forked from GLFC-WET/hydroweight
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
1262 lines (1038 loc) · 51.1 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "hydroweight: Inverse distance-weighted rasters and landscape attributes"
output:
github_document:
pandoc_args: --webtex
editor_options:
markdown:
wrap: 72
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
[![DOI](https://zenodo.org/badge/330996075.svg)](https://zenodo.org/badge/latestdoi/330996075)
## Contents
- [1.0 Introduction](#10-introduction)
- [2.0 System setup and installation](#20-system-setup-and-installation)
- [3.0 Inverse distance-weighted rasters using `hydroweight()`](#30-inverse-distance-weighted-rasters-using-hydroweight)
- [3.1 Generate toy terrain dataset](#31-generate-toy-terrain-dataset)
- [3.2 Generate targets](#32-generate-targets)
- [3.3 Run `hydroweight()`](#33-run-hydroweight)
- [3.4 Run `hydroweight()` across a set of sites](#34-run-hydroweight-across-a-set-of-sites)
- [3.5 Using `iFLO` output as catchment boundaries for `hydroweight_attributes()`](#35-using-iFLO-output-as-catchment-boundaries-for-hydroweight_attributes)
- [4.0 Inverse distance-weighted rasters using `hydroweight_attributes()`](#40-inverse-distance-weighted-attributes-using-hydroweight_attributes)
- [4.1 Using a numeric raster layer of interest](#41-using-a-numeric-raster-layer-of-interest)
- [4.2 Using a categorical raster layer of interest](#42-using-a-categorical-raster-layer-of-interest)
- [4.3 Using a polygon layer of interest with numeric data in the column](#43-using-a-polygon-layer-of-interest-with-numeric-data-in-the-column)
- [4.4 Using a polygon layer of interest with categorical data in the column](#44-using-a-polygon-layer-of-interest-with-categorical-data-in-the-column)
- [5.0 Inverse distance-weighted rasters and attributes across multiple layers and sites](#50-inverse-distance-weighted-rasters-and-attributes-across-multiple-sites-and-layers)
- [5.1 Run hydroweight across sites](#51-Run-hydroweight-across-sites)
- [5.2 Generate `loi` lists populated with `hydroweight_attributes()` parameters](#52-generate-loi-lists-populated-with-hydroweight_attributes-parameters)
- [5.3 Run `hydroweight_attributes()` across sites and layers](#53-run-hydroweight_attributes-across-sites-and-layers)
- [5.4 Extract and adjust results data frames](#54-extract-and-adjust-results-data-frames)
- [6.0 Processing large amounts of data](#60-Processing-large-amounts-of-data)
- [7.0 Future plans](#70-future-plans)
- [8.0 Acknowledgements](#80-acknowledgements)
- [9.0 References](#90-references)
- [10.0 Copyright](#100-copyright)
## 1.0 Introduction
```{r pressure, echo=FALSE, out.width = '75%', fig.align = 'center'}
knitr::include_graphics("man/figures/README-unnamed-chunk-6-1.png")
```
Environmental scientists often want to calculate landscape statistics
within upstream topographic contributing areas (i.e., catchments) to
examine their potential effects on a target (e.g., stream network point
or waterbody). When calculating landscape statistics like the proportion
of upstream urban cover, practitioners typically use a "lumped"
approach; this approach gives equal weighting to areas nearby and far
away from the target (Peterson et al. 2011).
A more spatially explicit approach could be to generate buffers of
successive distances away from the target and calculate the lumped
statistics. For example, one could calculate the proportion of urban
cover in a 250 m buffer and a 1000 m buffer from the target (Kielstra et
al. 2019).
Another approach is to calculate landscape statistics based on distances
to the target where areas nearby have more weight than those farther
away (i.e., inverse distance-weighting). A set of inverse distance
weighting scenarios for stream survey sites was described in Peterson
*et al.* (2011) that included various types of Euclidean and flow-path
distances to targets. Tools are implemented as *IDW-Plus* in *ArcGIS*
(Peterson et al. 2017) as well as in *rdwplus* in *R* through *GRASS
GIS* (Pearse et al. 2019).
***hydroweight*** replicates the above approaches but also provides a
set of simple and flexible functions to accommodate a wider set of
scenarios and statistics (e.g., numerical and categorical rasters and
polygons). It also uses the speedy WhiteboxTools (Lindsay 2016, Wu
2020).
There are two functions:
- `hydroweight()` generates distance-weighted rasters for targets on a
digital elevation model raster. Examples of targets include single
points, areas such as lakes, or linear features such as streams. The
function outputs a list of `length(weighting_scheme)` and an
accompanying `*.rds` file of distance-weighted rasters for targets
(`target_O` is a point/area target as in iFLO and `target_S` is a
linear feature target as in iFLS in Peterson *et al.* 2011).
IMPORTANTLY, this function acts on a single set of targets but can
produce multiple weights. The distance-weighted rasters can be used
for generating distance-weighted attributes with
`hydroweight_attributes()` (e.g., % urban cover weighted by flow
distance to a point). See `?hydroweight`.
- `hydroweight_attributes()` calculates distance-weighted attributes
using distance-weighted rasters generated in `hydroweight()`, an
attribute layer (`loi`, e.g., land use raster/polygon), and a region
of interest (`roi`, e.g., a catchment polygon). The function outputs
an attribute summary table or a list that includes the summary table
and layers used for calculation. Summary statistics are calculated
as in Peterson *et al.* (2011). IMPORTANTLY, this function only
produces one instance of the `loi` x `distance_weights` summary
statistics (i.e., one `loi`, one `roi`, and one set of
`distance_weights`). See `?hydroweight_attributes`.
Workflows are provided below to run these functions across multiple
sites and layers.
