-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsospsimplify.m
executable file
·410 lines (356 loc) · 15.4 KB
/
sospsimplify.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
function [A,b,K,z,dv2x,Nfv,feas,zrem, removed_rows] = sospsimplify(A,b,K,z,dv2x,Nsosvarc, tol)
% function [A,b,K,z,dv2x,Nfv,feas,zrem, removed_rows] = sospsimplify(A,b,K,z,dv2x,Nsosvarc)
%
% INPUT
% A - a constraint matrix that needs to be simplified (A*x = b)
% b - a constraint vector that needs to be simplified (A*x = b)
% K - describe the PSD cone in the Sedumi format
% z - vector of monomials
% dv2x - map between Sedumi variable and A matrix (x(dv2x(i)) = dv(i))
% Nsosvarc - Number of PD constraints
% tol - desired tolerance for the simplification procedure
%
% OUTPUT
% A - simplified matrix A
% b - simplified vector b
% K - simplified K
% dv2x - reduced map between environment variables and monomials
% Nfv - the number of free variables
% feas - 0 if the problem is clearly infeasible, 1 otherwise
% zrem - removed monomials
% removed_rows - removed rows of matrix A
%
% DESCRIPTION
% This function performs a simplification procedure on the SOS problem.
% First, it tries to detect the sign of optimization variables based on
% simple constraints. Second, it searches for monomials that can be
% removed from each SOS constraint. This search is based on diagonal
% entries of the Gram matrix that are forced to be zero and it is
% equivalent to the Newton Polytope method. These two steps are repeated
% until no new sign information can be detected. The removed monomials
% are stored in zrem.
%
% In the code, the information about the sign of the optimization
% variables is stored in xsign where:
% xsign(i)=NaN if x(i) has unknown sign
% xsign(i)=+1 if x(i)>=0
% xsign(i)=-1 if x(i)<=0
% xsign(i)=0 if x==0
%
% This file is part of SOSTOOLS - Sum of Squares Toolbox ver 4.00.
%
% Copyright (C)2002, 2004, 2013, 2016, 2018, 2021
% A. Papachristodoulou (1), J. Anderson (1),
% G. Valmorbida (2), S. Prajna (3),
% P. Seiler (4), P. A. Parrilo (5),
% M. Peet (6), D. Jagt (6), A. Talitckii (6),
% (1) Department of Engineering Science, University of Oxford, Oxford, U.K.
% (2) Laboratoire de Signaux et Systmes, CentraleSupelec, Gif sur Yvette,
% 91192, France
% (3) Control and Dynamical Systems - California Institute of Technology,
% Pasadena, CA 91125, USA.
% (4) Aerospace and Engineering Mechanics Department, University of
% Minnesota, Minneapolis, MN 55455-0153, USA.
% (5) Laboratory for Information and Decision Systems, M.I.T.,
% Massachusetts, MA 02139-4307
% (6) Cybernetic Systems and Controls Laboratory, Arizona State University,
% Tempe, AZ 85287-6106, USA.
%
% Send bug reports and feedback to: [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Change log and developer notes
% 9/21/08 PJS Initial Coding
% 12/14/10 PJS Bug related to re-indexing of dv2x when removing free vars
% 9/11/21 AT - add new output 'removed rows' to aid in reconstruction in SOSTOOLS
% removed equality constraints for remaining dec vars known to be zero
% 09/11/21 AT Bug related to A( : , abs(xsign)< tol ) = 0;
% Change all element-wise operations to 'spfun' for sparse matrix
% 01/30/23 DJ Comment out lines that do not contribute in
% LOCALxsignupdate(xsignOld,A,b, tol)
% 08/13/23 DJ Bugfixes:
% Reintroduce tolerance in LOCALxsignupdate(xsign,A,b, tol);
% Correct indices in updating sign of variables;
%--------------------------------------------------------------------
% Grab problem dimensions
%--------------------------------------------------------------------
Nfv = K.f;
Nlp = K.l;
Nx = size(A,2);
% XXX -- We need a tolerance here. How should we choose tol?
% Should It be the same tolerance as sedumi solver?.
