-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerger_remote.py
executable file
·767 lines (691 loc) · 31.4 KB
/
merger_remote.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
from __future__ import print_function
from __future__ import division
from builtins import str
from past.utils import old_div
from numpy import *
import numpy as np
import time
import os
from os.path import *
from os import fsync
# import harm_script as h
import glob
# import sys
# from reader import *
import reader as re
"""
this file was created specifically for remote processing of extensively large dumps outputs on a cluster.
the challenge here is to get without plotting and ipython libraries; some of the procedures are cloned from harm_script
"""
def get_sorted_file_list(prefix="dump"):
flist0 = np.sort(glob.glob( os.path.join("dumps/", "%s[0-9][0-9][0-9]_0000"%prefix) ) )
flist1 = np.sort(glob.glob( os.path.join("dumps/", "%s[0-9][0-9][0-9][0-9]_0000"%prefix) ) )
flist2 = np.sort(glob.glob( os.path.join("dumps/", "%s[0-9][0-9][0-9][0-9][0-9]_0000"%prefix) ) )
flist0.sort()
flist1.sort()
flist2.sort()
flist = np.concatenate((flist0,flist1,flist2))
nlist=size(flist)
for k in arange(nlist):
flist[k]=flist[k][:-5] # cutting off the tails
return flist
# electromagnetic field tensor
def fFdd(i,j):
uu=re.uu ; ud=re.ud ; bu=re.bu ; bd=re.bd
gdet = re.gdet
if i==0 and j==1:
fdd = gdet*(uu[2]*bu[3]-uu[3]*bu[2]) # f_tr
elif i==1 and j==0:
fdd = -gdet*(uu[2]*bu[3]-uu[3]*bu[2]) # -f_tr
elif i==0 and j==2:
fdd = gdet*(uu[3]*bu[1]-uu[1]*bu[3]) # f_th
elif i==2 and j==0:
fdd = -gdet*(uu[3]*bu[1]-uu[1]*bu[3]) # -f_th
elif i==0 and j==3:
fdd = gdet*(uu[1]*bu[2]-uu[2]*bu[1]) # f_tp
elif i==3 and j==0:
fdd = -gdet*(uu[1]*bu[2]-uu[2]*bu[1]) # -f_tp
elif i==1 and j==3:
fdd = gdet*(uu[2]*bu[0]-uu[0]*bu[2]) # f_rp = gdet*B2
elif i==3 and j==1:
fdd = -gdet*(uu[2]*bu[0]-uu[0]*bu[2]) # -f_rp = gdet*B2
elif i==2 and j==3:
fdd = gdet*(uu[0]*bu[1]-uu[1]*bu[0]) # f_hp = gdet*B1
elif i==3 and j==2:
fdd = -gdet*(uu[0]*bu[1]-uu[1]*bu[0]) # -f_hp = gdet*B1
elif i==1 and j==2:
fdd = gdet*(uu[0]*bu[3]-uu[3]*bu[0]) # f_rh = gdet*B3
elif i==2 and j==1:
fdd = -gdet*(uu[0]*bu[3]-uu[3]*bu[0]) # -f_rh = gdet*B3
else:
fdd = np.zeros_like(uu[0])
return fdd
def faraday():
# global re.omegaf1, re.omegaf2
if 're.omegaf1' in globals():
del re.omegaf1
if 're.omemaf2' in globals():
del re.omegaf2
omegaf1=old_div(fFdd(0,1),fFdd(1,3))
omegaf2=old_div(fFdd(0,2),fFdd(2,3))
return omegaf1, omegaf2
def Tcalcud():
global Tud, TudEM, TudMA
global mu, sigma
global enth
global unb, isunbound
pg = (re.gam-1)*re.ug
w=re.rho+re.ug+pg
eta=w+re.bsq
Tud = np.zeros((4,4,re.nx,re.ny,re.nz),dtype=np.float32,order='F')
TudMA = np.zeros((4,4,re.nx,re.ny,re.nz),dtype=np.float32,order='F')
TudEM = np.zeros((4,4,re.nx,re.ny,re.nz),dtype=np.float32,order='F')
for kapa in np.arange(4):
for nu in np.arange(4):
if(kapa==nu): delta = 1
else: delta = 0
TudEM[kapa,nu] = re.bsq*re.uu[kapa]*re.ud[nu] + 0.5*re.bsq*delta - re.bu[kapa]*re.bd[nu]
TudMA[kapa,nu] = w*re.uu[kapa]*re.ud[nu]+pg*delta
#Tud[kapa,nu] = eta*uu[kapa]*ud[nu]+(pg+0.5*bsq)*delta-bu[kapa]*bd[nu]
Tud[kapa,nu] = TudEM[kapa,nu] + TudMA[kapa,nu]
mu = old_div(-Tud[1,0],(re.rho*re.uu[1]))
sigma = old_div(TudEM[1,0],TudMA[1,0])
enth=1+re.ug*re.gam/re.rho
unb=enth*re.ud[0]
isunbound=(-unb>1.0)