Distance weights defined by Peterson *et al.* (2011) are:
| Distance weight | Definition | Input layers required |
|-----------------------|------------------|--------------------------------|
| lumped | all weights = 1 | `dem`, `target_O`/`target_S` |
| iEucO | weighted inverse Euclidean distance to `target_O` (i.e., stream outlet) | `dem`, `target_O` |
| iEucS | weighted inverse Euclidean distance to `target_S` (i.e., streams) | `dem`, `target_S` |
| iFLO | weighted inverse flow-path distance to `target_O` using d8 flow direction | `dem`, `target_O` |
| HAiFLS | hydrologically-active (proportional to flow accumulation) weighted inverse flow-path distance to `target_S` using d8 flow direction | `dem`, `target_S`, `accum` |
[Back to top](#contents)
## 2.0 System setup and installation
*WhiteboxTools* and *whitebox* are required for ***hydroweight***. See
[whiteboxR](https://github.com/giswqs/whiteboxR) or below for
installation.
```{r, eval = FALSE}
## Follow instructions for whitebox installation accordingly
## devtools::install_github("giswqs/whiteboxR") # For development version
## whitebox is now available on CRAN
#install.packages("whitebox")
library(whitebox)
if (F){
install_whitebox()
# Possible warning message:
# ------------------------------------------------------------------------
# Could not find WhiteboxTools!
# ------------------------------------------------------------------------
#
# Your next step is to download and install the WhiteboxTools binary:
# > whitebox::install_whitebox()
#
# If you have WhiteboxTools installed already run `wbt_init(exe_path=...)`':
# > wbt_init(exe_path='/home/user/path/to/whitebox_tools')
#
# For whitebox package documentation, ask for help:
# > ??whitebox
#
# For more information visit https://giswqs.github.io/whiteboxR/
#
# ------------------------------------------------------------------------
}
## Install current version of hydroweight
#devtools::install_github("bkielstr/hydroweight@main")
```
[Back to top](#contents)
## 3.0 Inverse distance-weighted rasters using `hydroweight()`
### 3.1 Generate toy terrain dataset
We begin by bringing in our toy digital elevation model and using it to
generate terrain products.
```{r, message = FALSE, error = FALSE, warning = FALSE}
## Load libraries
library(dplyr)
library(foreach)
library(future.apply)
library(hydroweight)
library(terra)
library(sf)
library(viridis)
library(whitebox)
library(mapview)
## Import toy_dem from whitebox package
toy_file<-sample_dem_data()
toy_file <- system.file("extdata", "DEM.tif", package = "whitebox")
toy_dem <- rast(x = toy_file) # reading the file from terra directly sometimes crashes R for some reason
crs(toy_dem) <- "epsg:3161"
## Generate hydroweight_dir as a temporary directory
hydroweight_dir <- tempdir()
## Write toy_dem to hydroweight_dir
writeRaster(
x = toy_dem, filename = file.path(hydroweight_dir, "toy_dem.tif"),
overwrite = TRUE
)
## Breach depressions to ensure continuous flow
wbt_breach_depressions(
dem = file.path(hydroweight_dir, "toy_dem.tif"),
output = file.path(hydroweight_dir, "toy_dem_breached.tif")
)
## Generate d8 flow pointer (note: other flow directions are available)
wbt_d8_pointer(
dem = file.path(hydroweight_dir, "toy_dem_breached.tif"),
output = file.path(hydroweight_dir, "toy_dem_breached_d8.tif")
)
## Generate d8 flow accumulation in units of cells (note: other flow directions are available)
wbt_d8_flow_accumulation(
input = file.path(hydroweight_dir, "toy_dem_breached.tif"),
output = file.path(hydroweight_dir, "toy_dem_breached_accum.tif"),
out_type = "cells"
)
## Generate streams with a stream initiation threshold of 2000 cells
wbt_extract_streams(
flow_accum = file.path(hydroweight_dir, "toy_dem_breached_accum.tif"),
output = file.path(hydroweight_dir, "toy_dem_streams.tif"),
threshold = 2000
)
```
[Back to top](#contents)
### 3.2 Generate toy targets
Next we generate a few targets below. Users can provide their own vector
or raster type targets (see `?hydroweight`). Targets are often called
*pour points* in the literature; here, targets can be a group of raster
cells, polygons, polylines, or points.
Our first target is a low lying area we will call a lake (`tg_O`). All
cells \<220 m elevation are assigned `TRUE` or `1` and those \>220 m are
assigned `NA`. We also generate its catchment (`tg_O_catchment`) using
`whitebox::wbt_watershed()`. Our target streams (`tg_S`) are loaded from
the `whitebox::wbt_extract_streams()` output. Finally, we do some
manipulation to the stream network raster to generate three points along
the stream network (`tg_O_multi`) and their catchments
(`tg_O_multi_catchment`).
```{r, fig.width = 5, fig.height = 5, message = FALSE, error = FALSE, warning = FALSE}
