-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
181 lines (165 loc) · 7.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from dash import Dash, html, dcc, Input, Output, State
import pandas as pd
import plotly.express as px
from dash import dash_table
from src.visualization.data_graph import DataGraph
# Initialize the Dash app
app = Dash(__name__, suppress_callback_exceptions=True, meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=1.0"}])
app.title = "Road Infrastructure & Its Effects on Commute Time"
server = app.server
# Data initialization
data = DataGraph()
state_codes = pd.read_parquet("data/external/state_codes.parquet").sort_values(by='fips')
state_options = [{'label': state_name, 'value': state_code} for state_name, state_code in zip(state_codes['state_name'], state_codes['fips'])]
# Load the CSV file
all_data = pd.read_csv("data/processed/all.csv")
table_data = all_data[['name', 'coef', 'z_value']]
# Create a list of years for the slider
years = list(range(2012, 2020))
# Define the layout of the app
app.layout = html.Div([
html.Div(id="header", children=[
html.H1("Road Infrastructure & Its Effects on Commute Time"),
dcc.Markdown('''
#### Overview
This project visualizes the interaction between unemployment and average travel distance by incorporating spatial patterns.
The data visualization is done using a Dash web application, which displays a map, project details, and data sources.
'''),
dcc.Tabs(id='tabs-nav', value='map-tab', children=[
dcc.Tab(label='Map', value='map-tab'),
dcc.Tab(label='About', value='about-tab'),
dcc.Tab(label='Data', value='data-tab')
]),
]),
html.Div(id='tabs-content')
])
# Define callbacks for each tab
@app.callback(
Output('tabs-content', 'children'),
[Input('tabs-nav', 'value')]
)
def render_content(tab):
if tab == 'map-tab':
return html.Div([
html.Div([
dcc.Dropdown(
id='state-dropdown',
options=state_options,
value=state_codes.iloc[0]['fips']
),
dcc.Dropdown(
id='sex-dropdown',
options=[
{'label': 'Male', 'value': 1},
{'label': 'Female', 'value': 2},
{'label': 'All', 'value': 3}
],
value=3
),
dcc.Dropdown(
id='race-dropdown',
options=[
{'label': 'American Indian', 'value': 'RACAIAN'},
{'label': 'Asian', 'value': 'RACASN'},
{'label': 'Black', 'value': 'RACBLK'},
{'label': 'Native Hawaiian', 'value': 'RACNUM'},
{'label': 'White', 'value': 'RACWHT'},
{'label': 'Some Other Race', 'value': 'RACSOR'},
{'label': 'Hispanic', 'value': 'HISP'},
{'label': 'All', 'value': 'ALL'}
],
value='ALL'
),
dcc.Dropdown(
id='mode-dropdown',
options=[
{'label': 'Car', 'value': 'car'},
{'label': 'Bus', 'value': 'bus'},
{'label': 'Streetcar', 'value': 'streetcar'},
{'label': 'Subway', 'value': 'subway'},
{'label': 'Railroad', 'value': 'railroad'},
{'label': 'Ferry', 'value': 'ferry'},
{'label': 'Taxi', 'value': 'taxi'},
{'label': 'Motorcycle', 'value': 'motorcycle'},
{'label': 'Bicycle', 'value': 'bicycle'},
{'label': 'Walking', 'value': 'walking'}
],
value='car'
),
dcc.Slider(
id='year-slider',
min=min(years),
max=max(years),
step=1,
marks={year: str(year) for year in years},
value=min(years)
),
html.Button('Update Graph', id='update-graph-btn', n_clicks=0)
], style={'width': '50%', 'margin': 'auto', 'text-align': 'center', 'padding': '10px'}),
dcc.Graph(
id='map-graph',
style={'width': '100%', 'height': '80vh'}
)
])
elif tab == 'about-tab':
return html.Div([
dcc.Markdown('''
## About the Project
'''),
dcc.Markdown('''
#### Methodology
This project uses two different regressions:
1. **Panel Spatial Regression with Fixed Effects**: Incorporates spatial interaction between neighboring counties. The model used is:
$$
y_{it} = \\rho \\sum_{j=1}^N w_{ij} y_{jt} + x_{it} \\beta + \\mu_i + e_{it}
$$
## Results
''', mathjax=True),
dash_table.DataTable(
id='coefficients-table',
columns=[
{"name": col, "id": col} for col in table_data.columns
],
data=table_data.to_dict('records'),
style_table={'overflowX': 'auto'},
style_cell={'textAlign': 'left'}
)
], style={'width': '70%', 'margin': 'auto'})
elif tab == 'data-tab':
return html.Div([
dcc.Markdown('''
## The Data
'''),
dcc.Markdown('''
#### Sources
The data for this project comes from several sources:
- **TIGER2019**: Shapes for the census PUMAs and for state, as well as historical roads.
- **Public Use Microdata Areas (PUMAs)**: Contains most control variables.
- The [TIGER2023](https://www2.census.gov/geo/tiger/TIGER2023/TABBLOCK20/) is used to obtain the shapes for the census block for each individual state.
'''),
], style={'width': '70%', 'margin': 'auto'})
# Callback to update the map graph based on the selected options
@app.callback(
Output('map-graph', 'figure'),
[Input('update-graph-btn', 'n_clicks')],
[State('state-dropdown', 'value'),
State('sex-dropdown', 'value'),
State('race-dropdown', 'value'),
State('mode-dropdown', 'value'),
State('year-slider', 'value')]
)
def update_figure(n_clicks, state, sex, race, mode, year):
df = data.graph(state, sex, race)
df = df[df['year'] == year] # Filter data for the selected year
fig = px.choropleth_mapbox(df,
geojson=df.geometry,
locations=df.index,
color=mode,
center={"lat": 37.0902, "lon": -95.7129},
mapbox_style="carto-positron",
color_continuous_scale="Viridis",
zoom=3)
return fig
# Run the app
if __name__ == '__main__':
app.run_server(debug=False, host="0.0.0.0", port=7050)