-
Notifications
You must be signed in to change notification settings - Fork 15
/
08-reshape.Rmd
1494 lines (1221 loc) · 40.2 KB
/
08-reshape.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# 数据规整:聚合、合并和重塑 {#reshape}
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析。本章关注可以聚合、合并、重塑数据的方法。
首先,我会介绍pandas的层次化索引,它广泛用于以上操作。然后,我深入介绍了一些特殊的数据操作。在第14章,你可以看到这些工具的多种应用。
## 层次化索引
层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别。抽象点说,它使你能以低维度形式处理高维度数据。我们先来看一个简单的例子:创建一个Series,并用一个由列表或数组组成的列表作为索引:
```
In [9]: data = pd.Series(np.random.randn(9),
...: index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'],
...: [1, 2, 3, 1, 3, 1, 2, 2, 3]])
In [10]: data
Out[10]:
a 1 -0.204708
2 0.478943
3 -0.519439
b 1 -0.555730
3 1.965781
c 1 1.393406
2 0.092908
d 2 0.281746
3 0.769023
dtype: float64
```
看到的结果是经过美化的带有MultiIndex索引的Series的格式。索引之间的“间隔”表示“直接使用上面的标签”:
```
In [11]: data.index
Out[11]:
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]])
```
对于一个层次化索引的对象,可以使用所谓的部分索引,使用它选取数据子集的操作更简单:
```
In [12]: data['b']
Out[12]:
1 -0.555730
3 1.965781
dtype: float64
In [13]: data['b':'c']
Out[13]:
b 1 -0.555730
3 1.965781
c 1 1.393406
2 0.092908
dtype: float64
In [14]: data.loc[['b', 'd']]
Out[14]:
b 1 -0.555730
3 1.965781
d 2 0.281746
3 0.769023
dtype: float64
```
有时甚至还可以在“内层”中进行选取:
```
In [15]: data.loc[:, 2]
Out[15]:
a 0.478943
c 0.092908
d 0.281746
dtype: float64
```
层次化索引在数据重塑和基于分组的操作(如透视表生成)中扮演着重要的角色。例如,可以通过unstack方法将这段数据重新安排到一个DataFrame中:
```
In [16]: data.unstack()
Out[16]:
1 2 3
a -0.204708 0.478943 -0.519439
b -0.555730 NaN 1.965781
c 1.393406 0.092908 NaN
d NaN 0.281746 0.769023
```
unstack的逆运算是stack:
```
In [17]: data.unstack().stack()
Out[17]:
a 1 -0.204708
2 0.478943
3 -0.519439
b 1 -0.555730
3 1.965781
c 1 1.393406
2 0.092908
d 2 0.281746
3 0.769023
dtype: float64
```
stack和unstack将在本章后面详细讲解。
对于一个DataFrame,每条轴都可以有分层索引:
```
In [18]: frame = pd.DataFrame(np.arange(12).reshape((4, 3)),
....: index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
....: columns=[['Ohio', 'Ohio', 'Colorado'],
....: ['Green', 'Red', 'Green']])
In [19]: frame
Out[19]:
Ohio Colorado
Green Red Green
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
```
各层都可以有名字(可以是字符串,也可以是别的Python对象)。如果指定了名称,它们就会显示在控制台输出中:
```
In [20]: frame.index.names = ['key1', 'key2']
In [21]: frame.columns.names = ['state', 'color']
In [22]: frame
Out[22]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
```
> 注意:小心区分索引名state、color与行标签。
有了部分列索引,因此可以轻松选取列分组:
```
In [23]: frame['Ohio']
Out[23]:
color Green Red
key1 key2
a 1 0 1
2 3 4
b 1 6 7
2 9 10
```
可以单独创建MultiIndex然后复用。上面那个DataFrame中的(带有分级名称)列可以这样创建:
```
MultiIndex.from_arrays([['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']],
names=['state', 'color'])
```