## For hydroweight, there are target_O and target_S
## target_O is a target point/area for calculating distances
## target_S is a stream/linear feature target for calculating distances
## Generate target_O, tg_O, representing a lake.
tg_O <- toy_dem < 220
tg_O[tg_O != 1] <- NA
writeRaster(tg_O, file.path(hydroweight_dir, "tg_O.tif"), overwrite = TRUE)
tg_O <- terra::as.polygons(tg_O, dissolve = TRUE)
tg_O <- sf::st_as_sf(tg_O)
## Generate catchment for tg_O
wbt_watershed(
d8_pntr = file.path(hydroweight_dir, "toy_dem_breached_d8.tif"),
pour_pts = file.path(hydroweight_dir, "tg_O.tif"),
output = file.path(hydroweight_dir, "tg_O_catchment.tif")
)
tg_O_catchment <- rast(file.path(hydroweight_dir, "tg_O_catchment.tif"))
tg_O_catchment <- as.polygons(tg_O_catchment, dissolve = TRUE)
tg_O_catchment <- st_as_sf(tg_O_catchment)
names(tg_O_catchment)[1]<-"Lake"
## Generate target_S, tg_S, representing the stream network
tg_S <- rast(file.path(hydroweight_dir, "toy_dem_streams.tif"))
## Generate target_O, tg_O, representing several points along stream network, and their catchments
tg_O_multi <- rast(file.path(hydroweight_dir, "toy_dem_streams.tif"))
tg_O_multi <- as.points(tg_O_multi)
tg_O_multi <- st_as_sf(tg_O_multi)
tg_O_multi <- tg_O_multi[st_coordinates(tg_O_multi)[, 1] < 675000, ] # selects single network
tg_O_multi <- tg_O_multi[c(10, 50, 100), ]
tg_O_multi$Site <- c(1, 2, 3)
tg_O_multi<-tg_O_multi[,-c(1)]
tg_O_multi_catchment <- foreach(xx = 1:nrow(tg_O_multi), .errorhandling = "pass") %do% {
## Take individual stream point and write to file
sel <- tg_O_multi[xx, ]
st_write(sel, file.path(hydroweight_dir, "tg_O_multi_single.shp"),
delete_layer = TRUE, quiet = TRUE
)
## Run watershed operation on stream point
wbt_watershed(
d8_pntr = file.path(hydroweight_dir, "toy_dem_breached_d8.tif"),
pour_pts = file.path(hydroweight_dir, "tg_O_multi_single.shp"),
output = file.path(hydroweight_dir, "tg_O_multi_single_catchment.tif")
)
## Load catchment and convert to polygon with Site code.
sel_catchment_r <- rast(file.path(hydroweight_dir, "tg_O_multi_single_catchment.tif"))
sel_catchment_r <- as.polygons(sel_catchment_r, dissolve = TRUE)
sel_catchment_r$Site <- sel$Site
sel_catchment_r <- st_as_sf(sel_catchment_r)
return(sel_catchment_r)
}
tg_O_multi_catchment <- bind_rows(tg_O_multi_catchment)
## Plot locations
par(mfrow = c(1, 1))
plot(toy_dem, legend = TRUE, col = viridis(101), cex.axis = 0.75, axis.args = list(cex.axis = 0.75))
plot(tg_S, col = "grey", add = TRUE, legend = FALSE)
plot(st_geometry(tg_O), col = "red", add = TRUE)
plot(st_geometry(tg_O_multi), col = "red", pch = 25, add = TRUE)
plot(st_geometry(tg_O_multi_catchment), col = NA, border = "red", add = TRUE)
legend("bottom", legend = c("target_O sites", "target_S"), fill = c("red", "grey"), horiz = TRUE, bty = "n", cex = 0.75)
```
[Back to top](#contents)
### 3.3 Run `hydroweight()`
Below, `hydroweight()` is run using our lake as `target_O` for iEucO,
iFLO, and HAiFLO, and using our streams as `target_S` for iEucS, iFLS,
and HAiFLS. For export of the distance-weighted rasters, we use "Lake";
the .rds exported from `hydroweight()` to `hydroweight_dir` will now be
called "Lake_inv_distances.rds". Since our DEM is small, we decide to
not clip our region (i.e., `clip_region = NULL`). Using
`OS_combine = TRUE`, we indicate that distances to the nearest water
feature will be either the lake or stream. Furthermore, for HAiFLO or
HAiFLS, both the lake and streams will be set to NoData for their
calculation as these represent areas of concentrated flow rather than
areas of direct terrestrial-aquatic interaction (see Peterson *et al.*
2011). Our `dem` and `flow_accum` are assigned using character strings
with the `.tif` files located in `hydroweight_dir`. Weighting schemes
and the inverse function are indicated.
Note that these distance-weighted rasters will eventually be clipped to
an `roi` - a region of interest like a site's catchment - in
`hydroweight_attributes()`. The value for `clipped_region` is really
meant to decrease processing time of large rasters.
See `?hydroweight` for more details.
```{r, fig.width = 5, fig.height = 5, message = TRUE, error = FALSE, warning = FALSE}
## Generate inverse distance-weighting function
myinv <- function(x) {
(x * 0.001 + 1)^-1
} ## 0.001 multiplier turns m to km
## Plot inverse distance-weighting function
par(mfrow = c(1, 1))
x <- seq(from = 0, to = 10000, by = 100)
y <- myinv(x)
plot((x / 1000), y, type = "l", xlab = "Distance (km)", ylab = "Weight", bty = "L", cex.axis = 0.75, cex.lab = 0.75)
text(6, 0.8, expression("(Distance + 1)"^-1), cex = 0.75)
```
```{r, fig.width = 6, fig.height = 4, message = TRUE, error = FALSE, warning = FALSE }
## Run hydroweight::hydroweight()
hw_test_1 <- hydroweight(
hydroweight_dir = hydroweight_dir,
target_O = tg_O,
target_S = tg_S,
target_uid = "Lake",
clip_region = tg_O_multi_catchment[1,1],
OS_combine = TRUE,
dem = file.path(hydroweight_dir,"toy_dem_breached.tif"),
flow_accum = file.path(hydroweight_dir,"toy_dem_breached_accum.tif"),
weighting_scheme = c(
"lumped", "iEucO", "iFLO", "HAiFLO",
"iEucS", "iFLS", "HAiFLS"
),
inv_function = myinv,
clean_tempfiles=F
)
hw_test_1<-lapply(hw_test_1,rast)
## Resultant structure:
# length(hw_test_1) ## 1 set of targets and 7 distance-weighted rasters
# hw_test_1[[1]] ## lumped
# hw_test_1[[2]] ## iEucO
# hw_test_1[[3]] ## iFLO
# hw_test_1[[4]] ## HAiFLO
# hw_test_1[[5]] ## iEucS
# hw_test_1[[6]] ## iFLS
# hw_test_1[[7]] ## HAiFLS
# or
# hw_test_1[["lumped"]]
# hw_test_1[["iEucO"]] etc.
## Plot different weighting schemes; where purple --> yellow == low --> high weight
hw_test_1$HAiFLO<-log(hw_test_1$HAiFLO) # These two weighting schemes can get vary high weights due to flow accumulation,
hw_test_1$HAiFLS<-log(hw_test_1$HAiFLS) # log transformation improves visualization
plot(rast(c(hw_test_1[1:4],hw_test_1$lumped,hw_test_1[5:7])),
legend=F,axes=F,col=viridis(101),nc=4,mar=c(1.25,1.25,1.25,1.25),reset=T,cex.main = 1.25)
```
Important things to note from this plot:
- Lumped is equal weighting where all values = 1.