% tol = 1e-12;
%--------------------------------------------------------------------
% Find non-negative optimization variables
%--------------------------------------------------------------------
xsign = NaN([Nx,1]);
% Process LP constraints: A*d+y=b, y>=0
if Nlp>0
% LP slack vars are >= 0
xsign(Nfv+1:Nfv+Nlp) = +1;
end
% Process SOS Inequality Constraints: Ad*d + Aq*Q(:) = b and Q>=0
ptr = Nfv+Nlp;
for i1=1:length(K.s)
% Diag entries of Q are >= 0
lz = K.s(i1);
diagidx = (0:lz-1)*lz+(1:lz);
xsign(ptr+diagidx) = +1;
ptr = ptr+lz^2;
end
%--------------------------------------------------------------------
% Find dec vars and monomials that can be removed
%--------------------------------------------------------------------
go = 1;
zrem = cell(length(K.s),1);
xsignprev = xsign;
while (go == 1)
% Use simple constraints to determine sign of optimization vars.
xsign = LOCALxsignupdate(xsign,A,b, tol);
% AT: This line can make unfeasible problem to feasible, look at
% test_dpvar_SOS_nonlinear_stability (n, deg, rng) = (3, 3, 70)
% A( : , abs(xsign)< tol ) = 0;
% Monomial reduction procedure
% (This is equivalent to the Newton Polytope method)
ptr = Nfv+Nlp;
for i1=1:length(K.s)
% Find diag entries of Q that are forced to be zero
lz = K.s(i1);
% if lz <15
% continue
% end
diagidx = (0:lz-1)*lz+(1:lz);
Qsign = xsign(ptr+diagidx);
loc = find(abs(Qsign)< tol);
if ~isempty(loc)
% Corresponding rows/cols of zero diag entries are also zero
tmp = sparse(lz,lz);
tmp(loc,:) = 1;
tmp(:,loc) = 1;
rmidx = find(tmp)+ptr;
% Remove vars/monoms associated with zero Gram matrix entries
A(:,rmidx) = [];
% AA(:,rmidx) = [];
xsign(rmidx) = [];
zrem{i1} = [zrem{i1}; z{i1}(loc)];
z{i1}(loc) = [];
%K.s(i1) = size( z{i1}, 1); %length( z{i1} );
if isempty(z{i1})
K.s(i1) = 0;
else
K.s(i1) = length( z{i1} );
end
% Update the mapping of dec vars into the optimization vars
if i1<=Nsosvarc
% Number of optim vars to remove
Nremove = length(rmidx);
% Optim vars currently in this block (before removal)
blkidx = ptr+(1:lz^2);
% Mark removed dec vars
dv2x( ismember(dv2x,rmidx) ) = 0;
% Relabel the remaining dec vars in this block
% AT 09/10/2021 sostools uses all variable and not just a
% low triangle part like sosp
dv2x( ismember(dv2x,blkidx) ) = ptr + (1:K.s(i1)^2)';
% Relabel remaining dec vars in subsequent blocks
idx = (dv2x>blkidx(end));
dv2x(idx) = dv2x(idx) - Nremove;
end
end
% Update pointer
ptr = ptr+K.s(i1)^2;
end
% Continue if xsign has been updated
go = ~isequalwithequalnans(xsign,xsignprev);
xsignprev = xsign;
end
%--------------------------------------------------------------------
% Clean up
%--------------------------------------------------------------------
% Mark removed free decision vars
rmidx = find( abs(xsign(1:K.f))< tol );
Nremf = length(rmidx);
A(:,rmidx) = [];
%xsign(rmidx) = [];
dv2x( ismember(dv2x,rmidx) ) = 0;
idx = (dv2x<=K.f & dv2x>0);
K.f = K.f - Nremf;
Nfv = K.f;
dv2x(idx) = 1:Nfv;
idx2 = find(dv2x>K.f & dv2x>0);
dv2x(idx2) = dv2x(idx2)-Nremf;
% Remove any constraints of the form 0=0 (up to tolerance)
ridx = ( sum(abs(A)>tol,2)==0 & abs(b)<max(tol,tol*max(abs(b))) );
A(ridx,:) = [];
b(ridx) = [];
% just a new output
removed_rows = find(ridx);
% Check for infeasible problems of the form 0 = bi where bi is not equal
% to zero (Our simplify code should flag infeasible problems because
% Sedumi can error out on problems that are trivially infeasible)
feas = 1;
if isempty(A)
return
elseif any(sum(abs(A)>tol,2)==0 & abs(b)>tol*max(abs(b)) )
feas = 0;
end
% Add equality constraints for remaining dec vars known to be zero
% Now sossolve set the values equal 0.
