import fastai
from fastai import *
from fastai.vision import *
from fastai.tabular import * # Quick access to tabular functionality
from sklearn.model_selection import train_test_split
usecols_21 = ['MFCC01', 'MFCC02', 'MFCC03', 'MFCC04', 'MFCC05', 'MFCC06', 'MFCC07', 'MFCC08', 'MFCC09', 'MFCC10', 'MFCC11', 'MFCC12', 'MFCC13', 'MFCC14', 'MFCC15', 'MFCC16', 'MFCC17', 'MFCC18', 'MFCC19', 'MFCC20', 'Class']
usecols_41 = ['MFCC01', 'MFCC02', 'MFCC03', 'MFCC04', 'MFCC05', 'MFCC06', 'MFCC07', 'MFCC08', 'MFCC09', 'MFCC10', 'MFCC11', 'MFCC12', 'MFCC13', 'MFCC14', 'MFCC15', 'MFCC16', 'MFCC17', 'MFCC18', 'MFCC19', 'MFCC20', 'MFCC_delta01', 'MFCC_delta02', 'MFCC_delta03', 'MFCC_delta04', 'MFCC_delta05', 'MFCC_delta06', 'MFCC_delta07', 'MFCC_delta08', 'MFCC_delta09', 'MFCC_delta10', 'MFCC_delta11', 'MFCC_delta12', 'MFCC_delta13', 'MFCC_delta14', 'MFCC_delta15', 'MFCC_delta16', 'MFCC_delta17', 'MFCC_delta18', 'MFCC_delta19', 'MFCC_delta20', 'Class']
usecols_41 = ['MFCC01', 'MFCC02', 'MFCC03', 'MFCC04', 'MFCC05', 'MFCC06', 'MFCC07', 'MFCC08', 'MFCC09', 'MFCC10', 'MFCC11', 'MFCC12', 'MFCC13', 'MFCC14', 'MFCC15', 'MFCC16', 'MFCC17', 'MFCC18', 'MFCC19', 'MFCC20', 'MFCC_delta01', 'MFCC_delta02', 'MFCC_delta03', 'MFCC_delta04', 'MFCC_delta05', 'MFCC_delta06', 'MFCC_delta07', 'MFCC_delta08', 'MFCC_delta09', 'MFCC_delta10', 'MFCC_delta11', 'MFCC_delta12', 'MFCC_delta13', 'MFCC_delta14', 'MFCC_delta15', 'MFCC_delta16', 'MFCC_delta17', 'MFCC_delta18', 'MFCC_delta19', 'MFCC_delta20', 'Class']
path = '/root'
df = pd.read_csv('/root/msec_mfcc_nonsilent.csv', usecols = usecols_41)
train_df, valid_df = train_test_split(df)
train_df.tail()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
</style>
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
MFCC01 | MFCC02 | MFCC03 | MFCC04 | MFCC05 | MFCC06 | MFCC07 | MFCC08 | MFCC09 | MFCC10 | ... | MFCC_delta12 | MFCC_delta13 | MFCC_delta14 | MFCC_delta15 | MFCC_delta16 | MFCC_delta17 | MFCC_delta18 | MFCC_delta19 | MFCC_delta20 | Class | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7566 | -623.986962 | 171.999459 | 71.872040 | 21.720318 | 9.263828 | -1.223066 | -3.965144 | -0.210722 | -5.282595 | -13.754732 | ... | 0.001008 | -0.007516 | -0.006467 | -0.003224 | -0.003534 | -0.002909 | 0.001973 | 0.004103 | -0.000633 | 2 |
2501 | -309.825480 | 143.641373 | -21.801265 | 21.942721 | 20.128781 | 13.287995 | 17.403127 | 14.121780 | 13.158946 | 12.971298 | ... | 0.526601 | 0.185795 | 0.222595 | 0.005254 | -0.193304 | -0.212205 | -0.089623 | -0.065902 | -0.211232 | 2 |
5672 | -599.813874 | 162.164221 | 93.778812 | 55.092892 | 42.331028 | 26.904240 | 13.506857 | 12.611757 | 10.626413 | 0.757259 | ... | 0.075538 | 0.444945 | 0.240737 | -0.248581 | -0.396535 | -0.179960 | -0.017341 | -0.028708 | -0.030098 | 2 |
4666 | -761.547931 | 116.665295 | 52.558674 | 22.422087 | 16.306704 | 4.734597 | -8.219314 | -13.676851 | -16.229516 | -17.614693 | ... | 0.499126 | 0.416849 | 0.208211 | 0.114092 | 0.058175 | -0.214615 | -0.510880 | -0.496397 | -0.326911 | 2 |
3449 | -320.932113 | 156.872793 | -32.379042 | 49.476503 | 4.194986 | 18.936419 | 5.512803 | 0.282368 | 1.504447 | 3.965386 | ... | 0.115879 | -0.116351 | 0.091803 | -0.056881 | 0.005115 | -0.098158 | -0.018486 | 0.009138 | -0.009866 | 2 |
5 rows × 41 columns
path = '/root'
dep_var = 'Class'
#cat_names = ['Class']
data = TabularDataBunch.from_df(path, train_df, valid_df, dep_var,
tfms=[FillMissing, Categorify], cat_names=None)
learn = get_tabular_learner(data, layers=[20], metrics=accuracy)
learn.lr_find()
learn.recorder.plot()
LR Finder complete, type {learner_name}.recorder.plot() to see the graph.
learn.fit(8, 0.05)
Total time: 00:09
epoch train_loss valid_loss accuracy
1 0.085720 0.090742 0.970018 (00:01)
2 0.076532 0.067959 0.978836 (00:01)
3 0.082301 0.064496 0.978836 (00:01)
4 0.070542 0.057943 0.981305 (00:01)
5 0.075540 0.064264 0.978836 (00:01)
6 0.069713 0.070506 0.976367 (00:01)
7 0.073813 0.072434 0.975309 (00:01)
8 0.086864 0.071680 0.977425 (00:01)