- iEucO and iEucS distances extend outward to the extent of the DEM.
- For iFLO/HAiFLO/iFLS/HAiFLS, only distances in cells contributing to
the areas of interest are included.
- As in Peterson *et al.* (2011), for HAiFLS, the targets are set to
NoData (i.e., NA) since they likely represent concentrated flow
areas.
A few options to consider:
```{r, fig.width = 6, fig.height = 6, message = FALSE, error = FALSE, warning = FALSE}
## Ignoring target_O
hw_test_2 <- hydroweight(
hydroweight_dir = hydroweight_dir,
target_S = tg_S,
target_uid = "Lake",
clip_region = NULL,
dem = file.path(hydroweight_dir,"toy_dem_breached.tif"),
flow_accum = file.path(hydroweight_dir,"toy_dem_breached_accum.tif"),
weighting_scheme = c("lumped", "iEucS", "iFLS", "HAiFLS"),
inv_function = myinv
)
hw_test_2<-lapply(hw_test_2,rast)
## Resultant structure:
# length(hw_test_3) ## 1 set of targets and 4 distance-weighted rasters
# hw_test_2[[1]] ## lumped
# hw_test_2[[2]] ## iEucS
# hw_test_2[[3]] ## iFLS
# hw_test_2[[4]] ## HAiFLS
## Ignoring target_S
hw_test_3 <- hydroweight(
hydroweight_dir = hydroweight_dir,
target_O = tg_O,
target_uid = "Lake",
dem = file.path(hydroweight_dir,"toy_dem_breached.tif"),
flow_accum = file.path(hydroweight_dir,"toy_dem_breached_accum.tif"),
weighting_scheme = c("lumped", "iEucO", "iFLO", "HAiFLO"),
inv_function = myinv
)
hw_test_3<-lapply(hw_test_3,rast)
# length(hw_test_3) ## 1 set of targets and 4 distance-weighted rasters
# hw_test_3[[1]] ## lumped
# hw_test_3[[2]] ## iEucO
# hw_test_3[[3]] ## iFLO
# hw_test_3[[4]] ## HAiFLO
## Setting a clip region
hw_test_4 <- hydroweight(
hydroweight_dir = hydroweight_dir,
target_O = tg_O,
target_S = tg_S,
target_uid = "Lake",
clip_region = sf::st_buffer(tg_O,8000),
OS_combine = TRUE,
dem = file.path(hydroweight_dir,"toy_dem_breached.tif"),
flow_accum = file.path(hydroweight_dir,"toy_dem_breached_accum.tif"),
weighting_scheme = c(
"lumped", "iEucO", "iFLO", "HAiFLO",
"iEucS", "iFLS", "HAiFLS"
),
inv_function = myinv
)
hw_test_4<-lapply(hw_test_4,rast)
## Plot
hw_test_4$HAiFLO<-log(hw_test_4$HAiFLO) # These two weighting schemes can get vary high weights due to flow accumulation,
hw_test_4$HAiFLS<-log(hw_test_4$HAiFLS) # log transformation improves visualization
plot(rast(c(hw_test_4[1:4],hw_test_4$lumped,hw_test_4[5:7])),
legend=F,axes=F,col=viridis(101),nc=4,mar=c(1,1,1,1),reset=T,cex.main = 1.25)
```
[Back to top](#contents)
### 3.4 Run `hydroweight()` across a set of sites
We wanted users to access intermediate products and also anticipated
that layers and/or errors may be very case-specific. For these reasons,
we don't *yet* provide an all-in-one solution for multiple sites and/or
layers of interest but provide workflows instead.
We advocate using `foreach` since it is `lapply`-like but passes along
errors to allow for later fixing. Linking `foreach` with `doParallel`
allows for parallel processing. (e.g., `foreach(...) %dopar%`). We have
not tested `whitebox` using parallel processing. However
`hydroweight_attributes()` can be run in parallel.
Since `hydroweight()` exports an `.rds` of its result to
`hydroweight_dir`, it allows users to assign the results of
`hydroweight()` to an object in the current environment or to run
`hydroweight()` alone and upload the `.rds` afterwards.
```{r, message = TRUE, error = FALSE, warning = FALSE, fig.height = 3.5, fig.width = 7}
## Run hydroweight across sites found in stream points tg_O_multi/tg_O_multi_catchment
hw_test_5 <- foreach(xx = 1:nrow(tg_O_multi), .errorhandling = "pass") %do% {
message("Running hydroweight for site ", xx, " at ", Sys.time())
hw_test_xx <- hydroweight(
hydroweight_dir = hydroweight_dir,
target_O = tg_O_multi[xx, ], ## Important to change
target_S = tg_S,
target_uid = tg_O_multi$Site[xx], ## Important to change
clip_region = NULL,
OS_combine = TRUE,
dem = file.path(hydroweight_dir,"toy_dem_breached.tif"),
flow_accum = file.path(hydroweight_dir,"toy_dem_breached_accum.tif"),
weighting_scheme = c(
"lumped", "iEucO", "iFLO", "HAiFLO",
"iEucS", "iFLS", "HAiFLS"
),
inv_function = myinv
)
return(hw_test_xx)
}
hw_test_5<-lapply(hw_test_5,function(x) lapply(x,rast))