% idx = find( xsign==0 );
% lidx = length(idx);
% A(end+1:end+lidx,idx) = speye(lidx);
% b = [b; sparse(lidx,1)];
%--------------------------------------------------------------------
% Local function to update sign of optimization var
%--------------------------------------------------------------------
function xsign = LOCALxsignupdate(xsignOld,A,b, tol)
% % AT: change a lot of elementwise operations to
% % spfun(@function, sparse matrix)
% % The tolerance is used for sign function
% % Now the sign function is used without tolerance
% % DJ, 08/13/23: Reintroduce tolerance in searching for "ridx"
% % Note that values in A and b with magnitude smaller than
% % tol will be interpreted as zero...
% Initialize output
xsign = xsignOld;
% Process constraints of the form: aij*xj = bi
%ridx = find( sum(spones(A), 2)==1 );
ridx = find(sum(abs(A)>tol,2)==1); % DJ, 08/13/23
if ~isempty(ridx)
[cidx,~]=find( abs(A(ridx,:)')>tol );
%[cidx,~]=find( abs(A(ridx,:)')>0 );
idx = sub2ind(size(A),ridx,cidx); % DJ, 01/30/2023
% change element wise operation for sparse matrix.
signA = spfun(@sign, A(idx) );
signb = spfun(@sign, b(ridx) );
xsignUpdate = signA.*signb;
% xsignUpdate = signb;
% % XXX PJS 12/07/09: If cidx = [2;2] and xsignUpdate = [1; NaN] then
% % the next line will replace xsign(2) with NaN because the last index
% % in a subsasgn wins. This caused problems on a GSOSOPT problem.
% %
% % xsign(cidx) = LOCALupdate(xsign(cidx),xsignUpdate);
%
% % The correct code (also below) is below. I'll try to vectorize
% % if speed becomes an issue.
% % for i1 =1:length(cidx)
% % xsign(cidx(i1)) = LOCALupdate(xsign(cidx(i1)),xsignUpdate(i1));
% % end
% Check for unique rows of xsign to update.
cxU = uniquerows_integerTable([cidx,xsignUpdate]); % DJ, 08/13/23
zidx = cxU(:,2)==0;
pidx = cxU(:,2)>=0.5;
nidx = cxU(:,2)<=-0.5;
% Update the sign of the specified rows.
xsign(cxU(zidx,1)) = 0;
xsign(cxU(pidx,1)) = LOCALupdate(xsign(cxU(pidx,1)),cxU(pidx,2));
xsign(cxU(nidx,1)) = LOCALupdate(xsign(cxU(nidx,1)),cxU(nidx,2));
end
%
% % Process constraints of the form: aij*xj + aik*xk = bi
ridx = find(sum(abs(A)>tol,2)==2); % DJ, 08/13/23
if ~isempty(ridx)
% [cidx, tmp] = find( A(ridx,:)' ); %remove tolerance, AT 10-15-21
[cidx, ~] = find( abs(A(ridx,:)')>tol ); % re-introduce tolerance, DJ
cidx = reshape(cidx,[2 length(ridx)])';
cidx1 = cidx(:,1);
idx1 = sub2ind(size(A),ridx,cidx1);
cidx2 = cidx(:,2);
idx2 = sub2ind(size(A),ridx,cidx2);
% Set sign of xj = bi/aij - (aik/aij)*xk
c1 = sign(b(ridx)./A(idx1));
c2 = sign(-A(idx2)./A(idx1));
xsignUpdate = NaN([length(ridx) 1]);
xsignUpdate( c1<=0 & (c2.*xsign(cidx2)<=0) ) = -1;
xsignUpdate( c1>=0 & (c2.*xsign(cidx2)>=0) ) = +1;
zidx = xsignUpdate==1 & xsignUpdate==-1;
pidx = xsignUpdate==1 & ~zidx;
nidx = xsignUpdate==-1 & ~zidx;
cxUz = uniquerows_integerTable([cidx1(zidx),xsignUpdate(zidx)]);
