forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMaxMinElementwiseKernel.cu
75 lines (69 loc) · 2.73 KB
/
MaxMinElementwiseKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/zmath.cuh>
// NOTE: CUDA on Windows requires that the enclosing function
// of a __device__ lambda not have internal linkage.
namespace at { namespace native {
void max_elementwise_kernel_cuda(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
gpu_kernel(iter, []GPU_LAMBDA(bool a, bool b) -> bool {
return a || b;
});
} else if (isIntegralType(iter.dtype(), /*includeBool=*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "max_elementwise_cuda", [&]() {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return ::max(a, b);
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.dtype(), "max_elementwise_cuda", [&]() {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
// isnan(half) breaks the Windows build. We explicitly cast half to float.
using acc_type = typename AccumulateType<scalar_t, /*is_cuda=*/true>::type;
// We avoid using nan or nanf because we want to return the same type as scalar_t.
if (::isnan(static_cast<acc_type>(a))) {
return a;
} else if (::isnan(static_cast<acc_type>(b))) {
return b;
} else {
return ::max(a, b);
}
});
});
}
}
void min_elementwise_kernel_cuda(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
gpu_kernel(iter, []GPU_LAMBDA(bool a, bool b) -> bool {
return a && b;
});
} else if (isIntegralType(iter.dtype(), /*includeBool=*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "min_elementwise_cuda", [&]() {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return ::min(a, b);
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.dtype(), "min_elementwise_cuda", [&]() {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
// isnan(half) breaks the Windows build. We explicitly cast half to float.
using acc_type = typename AccumulateType<scalar_t, /*is_cuda=*/true>::type;
// We avoid using nan or nanf because we want to return the same type as scalar_t.
if (::isnan(static_cast<acc_type>(a))) {
return a;
} else if (::isnan(static_cast<acc_type>(b))) {
return b;
} else {
return ::min(a, b);
}
});
});
}
}
REGISTER_DISPATCH(max_elementwise_stub, &max_elementwise_kernel_cuda);
REGISTER_DISPATCH(min_elementwise_stub, &min_elementwise_kernel_cuda);
}} // namespace at::native