## Resultant structure:
## length(hw_test_5) # 3 sites
## length(hw_test_5[[1]]) # 7 distance-weighted rasters for each site
## hw_test_5[[1]][[1]] # site 1, lumped
## hw_test_5[[1]][[2]] # site 1, iEucO
## hw_test_5[[1]][[3]] # site 1, iFLO
## hw_test_5[[1]][[4]] # site 1, HAiFLO
## hw_test_5[[1]][[5]] # site 1, iEucS
## hw_test_5[[1]][[6]] # site 1, iFLS
## hw_test_5[[1]][[7]] # site 1, HAiFLS
## ...
## ...
## ...
## hw_test_5[[3]][[7]] # site 3, HAiFLS
## Loading up data from .zip file
inv_distance_collect <- file.path(hydroweight_dir, paste0(tg_O_multi$Site, "_inv_distances.zip"))
inv_distance_collect <- lapply(inv_distance_collect, function(x) {
fls<-unzip(x,list=T)
fls<-file.path("/vsizip",x,fls$Name)
x<-lapply(fls,terra::rast)
names(x)<-sapply(x,names)
return(x)
})
## Resultant structure:
## length(hw_test_5) # 3 sites
## length(hw_test_5[[1]]) # 7 distance-weighted rasters for each site
## hw_test_5[[1]][[1]] # site 1, lumped
## hw_test_5[[1]][[2]] # site 1, iEucO
## hw_test_5[[1]][[3]] # site 1, iFLO
## hw_test_5[[1]][[4]] # site 1, HAiFLO
## hw_test_5[[1]][[5]] # site 1, iEucS
## hw_test_5[[1]][[6]] # site 1, iFLS
## hw_test_5[[1]][[7]] # site 1, HAiFLS
## ...
## ...
## ...
## hw_test_5[[3]][[7]] # site 3, HAiFLS
## Plot sites, their catchments, and their respective distance-weighted iFLO rasters
par(mfrow = c(1, 3), mar = c(1, 1, 1, 1), oma = c(0, 0, 0, 0))
plot(st_geometry(tg_O_multi_catchment), col = "grey", border = "white", main = "Site 1 - iFLO")
plot(hw_test_5[[1]][[3]], axes = F, legend = F, col = viridis(101), add = T)
plot(st_geometry(tg_O_multi_catchment), col = "grey", border = "white", main = "Site 2 - iFLO")
plot(hw_test_5[[2]][[3]], axes = F, legend = F, col = viridis(101), add = T)
plot(st_geometry(tg_O_multi_catchment), col = "grey", border = "white", main = "Site 3 - iFLO")
plot(hw_test_5[[3]][[3]], axes = F, legend = F, col = viridis(101), add = T)
```
[Back to top](#contents)
### 3.5 Using `iFLO` output as catchment boundaries for `hydroweight_attributes()`
An advantage of using `hydroweight()` is that an iFLO-derived product
can be used as a catchment boundary in subsequent operations. iFLO uses
`whitebox::wbt_downslope_distance_to_stream` that uses a D8 flow-routing
algorithm to trace the flow path. Converting all non-`NA` iFLO distances
will yield a catchment boundary analogous to
`whitebox::wbt_watershed()`. However, we have noticed minor
inconsistencies when comparing catchments derived from the two
procedures when catchment boundaries fall along DEM edges. The procedure
for deriving the catchment boundary for Site 3 is below.
```{r, message = TRUE, error = FALSE, warning = FALSE, fig.height = 3.5, fig.width = 7}
## Pull out iFLO from Site 3, convert non-NA values to 1, then to polygons, then to sf
site3_catchment <- hw_test_5[[3]][["iFLO"]]
site3_catchment[!is.na(site3_catchment)] <- 1
site3_catchment <- as.polygons(site3_catchment, dissolve = T)
site3_catchment <- st_as_sf(site3_catchment)
## Compare
par(mfrow = c(1, 3))
plot(st_geometry(tg_O_multi_catchment[3, ]),
col = adjustcolor("blue", alpha.f = 0.5),
main = "Site 3 catchment \n wbt_watershed-derived"
)
plot(st_geometry(site3_catchment),
col = adjustcolor("red", alpha.f = 0.5),
main = "Site 3 catchment \n hydroweight-derived"
)
plot(st_geometry(site3_catchment), col = adjustcolor("blue", alpha.f = 0.5), main = "Overlap")
plot(st_geometry(tg_O_multi_catchment[3, ]), col = adjustcolor("red", alpha.f = 0.5), main = "Overlap", add = T)
```
[Back to top](#contents)
## 4.0 Inverse distance-weighted attributes using `hydroweight_attributes()`
`hydroweight_attributes()` uses `hydroweight()` output and layers of
interest (`loi`) to calculate distance-weighted attributes within a
region of interest (`roi`). Inputs can be numeric rasters, categorical
rasters, and polygon data with either numeric or categorical data in the
columns. Internally, all layers are projected to or rasterized to the
spatial resolution of the `hydroweight()` output (i.e., the original
DEM).
For numeric inputs, the distance-weighted mean and standard deviation
for each `roi`:`loi` combination are calculated using
<p align="center">
<img width="150" height="75" src="./man/figures/WeightedAvg.svg">
</p>
<p align="center">
<img width="225" height="113" src="./man/figures/WeightedStd.svg">
</p>
where $n$ is the number of cells, $w_i$ are the cell weights, and $x_i$
are `loi` cell values, $m$ is the number or non-zero weights, and
$\bar{x}^*$ is the weighted mean. For categorical inputs, the proportion
for each `roi`:`loi` combination is calculated using
<p align="center">
<img width="150" height="75" src="./man/figures/WeightedProp.svg">
</p>
where $I(k_i)=1$ when category $k$ is present in a cell or $I(k_i)=0$
when not.
