forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRangeFactories.cu
255 lines (220 loc) · 9.57 KB
/
RangeFactories.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/NativeFunctions.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/Exceptions.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/detail/FunctionTraits.h>
#include <cmath>
#include <limits>
#define GPU_LAMBDA __device__ __host__
namespace {
constexpr int num_threads = C10_WARP_SIZE * 2;
constexpr int thread_work_size = 1;
constexpr int block_work_size = thread_work_size * num_threads;
template<typename index_t, typename func_t>
C10_LAUNCH_BOUNDS_1(num_threads)
__global__ void elementwise_kernel_with_index(index_t N, func_t f, typename function_traits<func_t>::result_type *data) {
#pragma unroll
for (int i = 0; i < thread_work_size; i++) {
index_t idx = block_work_size * blockIdx.x + num_threads * i + threadIdx.x;
if (idx < N) {
data[idx] = f(idx);
}
}
}
template<typename func_t>
void gpu_kernel_with_index(at::Tensor &output, func_t f) {
int64_t N = output.numel();
if (N == 0) {
return;
}
int64_t grid = (N + block_work_size - 1) / block_work_size;
auto stream = at::cuda::getCurrentCUDAStream();
using scalar_t = typename function_traits<func_t>::result_type;
if (N <= std::numeric_limits<int>::max()) {
elementwise_kernel_with_index<int><<<grid, num_threads, 0, stream>>>(N, f, output.data_ptr<scalar_t>());
} else {
elementwise_kernel_with_index<int64_t><<<grid, num_threads, 0, stream>>>(N, f, output.data_ptr<scalar_t>());
}
}
} // namespace
namespace at {
namespace native {
Tensor& linspace_cuda_out(Tensor& result, Scalar start, Scalar end, int64_t steps) {
TORCH_CHECK(steps >= 0, "number of steps must be non-negative");
if (result.numel() != steps) {
result.resize_({steps});
}
bool is_contiguous = result.is_contiguous();
Tensor r = !is_contiguous ? at::empty_like(result, LEGACY_CONTIGUOUS_MEMORY_FORMAT) : result;
if (steps == 0) {
// skip
} else if (steps == 1) {
r.fill_(start);
} else if (isIntegralType(r.scalar_type(), 0)) {
AT_DISPATCH_INTEGRAL_TYPES(r.scalar_type(), "linspace_cuda", [&]() {
scalar_t scalar_start = start.to<scalar_t>();
scalar_t scalar_end = end.to<scalar_t>();
float step = static_cast<float>(scalar_end - scalar_start) / (steps - 1);
const int64_t halfway = steps / 2;
gpu_kernel_with_index(r, [scalar_start, scalar_end, steps, step, halfway]GPU_LAMBDA(int64_t ind) -> scalar_t {
if (ind < halfway) {
return scalar_start + (step * ind);
}
return scalar_end - step * (steps - ind - 1);
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(r.scalar_type(), "linspace_cuda", [&]() {
scalar_t scalar_start = start.to<scalar_t>();
scalar_t scalar_end = end.to<scalar_t>();
scalar_t step = (scalar_end - scalar_start) / static_cast<scalar_t>(steps - 1);
const int64_t halfway = steps / 2;
gpu_kernel_with_index(r, [scalar_start, scalar_end, steps, step, halfway]GPU_LAMBDA(int64_t ind) -> scalar_t {
if (ind < halfway) {
return scalar_start + (step * ind);
}
return scalar_end - step * (steps - ind - 1);
});
});
}
if(!is_contiguous) {
result.copy_(r);
}
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
Tensor& logspace_cuda_out(Tensor& result, Scalar start, Scalar end, int64_t steps, double base) {
TORCH_CHECK(steps >= 0, "number of steps must be non-negative");
if (result.numel() != steps) {
result.resize_({steps});
}
bool is_contiguous = result.is_contiguous();
Tensor r = !is_contiguous ? at::empty_like(result, LEGACY_CONTIGUOUS_MEMORY_FORMAT) : result;
if (steps == 0) {
// skip
} else if (steps == 1) {
r.fill_(std::pow(base, start.to<double>()));
} else if (isIntegralType(r.scalar_type(), 0)) {
AT_DISPATCH_INTEGRAL_TYPES(r.scalar_type(), "logspace_cuda", [&]() {
float scalar_base = static_cast<float>(base); // Use float to avoid promotion to double
scalar_t scalar_start = start.to<scalar_t>();
scalar_t scalar_end = end.to<scalar_t>();
float step = static_cast<float>(scalar_end - scalar_start) / (steps - 1);
const int64_t halfway = steps / 2;
gpu_kernel_with_index(r, [scalar_start, scalar_end, scalar_base, steps, step, halfway]GPU_LAMBDA(int64_t ind) -> scalar_t {
if (ind < halfway) {
return std::pow(scalar_base, scalar_start + step * ind);
}
return std::pow(scalar_base, scalar_end - step * (steps - ind - 1));
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(r.scalar_type(), "logspace_cuda", [&]() {
scalar_t scalar_base = static_cast<scalar_t>(base);
