Replies: 1 comment 3 replies
-
How long does the training take? It's not unusual that the training might take more than one hour. |
Beta Was this translation helpful? Give feedback.
3 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
I tried to train my model with EfficientAd, but it seems that it took very long.
Can any one check with my yaml file on what is the problem?
`seed_everything: true
trainer:
enable_checkpointing: true
default_root_dir: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
callbacks:
class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
mode: max
monitor: image_F1Score
patience: 5
num_nodes: 1
devices: "cuda"
enable_progress_bar: true
overfit_batches: 0.0
check_val_every_n_epoch: 1 # Don't validate before extracting features.
fast_dev_run: false
accumulate_grad_batches: 1
max_epochs: 10
min_epochs: 3
max_steps: -1
min_steps: null
max_time: null
limit_train_batches: 1.0
limit_val_batches: 1.0
limit_test_batches: 1.0
limit_predict_batches: 1.0
val_check_interval: 1.0 # Don't validate before extracting features.
log_every_n_steps: 50
accelerator: gpu # <"cpu", "gpu", "tpu", "ipu", "hpu", "auto">
strategy: auto
sync_batchnorm: false
precision: 32
enable_model_summary: true
num_sanity_val_steps: 0
profiler: null
benchmark: false
deterministic: false
reload_dataloaders_every_n_epochs: 0
detect_anomaly: false
plugins: null
normalization:
normalization_method: MIN_MAX
task: SEGMENTATION
metrics:
image:
pixel: null
threshold:
class_path: anomalib.metrics.F1AdaptiveThreshold
init_args:
default_value: 0.5
thresholds: null
ignore_index: null
validate_args: true
compute_on_cpu: false
dist_sync_on_step: false
sync_on_compute: true
compute_with_cache: true
logging:
log_graph: false
default_root_dir: results
ckpt_path: null
data:
class_path: anomalib.data.MVTec
init_args:
root: datasets\MVTec
category: led
train_batch_size: 1
eval_batch_size: 1
num_workers: 23
image_size: null
transform: null
train_transform: null
eval_transform: null
test_split_mode: FROM_DIR
test_split_ratio: 0.2
val_split_mode: SAME_AS_TEST
val_split_ratio: 0.5
seed: null
model:
class_path: anomalib.models.EfficientAd
init_args:
teacher_out_channels: 384
model_size: S
lr: 0.0001
weight_decay: 1.0e-05
padding: false
pad_maps: true
metrics:
pixel:
- AUROC
trainer:
max_epochs: 1000
max_steps: 70000`
Beta Was this translation helpful? Give feedback.
All reactions