Finally, `loi` `NA` values are handled differently depending on `loi`
type. For numeric, `NA` cells are excluded from all calculations. If
`cell_count` is specified in `loi_statistics` (see below), count of
non-`NA` cells and `NA` cells are returned in the attribute table. For
categorical, `NA` cells are considered a category and are included in
the calculated proportions. A `prop_NA` column is included in the
attribute table. The `lumped_"loi"_prop_NA` would be the true proportion
of `NA` cells whereas other columns would be their respective
distance-weighted `NA` proportions. This could allow the user to
re-calculate proportions using non-`NA` values only.
### 4.1 Using a numeric raster layer of interest
Using the results of `hydroweight()` (i.e., a list of distance-weighted
rasters), we generate distance-weighted attributes for a single site
across the weighting schemes.
First, we generate a numeric raster layer of interest `loi = ndvi` and
then summarize those cells falling within the region of interest,
`roi = tg_O_catchment`, for each distance-weighted raster in `tw_test_1`
(all weighting schemes, see above). See `?hydroweight_attributes` for
`loi_`- and `roi_`-specific information indicating type of data and how
results are returned.
```{r, fig.width = 6, fig.height = 6, message = FALSE, error = FALSE, warning = FALSE}
## Construct continuous dataset
ndvi <- toy_dem
values(ndvi) <- runif(n = (dim(ndvi)[1] * dim(ndvi)[2]), min = 0, max = 1)
names(ndvi) <- "ndvi"
hwa_test_numeric <- hydroweight_attributes(
#loi = ndvi,
loi = rast(list(setNames(ndvi,"ndvi1"),setNames(ndvi,"ndvi2"))),
loi_columns=c("ndvi1","ndvi2"),
loi_numeric = TRUE,
loi_numeric_stats = c("distwtd_mean", "distwtd_sd", "mean", "sd", "median", "min", "max", "cell_count"),
roi = tg_O_catchment,
roi_uid = "1",
roi_uid_col = "Lake",
distance_weights = hw_test_1,#file.path(hydroweight_dir,"Lake_inv_distances.zip"),
remove_region = tg_O,
return_products = TRUE
)
names(hwa_test_numeric$attribute_table)
hwa_test_numeric$return_products<-lapply(hwa_test_numeric$return_products,function(x) lapply(x,rast))
## Resultant structure
## length(hw_test_numeric) # Length 2; 1) attribute table, 2) processing components for 7 inputted distance-weighted rasters
## hw_test_numeric[[1]] == hw_test_numeric$attribute_table # Attribute table
## hw_test_numeric[[2]] == hw_test_numeric$return_products # Processing components for 7 inputted distance-weighted rasters
## hw_test_numeric$return_products$lumped # Processing components used in calculating lumped statistics
## hwa_test_numeric$return_products$lumped$`loi_Raster*_bounded` # Processed loi used in calculating lumped attribute statistics
## hwa_test_numeric$return_products$lumped$distance_weights_bounded # Processed distance-weighted raster used in calculating lumped attribute statistics
## ...
## ...
## ...
## hwa_test_numeric$return_products$HAiFLS$distance_weights_bounded # Processed distance-weighted raster used in calculating HAiFLS attribute statistics
## Plot
par(mfrow = c(1, 1))
plot(ndvi, axes = F, legend = F, col = viridis(101), main = "Toy NDVI")
plot(st_geometry(tg_O_catchment), col = adjustcolor("grey", alpha.f = 0.5), add = T)
plot(st_geometry(tg_O), col = "red", add = T)
plot(tg_S, col = "blue", add = T, legend = FALSE)
legend("bottom",
legend = c("target_O = tg_O", "target_S = tg_S", "catchment"),
fill = c("red", "blue", adjustcolor("grey", alpha.f = 0.5)), horiz = TRUE, bty = "n", cex = 0.75
)
```
```{r, fig.width=7, fig.height=14, message = FALSE, error = FALSE}
## Plot results
plot(
rast(
list(
hw_test_1$lumped,hwa_test_numeric$return_products$lumped$loi_dist_rast[[1]],
hw_test_1$iFLO,hwa_test_numeric$return_products$iFLO$loi_dist_rast[[1]],
hw_test_1$HAiFLS,hwa_test_numeric$return_products$HAiFLS$loi_dist_rast[[1]]
)),
col=viridis(50),
main=c("Lumped - distance_weights","Lumped - distance_weights * ndvi",
"iFLO - distance_weights","iFLO - distance_weights * ndvi",
"HAiFLS - distance_weights","HAiFLS - distance_weights * ndvi"),
axes = F, legend = F,cex.main = 1.25,
nc=2,mar=c(1.5,1.5,1.5,1.5),reset=T)
```
[Back to top](#contents)
### 4.2 Using a categorical raster layer of interest
Here, we generate a categorical raster layer of interest `loi = lulc`
and then summarize those cells falling within the region of interest,
`roi = tg_O_catchment`, for each distance-weighted raster in `tw_test_1`
(all weighting schemes, see above). See `?hydroweight_attributes` for
`loi_`- and `roi_`-specific information indicating type of data and how
results are returned.