#############################################################
# tetrad covariant components... and all the grid parameters should be set as well
# on my laptop, the description is in ~/Arts/illum/frominside.tex
def tetrad_t(uumean, udmean):
drdx=re.drdx
return old_div(-udmean[0],drdx[0,0]), old_div(-udmean[1],drdx[1,1]), 0.*udmean[0]/drdx[2,2], old_div(-udmean[3],drdx[3,3])
def tetrad_r(uumean, udmean):
guu=re.guu ; drdx=re.drdx
gg=guu[0,3]**2-guu[0,0]*guu[3,3] #1.+uumean[3]*udmean[3]
hh=guu[3,3]+uumean[3]*uumean[3]
s=sqrt(fabs(gg*hh*guu[1,1]))
return guu[3,3]*uumean[1]/s/drdx[0,0], gg*udmean[0]/s/drdx[1,1], 0.*uumean[0]/drdx[2,2], -guu[0,3]*uumean[1]/s/drdx[3,3]
def tetrad_h(uumean, udmean):
gdd=re.gdd ; drdx=re.drdx
return 0.*uumean[0]/drdx[0,0], 0.*uumean[0]/drdx[1,1], old_div(sqrt(gdd[2,2]),drdx[2,2]), 0.*uumean[0]/drdx[3,3]
def tetrad_p(uumean, udmean):
guu=re.guu ; drdx=re.drdx
hh=sqrt(guu[3,3]+uumean[3]*uumean[3])
return uumean[3]*udmean[0]/hh/drdx[0,0], uumean[3]*udmean[1]/hh/drdx[1,1], 0.*uumean[0]/drdx[2,2], (1.+uumean[3]*udmean[3])/hh/drdx[3,3]
# outputting all the basic information about the dump to a file
def dumpinfo(prefix):
re.rg("gdump")
re.rd(prefix)
fout=open("dumps/"+prefix+"_dinfo.dat", "w")
fout.write(str(re.nx)+" "+str(re.ny)+" "+str(re.nz)+"\n")
print("nr x ntheta x nphi = "+str(re.nx)+" "+str(re.ny)+" "+str(re.nz))
fout.write(str(re.a)+"\n")
print("Kerr parameter a = "+str(re.a))
fout.write(str(re.t)+"\n")
print("time "+str(re.t))
fout.close()
def ljet(nmax):
# makes RT and theta-T diagrams for jet power
r1 = 100. ; r2 = 1000.
theta1 = 0. ; theta2 = np.pi/4.
re.rg("gdump")
gdet=re.gdet ; gcov=re.gcov ; _dx2=re._dx2 ; _dx3=re._dx3
fout_RTN = open("ljet_RTN.dat", "w")
fout_RTS = open("ljet_RTS.dat", "w")
fout_thT = open("ljet_thT.dat", "w")
for k in arange(nmax):
fname=re.dumpname(k)
print("reading "+str(fname))
re.rd(fname)
faraday() # let's trust SashaTch
Tcalcud()
erN = - (gdet * Tud[1,0] * _dx2 * _dx3 * (re.h > theta1) * (re.h < theta2)).sum(-1).sum(-1) # theta-averaged energy flux
erS = - (gdet * Tud[1,0] * _dx2 * _dx3 * (re.h < (np.pi-theta1)) * (re.h < (np.pi - theta2))).sum(-1).sum(-1) #
eth = - (gdet * Tud[1,0] * _dx2 * _dx3 * (re.r > r1) * (re.r < r2)).sum(-1).sum(0) # r-averaged energy flux
for kr in arange(re.nx):
fout_RTN.write(str(re.t)+" "+str(re.r[kr,0,0])+" "+str(erN[kr])+"\n")
fout_RTS.write(str(re.t)+" "+str(re.r[kr,0,0])+" "+str(erS[kr])+"\n")
for kth in arange(re.ny):
fout_thT.write(str(re.t)+" "+str(re.h[0,kth,0])+" "+str(eth[kth])+"\n")
fout_RTN.flush() ; fout_RTS.flush() ; fout_thT.flush()
fout_RTN.close() ; fout_RTS.close() ; fout_thT.close()
# calculates and writes out evolution of some global parameters; rref is the radius at which the mass and momentum flows are calculated
def glevol(nmax, rref):
# global rho, uu
re.rg("gdump")
gdet=re.gdet ; gcov=re.gcov ; _dx2=re._dx2 ; _dx3=re._dx3
# rref is reference radius
run=unique(re.r)
nr=run[where(run<rref)].argmax()
# maccre=zeros(nmax, dtype=double)
fmdot=open("merge_mevol"+str(rref)+".dat", "w")
for k in arange(nmax):
fname=re.dumpname(k)
print("reading "+str(fname))
re.rd(fname)
print("rho is "+str(shape(re.rho)))
# Tcalcud()
# accretion rate at rref
rhom=(re.rho).mean(axis=2) ; uum=(re.uu).mean(axis=3)
rhom_south(re.rho*cos(re.h)).mean(axis=2)
rhom_east(re.rho*sin(re.h)).mean(axis=2)
