forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathivalue.cpp
537 lines (493 loc) · 15.7 KB
/
ivalue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/Formatting.h>
#include <c10/util/StringUtil.h>
#include <cmath>
#include <ATen/core/Dict.h>
namespace c10 {
bool _fastEqualsForContainer(const IValue& lhs, const IValue& rhs) {
if (lhs.is(rhs)) {
// Like Python, for containers we consider identity equality to be
// sufficient but not necessary for value equality
return true;
}
return lhs == rhs;
}
namespace ivalue {
// This is in ivalue.cpp because we need to access Type::python_str, which
// is declared in jit_type.h
void checkCustomClassType(TypePtr expected_type, TypePtr actual_type) {
// NB: doing pointer comparison here
// If in the future there ever arises a need to call operator== on custom class
// Type's, this needs to be changed!
TORCH_CHECK(actual_type == expected_type,
"Tried to convert an IValue of type ",
actual_type->python_str(),
" to custom class type ",
expected_type->python_str());
}
CAFFE2_API c10::intrusive_ptr<ConstantString> ConstantString::create(
std::string str_) {
return c10::make_intrusive<ConstantString>(std::move(str_));
}
bool operator==(const ivalue::Tuple& lhs, const ivalue::Tuple& rhs) {
return lhs.elements_.size() == rhs.elements_.size() &&
// see [container equality]
std::equal(
lhs.elements_.cbegin(),
lhs.elements_.cend(),
rhs.elements_.cbegin(),
_fastEqualsForContainer);
}
TupleTypePtr Tuple::type() const {
if (!type_) {
type_ = TupleType::create(
fmap(elements_, [&](const IValue& v) { return v.type(); }));
}
return type_;
}
} // namespace ivalue
TypePtr IValue::type() const {
switch (tag) {
case Tag::None:
return NoneType::get();
case Tag::Tensor:
return TensorType::create(toTensor());
case Tag::Double:
return FloatType::get();
case Tag::Int:
return IntType::get();
case Tag::Bool:
return BoolType::get();
case Tag::String:
return StringType::get();
case Tag::Blob:
return AnyType::get();
case Tag::GenericDict: {
auto d = toGenericDict();
return DictType::create(d.keyType(), d.valueType());
}
case Tag::GenericList:
return ListType::create(toList().elementType());
case Tag::Future:
return toFuture()->type();
case Tag::RRef:
return RRefType::create(toRRef()->type());
case Tag::Device:
return DeviceObjType::get();
case Tag::Object:
return toObjectRef().type();
case Tag::PyObject:
return PyObjectType::get();
case Tag::Uninitialized:
return AnyType::get();
case Tag::Capsule:
return CapsuleType::get();
case Tag::Tuple:
return toTuple()->type();
}
// switch above is complete but this silences compiler warnings
TORCH_INTERNAL_ASSERT(false, "unhandled case in IValue::type()");
}
void IValue::getSubValues(HashAliasedIValues& subValues) const {
switch (this->tag) {
case Tag::Tensor:
subValues.insert(*this);
return;
case Tag::Tuple:
case Tag::GenericList: {
subValues.insert(*this);
c10::ArrayRef<IValue> elems;
if (isTuple()) {
elems = this->toTuple()->elements();
} else {
elems = this->toListRef();
}
for (auto& elem : elems) {
elem.getSubValues(subValues);
}
break;
}
case Tag::GenericDict:
subValues.insert(*this);
for (const auto& pair : this->toGenericDict()) {
pair.value().getSubValues(subValues);
pair.key().getSubValues(subValues);
}
break;
case Tag::Object: {
// Record Object IValue and its attributes.
subValues.insert(*this);
auto obj_type = type()->expect<ClassType>();
auto obj_value = toObject();
auto attribute_names = obj_type->attributeNames();
for (const auto& name: attribute_names) {
auto attribute = obj_value->getAttr(name);
attribute.getSubValues(subValues);
}
break;
}
case Tag::Future:
case Tag::Device:
case Tag::PyObject:
case Tag::Uninitialized:
case Tag::Capsule:
TORCH_INTERNAL_ASSERT(
false, "sub ivalue is nat enabled for: ", this->tagKind());
// Fall through
default:
// don't record scalars.