scalar_t scalar_start = start.to<scalar_t>();
scalar_t scalar_end = end.to<scalar_t>();
scalar_t step = (scalar_end - scalar_start) / static_cast<scalar_t>(steps - 1);
const int64_t halfway = steps / 2;
gpu_kernel_with_index(r, [scalar_start, scalar_end, scalar_base, steps, step, halfway]GPU_LAMBDA(int64_t ind) -> scalar_t {
if (ind < halfway) {
return std::pow(scalar_base, scalar_start + step * ind);
}
return std::pow(scalar_base, scalar_end - step * (steps - ind - 1));
});
});
}
if(!is_contiguous) {
result.copy_(r);
}
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
Tensor& range_cuda_out(Tensor& result, Scalar start, Scalar end, Scalar step) {
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, result.scalar_type(), "range_cuda", [&]() {
using accscalar_t = at::acc_type<scalar_t, true>;
auto xstart = start.to<accscalar_t>();
auto xend = end.to<accscalar_t>();
auto xstep = step.to<accscalar_t>();
TORCH_CHECK(xstep > 0 || xstep < 0, "step must be nonzero");
TORCH_CHECK(std::isfinite(static_cast<double>(xstart)) &&
std::isfinite(static_cast<double>(xend)),
"unsupported range: ", xstart, " -> ", xend);
TORCH_CHECK(((xstep > 0) && (xend >= xstart)) || ((xstep < 0) && (xend <= xstart)),
"upper bound and larger bound inconsistent with step sign");
int64_t size = static_cast<int64_t>(((xend - xstart) / xstep) + 1);
if (result.numel() != size) {
result.resize_({size});
}
bool is_contiguous = result.is_contiguous();
Tensor r = !is_contiguous ? at::empty_like(result, LEGACY_CONTIGUOUS_MEMORY_FORMAT) : result;
gpu_kernel_with_index(r, [xstart, xstep]GPU_LAMBDA(int64_t ind) -> scalar_t {
accscalar_t inc = xstep * static_cast<accscalar_t>(ind);
accscalar_t val = xstart + inc;
return static_cast<scalar_t>(val);
});
if(!is_contiguous) {
result.copy_(r);
}
});
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
Tensor& arange_cuda_out(Tensor& result, Scalar start, Scalar end, Scalar step) {
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, result.scalar_type(), "arange_cuda", [&]() {
AT_SKIP_BFLOAT16_IF_NOT_ROCM(scalar_t, "arange_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
auto xstart = start.to<accscalar_t>();
auto xend = end.to<accscalar_t>();
auto xstep = step.to<accscalar_t>();
// we use double precision for (start - end) / step
// to compute size_d for consistency across devices.
// The problem with using accscalar_t is that accscalar_t might be float32 on gpu for a float32 scalar_t,
// but double on cpu for the same,
// and the effective output size starts differing on CPU vs GPU because of precision issues, which
// we dont want.
// the corner-case we do want to take into account is int64_t, which has higher precision than double
double size_d;
if (std::is_same<scalar_t, int64_t>::value) {
size_d = std::ceil(static_cast<double>(end.to<accscalar_t>() - start.to<accscalar_t>())
/ step.to<accscalar_t>());
} else {
size_d = std::ceil(static_cast<double>(end.to<double>() - start.to<double>())
/ step.to<double>());
}
TORCH_CHECK(xstep > 0 || xstep < 0, "step must be nonzero");
TORCH_CHECK(std::isfinite(static_cast<double>(xstart)) &&
std::isfinite(static_cast<double>(xend)),
"unsupported range: ", xstart, " -> ", xend);
TORCH_CHECK(((xstep > 0) && (xend >= xstart)) || ((xstep < 0) && (xend <= xstart)),
"upper bound and larger bound inconsistent with step sign");
TORCH_CHECK(size_d >= 0 && size_d <= static_cast<double>(std::numeric_limits<int64_t>::max()),
"invalid size, possible overflow?");
int64_t size = static_cast<int64_t>(size_d);
int64_t numel = result.numel();
if (numel != size) {
if(numel > 0){
TORCH_WARN("The number of elements in the out tensor of shape ", result.sizes(),
" is ", numel, " which does not match the computed number of elements ", size,
". Note that this may occur as a result of rounding error. "
"The out tensor will be resized to a tensor of shape (", size, ",).");
}
result.resize_({size});
}
bool is_contiguous = result.is_contiguous();
Tensor r = !is_contiguous ? at::empty_like(result, LEGACY_CONTIGUOUS_MEMORY_FORMAT) : result;
gpu_kernel_with_index(r, [xstart, xstep]GPU_LAMBDA(int64_t ind) -> scalar_t {
accscalar_t inc = xstep * static_cast<accscalar_t>(ind);
accscalar_t val = xstart + inc;
return static_cast<scalar_t>(val);
});
if(!is_contiguous) {
result.copy_(r);
}
});
});
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
}} // namespace at::native