prct_high/100
lf_frac_low = lf_prct_low/100
#df[df.Parameter .== "fa_cy_basal", :LVM] No lower bound, keep at 0.25 multiplier
df[df.Parameter .== "fa_cy_basal", :HVM] .= (1-vol_frac_tg)/(1-lf_frac_high)*lf_frac_high/vol_frac_tg
df[df.Parameter .== "tg_cy_basal", :LVM] .= (1-vol_frac_tg)/(1-lf_frac_low)*lf_frac_low/vol_frac_tg
df[df.Parameter .== "tg_cy_basal", :HVM] .= (1-vol_frac_tg)/(1-lf_frac_high)*lf_frac_high/vol_frac_tg
#df[df.Parameter .== "fa_er_basal", :LVM] No lower bound, keep at 0.25 multiplier
df[df.Parameter .== "fa_er_basal", :HVM] .= (1-vol_frac_tg)/(1-lf_frac_high)*lf_frac_high/vol_frac_tg
df[df.Parameter .== "tg_er_basal", :LVM] .= (1-vol_frac_tg)/(1-lf_frac_low)*lf_frac_low/vol_frac_tg
df[df.Parameter .== "tg_er_basal", :HVM] .= (1-vol_frac_tg)/(1-lf_frac_high)*lf_frac_high/vol_frac_tg
df[df.Parameter .== "tg_p_basal", :LVM] .= tg_plasma_low/tg_plasma_basal
df[df.Parameter .== "tg_p_basal", :HVM] .= tg_plasma_high/tg_plasma_basal
df.LV = df.TV .* df.LVM
df.HV = df.TV .* df.HVM
# Write the values back to the original Excel sheet: "parameters_pluto.csv".
CSV.write("parameters_pluto.csv",df)
md"""
### Rewrite the DataFrame Values
Set the low and high values for the plausible patient search based on the TV values determined in this notebook. Save back the values to parameters.xlsx for easier access in the main program scripts.
"""
end
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
XLSX = "fdbf4ff8-1666-58a4-91e7-1b58723a45e0"
[compat]
CSV = "~0.10.4"
DataFrames = "~1.3.4"
XLSX = "~0.7.10"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.3"
manifest_format = "2.0"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.CSV]]
deps = ["CodecZlib", "Dates", "FilePathsBase", "InlineStrings", "Mmap", "Parsers", "PooledArrays", "SentinelArrays", "Tables", "Unicode", "WeakRefStrings"]
git-tree-sha1 = "873fb188a4b9d76549b81465b1f75c82aaf59238"
uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
version = "0.10.4"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.0"
[[deps.Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "b153278a25dd42c65abbf4e62344f9d22e59191b"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.43.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[deps.Crayons]]
git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15"
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
version = "4.1.1"
[[deps.DataAPI]]
git-tree-sha1 = "fb5f5316dd3fd4c5e7c30a24d50643b73e37cd40"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.10.0"
[[deps.DataFrames]]
deps = ["Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrettyTables", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"]
git-tree-sha1 = "daa21eb85147f72e41f6352a57fccea377e310a9"
uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
version = "1.3.4"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "cc1a8e22627f33c789ab60b36a9132ac050bbf75"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.12"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[deps.EzXML]]
deps = ["Printf", "XML2_jll"]
git-tree-sha1 = "0fa3b52a04a4e210aeb1626def9c90df3ae65268"
uuid = "8f5d6c58-4d21-5cfd-889c-e3ad7ee6a615"
version = "1.1.0"
[[deps.FilePathsBase]]
deps = ["Compat", "Dates", "Mmap", "Printf", "Test", "UUIDs"]
git-tree-sha1 = "129b104185df66e408edd6625d480b7f9e9823a0"
uuid = "48062228-2e41-5def-b9a4-89aafe57970f"
version = "0.9.18"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.Formatting]]
deps = ["Printf"]
git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8"
uuid = "59287772-0a20-5a39-b81b-1366585eb4c0"
version = "0.4.2"
[[deps.Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[deps.InlineStrings]]
deps = ["Parsers"]
git-tree-sha1 = "61feba885fac3a407465726d0c330b3055df897f"
uuid = "842dd82b-1e85-43dc-bf29-5d0ee9dffc48"
version = "1.1.2"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.InvertedIndices]]
git-tree-sha1 = "bee5f1ef5bf65df56bdd2e40447590b272a5471f"
uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f"
version = "1.1.0"
[[deps.IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[deps.JLLWrappers]]