break;
}
}
bool IValue::overlaps(const IValue& rhs) const {
HashAliasedIValues rhsSubValues, thisSubValues;
rhs.getSubValues(rhsSubValues);
getSubValues(thisSubValues);
for (auto& sub : thisSubValues) {
if (rhsSubValues.count(sub)) {
return true;
}
}
return false;
}
bool operator!=(const IValue& lhs, const IValue& rhs) {
return !(lhs == rhs);
}
bool operator==(const IValue& lhs, const IValue& rhs) {
IValue eq = lhs.equals(rhs);
if (eq.isBool()) {
return eq.toBool();
}
// The only case we don't return bool is for tensor comparison. In Python,
// `bool()` is called on the return value of `__eq__` if the return value is
// not a boolean. Mimic that behavior here.
TORCH_INTERNAL_ASSERT(eq.isTensor());
return eq.toTensor().is_nonzero();
}
bool IValue::ptrEqual(const IValue& lhs, const IValue& rhs) {
TORCH_INTERNAL_ASSERT(lhs.is_intrusive_ptr);
TORCH_INTERNAL_ASSERT(rhs.is_intrusive_ptr);
return lhs.tag == rhs.tag &&
lhs.payload.as_intrusive_ptr == rhs.payload.as_intrusive_ptr;
}
IValue IValue::equals(const IValue& rhs) const {
const IValue& lhs = *this;
switch (lhs.tag) {
case Tag::None:
// In Python you're not supposed to do this comparison apparently. Not
// sure if we should warn here or what
return rhs.isNone();
case Tag::Tensor:
if (!rhs.isTensor()) {
return false;
}
return lhs.toTensor().eq(rhs.toTensor());
case Tag::Double:
return rhs.isDouble() && lhs.toDouble() == rhs.toDouble();
case Tag::Int:
return rhs.isInt() && lhs.toInt() == rhs.toInt();
case Tag::Bool:
return rhs.isBool() && lhs.toBool() == rhs.toBool();
case Tag::String:
return rhs.isString() && lhs.toStringRef() == rhs.toStringRef();
case Tag::GenericDict:
return rhs.isGenericDict() && lhs.toGenericDict() == rhs.toGenericDict();
case Tag::Tuple:
return rhs.isTuple() && *lhs.toTuple() == *rhs.toTuple();
case Tag::Device:
return rhs.isDevice() && lhs.toDevice() == rhs.toDevice();
case Tag::GenericList:
return rhs.isList() && lhs.toList() == rhs.toList();
case Tag::Blob:
case Tag::Future:
case Tag::RRef:
case Tag::Object:
case Tag::PyObject:
case Tag::Capsule:
return ptrEqual(lhs, rhs);
case Tag::Uninitialized:
// Unitialized ivalues show up in no-ops when the compiler can prove a
// value will never be used. Just return false on any equality comparison.
return false;
}
// the above switch should be exhaustive
TORCH_INTERNAL_ASSERT(false, "we should never reach here")
}
static bool isUndefinedTensor(const IValue& iv) {
return iv.isTensor() && !iv.toTensor().defined();
}
bool IValue::is(const IValue& rhs) const {
const IValue& lhs = *this;
// Special handling for undefined tensors:
// 1. Undefined_tensor is None and vice versa.
if ((isUndefinedTensor(lhs) && rhs.isNone()) ||
(lhs.isNone() && isUndefinedTensor(rhs))) {
return true;
}
// 2. Undefined_tensor is Undefined_tensor.
