-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkdd_plot.py
43 lines (35 loc) · 1.12 KB
/
kdd_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pandas as pd
import sklearn
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
#READ DATA
#Read in the entire dataset as a table
y_pred = pd.read_csv('C:/Users/patri/Documents/kdd/y_pred.csv', header=None)
y_pred = y_pred.T.values
y_pred
y_test = pd.read_csv('C:/Users/patri/Documents/kdd/Y1_test_dummy.csv')
y_test
class_names = list(y_test.columns)
class_names
y_test_array = y_test.values
y_test_array
from sklearn.metrics import precision_recall_curve
from sklearn.preprocessing import label_binarize
from sklearn.metrics import average_precision_score
from sklearn.metrics import PrecisionRecallDisplay
# Use label_binarize to be multi-label like settings
Y = label_binarize(y_test, classes=[0, 1, 2, 3, 4])
n_classes = Y.shape[1]
# For each class
precision = dict()
recall = dict()
for i in range(n_classes):
precision[i], recall[i], _ = precision_recall_curve(Y[:, i], y_pred[:, i])
display = PrecisionRecallDisplay(
recall=recall[i],
precision=precision[i],
)
display.plot(ax=plt.gca(), label=class_names[i])
plt.legend()
plt.show()