# do we need to multiply this by drdx??
# uum[0]=(uu[0]*drdx[0,0]).mean(axis=3) ; uum[1]=(uu[1]*drdx[1,1]).mean(axis=3)
# uum[2]=(uu[2]*drdx[2,2]).mean(axis=3) ; uum[2]=(uu[2]*drdx[2,2]).mean(axis=3)
gm=sqrt(old_div(gdet,gcov[1,1]))[:,0,:]
maccre=-trapz((rhom*uum[1]*(uum[1]<0.)*gm)[nr,:], x=re.h[nr,:,0])*_dx2*_dx3
maccre_south=-trapz((rhom_south*uum[1]*(uum[1]<0.)*gm)[nr,:], x=re.h[nr,:,0])*_dx2*_dx3
maccre_east=-trapz((rhom_east*uum[1]*(uum[1]<0.)*gm)[nr,:], x=re.h[nr,:,0])*_dx2*_dx3
mwind=-trapz((rhom*uum[1]*(uum[1]>0.)*gm)[nr,:], x=re.h[nr,:,0])*_dx2*_dx3
laccre=-trapz((rho*fabs(old_div(ud[3],ud[0]))*uu[1]*(uu[1]<0.)*sqrt(old_div(gdet,gcov[1,1]))).mean(axis=2)[nr,:], x=re.h[nr,:,0])*_dx2*_dx3
lwind=-trapz((rho*fabs(old_div(ud[3],ud[0]))*uu[1]*(uu[1]>0.)*sqrt(old_div(gdet,gcov[1,1]))).mean(axis=2)[nr,:], x=re.h[nr,:,0])*_dx2*_dx3
# maccre=-((rho*uu[1]*sqrt(gdet/gcov[1,1]))[nr,:,:]).sum()*_dx2*_dx3
fmdot.write(str(t)+" "+str(maccre)+" "+str(mwind)+" "+str(old_div(laccre,maccre))+" "+str(old_div(lwind,mwind))+" "+str(maccre_south)+" "+str(maccre_east)+"\n")
fmdot.close()
def mint(rref):
print("mint:")
print("shape(rho) = "+str(shape(re.rho)))
print("shape(uu1) = "+str(shape(re.uu[1])))
print("shape gdet = "+str(shape(re.gdet)))
hun=unique(re.h) ; run=unique(re.r)
gdet=re.gdet ; gcov=re.gcov ; _dx2=re._dx2 ; _dx3=re._dx3 ; drdx=re.drdx
uu=re.uu ; ud=re.ud ; rho=re.rho ; _dx2=re._dx2 ; _dx3=re._dx3
nr=run[where(run<rref)].argmax()
indd=(rho*uu[1]*(uu[1]<0.)*sqrt(old_div(gdet,gcov[1,1])))[nr,:,:]
maccre=-trapz((indd).mean(axis=-1), x=hun)*_dx2*_dx3
indd=(rho*uu[1]*(uu[1]>0.)*sqrt(old_div(gdet,gcov[1,1])))[nr,:,:]
mwind=trapz((indd).mean(axis=-1), x=hun)*_dx2*_dx3
indd=(rho*uu[1]*(uu[1]<0.)*fabs(old_div(ud[3],drdx[3,3]))*sqrt(old_div(gdet,gcov[1,1])))[nr,:,:]
laccre=-trapz((indd).mean(axis=-1), x=hun)*_dx2*_dx3
indd=(rho*uu[1]*(uu[1]>0.)*fabs(old_div(ud[3],drdx[3,3]))*sqrt(old_div(gdet,gcov[1,1])))[nr,:,:]
lwind=-trapz((indd).mean(axis=-1), x=hun)*_dx2*_dx3
return maccre, mwind, old_div(laccre,maccre), old_div(lwind,mwind)
def readndump(n1, n2, rref=5.0):
'''
calculates mean maps for the frames n1-n2
rref is reference radius where the mass accretion rate is calculated
'''
# run=unique(r)
# nr=run[where(run<rref)].argmax()
re.rg("gdump")
nx=re.nx ; ny=re.ny ; nz=re.nz
gdet=re.gdet ; gcov=re.gcov ; _dx2=re._dx2 ; _dx3=re._dx3 ; drdx=re.drdx
guu=re.guu ; gdd=re.gdd
r=re.r ; h=re.h ; phi=re.ph # importing coordinate mesh
if (n2<n1):
print("readndump: invalid file number range")
exit()
fmdot=open("merge_mevol"+str(rref)+".dat", "w")
nframes=n2-n1+1
n=n1+arange(nframes)
for k in n:
fname=re.dumpname(k)
re.rd(fname)
Tcalcud()
p=(re.gam-1.)*re.ug
magp=old_div(re.bsq,2.)
rho=re.rho ; uu=re.uu ; ud=re.ud
if(k==n1):
rhomean=rho
rhosqmean=rho**2
# velocity components:
uu0=uu[0]*rho ; ud0=ud[0]*rho
uur=uu[1]*rho ; udr=ud[1]*rho
uuh=uu[2]*rho ; udh=ud[2]*rho
uup=uu[3]*rho ; udp=ud[3]*rho
puu0=uu[0]*p ; pud0=ud[0]*p
puur=uu[1]*p ; pudr=ud[1]*p
puuh=uu[2]*p ; pudh=ud[2]*p
puup=uu[3]*p ; pudp=ud[3]*p
mpuu0=uu[0]*magp ; mpud0=ud[0]*magp
mpuur=uu[1]*magp ; mpudr=ud[1]*magp
mpuuh=uu[2]*magp ; mpudh=ud[2]*magp
mpuup=uu[3]*magp ; mpudp=ud[3]*magp
tudem=TudEM ; tudma=TudMA
pmean=p
# unorm=uaver
magp_mean=magp
aphi=re.psicalc()
dumpinfo(fname)
os.system("cp dumps/"+fname+"_dinfo.dat merge_dinfo.dat")
else:
rhomean+=rho
rhosqmean+=rho**2
# velocity components:
uu0+=uu[0]*rho ; ud0+=ud[0]*rho
uur+=uu[1]*rho ; udr+=ud[1]*rho
uuh+=uu[2]*rho ; udh+=ud[2]*rho