deps = ["Preferences"]
git-tree-sha1 = "abc9885a7ca2052a736a600f7fa66209f96506e1"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.4.1"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.Libiconv_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "42b62845d70a619f063a7da093d995ec8e15e778"
uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531"
version = "1.16.1+1"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[deps.Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.0.2"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
[[deps.OrderedCollections]]
git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.4.1"
[[deps.Parsers]]
deps = ["Dates"]
git-tree-sha1 = "1285416549ccfcdf0c50d4997a94331e88d68413"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.3.1"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[deps.PooledArrays]]
deps = ["DataAPI", "Future"]
git-tree-sha1 = "a6062fe4063cdafe78f4a0a81cfffb89721b30e7"
uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720"
version = "1.4.2"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "47e5f437cc0e7ef2ce8406ce1e7e24d44915f88d"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.3.0"
[[deps.PrettyTables]]
deps = ["Crayons", "Formatting", "Markdown", "Reexport", "Tables"]
git-tree-sha1 = "dfb54c4e414caa595a1f2ed759b160f5a3ddcba5"
uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
version = "1.3.1"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[deps.SentinelArrays]]
deps = ["Dates", "Random"]
git-tree-sha1 = "6a2f7d70512d205ca8c7ee31bfa9f142fe74310c"
uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c"
version = "1.3.12"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SortingAlgorithms]]
deps = ["DataStructures"]
git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "1.0.1"
[[deps.SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
[[deps.TableTraits]]
deps = ["IteratorInterfaceExtensions"]
git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39"
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
version = "1.0.1"
[[deps.Tables]]
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits", "Test"]
git-tree-sha1 = "5ce79ce186cc678bbb5c5681ca3379d1ddae11a1"
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
version = "1.7.0"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.TranscodingStreams]]
deps = ["Random", "Test"]
git-tree-sha1 = "216b95ea110b5972db65aa90f88d8d89dcb8851c"
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
version = "0.9.6"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.WeakRefStrings]]
deps = ["DataAPI", "InlineStrings", "Parsers"]
git-tree-sha1 = "b1be2855ed9ed8eac54e5caff2afcdb442d52c23"
uuid = "ea10d353-3f73-51f8-a26c-33c1cb351aa5"
version = "1.4.2"
[[deps.XLSX]]
deps = ["Dates", "EzXML", "Printf", "Tables", "ZipFile"]
git-tree-sha1 = "7fa8618da5c27fdab2ceebdff1da8918c8cd8b5d"
uuid = "fdbf4ff8-1666-58a4-91e7-1b58723a45e0"
version = "0.7.10"
[[deps.XML2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "1acf5bdf07aa0907e0a37d3718bb88d4b687b74a"
uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a"
version = "2.9.12+0"
[[deps.ZipFile]]
deps = ["Libdl", "Printf", "Zlib_jll"]
git-tree-sha1 = "3593e69e469d2111389a9bd06bac1f3d730ac6de"
uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
version = "0.9.4"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl", "OpenBLAS_jll"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
"""
# ╔═╡ Cell order:
# ╟─2cad0dea-172e-4779-96b1-259d8393612c
# ╠═4a97d273-8195-4493-b13d-2e41de123d5d
# ╠═8f830c81-e3ce-445f-a338-154d4a3f9038
# ╠═68c18624-20a2-4085-85c0-5efb600ee505
# ╠═0bcd76cf-e186-4c73-b701-801c933c14b9
# ╠═0feb0564-0a63-48ef-a748-3d3fbfe76d7d
# ╠═7c06328e-6039-4077-b25e-d2285ba3c4ff
# ╠═1eec7d02-2720-44b7-9f15-fde740c0443e
# ╠═407c2009-d18e-48b1-89d6-04ff4cafb1bc
# ╠═ea93a794-3847-4828-8b47-bd72e9d3cb44
# ╠═a7080cb5-6afc-4572-9c8f-adf0c70ef071
# ╠═7c1c980e-b248-4932-86b8-f2fb878a7eb5
# ╠═bb78de7c-a91f-42f5-8658-6e0669b108ec
# ╠═f87951a8-b411-498c-ac35-cb3ccb395331
# ╟─00000000-0000-0000-0000-000000000001
# ╟─00000000-0000-0000-0000-000000000002