From a330801b1860830be1291e9155b870dce719b6bc Mon Sep 17 00:00:00 2001 From: Chengshu21 <1981893234@qq.com> Date: Tue, 2 Jul 2019 15:38:09 +0800 Subject: [PATCH 1/3] Delete RegistrationApplication.md --- RegistrationApplication.md | 51 -------------------------------------- 1 file changed, 51 deletions(-) delete mode 100644 RegistrationApplication.md diff --git a/RegistrationApplication.md b/RegistrationApplication.md deleted file mode 100644 index 0707ffe..0000000 --- a/RegistrationApplication.md +++ /dev/null @@ -1,51 +0,0 @@ -# Bioconductor Workflow 翻译项目限时报名 - -## 项目简介 - -Awesome Bioinformatics Workflow Chinese 是由 [Openbiox 翻译小组](https://github.com/openbiox/openbiox-Translation) 发起并维护的优秀 Workflow 翻译项目。 - -Bioconductor 是生物信息分析过程中绕不过的工具,同时也是我们入们和进阶生物信息极好的学习材料。因此我们将 [Bioconductor workflow](https://bioconductor.org/packages/3.9/workflows/) 的翻译作为 Awesome-Bioinformatics-Workflow-Chinese 的第一期开放项目,并在今后持续更新。 - -## 具体内容 - -根据下载次数,文档质量更新时间和涉及领域等,本次开放 10 个 workflow。分别是: - -1. [rnaseqGene:RNA-seq workflow: gene-level exploratory analysis and differential expression](https://bioconductor.org/packages/rnaseqGene/) (已认领) -2. [simpleSingleCell:A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor](https://www.bioconductor.org/help/workflows/simpleSingleCell/) **(已有 1 人,剩余 2 人)** -3. [TCGAWorkflow:TCGA Workflow Analyze cancer genomics and epigenomics data using Bioconductor packages](https://www.bioconductor.org/packages/TCGAWorkflow/) (已认领) -4. [systemPipeR: NGS workflow and report generation environment](https://www.bioconductor.org/packages/systemPipeR/) (已认领) -5. [annotation:Genomic Annotation Resources](https://www.bioconductor.org/packages/annotation/) **(已有 1 人,剩余 1 人)** -6. [methylationArrayAnalysis: A cross-package Bioconductor workflow for analysing methylation array data](https://www.bioconductor.org/packages/methylationArrayAnalysis)**(限 1-2 人)** -7. [rnaseqDTU:RNA-seq workflow for differential transcript usage following Salmon quantification](https://bioconductor.org/packages/rnaseqDTU/)**(限 1-2 人)** -8. [chipseqDB:A Bioconductor Workflow to Detect Differential Binding in ChIP-seq Data](https://www.bioconductor.org/packages/chipseqDB/)**(限 1-2 人)** -9. [maEndToEnd:An end to end workflow for differential gene expression using Affymetrix microarrays](https://www.bioconductor.org/packages/maEndToEnd/) (已认领) -10. [RnaSeqGeneEdgeRQL:Gene-level RNA-seq differential expression and pathway analysis using Rsubread and the edgeR quasi-likelihood pipeline](https://www.bioconductor.org/packages/RnaSeqGeneEdgeRQL/)**(限 1-2 人)** - -## 招募要求 - -针对上述尚未(完全)认领的翻译内容 2simpleSingleCell,5annotation,6methylationArrayAnalysis,7rnaseqDTU,8chipseqDB 和 10RnaSeqGeneEdgeRQL 公开招募译者。 - -**具体要求如下:** -1. 乐于学习并愿意分享 -2. 了解 GitHub 并能进行基本操作 -3. 具有相关的实际分析经验优先 -4. 具有一定的翻译经验优先 - -## 报名渠道 - -如果你愿意加入 Awesome Bioinformatics Workflow Chinese 翻译项目,自我提升的同时为开源社区贡献自己的力量,可以发送邮件到 **translation@openbiox.org** 进行报名。 - -**邮件主题**:workflow 翻译报名+姓名 - -邮件内容需包括如下几点: -1. 简单精炼的自我介绍 -2. . 报名翻译的项目内容 -3. 目前的学习或工作方向 -4. 是否具有一定翻译经验 -5. 是否了解 GitHub 基本操作 - -**报名截止日期:2019 年 6 月 13 日 24 时** - -## 关于 openbiox 翻译计划 - -[openbiox 翻译计划](https://github.com/openbiox/openbiox-Translation)是 openbiox 第一批启动开放项目之一,该项目旨在翻译和维护国外优秀的生物信息相关书籍、技术文档和文章,提升成员自身学习能力的同时提高 openbiox 影响力,帮助国内生物信息学习者和工作者。