uup+=uu[3]*rho ; udp+=ud[3]*rho
puu0+=uu[0]*p ; pud0+=ud[0]*p
puur+=uu[1]*p ; pudr+=ud[1]*p
puuh+=uu[2]*p ; pudh+=ud[2]*p
puup+=uu[3]*p ; pudp+=ud[3]*p
mpuu0+=uu[0]*magp ; mpud0+=ud[0]*magp
mpuur+=uu[1]*magp ; mpudr+=ud[1]*magp
mpuuh+=uu[2]*magp ; mpudh+=ud[2]*magp
mpuup+=uu[3]*magp ; mpudp+=ud[3]*magp
pmean+=p
magp_mean+=magp
aphi+=re.psicalc()
# unorm+=uaver
tudem+=TudEM ; tudma+=TudMA
maccre, mwind, laccre, lwind = mint(rref)
fmdot.write(str(re.t)+" "+str(maccre)+" "+str(mwind)+" "+str(old_div(laccre,maccre))+" "+str(old_div(lwind,mwind))+"\n")
fmdot.close()
# velocity normalization:
uu0*=old_div(drdx[0,0],rhomean) ; uur*=old_div(drdx[1,1],rhomean) ; uuh*=old_div(drdx[2,2],rhomean) ; uup*=old_div(drdx[3,3],rhomean)
ud0/=drdx[0,0]*rhomean ; udr/=drdx[1,1]*rhomean ; udh/=drdx[2,2]*rhomean ; udp/=drdx[3,3]*rhomean
puu0*=old_div(drdx[0,0],pmean) ; puur*=old_div(drdx[1,1],pmean) ; puuh*=old_div(drdx[2,2],pmean) ; puup*=old_div(drdx[3,3],pmean)
pud0/=drdx[0,0]*pmean ; pudr/=drdx[1,1]*pmean ; pudh/=drdx[2,2]*pmean ; pudp/=drdx[3,3]*pmean
mpuu0*=old_div(drdx[0,0],magp_mean) ; mpuur*=old_div(drdx[1,1],magp_mean) ; mpuuh*=old_div(drdx[2,2],magp_mean) ; mpuup*=old_div(drdx[3,3],magp_mean)
mpud0/=drdx[0,0]*magp_mean ; mpudr/=drdx[1,1]*magp_mean ; mpudh/=drdx[2,2]*magp_mean ; mpudp/=drdx[3,3]*magp_mean
# uu0/=unorm ; uur/=unorm ; uuh/=unorm ; uup/=unorm
# ud0/=unorm ; udr/=unorm ; udh/=unorm ; udp/=unorm
# averaging the density:
rhomean=old_div(rhomean,double(nframes))
rhodisp=old_div(rhosqmean,double(nframes))-rhomean**2
pmean=old_div(pmean,double(nframes))
magp_mean=old_div(magp_mean,double(nframes))
tudem/=double(nframes) ; tudma/=double(nframes)
aphi/=double(nframes)
# physical stress-energy tensor components:
for k in arange(4):
for j in arange(4):
tudem[k,j]*=drdx[k,k]/drdx[j,j]*sqrt(guu[k,k]*gdd[j,j])
tudma[k,j]*=drdx[k,k]/drdx[j,j]*sqrt(guu[k,k]*gdd[j,j])
# ss=shape(rhomean)
# nx=ss[0]
# ny=ss[1]
# we need some 3D data
rho3d=rhomean ; p3d=pmean ; ur3d=uur ; uh3d=uuh ; up3d=uup
fout=open('merge_rho3d.dat', 'w')
for kx in arange(nx):
for ky in arange(ny):
for kz in arange(nz):
fout.write(str(rho3d[kx,ky, kz])+'\n')
fout.close()
fout=open('merge_p3d.dat', 'w')
for kx in arange(nx):
for ky in arange(ny):
for kz in arange(nz):
fout.write(str(p3d[kx,ky, kz])+'\n')
fout.close()
fout=open('merge_u3d.dat', 'w')
# uu on the mesh
for kx in arange(nx):
for ky in arange(ny):
for kz in arange(nz):
fout.write(str(uu0[kx,ky,kz])+' '+str(uur[kx,ky,kz])+' '+str(uuh[kx,ky,kz])+' '+str(uup[kx,ky,kz])+'\n')
fout.close()
fout=open('merge_pu3d.dat', 'w')
# uu on the mesh
for kx in arange(nx):
for ky in arange(ny):
for kz in arange(nz):
fout.write(str(puu0[kx,ky,kz])+' '+str(puur[kx,ky,kz])+' '+str(puuh[kx,ky,kz])+' '+str(puup[kx,ky,kz])+'\n')
fout.close()
fout=open('merge_mpu3d.dat', 'w')
# uu on the mesh
for kx in arange(nx):
for ky in arange(ny):
for kz in arange(nz):
fout.write(str(mpuu0[kx,ky,kz])+' '+str(mpuur[kx,ky,kz])+' '+str(mpuuh[kx,ky,kz])+' '+str(mpuup[kx,ky,kz])+'\n')
fout.close()
# 2D or 3D? averaging over phi
rhomean=rhomean.mean(axis=2)
rhodisp=rhodisp.mean(axis=2)
pmean=pmean.mean(axis=2) ; magp_mean=magp_mean.mean(axis=2)
uu0=uu0.mean(axis=2) ; uur=uur.mean(axis=2) ; uuh=uuh.mean(axis=2) ; uup=uup.mean(axis=2)
ud0=ud0.mean(axis=2) ; udr=udr.mean(axis=2) ; udh=udh.mean(axis=2) ; udp=udp.mean(axis=2)
puu0=puu0.mean(axis=2) ; puur=puur.mean(axis=2) ; puuh=puuh.mean(axis=2) ; puup=puup.mean(axis=2)