### 重排与分级排序
有时,你需要重新调整某条轴上各级别的顺序,或根据指定级别上的值对数据进行排序。swaplevel接受两个级别编号或名称,并返回一个互换了级别的新对象(但数据不会发生变化):
```
In [24]: frame.swaplevel('key1', 'key2')
Out[24]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11
```
而sort_index则根据单个级别中的值对数据进行排序。交换级别时,常常也会用到sort_index,这样最终结果就是按照指定顺序进行字母排序了:
```
In [25]: frame.sort_index(level=1)
Out[25]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
b 1 6 7 8
a 2 3 4 5
b 2 9 10 11
In [26]: frame.swaplevel(0, 1).sort_index(level=0)
Out[26]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
b 6 7 8
2 a 3 4 5
b 9 10 11
```
### 根据级别汇总统计
许多对DataFrame和Series的描述和汇总统计都有一个level选项,它用于指定在某条轴上求和的级别。再以上面那个DataFrame为例,我们可以根据行或列上的级别来进行求和:
```
In [27]: frame.sum(level='key2')
Out[27]:
state Ohio Colorado
color Green Red Green
key2
1 6 8 10
2 12 14 16
In [28]: frame.sum(level='color', axis=1)
Out[28]:
color Green Red
key1 key2
a 1 2 1
2 8 4
b 1 14 7
2 20 10
```
这其实是利用了pandas的groupby功能,本书稍后将对其进行详细讲解。
### 使用DataFrame的列进行索引
人们经常想要将DataFrame的一个或多个列当做行索引来用,或者可能希望将行索引变成DataFrame的列。以下面这个DataFrame为例:
```
In [29]: frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1),
....: 'c': ['one', 'one', 'one', 'two', 'two',
....: 'two', 'two'],
....: 'd': [0, 1, 2, 0, 1, 2, 3]})
In [30]: frame
Out[30]:
a b c d
0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
3 3 4 two 0
4 4 3 two 1
5 5 2 two 2
6 6 1 two 3
```
DataFrame的set_index函数会将其一个或多个列转换为行索引,并创建一个新的DataFrame:
```
In [31]: frame2 = frame.set_index(['c', 'd'])
In [32]: frame2
Out[32]:
a b
c d
one 0 0 7
1 1 6
2 2 5
two 0 3 4
1 4 3
2 5 2
3 6 1
```
默认情况下,那些列会从DataFrame中移除,但也可以将其保留下来:
```
In [33]: frame.set_index(['c', 'd'], drop=False)
Out[33]:
a b c d
c d
one 0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
two 0 3 4 two 0
1 4 3 two 1
2 5 2 two 2
3 6 1 two 3
```
reset_index的功能跟set_index刚好相反,层次化索引的级别会被转移到列里面:
```
In [34]: frame2.reset_index()
Out[34]:
c d a b
0 one 0 0 7
1 one 1 1 6
2 one 2 2 5
3 two 0 3 4
4 two 1 4 3
5 two 2 5 2
6 two 3 6 1
```
## 合并数据集
pandas对象中的数据可以通过一些方式进行合并:
- pandas.merge可根据一个或多个键将不同DataFrame中的行连接起来。SQL或其他关系型数据库的用户对此应该会比较熟悉,因为它实现的就是数据库的join操作。
- pandas.concat可以沿着一条轴将多个对象堆叠到一起。
- 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值。
我将分别对它们进行讲解,并给出一些例子。本书剩余部分的示例中将经常用到它们。
### 数据库风格的DataFrame合并
数据集的合并(merge)或连接(join)运算是通过一个或多个键将行链接起来的。这些运算是关系型数据库(基于SQL)的核心。pandas的merge函数是对数据应用这些算法的主要切入点。
以一个简单的例子开始:
```
In [35]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
....: 'data1': range(7)})
In [36]: df2 = pd.DataFrame({'key': ['a', 'b', 'd'],
....: 'data2': range(3)})
In [37]: df1
Out[37]:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b
In [38]: df2
Out[38]:
data2 key
0 0 a
1 1 b
2 2 d
```
这是一种多对一的合并。df1中的数据有多个被标记为a和b的行,而df2中key列的每个值则仅对应一行。对这些对象调用merge即可得到:
```
In [39]: pd.merge(df1, df2)
Out[39]:
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
```
