From e682da1cd30b1afc139c5e2ed1a30ee759bbfcbb Mon Sep 17 00:00:00 2001 From: Olivier Filangi Date: Tue, 29 Oct 2024 15:46:32 +0100 Subject: [PATCH] evaluation descrptor/descriptor et concept/descriptor mesh --- README.md | 9 + exec.sh | 2 +- llm_semantic_annotator/core.py | 8 +- .../similarity_evaluator.py | 254 +++++++++++++++--- 4 files changed, 228 insertions(+), 45 deletions(-) diff --git a/README.md b/README.md index d8c10ee..142fc2f 100644 --- a/README.md +++ b/README.md @@ -139,17 +139,26 @@ Configures fetching abstracts from local files. To execute the test suite, you can use the following commands: ```bash +python3 -m venv llm_semantic_annotator_env +pip install -r requirements.txt +source llm_semantic_annotator_env/bin/activate python -m unittest discover ``` Run a specific test file ```bash +python3 -m venv llm_semantic_annotator_env +pip install -r requirements.txt +source llm_semantic_annotator_env/bin/activate python -m unittest tests/similarity/test_model_embedding_manager.py ``` ```bash +python3 -m venv llm_semantic_annotator_env +pip install -r requirements.txt +source llm_semantic_annotator_env/bin/activate python -m llm_semantic_annotator.similarity_evaluator ``` \ No newline at end of file diff --git a/exec.sh b/exec.sh index 458e8b7..652b477 100755 --- a/exec.sh +++ b/exec.sh @@ -61,7 +61,7 @@ create_venv_if_not_exists() { echo "Creating virtual environment..." python3 -m venv "$venv_name" source "$venv_name/bin/activate" - pip install -r requirements.txt # Assurez-vous d'avoir un fichier requirements.txt + pip install -r requirements.txt else source "$venv_name/bin/activate" fi diff --git a/llm_semantic_annotator/core.py b/llm_semantic_annotator/core.py index 12a84f6..eb39a94 100644 --- a/llm_semantic_annotator/core.py +++ b/llm_semantic_annotator/core.py @@ -62,6 +62,10 @@ def get_doi_file(config_all): def main_compute_tag_chunk_similarities(config_all): """Fonction principale pour calculer la similarité entre tous les tags et chunks.""" + + if 'force' not in config_all: + config_all['force'] = False + tags_pth_files = get_owl_tag_manager(config_all).get_files_tags_embeddings() if len(tags_pth_files) == 0: @@ -98,11 +102,11 @@ def main_compute_tag_chunk_similarities(config_all): total_doi = 0 for abstracts_pth_file in abstracts_pth_files: json_f = str(os.path.splitext(abstracts_pth_file)[0])+"_scores.json" - if os.path.exists(json_f) : + if not config_all['force'] and os.path.exists(json_f) : print(json_f," already exists !") continue chunk_embeddings = mem.load_filepth(abstracts_pth_file) - + print("Processing ",abstracts_pth_file) for doi,res in mem.compare_tags_with_chunks(tag_embeddings, chunk_embeddings).items(): total_doi+=1 if doi not in results_complete_similarities: diff --git a/llm_semantic_annotator/similarity_evaluator.py b/llm_semantic_annotator/similarity_evaluator.py index 71aaa95..8904f5c 100644 --- a/llm_semantic_annotator/similarity_evaluator.py +++ b/llm_semantic_annotator/similarity_evaluator.py @@ -1,4 +1,5 @@ # mesh_similarity_evaluator.py +from tqdm import tqdm from llm_semantic_annotator import ModelEmbeddingManager,AbstractManager from llm_semantic_annotator import get_scores_files from llm_semantic_annotator import ( @@ -8,10 +9,8 @@ main_compute_tag_chunk_similarities ) -config_evaluation = { +config_descriptor_descriptor = { "encodeur" : "sentence-transformers/all-MiniLM-L6-v2", - "threshold_similarity_tag_chunk" : 0.95, - "threshold_similarity_tag" : 0.80, "batch_size" : 32, "populate_owl_tag_embeddings" : { @@ -37,20 +36,127 @@ } } } - }, - "populate_abstract_embeddings" : { - "abstracts_per_file" : 500, + } +} + +config_concept_descriptor={ + "encodeur" : "sentence-transformers/all-MiniLM-L6-v2", + "batch_size" : 32, + + "populate_owl_tag_embeddings" : { + "prefix" : { + "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#", + "rdfs" : "http://www.w3.org/2000/01/rdf-schema#", + "mesh" : "http://id.nlm.nih.gov/mesh/D000478", + "meshv" : "http://id.nlm.nih.gov/mesh/vocab#", + "owl" : "http://www.w3.org/2002/07/owl#" + }, + "ontologies": { + "foodon_link" : { + "mesh_descriptor": { + "filepath": "data/mesh/mesh.nt", + "prefix": "http://id.nlm.nih.gov/mesh/M", + "format": "nt", + "label" : "rdfs:label", + "properties": [""], + "constraints" : { + "meshv:active" : "true", + "rdf:type" : "meshv:Concept" + } + } + } + } + } +} + +abstracts_def= { + "abstracts_per_file" : 