pud0=pud0.mean(axis=2) ; pudr=pudr.mean(axis=2) ; pudh=pudh.mean(axis=2) ; pudp=pudp.mean(axis=2)
mpuu0=mpuu0.mean(axis=2) ; mpuur=mpuur.mean(axis=2) ; mpuuh=mpuuh.mean(axis=2) ; mpuup=mpuup.mean(axis=2)
mpud0=mpud0.mean(axis=2) ; mpudr=mpudr.mean(axis=2) ; mpudh=mpudh.mean(axis=2) ; mpudp=mpudp.mean(axis=2)
# drp=drp.mean(axis=2) ; dhp=dhp.mean(axis=2) ; drh=drh.mean(axis=2)
tudem=tudem.mean(axis=-1)
tudma=tudma.mean(axis=-1)
# aphi=aphi.mean(axis=-1)
# r mesh:
fout=open('merge_r.dat', 'w')
for kx in arange(nx):
fout.write(str(r[kx,0,0])+'\n')
fout.close()
fout=open('merge_h.dat', 'w')
# theta mesh
for ky in arange(ny):
fout.write(str(h[0,ky,0])+'\n')
fout.close()
fout=open('merge_phi.dat', 'w')
# phi mesh
for kz in arange(nz):
fout.write(str(phi[0,0,kz])+'\n')
fout.close()
fout=open('merge_rho.dat', 'w')
# rho on the mesh
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(rhomean[kx,ky])+'\n')
fout.close()
# p on the mesh
fout=open('merge_p.dat', 'w')
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(pmean[kx,ky])+'\n')
fout.close()
# magnetic pressure on the mesh
fout=open('merge_mp.dat', 'w')
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(magp_mean[kx,ky])+'\n')
fout.close()
fout=open('merge_uu.dat', 'w')
# uu on the mesh
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(uu0[kx,ky])+' '+str(uur[kx,ky])+' '+str(uuh[kx,ky])+' '+str(uup[kx,ky])+'\n')
fout.close()
fout=open('merge_ud.dat', 'w')
# ud on the mesh
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(ud0[kx,ky])+' '+str(udr[kx,ky])+' '+str(udh[kx,ky])+' '+str(udp[kx,ky])+'\n')
fout.close()
fout=open('merge_puu.dat', 'w')
# uu on the mesh
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(puu0[kx,ky])+' '+str(puur[kx,ky])+' '+str(puuh[kx,ky])+' '+str(puup[kx,ky])+'\n')
fout.close()
fout=open('merge_pud.dat', 'w')
# ud on the mesh
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(pud0[kx,ky])+' '+str(pudr[kx,ky])+' '+str(pudh[kx,ky])+' '+str(pudp[kx,ky])+'\n')
fout.close()
fout=open('merge_mpuu.dat', 'w')
# uu on the mesh
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(mpuu0[kx,ky])+' '+str(mpuur[kx,ky])+' '+str(mpuuh[kx,ky])+' '+str(mpuup[kx,ky])+'\n')
fout.close()
fout=open('merge_mpud.dat', 'w')
# ud on the mesh
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(mpud0[kx,ky])+' '+str(mpudr[kx,ky])+' '+str(mpudh[kx,ky])+' '+str(mpudp[kx,ky])+'\n')
fout.close()
fout=open('merge_tudem.dat', 'w')
# EM energy-stress tensor
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(tudem[0,0][kx,ky])+' '+str(tudem[0,1][kx,ky])+' '+str(tudem[0,2][kx,ky])+' '+str(tudem[0,3][kx,ky])+' ')
fout.write(str(tudem[1,0][kx,ky])+' '+str(tudem[1,1][kx,ky])+' '+str(tudem[1,2][kx,ky])+' '+str(tudem[1,3][kx,ky])+' ')
fout.write(str(tudem[2,0][kx,ky])+' '+str(tudem[2,1][kx,ky])+' '+str(tudem[2,2][kx,ky])+' '+str(tudem[2,3][kx,ky])+' ')
fout.write(str(tudem[3,0][kx,ky])+' '+str(tudem[3,1][kx,ky])+' '+str(tudem[3,2][kx,ky])+' '+str(tudem[3,3][kx,ky])+'\n')
fout.close()
fout=open('merge_tudma.dat', 'w')
# matter energy-stress tensor
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(tudma[0,0][kx,ky])+' '+str(tudma[0,1][kx,ky])+' '+str(tudma[0,2][kx,ky])+' '+str(tudma[0,3][kx,ky])+' ')
fout.write(str(tudma[1,0][kx,ky])+' '+str(tudma[1,1][kx,ky])+' '+str(tudma[1,2][kx,ky])+' '+str(tudma[1,3][kx,ky])+' ')
fout.write(str(tudma[2,0][kx,ky])+' '+str(tudma[2,1][kx,ky])+' '+str(tudma[2,2][kx,ky])+' '+str(tudma[2,3][kx,ky])+' ')
