Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

🐛 Remove Google Sheet from sources of fast-tracked datasets #3618

Merged
merged 5 commits into from
Nov 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion apps/wizard/app_pages/fasttrack/load.py
Original file line number Diff line number Diff line change
Expand Up @@ -294,7 +294,7 @@ def _parse_sources(sources_meta_df: pd.DataFrame) -> Optional[Source]:
source = sources[0]

if pd.isnull(source.get("date_accessed")):
source.pop("date_accessed")
source.pop("date_accessed", None)

if pd.isnull(source.get("publication_year")):
source.pop("publication_year")
Expand Down
2 changes: 1 addition & 1 deletion apps/wizard/app_pages/fasttrack/process.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,7 @@ def _convert_percentages(data: pd.DataFrame, variables_meta_dict: Dict[str, Vari
"""Convert percentages to numbers."""
for col in data.columns:
if getattr(variables_meta_dict.get(col, {}), "unit", "") == "%":
data[col] = data[col].str.replace("%", "").astype(float)
data[col] = data[col].astype(str).str.replace("%", "").astype(float)
return data


Expand Down
Original file line number Diff line number Diff line change
@@ -1,40 +1,18 @@
dataset:
namespace: fasttrack
version: '2022-11-01'
short_name: lighting_efficiency_uk
title: Lighting effiency and shares in the UK
description: ''
sources:
- name: 'Fouquet & Pearson (2006). Seven centuries of energy services: The price
and use of light in the United Kingdom (1300-2000).'
published_by: 'Fouquet, R., & Pearson, P. J. (2006). Seven centuries of energy
services: The price and use of light in the United Kingdom (1300-2000). The
energy journal, 27(1).'
url: https://www.jstor.org/stable/23296980
licenses:
- {}
tables:
lighting_efficiency_uk:
variables:
share_of_lighting_uk:
title: share_of_lighting_uk
short_unit: '%'
unit: '%'
short_unit: '%'
description: The share of lighting in the UK that was provided by each source.
sources:
- name: 'Fouquet & Pearson (2006). Seven centuries of energy services: The
price and use of light in the United Kingdom (1300-2000).'
published_by: 'Fouquet, R., & Pearson, P. J. (2006). Seven centuries of
energy services: The price and use of light in the United Kingdom (1300-2000).
The energy journal, 27(1).'
url: https://www.jstor.org/stable/23296980
efficiency_lighting_uk:
title: efficiency_lighting_uk
unit: lumen-hours per kWh
description: The efficiency of lighting measures the output of light per unit
of energy. It's measured in lumen-hours per kilowatt-hour (kWh).
sources:
- name: 'Fouquet & Pearson (2006). Seven centuries of energy services: The
price and use of light in the United Kingdom (1300-2000).'
published_by: 'Fouquet, R., & Pearson, P. J. (2006). Seven centuries of
energy services: The price and use of light in the United Kingdom (1300-2000).
The energy journal, 27(1).'
url: https://www.jstor.org/stable/23296980
description: |-
The efficiency of lighting measures the output of light per unit of energy. It's measured in lumen-hours per kilowatt-hour (kWh).
Original file line number Diff line number Diff line change
@@ -1,21 +1,40 @@
import pandas as pd
from owid import catalog

from etl.helpers import PathFinder
from etl.helpers import PathFinder, create_dataset, get_metadata_path
from etl.snapshot import Snapshot

N = PathFinder(__file__)
paths = PathFinder(__file__)


def run(dest_dir: str) -> None:
# load snapshot
data = pd.read_csv(Snapshot("fasttrack/2022-11-01/lighting_efficiency_uk.csv").path)
snap = Snapshot("fasttrack/2022-11-01/lighting_efficiency_uk.csv")

# create empty dataframe and table
ds = catalog.Dataset.create_empty(dest_dir)
tb = catalog.Table(data, short_name=N.short_name)
# load data
tb = snap.read_csv()

# add dimensions with dim_ prefix
dims = [c for c in tb.columns if c.startswith("dim_")]
dims_without_prefix = [c[4:] for c in dims]

if dims:
tb = tb.rename(columns={d: dw for d, dw in zip(dims, dims_without_prefix)})

if uses_dates(tb["year"]):
tb = tb.rename(columns={"year": "date"}).format(["country", "date"] + dims_without_prefix)
else:
tb = tb.format(["country", "year"] + dims_without_prefix)

# add table, update metadata from *.meta.yml and save
ds.add(tb)
ds.update_metadata(N.metadata_path)
ds = create_dataset(dest_dir, tables=[tb], default_metadata=snap.metadata)

# override metadata if necessary
meta_path = get_metadata_path(dest_dir).with_suffix(".override.yml")
if meta_path.exists():
ds.update_metadata(meta_path)

ds.save()


def uses_dates(s: pd.Series) -> bool:
return pd.to_datetime(s, errors="coerce", format="%Y-%m-%d").notnull().all()
Loading