```{r, fig.width=6, fig.height=6, message = FALSE, error = FALSE, warning = FALSE}
## Construct categorical dataset by reclassify elevation values into categories
## All values > 0 and <= 220 become 1, etc.
lulc <- toy_dem
m <- c(0, 220, 1, 220, 300, 2, 300, 400, 3, 400, Inf, 4)
rclmat <- matrix(m, ncol = 3, byrow = TRUE)
lulc <- classify(lulc, rclmat)
names(lulc)<-"lulc"
## For each distance weight from hydroweight_test above, calculate the landscape statistics for lulc
hwa_test_categorical <- hydroweight_attributes(
loi = rast(list(setNames(lulc,"lulc1"),setNames(lulc,"lulc2"))),
loi_numeric = FALSE,
roi = tg_O_catchment,
roi_uid = "1",
roi_uid_col = "Lake",
distance_weights = hw_test_1,
remove_region = tg_O,
return_products = TRUE
)
names(hwa_test_categorical$attribute_table)
hwa_test_categorical$return_products<-lapply(hwa_test_categorical$return_products,function(x) lapply(x,rast))
## Resultant structure
## length(hw_test_categorical) # Length 2; 1) attribute table, 2) processing components for 7 inputted distance-weighted rasters
## hw_test_categorical[[1]] == hw_test_categorical$attribute_table # Attribute table
## hw_test_categorical[[2]] == hw_test_categorical$return_products # Processing components for 7 inputted distance-weighted rasters
## hw_test_categorical$return_products$lumped # Processing components used in calculating lumped statistics
## hwa_test_categorical$return_products$lumped$`loi_Raster*_bounded` # Processed loi used in calculating lumped attribute statistics
## hwa_test_categorical$return_products$lumped$distance_weights_bounded # Processed distance-weighted raster used in calculating lumped attribute statistics
## ...
## ...
## ...
## hwa_test_categorical$return_products$HAiFLS$distance_weights_bounded # Processed distance-weighted raster used in calculating HAiFLS attribute statistics
## Plot
par(mfrow = c(1, 1))
plot(lulc, axes = F, legend = F, col = viridis(4), main = "Toy LULC")
plot(st_geometry(tg_O_catchment), col = adjustcolor("grey", alpha.f = 0.5), add = T)
plot(tg_O, col = "red", add = T, legend = FALSE)
plot(tg_S, col = "blue", add = T, legend = FALSE)
legend("bottom",
legend = c("target_O = tg_O", "target_S = tg_S", "catchment"),
fill = c("red", "blue", adjustcolor("grey", alpha.f = 0.5)), horiz = TRUE, bty = "n", cex = 0.75
)
```
```{r, fig.height = 7, fig.width = 14, message = FALSE, error = FALSE}
## Plot results
par(mfrow = c(3, 4), mar = c(1, 1, 1, 1), oma = c(0, 0, 0, 0), cex = 0.75)
## Lumped
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "Lumped")
plot(hw_test_1$lumped,
axes = F, legend = F, col = "yellow", add = TRUE
)
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "Lumped - loi * lulc (cat: 4)")
plot(hwa_test_categorical$return_products$lumped$loi_dist_rast$lulc1_4,
axes = F, legend = F, col = viridis(101), add = TRUE
)
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "Lumped - loi * lulc (cat: 3)")
plot(hwa_test_categorical$return_products$lumped$loi_dist_rast$lulc1_3,
axes = F, legend = F, col = viridis(101), add = TRUE
)
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "Lumped - loi * lulc (cat: 2)")
plot(hwa_test_categorical$return_products$lumped$loi_dist_rast$lulc1_2,
axes = F, legend = F, col = viridis(101), add = TRUE
)
## iEucO
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "iEucO")
plot(hw_test_1$iEucO,
axes = F, legend = F, col = "yellow", add = TRUE
)
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "iEucO - loi * lulc (cat: 4)")
plot(hwa_test_categorical$return_products$iEucO$loi_dist_rast$lulc1_4,
axes = F, legend = F, col = viridis(101), add = TRUE
)
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "iEucO - loi * lulc (cat: 3)")
plot(hwa_test_categorical$return_products$iEucO$loi_dist_rast$lulc1_3,
axes = F, legend = F, col = viridis(101), add = TRUE
)
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "iEucO - loi * lulc (cat: 2)")
plot(hwa_test_categorical$return_products$iEucO$loi_dist_rast$lulc1_2,
axes = F, legend = F, col = viridis(101), add = TRUE
)
## HAiFLS
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "HAiFLS")
plot(hw_test_1$HAiFLS,
axes = F, legend = F, col = "yellow", add = TRUE
)
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "HAiFLS - loi * lulc (cat: 4)")
plot(hwa_test_categorical$return_products$HAiFLS$loi_dist_rast$lulc1_4,
axes = F, legend = F, col = viridis(101), add = TRUE
)
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "HAiFLS - loi * lulc (cat: 3)")
plot(hwa_test_categorical$return_products$HAiFLS$loi_dist_rast$lulc1_3,
axes = F, legend = F, col = viridis(101), add = TRUE
)
plot(st_as_sfc(st_bbox(tg_O_catchment)), border = "white", main = "HAiFLS - loi * lulc (cat: 2)")
plot(hwa_test_categorical$return_products$HAiFLS$loi_dist_rast$lulc1_2,
axes = F, legend = F, col = viridis(101), add = TRUE
)
```
[Back to top](#contents)
### 4.3 Using a polygon layer of interest with numeric data in the column
Here, we use `lulc` and polygonize the raster to `lulc_p`. We then
generate some numeric data in the polygon layer called `var_1` and
`var_2`. We then spatially summarize the numeric data in those two
columns using `hydroweight_attributes()`.
Internally, the `lulc` polygons are rasterized using `distance_weights`
as the template. This basically treats the columns as if they were
individual numeric raster layers. Landscape statistics are calculated
accordingly (e.g., distance-weighted mean). Those cells falling within
the region of interest, `roi = tg_O_catchment`, for each
distance-weighted raster in `tw_test_1` (all weighting schemes, see
above). See `?hydroweight_attributes` for `loi_`- and `roi_`-specific
information indicating type of data and how results are returned.
