forked from google-deepmind/alphafold
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_alphafold_test.py
105 lines (90 loc) · 3.6 KB
/
run_alphafold_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for run_alphafold."""
import json
import os
from absl.testing import absltest
from absl.testing import parameterized
import run_alphafold
import mock
import numpy as np
# Internal import (7716).
class RunAlphafoldTest(parameterized.TestCase):
@parameterized.named_parameters(
('relax', True),
('no_relax', False),
)
def test_end_to_end(self, do_relax):
data_pipeline_mock = mock.Mock()
model_runner_mock = mock.Mock()
amber_relaxer_mock = mock.Mock()
data_pipeline_mock.process.return_value = {}
model_runner_mock.process_features.return_value = {
'aatype': np.zeros((12, 10), dtype=np.int32),
'residue_index': np.tile(np.arange(10, dtype=np.int32)[None], (12, 1)),
}
model_runner_mock.predict.return_value = {
'structure_module': {
'final_atom_positions': np.zeros((10, 37, 3)),
'final_atom_mask': np.ones((10, 37)),
},
'predicted_lddt': {
'logits': np.ones((10, 50)),
},
'plddt': np.ones(10) * 42,
'ranking_confidence': 90,
'ptm': np.array(0.),
'aligned_confidence_probs': np.zeros((10, 10, 50)),
'predicted_aligned_error': np.zeros((10, 10)),
'max_predicted_aligned_error': np.array(0.),
}
model_runner_mock.multimer_mode = False
amber_relaxer_mock.process.return_value = ('RELAXED', None, [1., 0., 0.])
out_dir = self.create_tempdir().full_path
fasta_path = os.path.join(out_dir, 'target.fasta')
with open(fasta_path, 'wt') as f:
f.write('>A\nAAAAAAAAAAAAA')
fasta_name = 'test'
run_alphafold.predict_structure(
fasta_path=fasta_path,
fasta_name=fasta_name,
output_dir_base=out_dir,
data_pipeline=data_pipeline_mock,
model_runners={'model1': model_runner_mock},
amber_relaxer=amber_relaxer_mock if do_relax else None,
benchmark=False,
random_seed=0)
base_output_files = os.listdir(out_dir)
self.assertIn('target.fasta', base_output_files)
self.assertIn('test', base_output_files)
target_output_files = os.listdir(os.path.join(out_dir, 'test'))
expected_files = [
'features.pkl', 'msas', 'ranked_0.pdb', 'ranking_debug.json',
'result_model1.pkl', 'timings.json', 'unrelaxed_model1.pdb',
]
if do_relax:
expected_files.extend(['relaxed_model1.pdb', 'relax_metrics.json'])
with open(os.path.join(out_dir, 'test', 'relax_metrics.json')) as f:
relax_metrics = json.loads(f.read())
self.assertDictEqual({'model1': {'remaining_violations': [1.0, 0.0, 0.0],
'remaining_violations_count': 1.0}},
relax_metrics)
self.assertCountEqual(expected_files, target_output_files)
# Check that pLDDT is set in the B-factor column.
with open(os.path.join(out_dir, 'test', 'unrelaxed_model1.pdb')) as f:
for line in f:
if line.startswith('ATOM'):
self.assertEqual(line[61:66], '42.00')
if __name__ == '__main__':
absltest.main()