if (isUndefinedTensor(lhs) && isUndefinedTensor(rhs)) {
return true;
}
if (lhs.isTensor()) {
// Use the standard way of comparing two tensors for identity
return rhs.isTensor() && lhs.toTensor().is_same(rhs.toTensor());
}
if (lhs.is_intrusive_ptr) {
return rhs.is_intrusive_ptr && ptrEqual(lhs, rhs);
}
return lhs == rhs;
}
namespace {
using IValueFormatter = std::function<void(std::ostream&, const IValue&)>;
template <class T>
std::ostream& printList(
std::ostream& out,
const T& list,
const std::string start,
const std::string finish,
IValueFormatter formatter) {
out << start;
for (size_t i = 0; i < list.size(); ++i) {
if (i > 0) {
out << ", ";
}
formatter(out, IValue(list[i]));
}
out << finish;
return out;
}
// Properly disambiguate the type of an empty list
std::ostream& printMaybeAnnotatedList(
std::ostream& out,
const IValue& the_list,
IValueFormatter formatter) {
if (the_list.toListRef().size() == 0) {
out << "annotate(" << the_list.type()->python_str() << ", [])";
} else {
return printList(out, the_list.toListRef(), "[", "]", formatter);
}
return out;
}
template <typename Dict>
std::ostream& printDict(
std::ostream& out,
const Dict& v,
IValueFormatter formatter) {
out << "{";
bool first = true;
for (const auto& pair : v) {
if (!first) {
out << ", ";
}
formatter(out, pair.key());
out << ": ";
formatter(out, pair.value());
first = false;
}
out << "}";
return out;
}
}
// Properly disambiguate the type of an empty dict
std::ostream& printMaybeAnnotatedDict(
std::ostream& out,
const IValue& the_dict,
IValueFormatter formatter) {
auto value_type = the_dict.type()->cast<DictType>()->getValueType();
if (the_dict.toGenericDict().size() == 0 ||
!elementTypeCanBeInferredFromMembers(value_type)) {
out << "annotate(" << the_dict.type()->python_str() << ",";
printDict(out, the_dict.toGenericDict(), formatter) << ")";
} else {
return printDict(out, the_dict.toGenericDict(), formatter);
}
return out;
}
std::ostream& IValue::repr(
std::ostream& out,
std::function<bool(std::ostream&, const IValue& v)>
customFormatter) const {
// First check if the caller has provided a custom formatter. Use that if possible.
if (customFormatter(out, *this)) {
return out;
}
const IValue& v = *this;
// continue to use custom formatter in recursion
auto formatter = [&](std::ostream& out, const IValue& input) {
input.repr(out, customFormatter);
};
switch (v.tag) {
case IValue::Tag::None:
return out << v.toNone();
case IValue::Tag::Double: {
double d = v.toDouble();
int c = std::fpclassify(d);
if (c == FP_NORMAL || c == FP_ZERO) {
int64_t i = int64_t(d);
if (double(i) == d) {
return out << i << ".";
}
}
auto orig_prec = out.precision();
return out << std::setprecision(std::numeric_limits<double>::max_digits10)
<< v.toDouble() << std::setprecision(orig_prec);
}
case IValue::Tag::Int:
return out << v.toInt();
case IValue::Tag::Bool:
return out << (v.toBool() ? "True" : "False");
case IValue::Tag::Tuple: {
const auto& elements = v.toTuple()->elements();
const auto& finish = elements.size() == 1 ? ",)" : ")";
return printList(out, elements, "(", finish, formatter);
}
case IValue::Tag::String:
c10::printQuotedString(out, v.toStringRef());
return out;
case IValue::Tag::GenericList: {
return printMaybeAnnotatedList(out, *this, formatter);
}
case IValue::Tag::Device: {
std::stringstream device_stream;
device_stream << v.toDevice();
out << "torch.device(";
c10::printQuotedString(out, device_stream.str());
return out << ")";
}
case IValue::Tag::GenericDict:
return printMaybeAnnotatedDict(out, v, formatter);
default:
TORCH_INTERNAL_ASSERT(false, "repr() not defined on: ", v.tagKind());
}
}
std::ostream& operator<<(std::ostream & out, const IValue & v) {
auto formatter = [&](std::ostream& out, const IValue& v) {
out << v;
};
switch(v.tag) {
case IValue::Tag::None:
return out << v.toNone();
case IValue::Tag::Tensor:
return out << v.toTensor();