注意,我并没有指明要用哪个列进行连接。如果没有指定,merge就会将重叠列的列名当做键。不过,最好明确指定一下:
```
In [40]: pd.merge(df1, df2, on='key')
Out[40]:
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
```
如果两个对象的列名不同,也可以分别进行指定:
```
In [41]: df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
....: 'data1': range(7)})
In [42]: df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'],
....: 'data2': range(3)})
In [43]: pd.merge(df3, df4, left_on='lkey', right_on='rkey')
Out[43]:
data1 lkey data2 rkey
0 0 b 1 b
1 1 b 1 b
2 6 b 1 b
3 2 a 0 a
4 4 a 0 a
5 5 a 0 a
```
可能你已经注意到了,结果里面c和d以及与之相关的数据消失了。默认情况下,merge做的是“内连接”;结果中的键是交集。其他方式还有"left"、"right"以及"outer"。外连接求取的是键的并集,组合了左连接和右连接的效果:
```
In [44]: pd.merge(df1, df2, how='outer')
Out[44]:
data1 key data2
0 0.0 b 1.0
1 1.0 b 1.0
2 6.0 b 1.0
3 2.0 a 0.0
4 4.0 a 0.0
5 5.0 a 0.0
6 3.0 c NaN
7 NaN d 2.0
```
表8-1对这些选项进行了总结。
![img]()
表8-1 不同的连接类型
多对多的合并有些不直观。看下面的例子:
```
In [45]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
....: 'data1': range(6)})
In [46]: df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],
....: 'data2': range(5)})
In [47]: df1
Out[47]:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 b
In [48]: df2
Out[48]:
data2 key
0 0 a
1 1 b
2 2 a
3 3 b
4 4 d
In [49]: pd.merge(df1, df2, on='key', how='left')
Out[49]:
data1 key data2
0 0 b 1.0
1 0 b 3.0
2 1 b 1.0
3 1 b 3.0
4 2 a 0.0
5 2 a 2.0
6 3 c NaN
7 4 a 0.0
8 4 a 2.0
9 5 b 1.0
10 5 b 3.0
```
多对多连接产生的是行的笛卡尔积。由于左边的DataFrame有3个"b"行,右边的有2个,所以最终结果中就有6个"b"行。连接方式只影响出现在结果中的不同的键的值:
```
In [50]: pd.merge(df1, df2, how='inner')
Out[50]:
data1 key data2
0 0 b 1
1 0 b 3
2 1 b 1
3 1 b 3
4 5 b 1
5 5 b 3
6 2 a 0
7 2 a 2
8 4 a 0
9 4 a 2
```
要根据多个键进行合并,传入一个由列名组成的列表即可:
```
In [51]: left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
....: 'key2': ['one', 'two', 'one'],
....: 'lval': [1, 2, 3]})
In [52]: right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
....: 'key2': ['one', 'one', 'one', 'two'],
....: 'rval': [4, 5, 6, 7]})
In [53]: pd.merge(left, right, on=['key1', 'key2'], how='outer')
Out[53]:
key1 key2 lval rval
0 foo one 1.0 4.0
1 foo one 1.0 5.0
2 foo two 2.0 NaN
3 bar one 3.0 6.0
4 bar two NaN 7.0
```
结果中会出现哪些键组合取决于所选的合并方式,你可以这样来理解:多个键形成一系列元组,并将其当做单个连接键(当然,实际上并不是这么回事)。
> 注意:在进行列-列连接时,DataFrame对象中的索引会被丢弃。
对于合并运算需要考虑的最后一个问题是对重复列名的处理。虽然你可以手工处理列名重叠的问题(查看前面介绍的重命名轴标签),但merge有一个更实用的suffixes选项,用于指定附加到左右两个DataFrame对象的重叠列名上的字符串:
```
In [54]: pd.merge(left, right, on='key1')
Out[54]:
key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
In [55]: pd.merge(left, right, on='key1', suffixes=('_left', '_right'))
Out[55]:
key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
```
merge的参数请参见表8-2。使用DataFrame的行索引合并是下一节的主题。
表8-2 merge函数的参数
![img]()
![img]()
indicator 添加特殊的列_merge,它可以指明每个行的来源,它的值有left_only、right_only或both,根据每行的合并数据的来源。
