From ea89dd19d12d7b85b848717823b606d9895cb6ed Mon Sep 17 00:00:00 2001 From: nabenabe0928 <shuhei.watanabe.utokyo@gmail.com> Date: Thu, 31 Oct 2024 08:44:44 +0100 Subject: [PATCH] Apply the feedback from the mob review --- package/samplers/auto_sampler/_sampler.py | 27 ++++++++++++------- .../auto_sampler/tests/test_auto_sampler.py | 20 ++++++++++++++ 2 files changed, 37 insertions(+), 10 deletions(-) diff --git a/package/samplers/auto_sampler/_sampler.py b/package/samplers/auto_sampler/_sampler.py index 28e52e4c..55669274 100644 --- a/package/samplers/auto_sampler/_sampler.py +++ b/package/samplers/auto_sampler/_sampler.py @@ -159,16 +159,23 @@ def _determine_single_objective_sampler( # len(complete_trials) < _N_COMPLETE_TRIALS_FOR_CMAES. if not isinstance(self._sampler, GPSampler): return GPSampler(seed=seed) - elif not isinstance(self._sampler, CmaEsSampler): - # Use ``CmaEsSampler`` if search space is numerical and - # len(complete_trials) > _N_COMPLETE_TRIALS_FOR_CMAES. - # Warm start CMA-ES with the first _N_COMPLETE_TRIALS_FOR_CMAES complete trials. - complete_trials.sort(key=lambda trial: trial.datetime_complete) - warm_start_trials = complete_trials[: self._N_COMPLETE_TRIALS_FOR_CMAES] - # NOTE(nabenabe): ``CmaEsSampler`` internally falls back to ``RandomSampler`` for - # 1D problems. - return CmaEsSampler( - seed=seed, source_trials=warm_start_trials, warn_independent_sampling=True + elif len(search_space) > 1: + if not isinstance(self._sampler, CmaEsSampler): + # Use ``CmaEsSampler`` if search space is numerical and + # len(complete_trials) > _N_COMPLETE_TRIALS_FOR_CMAES. + # Warm start CMA-ES with the first _N_COMPLETE_TRIALS_FOR_CMAES complete trials. + complete_trials.sort(key=lambda trial: trial.datetime_complete) + warm_start_trials = complete_trials[: self._N_COMPLETE_TRIALS_FOR_CMAES] + return CmaEsSampler( + seed=seed, source_trials=warm_start_trials, warn_independent_sampling=True + ) + else: + return TPESampler( + seed=seed, + multivariate=True, + warn_independent_sampling=False, + constraints_func=self._constraints_func, + constant_liar=True, ) return self._sampler # No update happens to self._sampler. diff --git a/package/samplers/auto_sampler/tests/test_auto_sampler.py b/package/samplers/auto_sampler/tests/test_auto_sampler.py index b5432636..130473cc 100644 --- a/package/samplers/auto_sampler/tests/test_auto_sampler.py +++ b/package/samplers/auto_sampler/tests/test_auto_sampler.py @@ -14,6 +14,11 @@ parametrize_constraints = pytest.mark.parametrize("use_constraint", [True, False]) +def objective_1d(trial: optuna.Trial) -> float: + x = trial.suggest_float("x", -5, 5) + return x**2 + + def objective(trial: optuna.Trial) -> float: x = trial.suggest_float("x", -5, 5) y = trial.suggest_int("y", -5, 5) @@ -105,6 +110,21 @@ def test_choose_cmaes() -> None: ] * n_trials_of_cmaes == sampler_names +def test_choose_tpe_for_1d() -> None: + # This test must be performed with a numerical objective function. + # For 1d problems, TPESampler will be chosen instead of CmaEsSampler. + n_trials_of_tpe = 100 + n_trials_before_tpe = 20 + auto_sampler = AutoSampler() + auto_sampler._N_COMPLETE_TRIALS_FOR_CMAES = n_trials_before_tpe + study = optuna.create_study(sampler=auto_sampler) + study.optimize(objective_1d, n_trials=n_trials_of_tpe + n_trials_before_tpe) + sampler_names = _get_used_sampler_names(study) + assert ["RandomSampler"] + ["GPSampler"] * (n_trials_before_tpe - 1) + [ + "TPESampler" + ] * n_trials_of_tpe == sampler_names + + def test_choose_tpe_in_single_with_constraints() -> None: n_trials = 30 auto_sampler = AutoSampler(constraints_func=constraints_func)