200, "from_ncbi_api" : { "ncbi_api_chunk_size" : 200, - "retmax" : 500, + "retmax" : 100, "selected_term" : [ - "food" + "metabolomics" ] } } -} -def calculate_metrics(predicted_terms, actual_terms): +def init_config(config,retention_dir): + config['retention_dir'] = get_retention_dir(retention_dir) + config['force'] = True + config['threshold_similarity_tag_chunk'] = 0.5 + config['threshold_similarity_tag'] = 0.8 + config["encodeur"]="sentence-transformers/all-MiniLM-L6-v2" + config["batch_size"]=32 + config["populate_abstract_embeddings"] = abstracts_def + +def build_asso_concept_descriptor(config): + import ujson + import os + from rdflib import Graph + from tqdm import tqdm + + storage_file = config['retention_dir']+"/link_concept_descriptor.json" + + if os.path.exists(storage_file): + return ujson.load(open(storage_file, 'r')) + + g = Graph() + path_mesh = os.path.dirname(os.path.abspath(__file__))+"/../data/mesh/mesh.nt" + print("******* Build association concept-descriptor MeSH ************") + print("loading ontology: ",path_mesh) + + + g.parse(path_mesh, format='nt') + query = """ + PREFIX rdf: + PREFIX rdfs: + PREFIX mesh: + PREFIX meshv: + PREFIX owl: + SELECT ?descriptor ?prop ?concept WHERE { + ?descriptor ?prop ?concept . + VALUES ?prop { meshv:preferredConcept meshv:concept } + FILTER(isURI(?concept)) + } + """ + results = g.query(query) + preferredConcept_dict = {} + concept_dict = {} + print(f"NB RECORDS:{len(results)}") + for row in tqdm(results): + descriptor = str(row.get('descriptor', '')).split("/").pop() + concept = str(row.get('concept', '')).split("/").pop() + prop = str(row.get('prop', '')).split("#").pop() + + if not concept.startswith('M'): + continue + + if not descriptor.startswith('D'): + continue + + if prop == 'preferredConcept': + if concept not in preferredConcept_dict: + preferredConcept_dict[concept] = [] + preferredConcept_dict[concept].append(descriptor) + elif prop == 'concept': + if concept not in concept_dict: + concept_dict[concept] = [] + concept_dict[concept].append(descriptor) + else: + print("unkown property:",prop) + + res = { + 'preferredConcept' : preferredConcept_dict, + 'concept' : concept_dict + } + + ujson.dump(res, open(storage_file, 'w')) + + return res + +def calculate_metrics_descriptor_descriptor(predicted_terms, actual_terms,links_unused={}): + """ predicted_terms contains concept DXXXX et actuals terms are descriptors DXXXXX """ + true_positives = len(set(predicted_terms) & set(actual_terms)) false_positives = len(set(predicted_terms) - set(actual_terms)) false_negatives = len(set(actual_terms) - set(predicted_terms)) @@ -61,18 +167,56 @@ def calculate_metrics(predicted_terms, actual_terms): return precision, recall, f1_score -def evaluate_abstracts(results_score_abstracts, abstracts): +def calculate_metrics_concept_descriptor(predicted_terms, actual_terms,links_concept_descriptor): + """ predicted_terms contains concept MXXXX et actuals terms are descriptors DXXXXX """ + + true_positives = 0 + false_positives = 0 + false_negatives = 0 + + # Créer un ensemble de descripteurs prédits + predicted_descriptors = set() + for concept in predicted_terms: + if concept in links_concept_descriptor['preferredConcept']: + predicted_descriptors.update(links_concept_descriptor['preferredConcept'][concept]) + elif concept in links_concept_descriptor['concept']: + predicted_descriptors.update(links_concept_descriptor['concept'][concept]) + else: + false_positives += 1 # le concept n'a pas de lien avec un descriptor + + # Calculer les vrais positifs et les faux positifs + for descriptor in predicted_descriptors: + if descriptor in actual_terms: + true_positives += 1 + else: + false_positives += 1 + + # Calculer les faux négatifs + false_negatives = len(actual_terms) - true_positives + + # Calculer les métriques + precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0 + recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0 + f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 + + return precision, recall, f1_score + + +def evaluate_abstracts(results_score_abstracts, abstracts,calculate_metrics,links={}): total_precision = 0 total_recall = 0 total_f1 = 0 - - for abstract in abstracts: + if (len(abstracts) == 0): + return 0, 0, 0 + #print(results_score_abstracts) + for abstract in tqdm(abstracts): doi = abstract['doi'] if 'descriptor' not in abstract: continue actual_terms = abstract['descriptor'] + if doi in