### 索引上的合并
有时候,DataFrame中的连接键位于其索引中。在这种情况下,你可以传入left_index=True或right_index=True(或两个都传)以说明索引应该被用作连接键:
```
In [56]: left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
....: 'value': range(6)})
In [57]: right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])
In [58]: left1
Out[58]:
key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5
In [59]: right1
Out[59]:
group_val
a 3.5
b 7.0
In [60]: pd.merge(left1, right1, left_on='key', right_index=True)
Out[60]:
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
```
由于默认的merge方法是求取连接键的交集,因此你可以通过外连接的方式得到它们的并集:
```
In [61]: pd.merge(left1, right1, left_on='key', right_index=True, how='outer')
Out[61]:
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
5 c 5 NaN
```
对于层次化索引的数据,事情就有点复杂了,因为索引的合并默认是多键合并:
```
In [62]: lefth = pd.DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio',
....: 'Nevada', 'Nevada'],
....: 'key2': [2000, 2001, 2002, 2001, 2002],
....: 'data': np.arange(5.)})
In [63]: righth = pd.DataFrame(np.arange(12).reshape((6, 2)),
....: index=[['Nevada', 'Nevada', 'Ohio', 'Ohio',
....: 'Ohio', 'Ohio'],
....: [2001, 2000, 2000, 2000, 2001, 2002]],
....: columns=['event1', 'event2'])
In [64]: lefth
Out[64]:
data key1 key2
0 0.0 Ohio 2000
1 1.0 Ohio 2001
2 2.0 Ohio 2002
3 3.0 Nevada 2001
4 4.0 Nevada 2002
In [65]: righth
Out[65]:
event1 event2
Nevada 2001 0 1
2000 2 3
Ohio 2000 4 5
2000 6 7
2001 8 9
2002 10 11
```
这种情况下,你必须以列表的形式指明用作合并键的多个列(注意用how='outer'对重复索引值的处理):
```
In [66]: pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True)
Out[66]:
data key1 key2 event1 event2
0 0.0 Ohio 2000 4 5
0 0.0 Ohio 2000 6 7
1 1.0 Ohio 2001 8 9
2 2.0 Ohio 2002 10 11
3 3.0 Nevada 2001 0 1
In [67]: pd.merge(lefth, righth, left_on=['key1', 'key2'],
....: right_index=True, how='outer')
Out[67]:
data key1 key2 event1 event2
0 0.0 Ohio 2000 4.0 5.0
0 0.0 Ohio 2000 6.0 7.0
1 1.0 Ohio 2001 8.0 9.0
2 2.0 Ohio 2002 10.0 11.0
3 3.0 Nevada 2001 0.0 1.0
4 4.0 Nevada 2002 NaN NaN
4 NaN Nevada 2000 2.0 3.0
```
同时使用合并双方的索引也没问题:
```
In [68]: left2 = pd.DataFrame([[1., 2.], [3., 4.], [5., 6.]],
....: index=['a', 'c', 'e'],
....: columns=['Ohio', 'Nevada'])
In [69]: right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],
....: index=['b', 'c', 'd', 'e'],
....: columns=['Missouri', 'Alabama'])
In [70]: left2
Out[70]:
Ohio Nevada
a 1.0 2.0
c 3.0 4.0
e 5.0 6.0
In [71]: right2
Out[71]:
Missouri Alabama
b 7.0 8.0
c 9.0 10.0
d 11.0 12.0
e 13.0 14.0
In [72]: pd.merge(left2, right2, how='outer', left_index=True, right_index=True)
Out[72]:
Ohio Nevada Missouri Alabama
a 1.0 2.0 NaN NaN
b NaN NaN 7.0 8.0
c 3.0 4.0 9.0 10.0
d NaN NaN 11.0 12.0
e 5.0 6.0 13.0 14.0
```
DataFrame还有一个便捷的join实例方法,它能更为方便地实现按索引合并。它还可用于合并多个带有相同或相似索引的DataFrame对象,但要求没有重叠的列。在上面那个例子中,我们可以编写:
```
In [73]: left2.join(right2, how='outer')