fout.write(str(tudma[3,0][kx,ky])+' '+str(tudma[3,1][kx,ky])+' '+str(tudma[3,2][kx,ky])+' '+str(tudma[3,3][kx,ky])+'\n')
fout.close()
fout=open('merge_aphi.dat', 'w')
# poloidal magnetic field lines
for kx in arange(nx):
for ky in arange(ny):
fout.write(str(aphi[kx,ky])+'\n')
fout.close()
# reading dumps again to estimate the ellipsoid of turbulent velocities
def corvee(n1,n2):
re.rg("gdump")
nx=re.nx ; ny=re.ny ; nz=re.nz
gdet=re.gdet ; gcov=re.gcov ; _dx2=re._dx2 ; _dx3=re._dx3 ; drdx=re.drdx
r=re.r ; h=re.h ; phi=re.ph # importing coordinate mesh
# velocities:
uufile='merge_uu.dat'
udfile='merge_ud.dat'
fuu=open(uufile, 'r')
fud=open(udfile, 'r')
# s=str.split(str.strip(fuu.readline()))
# mean velocity field
uumean=zeros([4,nx,ny,nz], dtype=double)
udmean=zeros([4,nx,ny,nz], dtype=double)
for kx in arange(nx):
for ky in arange(ny):
s=str.split(str.strip(fuu.readline()))
uumean[0,kx,ky,:]=double(s[0])
uumean[1,kx,ky,:]=double(s[1])
uumean[2,kx,ky,:]=double(s[2])
uumean[3,kx,ky,:]=double(s[3])
s=str.split(str.strip(fud.readline()))
udmean[0,kx,ky,:]=double(s[0])
udmean[1,kx,ky,:]=double(s[1])
udmean[2,kx,ky,:]=double(s[2])
udmean[3,kx,ky,:]=double(s[3])
fuu.close()
fud.close()
# tetrad components:
t0=tetrad_t(uumean, udmean)
tr=tetrad_r(uumean, udmean)
th=tetrad_h(uumean, udmean)
tp=tetrad_p(uumean, udmean)
# print shape(tr)
nframes=n2-n1+1
n=n1+arange(nframes)
for k in n:
fname=re.dumpname(k)
re.rd(fname)
uu=re.uu ; ud=re.ud ; rho=re.rho
if(k==n1):
rhomean=rho
# velocity components:
uu0=uu[0]*drdx[0,0]-uumean[0] ; ud0=old_div(ud[0],drdx[0,0])-udmean[0]
uur=uu[1]*drdx[1,1]-uumean[1] ; udr=old_div(ud[1],drdx[1,1])-udmean[1]
uuh=uu[2]*drdx[2,2]-uumean[2] ; udh=old_div(ud[2],drdx[2,2])-udmean[2]
uup=uu[3]*drdx[3,3]-uumean[3] ; udp=old_div(ud[3],drdx[3,3])-udmean[3]
tuur=(uu0*tr[0]+uur*tr[1]+uuh*tr[2]+uup*tr[3]) # co-moving velocity components
tuuh=(uu0*th[0]+uur*th[1]+uuh*th[2]+uup*th[3])
tuup=(uu0*tp[0]+uur*tp[1]+uuh*tp[2]+uup*tp[3])
drh=rho*tuur*tuuh ; drp=rho*tuur*tuup ; dhp=rho*tuuh*tuup
drr=rho*tuur*tuur ; dpp=rho*tuup*tuup ; dhh=rho*tuuh*tuuh
# print(shape(drh))
# print(shape(rho))
# print(shape(tuur))
else:
rhomean+=rho
# velocity components:
uu0=uu[0]-uumean[0] ; ud0=ud[0]-udmean[0]
uur=uu[1]-uumean[1] ; udr=ud[1]-udmean[1]
uuh=uu[2]-uumean[2] ; udh=ud[2]-udmean[2]
uup=uu[3]-uumean[3] ; udp=ud[3]-udmean[3]
tuur=(uu0*tr[0]+uur*tr[1]+uuh*tr[2]+uup*tr[3])
tuuh=(uu0*th[0]+uur*th[1]+uuh*th[2]+uup*th[3])
tuup=(uu0*tp[0]+uur*tp[1]+uuh*tp[2]+uup*tp[3])
drh+=rho*tuur*tuuh ; drp+=rho*tuur*tuup ; dhp+=rho*tuuh*tuup
drr+=rho*tuur*tuur ; dpp+=rho*tuup*tuup ; dhh+=rho*tuuh*tuuh
drh/=rhomean ; drp/=rhomean ; dhp/=rhomean
drr/=rhomean ; dpp/=rhomean ; dhh/=rhomean
drh=drh.mean(axis=2) ; drp=drp.mean(axis=2) ; dhp=dhp.mean(axis=2)
drr=drr.mean(axis=2) ; dpp=dpp.mean(axis=2) ; dhh=dhh.mean(axis=2)
fout=open('merge_corv.dat', 'w')
for kx in arange(nx):
for ky in arange(ny):
# RR HH PP RH HP RP
fout.write(str(drr[kx,ky])+' '+str(dhh[kx,ky])+' '+str(dpp[kx,ky])+' '+str(drh[kx,ky])+' '+str(dhp[kx,ky])+' '+str(drp[kx,ky])+'\n')
fout.close()
# making a horizontal slice
def fromabove(fname, htor=0.1, alifactor=1):
# alifactor = alias factor, every alifactorth point in r and phi will be outputted, phi averaged over
# rg("gdump")
re.rd(fname)
run=unique(re.r)
hun=unique(re.h)
phun=unique(re.ph)
indisk=double(abs(cos(re.h))<htor)
innorm=indisk.mean(axis=1)
ugmean=old_div((re.ug*indisk).mean(axis=1),innorm)
drdx=re.drdx ; uu=re.uu ; ud=re.ud ; rho=re.rho ; ug=re.ug # can we just import all the data?