```{r, fig.height = 7, fig.width = 14, message = FALSE, error = FALSE}
## Construct polygons with numeric data by converting lulc to polygons and assigning values to columns
lulc_p <- as.polygons(lulc, dissolve = T, na.rm = T)
lulc_p <- st_as_sf(lulc_p)
set.seed(123)
lulc_p$var_1 <- sample(c(1:10), size = 4, replace = TRUE)
set.seed(123)
lulc_p$var_2 <- sample(c(20:30), size = 4, replace = TRUE)
## For each distance weight from hydroweight_test above, calculate the landscape statistics for lulc_p
hwa_test_numeric_polygon <- hydroweight_attributes(
loi = lulc_p,
loi_columns = c("var_1", "var_2"),
loi_numeric = TRUE,
loi_numeric_stats = c("distwtd_mean", "distwtd_sd", "mean", "sd", "min", "max", "cell_count"),
roi = tg_O_catchment,
roi_uid = "1",
roi_uid_col = "Lake",
distance_weights = hw_test_1,
remove_region = tg_O,
return_products = TRUE
)
names(hwa_test_numeric_polygon$attribute_table)
hwa_test_numeric_polygon$return_products<-lapply(hwa_test_numeric_polygon$return_products,function(x) lapply(x,rast))
## Resultant structure
## length(hw_test_numeric_polygon) # Length 2; 1) attribute table, 2) processing components for 7 inputted distance-weighted rasters
## hw_test_numeric_polygon[[1]] == hw_test_numeric_polygon$attribute_table # Attribute table
## hw_test_numeric_polygon[[2]] == hw_test_numeric_polygon$return_products # Processing components for 7 inputted distance-weighted rasters
## hw_test_numeric_polygon$return_products$lumped # Processing components used in calculating lumped statistics
## hwa_test_numeric_polygon$return_products$lumped$`loi_Raster*_bounded` # Processed loi used in calculating lumped attribute statistics
## hwa_test_numeric_polygon$return_products$lumped$distance_weights_bounded # Processed distance-weighted raster used in calculating lumped attribute statistics
## ...
## ...
## ...
## hwa_test_numeric_polygon$return_products$HAiFLS$distance_weights_bounded # Processed distance-weighted raster used in calculating HAiFLS attribute statistics
```
[Back to top](#contents)
### 4.4 Using a polygon layer of interest with categorical data in the column
Here, we continue to use `lulc_p` but specify `loi_numeric = FALSE`
indicating the data are categorical rather than numeric. Note the final
number in the column names of the summary table is the "category" that
was summarized.
```{r, message = FALSE, error = FALSE}
## Construct polygons with categorical data by converting lulc to polygons and assigning values to columns
lulc_p <- as.polygons(lulc, dissolve = T, na.rm = T)
lulc_p <- st_as_sf(lulc_p)
set.seed(123)
lulc_p$var_1 <- sample(c(1:10), size = 4, replace = TRUE)
set.seed(123)
lulc_p$var_2 <- sample(c(20:30), size = 4, replace = TRUE)
## For each distance weight from hydroweight_test above, calculate the landscape statistics for lulc_p
hwa_test_categorical_polygon <- hydroweight_attributes(
loi = lulc_p,
loi_columns = c("var_1", "var_2"),
loi_numeric = FALSE,
roi = tg_O_catchment,
roi_uid = "1",
roi_uid_col = "Lake",
distance_weights = hw_test_1,
remove_region = tg_O,
return_products = TRUE
)
names(hwa_test_categorical_polygon$attribute_table)
## Resultant structure
## length(hw_test_categorical_polygon) # Length 2; 1) attribute table, 2) processing components for 7 inputted distance-weighted rasters
## hw_test_categorical_polygon[[1]] == hw_test_categorical_polygon$attribute_table # Attribute table
## hw_test_categorical_polygon[[2]] == hw_test_categorical_polygon$return_products # Processing components for 7 inputted distance-weighted rasters
## hw_test_categorical_polygon$return_products$lumped # Processing components used in calculating lumped statistics
## hwa_test_categorical_polygon$return_products$lumped$`loi_Raster*_bounded` # Processed loi used in calculating lumped attribute statistics
## hwa_test_categorical_polygon$return_products$lumped$distance_weights_bounded # Processed distance-weighted raster used in calculating lumped attribute statistics
## ...
## ...
## ...
## hwa_test_categorical_polygon$return_products$HAiFLS$distance_weights_bounded # Processed distance-weighted raster used in calculating HAiFLS attribute statistics
```
[Back to top](#contents)
## 5.0 Inverse distance-weighted rasters and attributes across multiple sites and layers
Now that we are familiar with the results structure of `hydroweight()`
and `hydroweight_attributes()`, we use our stream points to demonstrate
how to chain an analysis together across sites, distances weights, and
layers of interest.
The basic chain looks like this this:
- For each site: Run `hydroweight()`
- For each layer of interest: Run `hydroweight_attributes()`
Here, we try to make the code easier to troubleshoot rather than make it
look pretty:
### 5.1 Run `hydroweight()` across sites
```{r, warning = FALSE, error = FALSE, message = FALSE}
## Sites and catchments
# tg_O_multi ## sites
# tg_O_multi_catchment ## catchments
cl <- parallel::makeCluster(3)
doParallel::registerDoParallel(cl)
sites_weights <- foreach(xx = 1:nrow(tg_O_multi), .errorhandling = "pass") %dopar% {
#note other parallel backends work as well (i.e., future.apply)
#when running in with foreach parallel, must specify libraries in function call
require(sf)
require(terra)
require(hydroweight)
## Distance-weighted raster component
message("\n******Running hydroweight() on Site ", xx, " of ", nrow(tg_O_multi), " ", Sys.time(), "******")
## Select individual sites and catchments
sel <- tg_O_multi[xx, ]
write_sf(sel,file.path(hydroweight_dir,paste0("Site_",sel$Site,".shp"))) #parallel execution is best done with file paths rather than objects
sel_roi <- subset(tg_O_multi_catchment, Site == sel$Site)