更详细的信息可以通过[官方项目仓库](https://github.com/openbiox/openbiox-Translation)进行了解。 From b376f85185de9fc791e4f315796e359fce8862a9 Mon Sep 17 00:00:00 2001 From: Chengshu21 <1981893234@qq.com> Date: Tue, 2 Jul 2019 16:26:29 +0800 Subject: [PATCH 2/3] Update Annotation_Resources.Rmd --- .../05annotation_en/Annotation_Resources.Rmd | 406 +++++++++--------- 1 file changed, 203 insertions(+), 203 deletions(-) diff --git a/BiocWorkflow_todo/05annotation_en/Annotation_Resources.Rmd b/BiocWorkflow_todo/05annotation_en/Annotation_Resources.Rmd index 2a98f6c..8e97eca 100644 --- a/BiocWorkflow_todo/05annotation_en/Annotation_Resources.Rmd +++ b/BiocWorkflow_todo/05annotation_en/Annotation_Resources.Rmd @@ -21,7 +21,7 @@ vignette: > %\VignetteEngine{knitr::rmarkdown} --- -# Version Info +# 版本信息 ```{r, echo=FALSE, results="hide", warning=FALSE} suppressPackageStartupMessages({ library('annotation') @@ -35,34 +35,34 @@ library('annotation') **Package version**: `r packageVersion("annotation")`

-# Introduction - -Annotation resources make up a significant proportion of the Bioconductor -project[1]. And there are also a diverse set of online resources available -which are accessed using specific packages. This walkthrough will describe the -most popular of these resources and give some high level examples on how to use -them. - -Bioconductor annotation resources have traditionally been used near the end of -an analysis. After the bulk of the data analysis, annotations would be used -interpretatively to learn about the most significant results. But -increasingly, they are also used as a starting point or even as an intermediate -step to help guide a study that is still in progress. In addition to this, -what it means for something to be an annotation is also becoming less clear -than it once was. It used to be clear that annotations were only those things -that had been established after multiple different studies had been performed -(such as the primary role of a gene product). But today many large data sets -are treated by communities in much the same way that classic annotations once -were: as a reference for additional comparisons. - -Another change that is underway with annotations in Bioconductor is in the way -that they are obtained. In the past annotations existed almost exclusively as -separate annotation packages[2,3,4]. Today packages are still an enormous -source of annotations. The current -[release repository](http://bioconductor.org/packages/release/BiocViews.html#___AnnotationData) -contains over eight hundred annotation packages. This table summarizes some -of the more important classes of annotation objects that are often accessed -using packages: +# 简介 + +注释资源在 Bioconductor 的项目中占很大比例【1】。 +此外,还可使用特定的包来获取一些允许访问的在线资源。 +这里将介绍使用得比较多的资源,并提供一些关于如何使用它们的高级示例。 + + + +在过去,一般在分析结束时使用 Bioconductor 注释资源进行注释。 +进行大量的数据分析之后,都会使用注释信息来解析最重要的分析结果。 +由于注释信息使用得越来越多,在分析起始或是中间某个步骤也会应用它们, +从而帮助指导仍在进行中的研究。除此之外,注释的含义也变得不像以前那么明确。 +习惯上认为,注释只是在进行了多次不同的研究(如基因产物的主要作用)之后才建立起来的东西。 +但如今,社区用与以往经典注释几近相同的注释方式来解析大型数据集,即将之作为附加比较的参考。 + + + + + + + Bioconductor 中的注释资源的获取方式也发生了变化。 +以往的注释资源几乎都是以独立的注释包的形式存在【2,3,4】。 +而在今天,注释包含有大量注释资源。 +目前存储库[release repository](http://bioconductor.org/packages/release/BiocViews.html#___AnnotationData) +有 800 多个的注释包。 下表总结了经常使用包访问的部分重要的注释对象的类: + + +