Out[73]:
Ohio Nevada Missouri Alabama
a 1.0 2.0 NaN NaN
b NaN NaN 7.0 8.0
c 3.0 4.0 9.0 10.0
d NaN NaN 11.0 12.0
e 5.0 6.0 13.0 14.0
```
因为一些历史版本的遗留原因,DataFrame的join方法默认使用的是左连接,保留左边表的行索引。它还支持在调用的DataFrame的列上,连接传递的DataFrame索引:
```
In [74]: left1.join(right1, on='key')
Out[74]:
key value group_val
0 a 0 3.5
1 b 1 7.0
2 a 2 3.5
3 a 3 3.5
4 b 4 7.0
5 c 5 NaN
```
最后,对于简单的索引合并,你还可以向join传入一组DataFrame,下一节会介绍更为通用的concat函数,也能实现此功能:
```
In [75]: another = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 17.]],
....: index=['a', 'c', 'e', 'f'],
....: columns=['New York',
'Oregon'])
In [76]: another
Out[76]:
New York Oregon
a 7.0 8.0
c 9.0 10.0
e 11.0 12.0
f 16.0 17.0
In [77]: left2.join([right2, another])
Out[77]:
Ohio Nevada Missouri Alabama New York Oregon
a 1.0 2.0 NaN NaN 7.0 8.0
c 3.0 4.0 9.0 10.0 9.0 10.0
e 5.0 6.0 13.0 14.0 11.0 12.0
In [78]: left2.join([right2, another], how='outer')
Out[78]:
Ohio Nevada Missouri Alabama New York Oregon
a 1.0 2.0 NaN NaN 7.0 8.0
b NaN NaN 7.0 8.0 NaN NaN
c 3.0 4.0 9.0 10.0 9.0 10.0
d NaN NaN 11.0 12.0 NaN NaN
e 5.0 6.0 13.0 14.0 11.0 12.0
f NaN NaN NaN NaN 16.0 17.0
```
### 轴向连接
另一种数据合并运算也被称作连接(concatenation)、绑定(binding)或堆叠(stacking)。NumPy的concatenation函数可以用NumPy数组来做:
```
In [79]: arr = np.arange(12).reshape((3, 4))
In [80]: arr
Out[80]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [81]: np.concatenate([arr, arr], axis=1)
Out[81]:
array([[ 0, 1, 2, 3, 0, 1, 2, 3],
[ 4, 5, 6, 7, 4, 5, 6, 7],
[ 8, 9, 10, 11, 8, 9, 10, 11]])
```
对于pandas对象(如Series和DataFrame),带有标签的轴使你能够进一步推广数组的连接运算。具体点说,你还需要考虑以下这些东西:
- 如果对象在其它轴上的索引不同,我们应该合并这些轴的不同元素还是只使用交集?
- 连接的数据集是否需要在结果对象中可识别?
- 连接轴中保存的数据是否需要保留?许多情况下,DataFrame默认的整数标签最好在连接时删掉。
pandas的concat函数提供了一种能够解决这些问题的可靠方式。我将给出一些例子来讲解其使用方式。假设有三个没有重叠索引的Series:
```
In [82]: s1 = pd.Series([0, 1], index=['a', 'b'])
In [83]: s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
In [84]: s3 = pd.Series([5, 6], index=['f', 'g'])
```
对这些对象调用concat可以将值和索引粘合在一起:
```
In [85]: pd.concat([s1, s2, s3])
Out[85]:
a 0
b 1
c 2
d 3
e 4
f 5
g 6
dtype: int64
```
默认情况下,concat是在axis=0上工作的,最终产生一个新的Series。如果传入axis=1,则结果就会变成一个DataFrame(axis=1是列):
```
In [86]: pd.concat([s1, s2, s3], axis=1)
Out[86]:
0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 2.0 NaN
d NaN 3.0 NaN
e NaN 4.0 NaN
f NaN NaN 5.0
g NaN NaN 6.0
```
这种情况下,另外的轴上没有重叠,从索引的有序并集(外连接)上就可以看出来。传入join='inner'即可得到它们的交集:
```
In [87]: s4 = pd.concat([s1, s3])
In [88]: s4
Out[88]:
a 0
b 1
f 5
g 6
dtype: int64
In [89]: pd.concat([s1, s4], axis=1)
Out[89]:
0 1
a 0.0 0
b 1.0 1
f NaN 5
g NaN 6
In [90]: pd.concat([s1, s4], axis=1, join='inner')
Out[90]:
0 1
a 0 0
b 1 1
```
在这个例子中,f和g标签消失了,是因为使用的是join='inner'选项。
你可以通过join_axes指定要在其它轴上使用的索引:
```
In [91]: pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']])