uu[0]*=drdx[0,0] ; uu[1]*=drdx[1,1] ; uu[2]*=drdx[2,2] ; uu[3]*=drdx[3,3] # to physical
ud[0]/=drdx[0,0] ; ud[1]/=drdx[1,1] ; ud[2]/=drdx[2,2] ; ud[3]/=drdx[3,3] # to physical
uumean0=old_div((uu[0]*indisk*rho).mean(axis=1),(rho*indisk).mean(axis=1))
uumeanr=old_div((uu[1]*indisk*rho).mean(axis=1),(rho*indisk).mean(axis=1))
uumeanh=old_div((uu[2]*indisk*rho).mean(axis=1),(rho*indisk).mean(axis=1))
uumeanp=old_div((uu[3]*indisk*rho).mean(axis=1),(rho*indisk).mean(axis=1))
uumean0_p=old_div((uu[0]*indisk*ug).mean(axis=1),(ug*indisk).mean(axis=1))
uumeanr_p=old_div((uu[1]*indisk*ug).mean(axis=1),(ug*indisk).mean(axis=1))
uumeanh_p=old_div((uu[2]*indisk*ug).mean(axis=1),(ug*indisk).mean(axis=1))
uumeanp_p=old_div((uu[3]*indisk*ug).mean(axis=1),(ug*indisk).mean(axis=1))
udmean0=old_div((ud[0]*indisk*rho).mean(axis=1),(rho*indisk).mean(axis=1))
udmeanr=old_div((ud[1]*indisk*rho).mean(axis=1),(rho*indisk).mean(axis=1))
udmeanh=old_div((ud[2]*indisk*rho).mean(axis=1),(rho*indisk).mean(axis=1))
udmeanp=old_div((ud[3]*indisk*rho).mean(axis=1),(rho*indisk).mean(axis=1))
udmean0_p=old_div((ud[0]*indisk*ug).mean(axis=1),(ug*indisk).mean(axis=1))
udmeanr_p=old_div((ud[1]*indisk*ug).mean(axis=1),(ug*indisk).mean(axis=1))
udmeanh_p=old_div((ud[2]*indisk*ug).mean(axis=1),(ug*indisk).mean(axis=1))
udmeanp_p=old_div((ud[3]*indisk*ug).mean(axis=1),(ug*indisk).mean(axis=1))
rhomean=old_div((rho*indisk).mean(axis=1),innorm)
pmag=(re.bsq*indisk).mean(axis=1)/innorm/2.
# r mesh:
fout=open("dumps/"+fname+'_eq_r.dat', 'w')
for kx in arange(re.nx):
if(kx%alifactor==0):
fout.write(str(run[kx])+'\n')
fout.close()
fout=open("dumps/"+fname+'_eq_phi.dat', 'w')
# phi mesh
for kz in arange(re.nz):
# if(kz%alifactor==0):
fout.write(str(phun[kz])+'\n')
fout.close()
foutrho=open("dumps/"+fname+'_eq_rho.dat', 'w') # density
foutp=open("dumps/"+fname+'_eq_p.dat', 'w') # gas pressure
foutpm=open("dumps/"+fname+'_eq_pm.dat', 'w') # magnetic pressure
foutu=open("dumps/"+fname+'_eq_uu.dat', 'w') # contravariant velocities
foutd=open("dumps/"+fname+'_eq_ud.dat', 'w') # covariant velocities
foutup=open("dumps/"+fname+'_eq_puu.dat', 'w') # pressure-averaged contravariant velocities
foutdp=open("dumps/"+fname+'_eq_pud.dat', 'w') # pressure-averaged covariant velocities
# rho on the mesh
for kx in arange(re.nx):
if(kx%alifactor==0):
for kz in arange(re.nz):
foutrho.write(str(rhomean[kx,kz])+'\n')
foutp.write(str(ugmean[kx,kz]*(re.gam-1.))+'\n')
foutpm.write(str(pmag[kx,kz])+'\n')
foutu.write(str(uumean0[kx,kz])+' '+str(uumeanr[kx,kz])+' '+str(uumeanh[kx,kz])+' '+str(uumeanp[kx,kz])+'\n')
foutd.write(str(udmean0[kx,kz])+' '+str(udmeanr[kx,kz])+' '+str(udmeanh[kx,kz])+' '+str(udmeanp[kx,kz])+'\n')
foutup.write(str(uumean0_p[kx,kz])+' '+str(uumeanr_p[kx,kz])+' '+str(uumeanh_p[kx,kz])+' '+str(uumeanp_p[kx,kz])+'\n')
foutdp.write(str(udmean0_p[kx,kz])+' '+str(udmeanr_p[kx,kz])+' '+str(udmeanh_p[kx,kz])+' '+str(udmeanp_p[kx,kz])+'\n')
foutrho.close()
foutp.close()
foutpm.close()
foutu.close()
foutd.close()
foutup.close()
foutdp.close()
os.system('tar -cf dumps/'+fname+'_eq.tar dumps/'+fname+'_dinfo.dat dumps/'+fname+'_eq_*.dat')
########################################################################################################################
# reading one frame and making it lighter and 2D (by averaging over phi) and saving as an ascii
def framerip(fname, alifactor=1):
# global rho, ug, uu, ud, gam, B, aphi
# alifactor = alias factor, every alifactorth point in r and th will be outputted, phi averaged over
# rg("gdump")
re.rd("dumps/"+fname)
# print(rho)
run=unique(re.r) ; hun=unique(re.h)
drdx=re.drdx ; uu=re.uu ; ud=re.ud ; rho=re.rho ; ug=re.ug ; B=re.B; bsq=re.bsq # can we just import all the data?