cxUp = uniquerows_integerTable([cidx1(pidx),xsignUpdate(pidx)]);
cxUn = uniquerows_integerTable([cidx1(nidx),xsignUpdate(nidx)]);
xsign(cxUz(:,1)) = 0;
xsign(cxUp(:,1)) = LOCALupdate(xsign(cxUp(:,1)),cxUp(:,2));
xsign(cxUn(:,1)) = LOCALupdate(xsign(cxUn(:,1)),cxUn(:,2));
% Set sign of xk = bi/aik - (aij/aik)*xj
c1 = sign(b(ridx)./A(idx2));
c2 = sign(-A(idx1)./A(idx2));
xsignUpdate = NaN([length(ridx) 1]);
xsignUpdate( c1<=0 & (c2.*xsign(cidx1)<=0) ) = -1;
xsignUpdate( c1>=0 & (c2.*xsign(cidx1)>=0) ) = +1;
zidx = xsignUpdate==1 & xsignUpdate==-1;
pidx = xsignUpdate==1 & ~zidx;
nidx = xsignUpdate==-1 & ~zidx;
cxUz = uniquerows_integerTable([cidx2(zidx),xsignUpdate(zidx)]);
cxUp = uniquerows_integerTable([cidx2(pidx),xsignUpdate(pidx)]);
cxUn = uniquerows_integerTable([cidx2(nidx),xsignUpdate(nidx)]);
xsign(cxUz(:,1)) = 0;
xsign(cxUp(:,1)) = LOCALupdate(xsign(cxUp(:,1)),cxUp(:,2));
xsign(cxUn(:,1)) = LOCALupdate(xsign(cxUn(:,1)),cxUn(:,2));
end
% % Process constraints of the form: aij*xj + aik*xk + ail*xl= 0
% % where aij*xj, aik*xk, ail*xl all have the same sign.
% % This implies that each of the three vars = 0
%ridx = find( sum(spones(A),2)==3 & spones(b) < tol );
ridx = find(sum(abs(A)>tol,2)==3 & abs(b)<tol); % DJ, 08/13/23
% Note that A and b sufficiently small will be interpreted as 0, which
% may lead to false positives in solving...
if ~isempty(ridx)
[cidx,~]=find( abs(A(ridx,:)')>tol );
cidx = reshape(cidx,[3 length(ridx)])';
cidx1 = cidx(:,1);
idx1 = sub2ind(size(A),ridx,cidx1);
cidx2 = cidx(:,2);
idx2 = sub2ind(size(A),ridx,cidx2);
cidx3 = cidx(:,3);
idx3 = sub2ind(size(A),ridx,cidx3);
% All terms are non-neg
rsign = (sign(A(idx1)).*xsign(cidx1)>=tol) & (sign(A(idx2)).*xsign(cidx2)>=tol) ...
& (sign(A(idx3)).*xsign(cidx3)>=tol);
% idx = find(rsign==1);
% for i1=idx
% xsign(cidx1(i1)) = 0;
% xsign(cidx2(i1)) = 0;
% xsign(cidx3(i1)) = 0;
% end
xsign(cidx1(rsign)) = 0;
xsign(cidx2(rsign)) = 0;
xsign(cidx3(rsign)) = 0;
% All terms are non-pos
rsign = (sign(A(idx1)).*xsign(cidx1)<=-tol) & (sign(A(idx2)).*xsign(cidx2)<=-tol) ...
& (sign(A(idx3)).*xsign(cidx3)<=-tol);
% idx = find(rsign==1);
% for i1=idx
% xsign(cidx1(i1)) = 0;
% xsign(cidx2(i1)) = 0;
% xsign(cidx3(i1)) = 0;
% end
xsign(cidx1(rsign)) = 0;
xsign(cidx2(rsign)) = 0;
xsign(cidx3(rsign)) = 0;
end
%--------------------------------------------------------------------
% Local function to update sign of optimization var
%--------------------------------------------------------------------
function xsignNew = LOCALupdate(xsign,xsignUpdate)
% Find constraints that force ai=0, ai<0 and ai>0
zidx = ( (xsignUpdate==0) | (xsign==-1 & xsignUpdate>0.5) | (xsign==+1 & xsignUpdate<-0.5));
nidx = ( isnan(xsign) & xsignUpdate<-0.5);
pidx = ( isnan(xsign) & xsignUpdate>0.5 );
% Update xsign
xsignNew = xsign;
xsignNew( zidx ) = 0;
xsignNew( nidx ) = -1;
xsignNew( pidx ) = +1;