Out[91]:
0 1
a 0.0 0.0
c NaN NaN
b 1.0 1.0
e NaN NaN
```
不过有个问题,参与连接的片段在结果中区分不开。假设你想要在连接轴上创建一个层次化索引。使用keys参数即可达到这个目的:
```
In [92]: result = pd.concat([s1, s1, s3], keys=['one','two', 'three'])
In [93]: result
Out[93]:
one a 0
b 1
two a 0
b 1
three f 5
g 6
dtype: int64
In [94]: result.unstack()
Out[94]:
a b f g
one 0.0 1.0 NaN NaN
two 0.0 1.0 NaN NaN
three NaN NaN 5.0 6.0
```
如果沿着axis=1对Series进行合并,则keys就会成为DataFrame的列头:
```
In [95]: pd.concat([s1, s2, s3], axis=1, keys=['one','two', 'three'])
Out[95]:
one two three
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 2.0 NaN
d NaN 3.0 NaN
e NaN 4.0 NaN
f NaN NaN 5.0
g NaN NaN 6.0
```
同样的逻辑也适用于DataFrame对象:
```
In [96]: df1 = pd.DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 'c'],
....: columns=['one', 'two'])
In [97]: df2 = pd.DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'],
....: columns=['three', 'four'])
In [98]: df1
Out[98]:
one two
a 0 1
b 2 3
c 4 5
In [99]: df2
Out[99]:
three four
a 5 6
c 7 8
In [100]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'])
Out[100]:
level1 level2
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
```
如果传入的不是列表而是一个字典,则字典的键就会被当做keys选项的值:
```
In [101]: pd.concat({'level1': df1, 'level2': df2}, axis=1)
Out[101]:
level1 level2
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
```
此外还有两个用于管理层次化索引创建方式的参数(参见表8-3)。举个例子,我们可以用names参数命名创建的轴级别:
```
In [102]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'],
.....: names=['upper', 'lower'])
Out[102]:
upper level1 level2
lower one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
```
最后一个关于DataFrame的问题是,DataFrame的行索引不包含任何相关数据:
```
In [103]: df1 = pd.DataFrame(np.random.randn(3, 4), columns=['a', 'b', 'c', 'd'])
In [104]: df2 = pd.DataFrame(np.random.randn(2, 3), columns=['b', 'd', 'a'])
In [105]: df1
Out[105]:
a b c d
0 1.246435 1.007189 -1.296221 0.274992
1 0.228913 1.352917 0.886429 -2.001637
2 -0.371843 1.669025 -0.438570 -0.539741
In [106]: df2
Out[106]:
b d a
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
```
在这种情况下,传入ignore_index=True即可:
```
In [107]: pd.concat([df1, df2], ignore_index=True)
Out[107]:
a b c d
0 1.246435 1.007189 -1.296221 0.274992
1 0.228913 1.352917 0.886429 -2.001637
2 -0.371843 1.669025 -0.438570 -0.539741
3 -1.021228 0.476985 NaN 3.248944
4 0.302614 -0.577087 NaN 0.124121
```
![img]()
表8-3 concat函数的参数
### 合并重叠数据
还有一种数据组合问题不能用简单的合并(merge)或连接(concatenation)运算来处理。比如说,你可能有索引全部或部分重叠的两个数据集。举个有启发性的例子,我们使用NumPy的where函数,它表示一种等价于面向数组的if-else:
```
In [108]: a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
.....: index=['f', 'e', 'd', 'c', 'b', 'a'])
In [109]: b = pd.Series(np.arange(len(a), dtype=np.float64),
.....: index=['f', 'e', 'd', 'c', 'b', 'a'])
In [110]: b[-1] = np.nan
In [111]: a
Out[111]:
f NaN
e 2.5
d NaN
c 3.5