-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain.py
109 lines (80 loc) · 3.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# -*- coding: utf-8 -*-
#
# Copyright (C) 2019 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG),
# acting on behalf of its Max Planck Institute for Intelligent Systems and the
# Max Planck Institute for Biological Cybernetics. All rights reserved.
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights
# on this computer program. You can only use this computer program if you have closed a license agreement
# with MPG or you get the right to use the computer program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and liable to prosecution.
# Contact: [email protected]
#
import sys
sys.path.append('.')
sys.path.append('..')
import os
import argparse
from grabnet.tools.cfg_parser import Config
from grabnet.train.trainer import Trainer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GrabNet-Training')
parser.add_argument('--work-dir', required=True, type=str,
help='The path to the downloaded grab data')
parser.add_argument('--data-path', required=True, type=str,
help='The path to the folder that contains GrabNet data')
parser.add_argument('--rhm-path', required=True, type=str,
help='The path to the folder containing MANO_RIHGT model')
parser.add_argument('--expr-ID', default='V00', type=str,
help='Training ID')
parser.add_argument('--batch-size', default=256, type=int,
help='Training batch size')
parser.add_argument('--n-workers', default=10, type=int,
help='Number of PyTorch dataloader workers')
parser.add_argument('--lr', default=5e-4, type=float,
help='Training learning rate')
parser.add_argument('--kl-coef', default=5e-3, type=float,
help='KL divergence coefficent for Coarsenet training')
parser.add_argument('--use-multigpu', default=False,
type=lambda arg: arg.lower() in ['true', '1'],
help='If to use multiple GPUs for training')
parser.add_argument('--load-on-ram', default=False,
type=lambda arg: arg.lower() in ['true', '1'],
help='This will load all the data on the RAM memory for faster training.'
'If your RAM capacity is more than 40 Gb, consider using this.')
args = parser.parse_args()
work_dir = args.work_dir
data_path = args.data_path
rhm_path = args.rhm_path
expr_ID = args.expr_ID
batch_size = args.batch_size
base_lr = args.lr
n_workers = args.n_workers
multi_gpu = args.use_multigpu
kl_coef = args.kl_coef
load_on_ram = args.load_on_ram
cwd = os.getcwd()
default_cfg_path = 'grabnet/configs/grabnet_cfg.yaml'
vpe_path = 'grabnet/configs/verts_per_edge.npy'
c_weights_path = 'grabnet/configs/rhand_weight.npy'
cfg = {
'batch_size': batch_size,
'n_workers': n_workers,
'use_multigpu':multi_gpu,
'kl_coef': kl_coef,
'dataset_dir': data_path,
'rhm_path': rhm_path,
'vpe_path': vpe_path,
'c_weights_path': c_weights_path,
'expr_ID': expr_ID,
'work_dir': work_dir,
'base_lr': base_lr,
'best_cnet': None,
'best_rnet': None,
'load_on_ram': load_on_ram
}
cfg = Config(default_cfg_path=default_cfg_path, **cfg)
grabnet_trainer = Trainer(cfg=cfg)
grabnet_trainer.fit()
cfg = grabnet_trainer.cfg
cfg.write_cfg(os.path.join(work_dir, 'TR%02d_%s' % (cfg.try_num, os.path.basename(default_cfg_path))))