Skip to content

Latest commit

 

History

History
79 lines (67 loc) · 1.92 KB

installation.md

File metadata and controls

79 lines (67 loc) · 1.92 KB

Installation

XRLocalization is mainly based on Python >= 3.7, XRPrimer >= 0.5.2 and PyTorch >= 1.1. As long as the environment is ready, the installation is very simple. In this section, we show how to prepare an environment and install XRLocalization.

Ubuntu

Prerequisites

If you have install docker on your machine, we recommend that you directly use docker to build the running environment.

cd docker
docker build . -t xrlocalization:latest

If not, you can refer the following steps.

step 0. Install the dependencies from the default Ubuntu repositories:

sudo apt-get update && apt-get install -y \
        build-essential \
        libgoogle-glog-dev \
        qtbase5-dev \
        libqt5opengl5-dev \
        libcgal-dev \
        libatlas-base-dev \
        libsuitesparse-dev

step 1. Download and install Miniconda from official website. For example(on Linux 640-bit machine):

wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh
sh Miniconda3-py37_4.12.0-Linux-x86_64.sh

step 2. Create an environment with Python=3.7.

conda create --name xrloc python=3.7
conda activate xrloc

Note that Python >= 3.7 is required.

step 3. Install PyTorch

Please refer to here for PyTorch installation. For example:

conda install pytorch torchvision -c pytorch

Note that we only test our code with Pytorch 1.1 and Pytorch 1.9.

step 4. Clone xrlocalization

git clone --recursive https://github.com/openxrlab/xrlocalization.git

Or

git clone https://github.com/openxrlab/xrlocalization.git
git submodule update --init

step 5. Install other requirements

cd xrlocalization
pip install -r requirements.txt

Installation

cd xrlocalization
python3 setup.py install