# origin variables:
orr=(re.origin_r*rho).mean(axis=2)/rho.mean(axis=2)
orth=(re.origin_th*rho).mean(axis=2)/rho.mean(axis=2)
orphi=(re.origin_phi*rho).mean(axis=2)/rho.mean(axis=2)
ug=ug.mean(axis=2)
# uu[0]*=drdx[0,0] ; uu[1]*=drdx[1,1] ; uu[2]*=drdx[2,2] ; uu[3]*=drdx[3,3] # to physical
uu0=old_div((uu[0]*rho*drdx[0,0]).mean(axis=2),rho.mean(axis=2))
uur=old_div((uu[1]*rho*drdx[1,1]).mean(axis=2),rho.mean(axis=2))
uuh=old_div((uu[2]*rho*drdx[2,2]).mean(axis=2),rho.mean(axis=2))
uup=old_div((uu[3]*rho*drdx[3,3]).mean(axis=2),rho.mean(axis=2))
# uu[0]*=drdx[0,0] ; uu[1]*=drdx[1,1] ; uu[2]*=drdx[2,2] ; uu[3]*=drdx[3,3] # to physical
# ud[0]/=drdx[0,0] ; ud[1]/=drdx[1,1] ; ud[2]/=drdx[2,2] ; ud[3]/=drdx[3,3] # to physical
# ud=(ud*rho).mean(axis=3)/rho.mean(axis=2)
# ud[0]/=drdx[0,0] ; ud[1]/=drdx[1,1] ; ud[2]/=drdx[2,2] ; ud[3]/=drdx[3,3] # to physical
ud0=old_div((ud[0]*rho/drdx[0,0]).mean(axis=2),rho.mean(axis=2))
udr=old_div((ud[1]*rho/drdx[1,1]).mean(axis=2),rho.mean(axis=2))
udh=old_div((ud[2]*rho/drdx[2,2]).mean(axis=2),rho.mean(axis=2))
udp=old_div((ud[3]*rho/drdx[3,3]).mean(axis=2),rho.mean(axis=2))
rhom=rho.mean(axis=2)
pmag=old_div((bsq).mean(axis=2),2.)
aphi=re.psicalc()
B[1]=B[1]*drdx[1,1] ; B[2]=B[2]*drdx[2,2] ; B[3]=B[3]*drdx[3,3]
B=B.mean(axis=3)
# aphi=aphi.mean(axis=2)
# r mesh:
fout=open("dumps/"+fname+'_r.dat', 'w')
for kx in arange(re.nx):
if(kx%alifactor==0):
fout.write(str(run[kx])+'\n')
fout.close()
fout=open("dumps/"+fname+'_h.dat', 'w')
# theta mesh
for ky in arange(re.ny):
if(ky%alifactor==0):
fout.write(str(hun[ky])+'\n')
fout.close()
foutrho=open("dumps/"+fname+'_rho.dat', 'w')
foutp=open("dumps/"+fname+'_p.dat', 'w')
foutpm=open("dumps/"+fname+'_pm.dat', 'w')
foutu=open("dumps/"+fname+'_uu.dat', 'w')
foutd=open("dumps/"+fname+'_ud.dat', 'w')
foutb=open("dumps/"+fname+'_b.dat', 'w')
foutori=open("dumps/"+fname+'_ori.dat', 'w')
# rho on the mesh
for kx in arange(re.nx):
if(kx%alifactor==0):
for ky in arange(re.ny):
if(ky%alifactor==0):
foutrho.write(str(rhom[kx,ky])+'\n')
foutp.write(str(ug[kx,ky]*(re.gam-1.))+'\n')
foutpm.write(str(old_div(pmag[kx,ky],2.))+'\n')
foutu.write(str(uu0[kx,ky])+' '+str(uur[kx,ky])+' '+str(uuh[kx,ky])+' '+str(uup[kx,ky])+'\n')
foutd.write(str(ud0[kx,ky])+' '+str(udr[kx,ky])+' '+str(udh[kx,ky])+' '+str(udp[kx,ky])+'\n')
foutb.write(str(B[1, kx,ky])+' '+str(B[2, kx,ky])+' '+str(B[3, kx,ky])+' '+str(aphi[kx,ky])+'\n')
foutori.write(str(orr[kx,ky])+' '+str(orth[kx,ky])+' '+str(orphi[kx,ky])+'\n')
foutb.close()
foutori.close()
foutrho.close()
foutp.close()
foutpm.close()
foutu.close()
foutd.close()
os.system('tar -cf dumps/'+fname+'.tar dumps/'+fname+'_*.dat')
# makes ascii files with degraded resolution from all the dumps
def defaultrun():
dire=''
rref=10.
# os.chdir(dire)
# dumpinfo()
re.rg(dire+"gdump")
run=unique(re.r)
nr=run[where(run<rref)].argmax() # where the radius is closest to rref (from inside)
fout=open(dire+"dumps_mevol.dat", "w")
flist=get_sorted_file_list()
nlist=size(flist)
print(str(nlist)+" files")
print(flist)
for k in arange(nlist):
dumpinfo("../"+flist[k])
framerip("../"+flist[k], alifactor=1)
maccre, mwind, laccre, lwind = mint(rref)
fromabove("../"+flist[k], alifactor=3)
print("merger_remote defaultrun: reducing "+str(flist[k]))
fout.write(str(re.t)+" "+str(maccre)+" "+str(mwind)+" "+str(laccre)+" "+str(lwind)+"\n")
fout.close()
# produces time-averaged frames:
def corveerun(nfirst=None, nlast=None):
re.rg("gdump")
readndump(nfirst,nlast)
# corvee(nfirst, nlast)
os.system('tar -cf mergereads.tar merge_*.dat')
# defaultrun()
# corveerun()