results_score_abstracts: predicted_terms = [ str(desc).split("/").pop() for desc in results_score_abstracts[doi].keys() ] else: @@ -84,11 +228,8 @@ def evaluate_abstracts(results_score_abstracts, abstracts): total_f1 += 1.0 continue - print("predicted_terms",predicted_terms) - print("actual_terms",actual_terms) - - precision, recall, f1 = calculate_metrics(predicted_terms, actual_terms) - print(precision, recall, f1) + precision, recall, f1 = calculate_metrics(predicted_terms, actual_terms,links) + #print(precision, recall, f1) total_precision += precision total_recall += recall total_f1 += f1 @@ -109,43 +250,72 @@ def get_abstracts_files(retention_dir): abstracts_files.append(os.path.join(root, filename)) return abstracts_files -# Exemple d'utilisation si ce module est exécuté directement -def similarity_evaluator_main(): +def get_results_complete_similarities(scores_files,thresh): + import ujson + results_complete_similarities = {} + for file_name in scores_files: + with open(file_name, 'r') as file: + try: + tp = ujson.load(file) + # tri à nouveaux. Il faut que les scores etait généré en dessous si on change le threshold pour la relance + for doi in tp: + for tag in tp[doi]: + if tp[doi][tag]>=thresh: + if doi not in results_complete_similarities: + results_complete_similarities[doi] = {} + results_complete_similarities[doi][tag] = tp[doi][tag] + + except ujson.JSONDecodeError: + print(f"Erreur de décodage JSON dans le fichier {file_name}") + return results_complete_similarities + + +def similarity_evaluator_main(config_evaluation, calculate_metrics, links): import json config = config_evaluation - config['retention_dir'] = get_retention_dir("__evaluation_descriptor__") - config['force'] = True - main_populate_owl_tag_embeddings(config) - main_populate_abstract_embeddings(config) - main_compute_tag_chunk_similarities(config) + threshold_list = [0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99] + + #main_populate_owl_tag_embeddings(config) + #main_populate_abstract_embeddings(config) + #main_compute_tag_chunk_similarities(config) scores_files = get_scores_files(config['retention_dir']) abstracts_files = get_abstracts_files(config['retention_dir']) - results_complete_similarities = {} - for file_name in scores_files: - with open(file_name, 'r') as file: - try: - results_complete_similarities.update(json.load(file)) - except json.JSONDecodeError: - print(f"Erreur de décodage JSON dans le fichier {file_name}") + + for thresh in threshold_list: + results_complete_similarities[thresh] = get_results_complete_similarities(scores_files, thresh) terms_by_abstract = [] for file_name in abstracts_files: - print(file_name) + print(f"Chargement du fichier : {file_name}") with open(file_name, 'r') as file: try: - terms_by_abstract.extend(json.load(file)) + tp = json.load(file) + terms_by_abstract.extend( + [{'doi': t['doi'], 'descriptor': t['descriptor']} for t in tp] + ) except json.JSONDecodeError: print(f"Erreur de décodage JSON dans le fichier {file_name}") - - - avg_precision, avg_recall, avg_f1 = evaluate_abstracts(results_complete_similarities, terms_by_abstract) - print(f"Précision moyenne : {avg_precision:.2f}") - print(f"Rappel moyen : {avg_recall:.2f}") - print(f"Score F1 moyen : {avg_f1:.2f}") - + + for thresh in threshold_list: + print("\n" + "="*50) # Ligne de séparation + print(f"** Évaluation des résumés - seuil : {thresh:.2f} **") + avg_precision, avg_recall, avg_f1 = evaluate_abstracts(results_complete_similarities[thresh], terms_by_abstract, calculate_metrics, links) + + # Affichage formaté + print(f"Précision moyenne : {avg_precision:.2f}") + print(f"Rappel moyen : {avg_recall:.2f}") + print(f"Score F1 moyen : {avg_f1:.2f}") + print("="*50) # Ligne de séparation if __name__ == "__main__": - similarity_evaluator_main() \ No newline at end of file + # 1ère évaluation Descriptor / Descriptor + init_config(config_descriptor_descriptor, retention_dir="__evaluation_descriptor_descriptor__") + similarity_evaluator_main(config_descriptor_descriptor, calculate_metrics_descriptor_descriptor, links={}) + + # 2ème évaluation Concept / Descriptor + init_config(config_concept_descriptor, retention_dir="__evaluation_concept_descriptor__") + link_concept_descriptor = build_asso_concept_descriptor(config_concept_descriptor) + similarity_evaluator_main(config_concept_descriptor, calculate_metrics_descriptor_descriptor, links=link_concept_descriptor)