case IValue::Tag::Double: {
double d = v.toDouble();
int c = std::fpclassify(d);
if (c == FP_NORMAL || c == FP_ZERO) {
int64_t i = int64_t(d);
if (double(i) == d) {
return out << i << ".";
}
}
auto orig_prec = out.precision();
return out
<< std::setprecision(std::numeric_limits<double>::max_digits10)
<< v.toDouble()
<< std::setprecision(orig_prec);
} case IValue::Tag::Int:
return out << v.toInt();
case IValue::Tag::Bool:
return out << (v.toBool() ? "True" : "False");
case IValue::Tag::Tuple: {
const auto& elements = v.toTuple()->elements();
const auto& finish = elements.size() == 1 ? ",)" : ")";
return printList(out, elements, "(", finish, formatter);
}
case IValue::Tag::String:
return out << v.toStringRef();
case IValue::Tag::Blob:
return out << *v.toBlob();
case IValue::Tag::Capsule:
return out << "Capsule";
case IValue::Tag::GenericList:
return printList(out, v.toList(), "[", "]", formatter);
case IValue::Tag::RRef:
return out << "RRef";
case IValue::Tag::Future:
return out << "Future";
case IValue::Tag::Uninitialized:
return out << "Uninitialized";
case IValue::Tag::Device:
return out << v.toDevice();
case IValue::Tag::GenericDict:
return printDict(out, v.toGenericDict(), formatter);
case IValue::Tag::PyObject: {
auto py_obj = v.toPyObject();
return out << "<PyObject at" << py_obj << ">";
}
case IValue::Tag::Object: {
// TODO we should attempt to call __str__ if the object defines it.
auto obj = v.toObject();
// print this out the way python would do it
return out << "<" << obj->name() << " object at " << obj.get() << ">";
}
}
AT_ERROR("Tag not found: ", v.tagKind());
}
#undef TORCH_FORALL_TAGS
void IValue::dump() const {
std::cout << *this << "\n";
}
std::shared_ptr<ClassType> ivalue::Object::type() const {
return type_.type_->expect<ClassType>();
}
std::string ivalue::Object::name() const {
return type()->name()->qualifiedName();
}
IValue ivalue::Object::getAttr(const std::string& name) const {
const size_t slot = type()->getAttributeSlot(name);
return getSlot(slot);
}
void ivalue::Object::setAttr(const std::string& name, IValue v) {
const size_t slot = type()->getAttributeSlot(name);
setSlot(slot, std::move(v));
}
void ivalue::Object::unsafeRemoveAttr(const std::string& name) {
const size_t slot = type()->getAttributeSlot(name);
unsafeRemoveSlot(slot);
}
void ivalue::Object::resizeObject(size_t slot) {
AT_ASSERT(slot < type()->numAttributes());
slots_.resize(type()->numAttributes());
}
static bool CompareKeys(const std::pair<IValue, IValue>& aWrap,
const std::pair<IValue, IValue>& bWrap) {
const auto a = aWrap.first;
const auto b = bWrap.first;
if (a.isString() && b.isString()) {
return a.toStringRef().compare(b.toStringRef()) < 0;
} else if (a.isInt() && b.isInt()) {
return a.toInt() < b.toInt();
} else if (a.isDouble() && b.isDouble()) {
return a.toDouble() < b.toDouble();
} else if (a.isTensor() && b.isTensor()) {
return a.toTensor().unsafeGetTensorImpl() < b.toTensor().unsafeGetTensorImpl();
}
AT_ERROR("Illegal dict key");
}
std::vector<std::pair<IValue, IValue>> iterationOrder(const c10::Dict<IValue, IValue>& dict) {
std::vector<std::pair<IValue, IValue>> ordered;
for (auto& element : dict) {
ordered.emplace_back(element.key(), element.value());
}
std::sort(ordered.begin(), ordered.end(), CompareKeys);
return ordered;
}
StrongTypePtr::StrongTypePtr(
std::shared_ptr<torch::jit::CompilationUnit> cu,
std::shared_ptr<Type> type) {
cu_ = std::move(cu);
type_ = type;
TORCH_INTERNAL_ASSERT(type_);
}
std::unordered_map<std::string, c10::ClassTypePtr>& getCustomClassTypeMap() {
static std::unordered_map<std::string, c10::ClassTypePtr> tmap;
return tmap;
}
std::unordered_map<std::string, std::function<PyObject*(void*)>>&
getClassConverter() {
static std::unordered_map<std::string, std::function<PyObject*(void*)>>
classConverter;
return classConverter;
}
} // namespace c10